高中数学必修二全部教学设计案例
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 2 页,共 29 页 2011-8-1
教学设计案例
整理:mengxueliang
目录
第一章
引言
学习立体几何初步的准备(一课时) 1
空间几何体
1.1
空间几何体的结构
柱、锥、台、球的结构特征(第一课时) 简单几何体的结构特征(第二课时)
1.1.1 1.1.2
1.2
空间几何体的三视图和直观图
空间几何体的三视图(第一课时) 空间几何体的直观图(第二课时)
1103 问题 5.观察下列图形,谈谈自己的感觉; 用一张硬纸板折一下,检验一下自己的感觉。
1104 四、分层反馈练习 1.两条直线相交有几个交点? 2.两个平面相交会出现什么?
1105
1106
第 5 页,共 29 页
2011-8-1
教学设计案例
整理:mengxueliang
3.几个点可以确定一条直线? 4.能找到一个四边形,使它们的对角线不相交吗? 五、延伸拓展迁移 问题 6.从一个圆锥的底部圆周上一点出发在圆锥的表面上走一圈仍回到出发点,请你设计最短的路 线?
1.1 空间几何体的结构 课标要求
利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并 能运用这些特征描述现实生活中简单物体的结构。 教具:三棱柱、四棱柱、五棱柱、六棱柱,三棱锥、四棱锥、五棱锥、六棱锥,三棱台(由三棱锥截 得)、四棱台(由四棱锥截得),圆柱,圆锥,圆台,球 1.1.1 柱、锥、台、球的结构特征(第一课时) 一、展示学习目标 1. 学生通过制作模型,会折叠,制作棱柱、棱锥、圆柱、圆锥的模型,直观感受空间几何体; 2. 通过对所制作空间几何体的观察、讨论、归纳、概括,会用语言概述棱柱、棱锥、圆柱、圆锥、 棱台、圆台、球的几何结构特征,并能用适当的方法表示有关于几何体以及柱、锥、台的分类。 二、问题情境引入 在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。由这些物体抽象出来 的空间图形叫做空间几何体。我们上一节的作业制作的几何体模型就是抽象出来的空间几何体,请同学们
教学设计案例
整理:mengxueliang
普通高中数学课程教学设计【校本教材】
立体几何初步
版权所有
第 1 页,共 29 页
2011-8-1
教学设计案例
整理:mengxueliang
前言
根据高中新课程标准,学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应 倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。这些方式有助于发挥学生学习的主动 性,使学生的学习过程成为在教师引导下的"再创造"过程。同时,高中数学课程设立"数学探究"、"数学 建模"等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的条件,以激发学生的数学 学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯。因此,高中数学课程应力求通过各 种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识,体验数学 发现和创造的历程。 数学课中的实践活动是在教师的指导下,学生充分发挥自主性,自己动手动脑进行实践和思维想象, 是培养学生学习兴趣与发展能力的实践性很强的教学活动中的一环。它与学科教学相互联系、相辅相成。 中学数学立体几何初步的中心内容应着眼于数学空间想象能力问题的研究设计。 在高中立体几何初步的教学中,建立良好的空间想象能力是学习高中立体几何初步的关键,也是最大 的难点。众多的学者、专家等勤勉之士也想了很多好的方法,设计、制作了不少类型的几何模具,但大多 不灵活,不精巧,不透明,直观性差,尤其在展示几何体内部的点线面关系中缺少透视性,都只具有教师 在讲台上进行演示的功能,且演示内容少,变化少,缺少学生进行实际操作的功能,针对这种情况,在郑 州市第十二中学校领导的大力支持下,在我校黄汉声教师所设计、创作的教(学)具(2000 年 9 月获全国第 五届教(学)具评选一等奖,且获得了专利,专利号为:ZL:00264511.4,证书号为:479690)的基础上, 参照理化生实验室和教学音像制品的思路,于 2001 年春创建了立体几何观察实验室,并成立了相应的科 研小组,设计制作了完全不同于传统教(学)具的新型教具、学具及图表,配备了为设计制作更新教学具 必备的文具、工具和多种规格的原材料,及教学改革和教学具制作方面的图书资料。 在一些同学学习立体几何的过程中,建立良好的空间想象能力是一难点,同时还存在另一大误区,往 往将立体几何和平面几何的知识割裂开来甚至对立起来, 使立体几何成了无源之水, 无根之木, 空中楼阁, 对立体几何的学习,知识的理解,甚为困难。同时,在教学实践中发现,用多层平面透明胶片的平移和旋 转可以有效的弥补了这两个方面的不足,为此研制了新的教(学)具,构建了平面和空间的互动模型,通过 互动的模型,将平面几何与立体几何有机的联系在一起,体现了化归平面,升维降维,以直代曲的思想。 高中新课程标准对立体几何初步这一部分的教学建议是: 1. 立体几何初步的教学重点是帮助学生逐步形成空间想像能力。教学内容的设计应遵循从整体到局 部、具体到抽象的原则,教师应提供丰富的实物模型或利用计算机软件呈现的空间几何体,帮助学生认识 柱、锥、台、球及其简单组合体等空间几何体的结构特征,并能运用这些特征描述现实生活中简单物体的 结构。 2.几何教学应注意引导学生通过对实际模型的认识,学会将自然语言转化为图形语言和符号语言。 教师可以使用具体的长方体的点、线、面关系作为载体,使学生在直观感知的基础上,认识空间中一般的 点、线、面之间的位置关系,抽象出空间线、面位置关系的定义;通过对图形的观察、实验和说理,使学 生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关 系,并能解决一些简单的推理论证及应用问题。 3.立体几何初步的教学中,对有关线面平行、垂直关系的的判定定理只要求直观感知、操作确认。 4.有条件的学校应在教学过程中恰当地使用现代信息技术展示空间图形,为理解和掌握图形几何性 质(包括证明)的教学提供形象的支持,提高学生的几何直观能力。教师可以指导和帮助学生运用立体几 何知识选择课题,进行探究。 根据新课程的精神,结合我校的实际情况和我校学生的认知水平,为配合新课程教学,我们对立体几 何初步这一内容按照问题导学模式编写了校本教材。主要思路是通过学生在数学课中的操作实践,促进学 生主动地进行观察、、归纳、猜想、验证、推理和交流等活动,有效地帮助学生发现数学原理、理解数学 知识,有助于强化学生的数学应用意识和应用能力,有助于培养学生探究能力和创新精神,使新课程的数 学教学充满活力,激发学生学习兴趣和提高教学质量。
1121
1122
1123
1124
(1)定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由 这些面所围成的几何体叫做棱柱。 (2)棱柱的有关概念:(出示下图模型,边对照模型边介绍) 棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公 共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点。
1.2.1 1.2.2
1.3
空间几何体的表面积和体积
柱体、锥体、台体的表面积和体积(第一课时) 柱体、锥体、台体的表面积和体积(第二课时) 球的体积和表面积(第三课时)
1.3.1 1.3.1 1.3.2
附录 1
第 3 页,共 29 页
2011-8-1
教学设计案例
引言
整理:mengxueliang
学习立体几何初步的准备(一课时)
第 6 页,共 29 页 2011-8-1
教学设计案例
整理:mengxueliang
展示自己的作品模型,观察其几何结构特征,每个小组拿出自己作品模型,观察其几何结构特征。 教师展示教具:(1)(2)(3)(4)等几何体模型,学生按小组进行观察并思考: 问题 1:请同学们仔细观察下列 4 个几何体,说出他们的共同特点是什么? (师生共同讨论,总结出棱柱的定义及其相关概念)
问题 1:学生观察(1)—(16)这些实物图片,思考: (1)—(16)这些实物具有什么样的几何结 构特征? 如何把这 16 个实物分为两类?分类的标准是什么?
第 4 页,共 29 页 2011-8-1
教学设计案例
整理:mengxueliang
(学生观察思考,发现这些物体可分为两类. 其中(2),(5),(7),(9),(13),(14),(15),(16) 具有相同的特 点:组成几何体的每个面都是平面图形,并且都是平面多边形;(1),(3),(4),(6),(8),(10),(11),(12)具有 相同的特点:组成它们的面不全是平面图形.) 活动 1 想一想,我们应该给上述两大类几何体取个什么名称才好呢? 1.由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多面体的面。相邻两 个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 (学生每人拿出一个学具正方体进行比划,了解多面体的面、棱、顶点) 2.由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直 线叫做旋转体的轴。 (学生每人拿出一个学具圆柱进行观察,思考交流旋转体的轴及形成旋转体的平面图形) 三、问题解决展示 问题 2.下图中的几何体,我们从正面、从左面、从上面看到的图形分别是什么?你能画出来吗? (学生画图)
问题 7. 只允许切三刀,能把一块正方体的豆腐切成形状、大小相同的八块吗?
A
ቤተ መጻሕፍቲ ባይዱ
1107 1108 1109 六、 课堂回顾小结 1、努力画好立体图形,要理解立体几何与初中所学平面几何的区别和联系 2、从实际出发,在初学立体几何时,不论是学习概念和空间和图形的关系,还是学习性质和定理,都可 以制作一些简单的模型来增强空间想象能力,我们配备的立体几何初步学具素材就可以制作几何体模型, 有时也可以就地取材;如:桌面,练习本可当作平面,笔,小木棒可当作直线,也可以进行折纸实验等, 这样可以大大降低难度,帮助我们尽快地建立空间空间概念。 3、学生谈感受:在学习立体几何的开始阶段,我们要依靠模型来思考问题;学了一段时间以后,就要养 成离开模型,而只是依靠立体图形来思考;到最后,要靠脑中的图形来思考解决问题。 七、布置检测作业 结合我们配备的立体几何初步学具素材,分小组制作几何体模型,制作出以下几何体模型,并观察其 几何结构特征。 三棱柱、四棱柱、五棱柱、六棱柱,三棱锥、四棱锥、六棱锥,三棱台(由三棱锥截得)、四棱台(由 四棱锥截得),圆柱,圆锥,圆台,球。 八、课后教学反思
从正面看到的图形 从左面看到的图形
1101 从上面看到的图形 问题 3.请你画出一个正方体的图形,如果在一个正方体的六个面上分别标有字母 A、B、C、D、E、 F;如图是两种不同的放置,请问与 D 面所对应的面上的字母是什么?
A D
1102
C
C
E
B
问题 4 用六根长度相等的火柴棒可以搭出四个全等的正三角形吗?
教具:三棱柱、四棱柱、五棱柱、六棱柱,三棱锥、四棱锥、五棱锥、六棱锥,三棱台(由三棱锥截 得)、四棱台(由四棱锥截得),圆柱,圆锥,圆台,球,5 个小正方体, 6 根短胶棒,2 根铁丝,一张 长方形纸板,一块正方形豆腐。 一、展示学习目标 1.利用实物模型、计算机软件观察大量空间图形观察图形,认识图形, 了解多面体与旋转体,相信 自己对学习立体几何初步有很好的基础。 2. 自己动手制作简单的立体几何模型,初步感知空间几何体;展示的问题与学生的认知相适应,与 现实生活相联系,激发学生学习的积极性与主动性;在平面内与空间中思考问题,出现认知冲突,激发学 习兴趣。 二、问题情境引入 在生活实践中,人们在研究物体的形状、大小和位置关系时,认识了各种各样的几何图形。例如:线 段、三角形、四边形、圆、长方体、球等等。在初中,我们主要研究了平面图形,现在我们要开始学习的 是立体图形,即研究空间中的点、线、面、体。 在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。由这些物体抽象出来 的空间图形叫做空间几何体。在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑 的几何结构特征如何? 师生所列举的建筑物基本上都是由柱、锥、台、球等这些几何体组合而成的,你 能通过观察,根据某种标准对这些空间几何体进行分类吗? 教师展示图片:
教学设计案例
整理:mengxueliang
目录
第一章
引言
学习立体几何初步的准备(一课时) 1
空间几何体
1.1
空间几何体的结构
柱、锥、台、球的结构特征(第一课时) 简单几何体的结构特征(第二课时)
1.1.1 1.1.2
1.2
空间几何体的三视图和直观图
空间几何体的三视图(第一课时) 空间几何体的直观图(第二课时)
1103 问题 5.观察下列图形,谈谈自己的感觉; 用一张硬纸板折一下,检验一下自己的感觉。
1104 四、分层反馈练习 1.两条直线相交有几个交点? 2.两个平面相交会出现什么?
1105
1106
第 5 页,共 29 页
2011-8-1
教学设计案例
整理:mengxueliang
3.几个点可以确定一条直线? 4.能找到一个四边形,使它们的对角线不相交吗? 五、延伸拓展迁移 问题 6.从一个圆锥的底部圆周上一点出发在圆锥的表面上走一圈仍回到出发点,请你设计最短的路 线?
1.1 空间几何体的结构 课标要求
利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并 能运用这些特征描述现实生活中简单物体的结构。 教具:三棱柱、四棱柱、五棱柱、六棱柱,三棱锥、四棱锥、五棱锥、六棱锥,三棱台(由三棱锥截 得)、四棱台(由四棱锥截得),圆柱,圆锥,圆台,球 1.1.1 柱、锥、台、球的结构特征(第一课时) 一、展示学习目标 1. 学生通过制作模型,会折叠,制作棱柱、棱锥、圆柱、圆锥的模型,直观感受空间几何体; 2. 通过对所制作空间几何体的观察、讨论、归纳、概括,会用语言概述棱柱、棱锥、圆柱、圆锥、 棱台、圆台、球的几何结构特征,并能用适当的方法表示有关于几何体以及柱、锥、台的分类。 二、问题情境引入 在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。由这些物体抽象出来 的空间图形叫做空间几何体。我们上一节的作业制作的几何体模型就是抽象出来的空间几何体,请同学们
教学设计案例
整理:mengxueliang
普通高中数学课程教学设计【校本教材】
立体几何初步
版权所有
第 1 页,共 29 页
2011-8-1
教学设计案例
整理:mengxueliang
前言
根据高中新课程标准,学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应 倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。这些方式有助于发挥学生学习的主动 性,使学生的学习过程成为在教师引导下的"再创造"过程。同时,高中数学课程设立"数学探究"、"数学 建模"等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的条件,以激发学生的数学 学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯。因此,高中数学课程应力求通过各 种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识,体验数学 发现和创造的历程。 数学课中的实践活动是在教师的指导下,学生充分发挥自主性,自己动手动脑进行实践和思维想象, 是培养学生学习兴趣与发展能力的实践性很强的教学活动中的一环。它与学科教学相互联系、相辅相成。 中学数学立体几何初步的中心内容应着眼于数学空间想象能力问题的研究设计。 在高中立体几何初步的教学中,建立良好的空间想象能力是学习高中立体几何初步的关键,也是最大 的难点。众多的学者、专家等勤勉之士也想了很多好的方法,设计、制作了不少类型的几何模具,但大多 不灵活,不精巧,不透明,直观性差,尤其在展示几何体内部的点线面关系中缺少透视性,都只具有教师 在讲台上进行演示的功能,且演示内容少,变化少,缺少学生进行实际操作的功能,针对这种情况,在郑 州市第十二中学校领导的大力支持下,在我校黄汉声教师所设计、创作的教(学)具(2000 年 9 月获全国第 五届教(学)具评选一等奖,且获得了专利,专利号为:ZL:00264511.4,证书号为:479690)的基础上, 参照理化生实验室和教学音像制品的思路,于 2001 年春创建了立体几何观察实验室,并成立了相应的科 研小组,设计制作了完全不同于传统教(学)具的新型教具、学具及图表,配备了为设计制作更新教学具 必备的文具、工具和多种规格的原材料,及教学改革和教学具制作方面的图书资料。 在一些同学学习立体几何的过程中,建立良好的空间想象能力是一难点,同时还存在另一大误区,往 往将立体几何和平面几何的知识割裂开来甚至对立起来, 使立体几何成了无源之水, 无根之木, 空中楼阁, 对立体几何的学习,知识的理解,甚为困难。同时,在教学实践中发现,用多层平面透明胶片的平移和旋 转可以有效的弥补了这两个方面的不足,为此研制了新的教(学)具,构建了平面和空间的互动模型,通过 互动的模型,将平面几何与立体几何有机的联系在一起,体现了化归平面,升维降维,以直代曲的思想。 高中新课程标准对立体几何初步这一部分的教学建议是: 1. 立体几何初步的教学重点是帮助学生逐步形成空间想像能力。教学内容的设计应遵循从整体到局 部、具体到抽象的原则,教师应提供丰富的实物模型或利用计算机软件呈现的空间几何体,帮助学生认识 柱、锥、台、球及其简单组合体等空间几何体的结构特征,并能运用这些特征描述现实生活中简单物体的 结构。 2.几何教学应注意引导学生通过对实际模型的认识,学会将自然语言转化为图形语言和符号语言。 教师可以使用具体的长方体的点、线、面关系作为载体,使学生在直观感知的基础上,认识空间中一般的 点、线、面之间的位置关系,抽象出空间线、面位置关系的定义;通过对图形的观察、实验和说理,使学 生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关 系,并能解决一些简单的推理论证及应用问题。 3.立体几何初步的教学中,对有关线面平行、垂直关系的的判定定理只要求直观感知、操作确认。 4.有条件的学校应在教学过程中恰当地使用现代信息技术展示空间图形,为理解和掌握图形几何性 质(包括证明)的教学提供形象的支持,提高学生的几何直观能力。教师可以指导和帮助学生运用立体几 何知识选择课题,进行探究。 根据新课程的精神,结合我校的实际情况和我校学生的认知水平,为配合新课程教学,我们对立体几 何初步这一内容按照问题导学模式编写了校本教材。主要思路是通过学生在数学课中的操作实践,促进学 生主动地进行观察、、归纳、猜想、验证、推理和交流等活动,有效地帮助学生发现数学原理、理解数学 知识,有助于强化学生的数学应用意识和应用能力,有助于培养学生探究能力和创新精神,使新课程的数 学教学充满活力,激发学生学习兴趣和提高教学质量。
1121
1122
1123
1124
(1)定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由 这些面所围成的几何体叫做棱柱。 (2)棱柱的有关概念:(出示下图模型,边对照模型边介绍) 棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公 共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点。
1.2.1 1.2.2
1.3
空间几何体的表面积和体积
柱体、锥体、台体的表面积和体积(第一课时) 柱体、锥体、台体的表面积和体积(第二课时) 球的体积和表面积(第三课时)
1.3.1 1.3.1 1.3.2
附录 1
第 3 页,共 29 页
2011-8-1
教学设计案例
引言
整理:mengxueliang
学习立体几何初步的准备(一课时)
第 6 页,共 29 页 2011-8-1
教学设计案例
整理:mengxueliang
展示自己的作品模型,观察其几何结构特征,每个小组拿出自己作品模型,观察其几何结构特征。 教师展示教具:(1)(2)(3)(4)等几何体模型,学生按小组进行观察并思考: 问题 1:请同学们仔细观察下列 4 个几何体,说出他们的共同特点是什么? (师生共同讨论,总结出棱柱的定义及其相关概念)
问题 1:学生观察(1)—(16)这些实物图片,思考: (1)—(16)这些实物具有什么样的几何结 构特征? 如何把这 16 个实物分为两类?分类的标准是什么?
第 4 页,共 29 页 2011-8-1
教学设计案例
整理:mengxueliang
(学生观察思考,发现这些物体可分为两类. 其中(2),(5),(7),(9),(13),(14),(15),(16) 具有相同的特 点:组成几何体的每个面都是平面图形,并且都是平面多边形;(1),(3),(4),(6),(8),(10),(11),(12)具有 相同的特点:组成它们的面不全是平面图形.) 活动 1 想一想,我们应该给上述两大类几何体取个什么名称才好呢? 1.由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多面体的面。相邻两 个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 (学生每人拿出一个学具正方体进行比划,了解多面体的面、棱、顶点) 2.由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直 线叫做旋转体的轴。 (学生每人拿出一个学具圆柱进行观察,思考交流旋转体的轴及形成旋转体的平面图形) 三、问题解决展示 问题 2.下图中的几何体,我们从正面、从左面、从上面看到的图形分别是什么?你能画出来吗? (学生画图)
问题 7. 只允许切三刀,能把一块正方体的豆腐切成形状、大小相同的八块吗?
A
ቤተ መጻሕፍቲ ባይዱ
1107 1108 1109 六、 课堂回顾小结 1、努力画好立体图形,要理解立体几何与初中所学平面几何的区别和联系 2、从实际出发,在初学立体几何时,不论是学习概念和空间和图形的关系,还是学习性质和定理,都可 以制作一些简单的模型来增强空间想象能力,我们配备的立体几何初步学具素材就可以制作几何体模型, 有时也可以就地取材;如:桌面,练习本可当作平面,笔,小木棒可当作直线,也可以进行折纸实验等, 这样可以大大降低难度,帮助我们尽快地建立空间空间概念。 3、学生谈感受:在学习立体几何的开始阶段,我们要依靠模型来思考问题;学了一段时间以后,就要养 成离开模型,而只是依靠立体图形来思考;到最后,要靠脑中的图形来思考解决问题。 七、布置检测作业 结合我们配备的立体几何初步学具素材,分小组制作几何体模型,制作出以下几何体模型,并观察其 几何结构特征。 三棱柱、四棱柱、五棱柱、六棱柱,三棱锥、四棱锥、六棱锥,三棱台(由三棱锥截得)、四棱台(由 四棱锥截得),圆柱,圆锥,圆台,球。 八、课后教学反思
从正面看到的图形 从左面看到的图形
1101 从上面看到的图形 问题 3.请你画出一个正方体的图形,如果在一个正方体的六个面上分别标有字母 A、B、C、D、E、 F;如图是两种不同的放置,请问与 D 面所对应的面上的字母是什么?
A D
1102
C
C
E
B
问题 4 用六根长度相等的火柴棒可以搭出四个全等的正三角形吗?
教具:三棱柱、四棱柱、五棱柱、六棱柱,三棱锥、四棱锥、五棱锥、六棱锥,三棱台(由三棱锥截 得)、四棱台(由四棱锥截得),圆柱,圆锥,圆台,球,5 个小正方体, 6 根短胶棒,2 根铁丝,一张 长方形纸板,一块正方形豆腐。 一、展示学习目标 1.利用实物模型、计算机软件观察大量空间图形观察图形,认识图形, 了解多面体与旋转体,相信 自己对学习立体几何初步有很好的基础。 2. 自己动手制作简单的立体几何模型,初步感知空间几何体;展示的问题与学生的认知相适应,与 现实生活相联系,激发学生学习的积极性与主动性;在平面内与空间中思考问题,出现认知冲突,激发学 习兴趣。 二、问题情境引入 在生活实践中,人们在研究物体的形状、大小和位置关系时,认识了各种各样的几何图形。例如:线 段、三角形、四边形、圆、长方体、球等等。在初中,我们主要研究了平面图形,现在我们要开始学习的 是立体图形,即研究空间中的点、线、面、体。 在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。由这些物体抽象出来 的空间图形叫做空间几何体。在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑 的几何结构特征如何? 师生所列举的建筑物基本上都是由柱、锥、台、球等这些几何体组合而成的,你 能通过观察,根据某种标准对这些空间几何体进行分类吗? 教师展示图片: