八年级数学《勾股定理》讲义

合集下载

初二讲义:勾股定理

初二讲义:勾股定理

初二数学讲义勾股定理一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. (方法一)(方法二)(方法三)a b ccb a E DC B A方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以A B方法三:,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 例题解析题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=考点一、已知两边求第三边例.已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高.求 ①AD 的长;②ΔABC 的面积.练习一1.已知直角三角形的两边长为3、2,则另一条边长________________.2.(2009年滨州)某楼梯的侧面视图如图4所示,其中4AB =米,30BAC ∠=°, 90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段 楼梯所铺地毯的长度应为 .3.在数轴上作出表示10的点.4.三角形ABC 中,AB=10,AC=17,BC 边上的高线AD=8,求BC题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜B CA 30CB A DE F 边上高的乘积.有时可根据勾股定理列方程求解例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积考点二、利用列方程求线段的长例.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处? 练习二 如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了m题型四:与展开图有关的计算例4、如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm题型五:勾股定理的实际应用 用勾股定理求两点之间的距离问题例、如图所示,在一次夏令营活动中,小明从营地A 点出发,沿北偏东60°A DE B CA B C D E 第7题F E D CB A 第9题 方向走了到达B 点,然后再沿北偏西30°方向走了500m 到达目的地C点。

人教版八年级数学下册《勾股定理》PPT精品教学课件

人教版八年级数学下册《勾股定理》PPT精品教学课件
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2

3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了

人教版八年级数学下册《勾股定理》PPT课件

人教版八年级数学下册《勾股定理》PPT课件

b
a
c b
a
c a
b
证明:∵S大正方形=c2,
cb
S小正方形=(b - a)2,
a b- a
赵爽弦图
∴S大正方形=4·S三角形+S小正方形,
∴c2 4 1 ab b a2 a2 b2.
2
“赵爽弦图”表现了我国古人对数学的钻研精神和
聪明才智,它是我国古代数学的骄傲.因此,这个图案
被选为2002年在北京召开的国际数学家大会的会徽.
分称为“勾”,下半部分称为“股”. 我国古代学者把 直角三角形较短的直角边称为“勾”,较长的直角边 称为“股”,斜边称为“弦”.
勾股
勾2 + 股2 = 弦2
利用勾股定理进行计算
例1 如图,在 Rt△ABC 中, ∠C = 90°.
(1) 若 a = b = 5,求 c;
(2) 若 a = 1,c = 2,求 b.
问题1 试问正方形 A、B、 C 面积之间有什么样的数 量关系?
S正方形A S正方形B S正方形C
AB C
问题2 图中正方形 A、B、C 所围成的等腰直角三 角形三边之间有什么特殊关系?
AB C
一直角边2 + 另一直角边2 = 斜边2
问题3 在网格中一般的直角三角形,以它的三边为 边长的三个正方形 A、B、C 是否也有类似的面积关 系?观察下边两幅图(每个小正方形的面积为单位1):
C A
B
C A
B
左图:SC
4
1 2
2
3
11
13
右图: SC
4
1 2
4
3
11
25
你还有其 他办法求C 的面积吗?
根据前面求出的 C 的面积直接填出下表:

人教版八年级数学下册 勾股定理 讲义

人教版八年级数学下册 勾股定理 讲义

c b a H G F E D C B A 勾股定理知识点一、勾股定理的概念知识概念:勾股定理是指,直角三角形的两条直角边的平方和等于斜边的平方。

中国古代称直角三角形为“勾股形”, 因此把这个定理称为“勾股定理”。

在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,因此这个定理也叫做“毕达哥拉斯定理”在Rt △ACB 中,根据勾股定理:222a b c +=中国古代数学家赵爽的证明方法:将四个全等的直角三角形摆成如图所示的图形4AGB S ∆+S 正方形EFGH =ABCD S 正方形,2214()2ab b a c ⨯+-= 化简可证a 2+b 2=c 2例1、在Rt △ABC 中,∠C=90°(1)已知a=3, b=4,求c (2)已知a=9,b=40,求c (3)已知a=6,c=10,求b1、在Rt △ABC 中,∠C=90°(1)已知a=5, b=12,求c (2)已知a=7,b=24,求c (3)已知a=8,c=17,求b2、如图,在ABC Rt ∆中,∠C =90°,a 、b 、c 分别表示A ∠、B ∠、C ∠的对边。

(1)已知c =25,b =15,求a(2)已知a =6,∠A =60°,求b 、c知识概念:满足勾股定理的三个正整数称为勾股数例2、下列属于勾股数的有_________①3,4,5 ②6,8,10 ③9,12,15 ④12,16,20 ⑤5,12,13 ⑥7,24,25 ⑦9,40,41⑧10,24,26 ⑨1,1,2 ⑩0.3,0.4,0.5如果三个数满足勾股定理,那么它们的k 倍也满足勾股定理1、下列哪一组属于勾股数( )A 、0.6,0.8,1B 、112,2,122C 、1,2,3D 、15,20,252、在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab=______3、如图,在等腰△ABC中,AB=AC=10,BC=12,则高AD=______4、已知直角三角形一个锐角为60°,斜边长为2,那么此直角三角形的周长是()A、3B、1C、3+2D、3+35、已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A、25海里B、30海里C、35海里D、40海里6、请用数轴上表示出代表2的数7、如图所示,数轴上点A所表示的数为a,则a的值是________例3、已知Rt△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若∠B=90°,则()A、a2+b2=c2B、a2+c2=b2C、b2+c2=a2D、a+b=c例4、已知一个直角三角形的两边长分别为3和4,则第三边长是________8、如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是________米.9、如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________.10、在Rt△ABC中,斜边AB=2,则AB2+BC2+CA2=_________11、若一个直角三角形的三边长分别为a,b,c,且a2=9,b2=16,则c2为()A.25 B.7 C.7或25 D.9或1612、如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ACD的周长为()A.14 B.16 C.18 D.2013、直角三角形两直角边长分别为5和12,则它斜边上的高为_______.14、有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?15、飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,求飞机每小时飞行多少千米?16、如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?。

八年级数学下册教学课件《勾股定理 单元解读》

八年级数学下册教学课件《勾股定理 单元解读》

教材内容
勾股定理分为两节。第17.1节介绍勾股定理及其应用,第17.2节介绍勾 股定理的逆定理及其应用.
17.1 勾股定理. 首先结合引言了解到在我国古代就对直角三角形有了初步认识,然后通过对等腰直 角三角形的三边关系进行探究到一般的直角三角形的三边关系,最后介绍了我国古 代,“赵爽弦图”通过对图形的切割,拼接巧妙地证明了勾股定理.
17.1 勾股定理 17.2 勾股定理的逆定理
数学活动 小结
4课时 3课时
2课时
教学建议
1.重视提高学生分析问题、解决问题的能力 在勾股定理的教学中,一方面要重视学生观察、 猜想能力的培养,
另一方面也要重视从特殊结论到一般结论的严密逻辑思维能力的培养. 从勾股定理到它的逆定理,学生往往会从直觉出发想当然地认为勾股 定理的逆命题也一定成立.而从这种直觉上升到逻辑严密的思考和证 明,认识到两个结论有联系但却并不相同,认识到新的结论仍需要经 过严格的证明,这是思维能力提高的重要体现,这在教学中是应该引 起重视的另外,逆命题的教学也是一个教学难点,怎样写出一个命题 的逆命题,原命题和逆命题真假的多种可能性,怎样的命题可以称为 逆定理,这些都是学生容易出错的知识点.
直角三角形是一种极常见而特殊的三角形,它有许多性质.本章所研究的勾股 定理,就是直角三角形非常重要的性质之一,有极其广泛的应用.不仅在平面 几何中是重要的定理,而且在三角学、解析几何学、微积分学中都是理论的基 础,对现代数学的发展也产生了重要而深远的影响.本章教学时间约需9个课 时,具体安排如下(仅供参考):
通过这一节内容的学习,可以培养 学生逻辑思维能力、分析问题和解 决问题的能力.
教材内容
勾股定理分为两节。第17.1节介绍勾股定理及其应用,第17.2节介绍勾 股定理的逆定理及其应用.

华师版八年级数学 14.1勾股定理(学习、上课课件)

华师版八年级数学  14.1勾股定理(学习、上课课件)

感悟新知
知1-练
2-1. 若直角三角形的三边长分别为2,4,x,则x的值可能
有( B )
A. 1个
B. 2个
C. 3个
D. 4个
感悟新知
知识点 2 勾股定理的证明
知2-讲
1. 常用证法 验证勾股定理的方法有很多,如测量法、几 何证明法等,但最常用的是通过拼图,构造特殊图形, 并根据拼图中各部分面积之间的关系来验证.
出第三边.
3. 运用勾股定理求解时,若分不清哪条边是斜边,则要分
类讨论,写出所有可能的情况,以免漏解或错解.
感悟新知
知1-练
例 1 在Rt△ABC中,∠A,∠B,∠C的对边分别为a,b, c,∠C=90°. (1)已知a=3,b=4,求c; (2)已知c=13,a=12,求b; (3)已知a∶b=2∶1,c=5,求b(结果保留根号). 解题秘方:紧扣“勾股定理的特征”解答.
感悟新知
知1-练
1-1. 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.
(1)若a∶b=3∶4,c=75,求a,b; 解:设a=3x(x>0),则b=4x. 由勾股定理得a2+b2=c2, 则(3x)2+(4x)2=752,解得x=15. ∴a=3×15=45,b=4×15=60.
图形
赵爽的“赵 爽弦图”
知2-讲
证明
∵ 大正方形的边长为c,
∴ 大正方形的面积为c2.
又∵大正方形的面积=

1 2
ab+(a-b)2=a2+b2,
∴ a2+b2=c2
感悟新知
续表: 方法
刘徽的“青 朱出入图”
图形
知2-讲
证明
设大正方形的面积为S,则 S=c2. 根据“出入相补, 以盈补虚”的原理,有S= a2+b2,∴ a2+b2=c2

《勾股定理》PPT优质课件(第1课时)

《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,

初二数学《勾股定理》课件

初二数学《勾股定理》课件
18世纪,欧拉证明了任意三角形的三 条边长都可以用三种不同的实数来表 示,这三种实数之和等于另外三种实 数的平方和。
勾股定理的重要性
勾股定理是几何学中的重要定理 之一,它揭示了直角三角形三边 之间的关系,是解决几何问题的
重要工具。
勾股定理在数学、物理、工程等 领域都有广泛的应用,如物理中 的力学、光学、声学等都涉及到
06
思考题
总结词:拓展思维
你能举出一些生活中应用 勾股定理的实际例子吗?
你认为勾股定理在现代科 技中有哪些应用?
列举
如何理解勾股定理在数学 中的地位和意义?
如何通过勾股定理来探索 和研究更复杂的几何问题

THANKS.
勾股定理在复数域的应用
勾股定理在复数域的应用
勾股定理可以在复数域中找到应用,例如在量子力学和信号处理等领域。
应用实例
在量子力学中,勾股定理可以用于描述粒子在三维空间中的运动状态;在信号处理中,勾股定理可以 用于计算信号的能量或功率等。
练习与思考
05
基础练习题
总结词:巩固基础
01
02
列举
勾股定理的基本形式是什么?
总结词
利用相似三角形证明勾股定理
详细描述
欧几里得通过构造两个相似三角形,利用相似三角形的性质,推导出直角三角 形两条直角边的平方和等于斜边的平方,从而证明了勾股定理。
赵爽的证法
总结词
利用面积证明勾股定理
详细描述
赵爽通过将直角三角形转化为矩形,利用面积关系,推导出直角三角形两条直角 边的平方和等于斜边的平方,从而证明了勾股定理。
勾股定理在解决与自然界的规律、现象等相关的问题时也 有着广泛的应用。例如,在解决与地球的自转、公转、太 阳系行星运动等相关的问题时,勾股定理可以提供重要的 思路和方法。

八年级数学勾股定理课件

八年级数学勾股定理课件
对于某些特殊的二次多项式,可以利用勾股定理进行因式分解。
举例说明
例如,对于多项式x² - 5x + 6,可以将其转化为x² - 2x - 3x + 6,然后利用勾股定理将中间两项进行分组,得到 (x - 2)(x - 3)的因式分解形式。
05
拓展:勾股定理与现实生活联系
建筑行业中应用举例
80%
确定直角
学生自我评价报告分享
学生可以分享自己在学习勾股定理过程中的心得体会,如遇到的 困难、解决问题的方法等。
学生可以展示自己的学习成果,如完成的练习题、绘制的图形等 ,并与其他同学交流学习经验。
课堂互动环节:小组讨论
分组讨论
学生可以分成小组,围绕勾股定 理的相关话题展开讨论,如勾股 定理的证明方法、勾股定理在实
计算机图形学中应用
三维建模
碰撞检测
在计算机图形学中,勾股定理可用于三 维建模中的距离计算、角度计算等,为 构建逼真的三维场景提供数学基础。
在计算机游戏中,勾股定理可用于实 现物体之间的碰撞检测,提高游戏的 真实感和交互性。
图形变换
勾股定理在计算机图形学中的图形变 换方面也有广泛应用,如旋转、缩放 等变换中涉及的角度和长度计算。
判断三角形形状
判断是否为直角三角形
通过验证三角形的三边是否满足勾股 定理来判断该三角形是否为直角三角 形。
判断三角形类型
结合三角形的其他性质,如三边关系 、内角和等,可以进一步判断三角形 的类型,如等腰直角三角形、等边三 角形等。
求解最短路径问题
平面内两点间最短路径
在平面内,两点之间的最短路径是直线段。利用勾股定理可以求解两点间的距离 。
八年级数学勾股定理课件

CONTENCT

初二数学勾股定理讲义

初二数学勾股定理讲义

初二数学勾股定理【知识点归纳】考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有2c22+ba=勾股定理:直角三角形两直角边的平方和等于斜边的平方。

(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。

②有一个角是45°的直角三角形是等腰直角三角形。

③直角三角形斜边的中线等于斜边的一半。

(3)勾股定理的验证例题:例1:已知直角三角形的两边,利用勾股定理求第三边。

(1)在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。

(2)如果直角三角形的两直角边长分别为1n2-,2n(n>1),那么它的斜边长是()A、2n B、n+1 C、n2-1 D、1n2+(3)在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.222+=a c b+= B.222a b cC.222+= D.以上都有可能c b a(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A、25B、14C、7D、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。

(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。

(2)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A、242c mc m D、602c m B、362c m C、482(3)已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、15例3:探索勾股定理的证明有四个斜边为c 、两直角边长为a,b 的全等三角形,拼成如图所示的五边形,利用这个图形证明勾股定理。

(word完整版)初二数学--勾股定理讲义(经典)

(word完整版)初二数学--勾股定理讲义(经典)

第一章 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。

(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。

②有一个角是45°的直角三角形是等腰直角三角形。

③直角三角形斜边的中线等于斜边的一半。

(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。

(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。

(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。

初二物理--勾股定理讲义(经典)

初二物理--勾股定理讲义(经典)

初二物理--勾股定理讲义(经典)
引言
勾股定理是几何学中一条重要的定理,它描述了直角三角形之
间的关系。

本讲义介绍了勾股定理的原理、公式和应用。

勾股定理的原理
勾股定理由古希腊数学家毕达哥拉斯提出,它可以用来求解直
角三角形的边长关系。

根据定理,直角三角形的两条边长分别为a、b,斜边长为c,满足以下关系式:
c² = a² + b²
勾股定理的公式
勾股定理的数学表达式为:
c = √(a² + b²)
勾股定理的应用
勾股定理在几何学和物理学中有广泛的应用。

以下是一些常见
的应用场景:
1. 计算直角三角形的边长:已知两条边长,可以通过勾股定理求解第三条边长。

2. 判断三角形是否为直角三角形:根据勾股定理,如果三条边的边长满足a² + b² = c²,则该三角形为直角三角形。

3. 解决距离和速度问题:勾股定理可以用于计算物体的位移、速度和加速度之间的关系。

总结
勾股定理是一条重要的几何定理,它描述了直角三角形的边长关系。

了解勾股定理的原理、公式和应用,可以帮助我们解决直角三角形相关的问题,并应用到物理学等领域中。

以上是本讲义对勾股定理的简要介绍。

希望能够对你的学习有所帮助!。

八年级数学勾股定理专题讲义及强化练习

八年级数学勾股定理专题讲义及强化练习

八年级数学勾股定理专题讲义及强化练习1. 勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么222a b c +=.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾——最短的边、股——较长的直角边、弦——斜边。

2. 勾股定理的证明:(1)方法一:将四个全等的直角三角形拼成如图所示的正方形:()22222142.ABCD S a b c aba b c =+=+⨯∴+=正方形(2)方法二:将四个全等的直角三角形拼成如图所示的正方形:()22222142.S c a b aba b c =-+⨯∴+=正方形EFGH(3)方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形:2()()112222ABCD a b a b S ab c +-==⨯+梯形222.a b c ∴+=CAB cba DC B AGFEH新知学习3. 勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。

4. 勾股数:满足222a b c +=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

一 勾股定理【例1】 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c += B. 若a b c ,,是Rt ABC ∆的三边,则222a b c += C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c += D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【例2】 一个直角三角形的三边为三个连续偶数,则它的三边长分别为______.【练一练】在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为______.【例3】 在Rt ABC ∆中, 90C ∠=︒,c bacba ED CBA 基础演练(1)如果34a b ==,, 则c =_______; (2)如果68a b ==,, 则c =_______; (3)如果512a b ==,, 则c =_______; (4)如果1520a b ==,,则c =_______。

《初二勾股定理讲解》课件

《初二勾股定理讲解》课件
《初二勾股定理讲解》 PPT课件
本PPT课件详细讲解了初二数学课程中的勾股定理,通过图文并茂的方式,带 领学生深入理解这一重要的几何定理。
引言
勾股定理是初中数学的基础,它是直角三角形中一条重要的等式,其应用广泛。学好勾股定理对于进一步学习 几何和数学有重要意义。
勾股定理的定义
直角三角形
勾股定理适用于直角三角形,即其中一个角为90度。
勾股三元组是一组满足勾股定 理的整数边长的三角形。
总结
勾股定理是数学中一条重要且有广泛应用的几何定理,学好勾股定理对于学 生的数学学习非常重要,希望大家能够努力掌握这一定理。
参考文献
- 《数学教学参考书目》 - 《初中数学教材》
通过数学运算和代数推导,可以证明勾股定理的代数性质。
勾股定理的应用
长方形的对角线
勾股定理可以用于计算长方形对角线的长正方形的边长。
直角三角形的中线
勾股定理可以用于计算直角三角形中线的长度。
...
勾股定理的拓展
广义勾股定理
勾股三元组
...
广义勾股定理是勾股定理在非 直角三角形中的推广和拓展。
斜边、直角边、另一条边
勾股定理描述了直角三角形的斜边平方等于两直角边平方和的关系。
勾股定理的表述
勾股定理可以简化成 a²+ b²= c²的等式。
勾股定理的证明
1
证明一:仿射几何
通过仿射几何的方法,可以得到勾股定理的几何证明。
2
证明二:相似三角形
使用相似三角形的性质,可以证明勾股定理的几何性质。
3
证明三:代数证明

初二数学《勾股定理》PPT课件

初二数学《勾股定理》PPT课件
如果直角三角形两直角边分别为a, b,斜边为c,那么
即直角三角形两直角边的平方和等于 斜边的平方.
a
c


b

在RT△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
勾股定理的各种表达式:
c2=a2+b2 a2=c2-b2 b2=c2-a2
5米
B
A
C
12米
解:∵BC⊥AC, ∴在Rt△ABC中, AC=12,BC=5, 根据勾股定理,
1.求下列图中表示边的未知数x、y、z的值.

81
144
x
y
z


625
576
144
169
如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
B
A
勾 股 定 理
C
一、情景引入
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
5米
B
A
C
12米
电线杆折断之前的高度=BC+AB=5米+AB的长
SA+SB=SC
图甲
图乙
A的面积
B的面积
C的面积
4
4
A
B
C
C
图甲
1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 面积各为多少?
A.3米 B.4米 C.5米 D.6米
C
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )
A
B
C
A.50米 B.120米 C.100米 D.130米

初二勾股定理讲义

初二勾股定理讲义

c b a D C A B第一讲 勾股定理复习讲义知识点一、勾股定理1、勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

在ABC Rt ∆中,,,,90B A C ∠∠︒=∠C ∠的对边分别为c b a ,,,则有:①222b a c +=;②222b c a -=;③222a c b -=.2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数.常见勾股数如下(必须熟记):3、常见平方数(必须熟记):121112=; 144122=; 169132=; 196142=; 225152=;256162=; 289172=; 324182=; 361192=; 400202=;441212=; 484222=; 529232=; 576242=; 625252=4、勾股定理证明(等面积法)(1)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:222c b a =+。

(2)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:222c b a =+。

例题1.例题1.已知直角三角形的两边长分别为3和4,则斜边长为( )A .4B .5C .4或5D .5或变式练习:在△ABC 中,∠C =90°,AC =3,BC =4,则以AB 为边的正方形的面积为( )A .9B .16C .25D .53, 4, 56, 8, 10 9, 12, 15 12, 16, 20 15, 20, 25 5, 12, 1310, 24, 26 7, 24, 25 8 ,15 , 17 9, 40, 41例题2.两个边长分别为a ,b ,c 的直角三角形和一个两条直角边都是c 的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为( )A .(a +b )2=c 2B .(a ﹣b )2=c 2C .a 2﹣b 2=c 2D .a 2+b 2=c 2 变式练习:“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,小正方形的面积为9,则大正方形的边长为( )A .9B .6C .5D .4例题3.如图1-1-1,在Rt ABC ∆中,ACB B A ABC ∠∠∠︒=∠,,,90所对的边分别为a,b,c.(1)若;,15,4:3:b c b a 求==(2)若.8,6的长及斜边上的高,求c b a ==变式练习:如图,△ABC 中,∠ACB=90°,AC=7,BC=24,CD ⊥AB 于D .(1)求AB 的长;(2)求CD 的长.知识点二、勾股定理的逆定理勾股定理的概念(1)语言表述:在一个直角三角形中,的平方和等于的平方.(2)公式表述:已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.则有.2.勾股定理的应用在直角三角形中,知道其中任意的都可以求出第三边.即:c=,a=,b=.例题1.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )A.8 B.4 C.6 D.无法计算变式练习:1.若直角三角形的两边为3和4,则第三边的长为2.若已知一个直角三角形的周长为30 cm,其中一个直角边长为12 cm,则它的斜边为cm.例题2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形a、b、c、d的边长分别是3、5、2、3,则最大正方形e的面积是()A.13 B.26C.47 D.94图1 图2变式练习:1.在直线上依次摆着7个正方形(如图6),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=_____.2.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的面积是.知识点三、折叠问题【例题】1.如图7,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A.53B.52C.4 D.5 图7 图82.某同学在制作手工作品的前两个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的长方形纸片ABCD;②将纸片沿着直线AE折叠,点D恰好落在BC 边上的点F处,请你根据①②步骤计算EC的长为.变式练习:1.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,若AB=6,BC=9,则BF的长为()A.4 B.3 2 C.4.5 D.52.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC 沿AE折叠,使点B落在AC边上的点B′处,求BE的长.知识点四、勾股定理中最短路径问题例题1.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米,现在要在河边CD上建造一水厂,向A、B两村送自来水,铺设水管的工程费用为每千米20000元,请你在CD上选择水厂的位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.例题2.如图,有一个圆柱体,它的高为20,底面半径为5,如果一直蚂蚁要从圆柱体的底面的A点,沿圆柱体表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长越为_______(л取3)例题3.如图①,一只蚂蚁在长方体的一个顶点A处,食物在这个长方体上和蚂蚁相对的顶点B处,蚂蚁急于吃到食物,所以沿长方体的表面向上爬,请你计算它从A处爬到B处的最短路线长为多少米?例题4.如图,︒AOB,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、=∠30Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________变式练习:1.如图,长方体的底面边长分别为1cm,3cm,高为6cm。

八年级勾股定理讲义

八年级勾股定理讲义

勾股定理一.知识点拨勾股定理是数学史上一颗璀璨的明珠,在西方数学史上称之为“毕达哥拉斯定理”1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;9,12,15;3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n 的线段二.题型精析题型一 直角三角形中已知两边,求第三边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

老师姓名
王志威 学生姓名 上课时间
学科名称
数学 年级 八年级 备注 【课题名称】八上数学《勾股定理》
【考纲解读】
1.掌握勾股定理的含义;
2.理解勾股数,并且会熟练地运用勾股数;
3.能够根据勾股定理,解决实际问题。

【考点梳理】
考点1:勾股定理
(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。

(2)勾股定理的表示:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c
+= (3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。

图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

考点2:勾股定理的适用范围
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

考点3:勾股数
(1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。

(2)记住常见的勾股数可以提高解题速度,比如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等。

考点4:勾股定理的应用
(1)已知直角三角形的任意两边长,求第三边。

在A B C ∆中,90C ∠=︒,则22c a b =+,
22b c a =-,22a c b =-;
(2)已知直角三角形一边,可得另外两边之间的数量关系;
(3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。

c b a H G F E D C B A b a c b a c c a b c a b a
b
c c b a E D C B A
【例题讲解】
例1:如图字母B所代表的正方形的面积是()
A.12 B.13 C.144 D.194
例2:下列由线段a,b,c组成的三角形不是直角三角形的是()
A.a=3,b=4,c=5 B.a=2,b=3,c=
C.a=12,b=10,c=20 D.a=5,b=13,c=12
例3:三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()
A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形
例4:如图,有两棵树,一棵高10米,另一棵高5米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()
A.8米B.10米C.13米D.14米
例5:如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()
A.9 B.10 C.D.
例6:如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的点C有个.
【课堂检测】
1.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)
为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于()
A.2 B.C.D.
2.在△ABC中,∠C=90°,若AC=3,BC=4,则AB=()
A.B.5 C.D.7
3.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()
A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3
C.a2=c2﹣b2D.a:b:c=3:4:6
4.在△ABC中,AC2﹣AB2=BC2,那么()
A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定
5.下列各组数中,能成为直角三角形的三条边长的是()
A.8、15、17 B.10、24、25 C.9、15、20 D.9、80、81
6.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()
A.195cm B.200cm C.205cm D.210cm
7.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,
底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,
此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂
蚁吃到饭粒需爬行的最短路径是()
A.13cm B.2cm C.cm D.2cm
8.已知直角三角形的两边长为3厘米和5厘米,则第三边长为.
9.三角形的三边长为a、b、c,且满足等式(a+b)2﹣c2=2ab,则此三角形是三角形(直角、锐角、钝角).
10.如图,是美国总统Garfield于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:如图三个三角形均是直角三角形)
11.如图,在四边形ABCD中,∠B=90°,AB=BC=4,CD=6,DA=2.求∠DAB的度数.
【课后作业】
1.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b >a)拼接在一起,则四边形ABCD的面积为()
A.b2+(b﹣a)2B.b2+a2 C.(b+a)2D.a2+2ab
2.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a﹣b)=c2,则()A.∠A为直角B.∠C为直角C.∠B为直角D.不是直角三角形
3.已知a=3,b=4,若a,b,c能组成直角三角形,则c=()
A.5 B.C.5或D.5或6
4.下列是三角形的三边,能组成直角三角形的是()
A.1:2:3 B.1::3 C.2:3:5 D.1:1:
5.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()
A.400m B.525m C.575m D.625m
6.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()
A.8m B.10m C.16m D.18m
7.已知等腰三角形的腰长为5,一腰上的高为3,则以底边为边长的正方形的面积为.
8.有一根长24cm的小木棒,把它分成三段,组成一个直角三角形,且每段的长度都是偶数,则三段小木棒的长度分别是m,cm,cm.
9.写出一组直角三角形的三边长.(要求是勾股数但3、4、5和6、8、10除外)
10.如图所示,“赵爽弦图”由4个全等的直角三角形拼成,在Rt△ABC中,∠ACB=90°,
AC=b,BC=a,请你利用这个图形解决下列问题:
(1)证明勾股定理;
(2)说明a2+b2≥2ab及其等号成立的条件.
11.如图,将边长为a与b、对角线长为c的长方形纸片ABCD,绕点C顺时针旋转90°得到长方形FGCE,连接AF.通过用不同方法计算梯形ABEF的面积可验证勾股定理,请你写出验证的过程.
12.已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,BC=12.求图形的面积.
13.如图,有一只蚂蚁从一个圆柱体的A点沿着侧面绕圆柱至少一圈爬到B点,已知圆柱的底面半径为1.5cm,高为12cm,则蚂蚁所走过的最短路径是多少?(π取3)
课后小结上课情况:
课后需再巩固的内容:配合需求:家长
签字。

相关文档
最新文档