特征方程法求解递推关系中的数列通项(二)

合集下载

特征根法

特征根法

(45) 特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。

采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。

特征方程特征根法求解数列通项公式

特征方程特征根法求解数列通项公式

特征方程特征根法求解数列通项公式一:A(n+1)=pAn+q, p,q为常数.(1)通常设:A(n+1)-λ=p(An-λ), 则λ=q/(1-p).(2)此处如果用特征根法:特征方程为:x=px+q,其根为x=q/(1-p)注意:若用特征根法,λ的系数要是-1例一:A(n+1)=2An+1 , 其中q=2,p=1,则λ=1/(1-2)= -1那么A(n+1)+1=2(An+1)二:再来个有点意思的,三项之间的关系:A(n+2)=pA(n+1)+qAn,p,q为常数(1)通常设:A(n+2)-mA(n+1)=k[pA(n+1)-mAn],则m+k=p, mk=q(2)此处如果用特征根法:特征方程是y×y=py+q(※)注意:①m n为(※)两根。

②m n可以交换位置,但其结果或出现两种截然不同的数列形式,但同样都可以计算An,而且还会有意想不到的惊喜,③m n交换位置后可以分别构造出两组An和A(n+1)的递推公式,这个时侯你会发现,这是一个关于An和A(n+1)的二元一次方程组,那么不就可以消去A(n+1),留下An,得了,An求出来了。

例二:A1=1,A2=1,A(n+2)= - 5A(n+1)+6An,特征方程为:y×y= - 5y+6那么,m=3,n=2,或者m=2,n=3于是,A(n+2)-3A(n+1)=2[A(n+1)-3A] (1)A(n+2)-2A(n+1)=3[A(n+1)-2A] (2)所以,A(n+1)-3A(n)= - 2 ^ n (3)A(n+1)-2A(n)= - 3 ^ (n-1) (4)you see 消元消去A(n+1),就是An勒例三:【斐波那挈数列通项公式的推导】斐波那契数列:0,1,1,2,3,5,8,13,21……如果设F(n)为该数列的第n项(n∈N+)。

那么这句话可以写成如下形式:F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)显然这是一个线性递推数列。

特征方程

特征方程

特征方程法求解递推关系中的数列通项考虑一个简单的线性递推问题.设已知数列}{n a 的项满足其中,1,0≠≠c c 求这个数列的通项公式.采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理 1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕)下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a 解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位.当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5360i x +-=要使n a 为常数,即则必须.53601i x a +-== a 1=ba n+1=ca n +d现在考虑一个分式递推问题(*).例3.已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式. 将这问题一般化,应用特征方程法求解,有下述结果. 定理2.如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra q pa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=. (1)当特征方程有两个相同的根λ(称作特征根)时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=nb a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中 证明:先证明定理的第(1)部分.作交换N ,∈-=n a d n n λ 则λλ-++=-=++h ra q pa a d n n n n 11 hra h q r p a n n +-+-=λλ)( h d r h q r p d n n ++-+-+=)())((λλλλ λλλλr h rd q p h r r p d n n -+--+--=])([)(2 ① ∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r h r q p λλλλ 将该式代入①式得.N ,)(1∈-+-=+n rh rd r p d d n n n λλ ②将r p x=代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,r p ≠于是.0≠-r p λ ③当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ 当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化: .1)(11rp r d r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+ ④ 由λ是方程h rx q px x++=的两个相同的根可以求得.2r h p -=λ ∴,122=++=---+=-+h p p h r rh p p r r h p h r p r h λλ 将此式代入④式得.N ,111∈-+=+n rp r d d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n r p r b b n n λ故数列}{n b 是以r p r λ-为公差的等差数列. ∴.N ,)1(1∈-⋅-+=n rp r n b b n λ 其中.11111λ-==a d b 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a nn n λλ 当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的. 再证明定理的第(2)部分如下:∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ故21111λλ--=+++n n n a a c ,将hra q pa a n n n ++=+1代入再整理得 N ,)()(22111∈-+--+-=+n hq r p a h q r p a c n n n λλλλ ⑤ 由第(1)部分的证明过程知r px=不是特征方程的根,故.,21r p r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n r p h q a r p hq a r p r p c n n n λλλλλλ ⑥ ∵特征方程h rx qpx x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程. ∴222111,λλλλλλ-=---=--rp h q r p h q 将上两式代入⑥式得 N ,2121211∈--=--⋅--=-n c rp r p a a r p r p c n n n n λλλλλλ 当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为r p rp 21λλ--.此时对于N ∈n 都有 .))(()(12121111211------=--=n n n r p r p a a r p r p c c λλλλλλ 当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n 所以.N ,112∈--=n c c a n n n λλ(证毕)注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,hra q pa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.现在求解前述例3的分类递推问题)(*.解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第(2)部分,则有.N ,)221211(2313)(11212111∈⋅-⋅-⋅+-⋅--⋅--=--n r p r p a a c n n n λλλλ ∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n n n λλ 即.N ,)5(24)5(∈-+--=n a n n n 例4.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a (1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在? 解:作特征方程.32513+-=x x x变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依定理2的第(1)部分解答. (1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a (2)∵.,311λ≠∴=a a ∴λλr p r n a b n --+-=)1(1151131)1(531⋅-⋅-+-=n ,8121-+-=n 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在,当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ 令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n ∴.N ,7435581111∈++=+-+=+=n n n n b a n nλ (4)显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2. ∴当11351--=n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.。

特征方程法求递推数列的通项公式之欧阳音创编

特征方程法求递推数列的通项公式之欧阳音创编

欧阳音创编 2021.03.11 特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。

采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方欧阳音创编 2021.03.11 程的根为0x ,则当10a x =时,n a 为常数列,即0101,;xb a a x a a n n n+===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n nc b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕)下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a 解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a欧阳音创编 2021.03.11 数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。

特征方程法求递推数列的通项公式之欧阳文创编

特征方程法求递推数列的通项公式之欧阳文创编

特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。

采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为x ,则当10a x =时,na 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n(证毕)下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。

特别解析:特征方程法求解递推关系中的数列通项

特别解析:特征方程法求解递推关系中的数列通项

特别解析:特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。

定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=--当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列. 于是:.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。

当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5360i x +-=要使n a 为常数,即则必须.53601ix a +-== 二、(二阶线性递推式)定理2:对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。

特征方程法求数列通项

特征方程法求数列通项

特征方程法求数列通项一、递推数列的定义和初值条件首先需要明确递推数列的定义和初始条件。

通常情况下,递推数列可以表示为:an = p1 * an-1 + p2 * an-2 + … + pk * an-k,其中p1、p2、…、pk为常数,an为数列的第n项,n为整数。

除了定义外,还需要给出数列的一些初始条件,如数列的第一项a1、第二项a2等。

二、构造特征方程在特征方程法中,首先需要构造递推数列的特征方程。

特征方程的构造与递推式相关,通常可以通过将递推式中的n项移到等式的一边,然后利用项的移位,将递推式表示为一个递推关系式:an - p1 * an-1 - p2 * an-2 - … - pk * an-k = 0然后,令n = k+1,得到an+1 - p1 * an - p2 * an-1 - … - pk * an-k+1 = 0再通过移项,将递推式表示为:an+1 = p1 * an + p2 * an-1 + … + pk * an-k+1三、寻找递推数列的特征值接下来需要找出递推数列的特征值(或称为根)。

特征值是使得特征方程成立的值。

根据以上递推式,可以得到特征方程的形式:x^(k+1) - p1 * x^k - p2 * x^(k-1) - … - pk * x = 0其中x为特征值。

四、确定递推数列的通项公式已知递推式的通解形式为:an = c1 * x1^n + c2 * x2^n + … + ck * xk^n通常,我们可以通过给定的初始条件,求解出常数c1、c2、…、ck,进而确定递推数列的通项公式。

举例说明:假设有一个递推数列满足an = 3 * an-1 - 2 * an-2,且a1 = 2,a2 = 5首先,可以将递推式变换为特征方程:an - 3 * an-1 + 2 * an-2 = 0再令n=2,可以得到a3-3*a2+2*a1=0将初始条件代入,即可得到一个关于c1和c2的方程:2c1+5c2=-4然后,我们需要求解特征值。

特征方程法求递推数列的通项公式

特征方程法求递推数列的通项公式

bn1
d . 作 换 元 bn a n x 0 , 则 1 c d cd a n1 x 0 ca n d ca n c(a n x 0 ) cbn . 1 c 1 c
当 x0 a1 时,b1 0 ,数列 {bn } 是以 c 为公比的等比数列,故 bn b1c n 1 ; 当 x0 a1 时, b1 0 , {bn } 为 0 数列,故 a n a1 , n N. (证毕) 下面列举两例,说明定理 1 的应用. 例 1.已知数列 {a n } 满足: a n 1 a n 2, n N, a1 4, 求 a n .
a n 2 3 n1 (1) n 2 )
2、 在数列 {a n } 中, a1 1, a 2 5, 且 a n 5a n 1 4a n 2 ,求 a n 。 (key:
13 x 25 . 变形得 x 2 10 x 25 0, x3 特征方程有两个相同的特征根 5. 依定理 2 的第(1)部分解答.
(1)∵ a1 5, a1 . 对于 n N, 都有 a n 5; (2)∵ a1 3, a1 . ∴ bn
存在. 于是知:当 a1 在集合 {3 或 数列 {a n } 都不存在. 练习题: 求下列数列的通项公式: 1、 在数列 {a n } 中, a1 1, a 2 7, a n 2a n1 3a n 2 (n 3) , 求 an 。 (key:
5n 13 : n N , 且 n ≥2}上取值时,无穷 n 1
a n


a1 a, a 2 b,3a n 2 5a n 1 2a n 0(n 0, n N ) ,求数列 a n 的通项

特征方程法求解递推关系中的数列通项

特征方程法求解递推关系中的数列通项

特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列{a n }的项满足a j = b,a n 4 = ca n • d ,其中c = 0, c = 1,求这个数列的通项公式。

采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法一一特征方程 法:针对问题中的递推关系式作出一个方程 x =cx • d,称之为特征方程;借助这个特征方程的根快速求解通项公式•下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为 x 0,则当x 0 = a 4时,a n为常数列,即a n 二a i ;当X o 二a i 时,a^ b n ' x o ,其中{b n }是以c 为公比 的等比数列,即 b n = b 4c n J,b 4 =a 4-x 0.pl证明:因为c = 0,1,由特征方程得x 0——.作换元b n = a n - x 0,贝U 1 -c n 1当X 。

=a 1时,b 1 =0 ,数列{b n }是以c 为公比的等比数列, 故b n =b1C _; 当 x ° 二a 1 时,d =0 , {b n }为 0 数列,故 a * =a 1,n • N.(证毕) 下面列举两例,说明定理 1的应用.1例1•已知数列{a n }满足:a n^^a -2,- N,a—,求a n.13 解:作方程x x -2,则x 0. 3 2b"a n「x0 © d—注乂a .cd1 -c二 c(a n -X °) = cb n . 11一2 -3 一2 +X — a-fl等的比公为11 1 n4丁 3) ,a n-3b n —3叫-」)n‘, n N. 2 2 2 3b n列是例2.已知数列{a n}满足递推关系:a n ^(2a n - 3)i, n,N,其中i为虚数3单位。

当a i 取何值时,数列{a .}是常数数列?a^ :-,a 2二:给出的数列:a n 爲方程x 2- px -q =0,叫做数列 :a n / 的特征方程。

用特征根方程法求数列通项

用特征根方程法求数列通项
—代入特征方程可整理得
r
0.③
0
ph
时,
qr,这与已知条件
由②式得bn0,n
ph
h
0,a1-),那么,可作特征方
r
,n
N;
P r
2Cn
q 0.
Cn
N.特别地,当存在n0N,使
n N,
(d
qr矛盾.故特征方程的根
卫于是
r
N,故andn
,n N.
例2:在数列{an}中,ai
3,a
(参考答案:
i22n i)考虑一个简单的线性递推问题
设已知数列{an}的项满足
a
其中c0,c1,求这个数列的通项公式.
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学
生掌握的解法一一特征方程法:针对问题中的递推关系式作出一个方程
4(
例3.已知数列
{aj满足:
对于
an
(5)
2 (
,n
N.
N
13a
1
(0若a15,求an;
(2)若a16,求an;
13x
解:作特征方程x
25
2
变形得x
10x
250,
特征方程有两个相同的特征根
x
3'
5n
43,,
(1)^a15, q x.
对于n
N,都有an
x
5;(2)
•-an
,n N.
n
7
一、数列的一阶特征方程(an
(2)当特征方程有两个相异的根
(称作特征根)
时,若a1
,则an
N,
a1
(n

特征方程法求递推数列的通项公式之欧阳育创编

特征方程法求递推数列的通项公式之欧阳育创编

特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足dca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。

采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为x ,则当10a x =时,na 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cd x -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n(证毕)下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。

特征方程求递推数列通项公式

特征方程求递推数列通项公式

特征方程求递推数列通项公式特征方程是解递推数列通项公式的一种常用方法。

递推数列是指数列中的每一项都是前一项的一些函数关系的数列。

假设我们的递推数列是{a_n},并且已经知道其通项公式是An。

如果我们能够找到一个方程f(x)=0(称为特征方程),其中x是未知数,且满足特征方程的根为r1、r2、..、rk,那么递推数列的通项公式可以表示为An=C1*r1^n+C2*r2^n+...+Ck*rk^n,其中C1、C2、..、Ck是常数。

下面我们以一些具体的例子来说明如何使用特征方程求递推数列的通项公式。

【例子一】已知递推数列的前两项是a_0=1,a_1=1,且每一项都是前两项之和,即a_n=a_(n-1)+a_(n-2)。

首先,我们将递推数列的通项公式假设为An=r^n,其中r是未知数。

代入递推数列的定义式,我们得到r^n=r^(n-1)+r^(n-2)。

进行整理,我们得到r^2=r+1,这就是递推数列的特征方程。

现在我们需要找到特征方程的根。

我们将特征方程转化为二次方程的标准形式,即r^2-r-1=0。

使用求根公式,我们可以得到两个根:r1=(1+√5)/2≈1.618和r2=(1-√5)/2≈-0.618因此,递推数列的通项公式可以表示为An=C1*(1+√5)/2^n+C2*(1-√5)/2^n。

【例子二】已知递推数列的前两项是a_0=2,a_1=6,且每一项都是前一项的两倍,即a_n=2*a_(n-1)。

同样地,我们假设递推数列的通项公式为An=r^n,其中r是未知数。

代入递推数列的定义式,我们得到r^n=2*r^(n-1)。

进行整理,我们得到r=2因此,递推数列的通项公式可以表示为An=C*2^n,其中C是常数。

通过以上两个例子,我们可以看出使用特征方程求递推数列的通项公式的基本步骤如下:1.假设递推数列的通项公式为An=r^n,其中r是未知数。

2.代入递推数列的定义式,得到一个关于r的方程,即特征方程。

特别解析特征方程法求解递推关系中的数列通项

特别解析特征方程法求解递推关系中的数列通项

特别解析:特征方程法求解递推关系中的数列通项一、一阶线性递推式设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式;定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=--当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n 证毕例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列. 于是:.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位;当1a 取何值时,数列}{n a 是常数数列 解:作方程,)32(i x x +=则.5360i x +-=要使n a 为常数,即则必须.53601ix a +-== 二、二阶线性递推式定理2:对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程;若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A,B 由βα==21,a a 决定即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组;当21x x =时,数列{}n a 的通项为11)(-+=n n x B A a ,其中A,B 由βα==21,a a 决定即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组;例3:已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式;解法一待定系数、迭加法由025312=+-++n n n a a a ,得)(32112n n n n a a a a -=-+++, 且a b a a -=-12;则数列{}n n a a -+1是以a b -为首项,32为公比的等比数列, 于是:11)32)((-+-=-n n n a b a a ;把n n ,,3,2,1⋅⋅⋅=代入,得:a b a a -=-12, )32()(23⋅-=-a b a a , ••• ,21)32)((---=-n n n a b a a ;把以上各式相加,得:])32()32(321)[(21-+⋅⋅⋅+++-=-n n a b a a )(321)32(11a b n ---=-; a b b a a a b a n n n 23)32)((3)]()32(33[11-+-=+--=∴--;解法二特征根法:数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:02532=+-x x ;32,121==x x , ∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A ; 又由b a a a ==21,,于是:⎩⎨⎧-=-=⇒⎪⎩⎪⎨⎧+=+=)(32332b a B a b A B A b BA a 故1)32)((323--+-=n n b a a b a三、分式递推式定理3:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra qpa a n n n ++=+1其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,,那么,可作特征方程hrx q px x ++=. 1当特征方程有两个相同的根λ称作特征根时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p rn a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在;2当特征方程有两个相异的根1λ、2λ时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中例3、已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第2部分,则有:∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n nn λλ 即.N ,)5(24)5(∈-+--=n a nn n 例5.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a1若,51=a 求;n a 2若,31=a 求;n a 3若,61=a 求;n a 4当1a 取哪些值时,无穷数列}{n a 不存在解:作特征方程.32513+-=x x x 变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依定理2的第1部分解答.1∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a 2∵.,311λ≠∴=a a ∴λλr p rn a b n --+-=)1(11令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在,当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. 3∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n∴.N ,7435581111∈++=+-+=+=n n n n b a nn λ 4、显然当31-=a 时,数列从第2项开始便不存在.由本题的第1小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2.∴当11351--=n n a 其中N ∈n 且N ≥2时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.定理3证明:分式递推问题:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra q pa a n n n ++=+1其中p 、q 、r 、h 均为常数,且r ha r qr ph -≠≠≠1,0,,那么,可作特征方程hrx qpx x ++=.1当特征方程有两个相同的根λ称作特征根时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.2当特征方程有两个相异的根1λ、2λ称作特征根时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中证明:先证明定理的第1部分. 作交换N ,∈-=n a d n n λ, 则λλ-++=-=++h ra q pa a d n n n n 11hra hq r p a n n +-+-=λλ)( h d r h q r p d n n ++-+-+=)())((λλλλλλλλr h rd q p h r r p d n n -+--+--=])([)(2 ①∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r hr qp λλλλ将该式代入①式得.N ,)(1∈-+-=+n rh rd r p d d n n n λλ ②将rpx =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,rp≠于是.0≠-r p λ ③ 当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ 当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化:.1)(11rp rd r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+ ④由λ是方程h rx q px x ++=的两个相同的根可以求得.2r hp -=λ ∴,122=++=---+=-+h p p h rrh p p rr h p h r p r h λλ将此式代入④式得.N ,111∈-+=+n rp rd d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n rp rb b n n λ故数列}{n b 是以r p r λ-为公差的等差数列.∴.N ,)1(1∈-⋅-+=n rp rn b b n λ其中.11111λ-==a db 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a nn n λλ当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的. 再证明定理的第2部分如下:∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ故21111λλ--=+++n n n a a c ,将hra qpa a n n n ++=+1代入再整理得N ,)()(22111∈-+--+-=+n hq r p a hq r p a c n n n λλλλ ⑤由第1部分的证明过程知r p x =不是特征方程的根,故.,21rp r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n rp h q a r p hq a rp r p c n n n λλλλλλ ⑥∵特征方程hrx q px x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程.∴222111,λλλλλλ-=---=--rp hq r p h q将上两式代入⑥式得当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为rp rp 21λλ--.此时对于N ∈n 都有当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n所以.N ,112∈--=n c c a n n n λλ证毕注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,hra qpa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.求数列通项公式的方法很多,利用特征方程的特征根的方法是求一类数列通项公式的一种有效途径.1.已知数列{}n a 满足1n n n a a b a c a d+⋅+=⋅+......① 其中*0,,c ad bc n N ≠≠∈.定义1:方程ax bx cx d+=+为①的特征方程,该方程的根称为数列{}n a 的特征根,记为,αβ. 定理1:若1,a αβ≠且αβ≠,则11n n n n a a a c a a c a αααβββ++---=⋅---.定理2: 若1a αβ=≠且0a d +≠,则1121n n c a a d a αα+=+-+-.例109·江西·理·22各项均为正数的数列{}n a ,12,a a a b ==,且对满足m n p q +=+的正数,,,m n p q 都有(1)(1)(1)(1)p q m nm n p q a a a a a a a a ++=++++. 1当14,25a b ==时,求通项n a ;2略. 例2 已知数列{}n a 满足*1112,2,n n a a n N a -==-∈,求通项n a . 例 3 已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a例4已知数列{}n a 满足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a2.已知数列{}n a 满足2112n n n a c a c a ++=+② 其中12,c c 为常数,且*20,c n N ≠∈. 定义2:方程212x c x c =+为②的特征方程,该方程的根称为数列{}n a 的特征根,记为12,λλ.定理3:若12λλ≠,则1122n nn a b b λλ=+,其中12,b b 常数,且满足111222221122a b b a b b λλλλ=+⎧⎨=+⎩. 定理4: 若12λλλ==,则12()nn a b b n λ=+,其中12,b b 常数,且满足1122212()(2)a b b a b b λλ=+⎧⎨=+⎩. 例5已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 例6已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a例7:已知数列{}n a 满足12212,8,44n n n a a a a a ++===-,求通项n a .。

特征方程法求递推数列的通项公式之欧阳家百创编

特征方程法求递推数列的通项公式之欧阳家百创编

特征方程法求解递推关系中的数列通项欧阳家百(2021.03.07)一、(一阶线性递推式)设已知数列}{n a 的项满足dca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。

采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cd x -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕)下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。

高中数学特征方程求递推数列通项公式

高中数学特征方程求递推数列通项公式

特征方程求递推数列通项公式一、一阶线性递推数列通项公式若数列{}n a 已知11,(1),n n a a ca d c +=+≠求数列{}n a 的通项n a推导:设t c ca a t a c t a n n n n )1(),(11-+=-=-++则 ,令d t c =-)1(,即cd t -=1, 得)1(11c d a c c d a n n --=--+,知数列⎭⎬⎫⎩⎨⎧-+c d a n 1是以c 为公比的等比数列, 11()n n d d a a c -∴-=-得11+()n n d d a a c -=-. 例1.1已知数列}{n a 满足:,4,N ,2311=∈--=+a n a a n n 求.n a111111112,N,4,3114+(),333433132,+()32232311122331113111=(),(),N223223n n n n n n n n n n n n n a a n a a a a a a a a a a n λλλλλ++++--=--∈==-+∴=--===-+⎧⎫+-⎨⎬⎭⎩+-∴=-+-∈方法一:,即,是以为初项,为公比的等比数列 方法二:作特征方程132,.32x x x =--=-则11331+(+)()223n n a a -=-,当41=a 时,101311,.22a x a ≠+=数列3{+}2n a 是以31-为公比的等比数列. 于是:11113311113111+(+)()(),(),N.22323223n n n n n a a a n ---=-=-=-+-∈二、二阶线性递推数列通项公式推导:若数列{}n a 满足,11-++=n n n qa pa a 设)(11-++=+n n n n ta a s ta a ,则11)(-++-=n n n sta a t s a , 令⎩⎨⎧==-q st pt s ①(1)若方程组①有两组不同的实数解),(),,(2211t s t s ,1111112221()()n n n n n n n n a t a s a t a a t a s a t a +-+-+=+⎧⎨+=+⎩,即{}n n a t a 11++、{}n n a t a 21++分别是公比为1s 、2s 的等比数列, 由等比数列性质可得1111211)(-++=+n n n s a t a a t a , 1212221)(1-++=+n n n s a t a a t a ,∵,21t t ≠由上两式消去1+n a 可得()()()nn n s t t s a t a s t t s a t a a 22121221211112..-+--+=.(2)若方程组①有两组相等的解⎩⎨⎧==2121t t s s ,易证此时11s t -=,则())(2112111111---++=+=+n n n n n n a t a s a t a s a t a =…)(11211a t a s n +=-,211121111s a s a s a s a nn n n -=-∴++,即⎭⎬⎫⎩⎨⎧n n s a 1是等差数列,由等差数列性质可知()21112111.1s a s a n s a s a nn --+=,所以n n s n s a s a s a s a s a a 1211122111211.⎥⎥⎦⎤⎢⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛--=. 通过参数方法,将递推数列转化为等比(差)数列,从而求得二阶线性递推数列的通项,若将方程组①消去t 即得02=--q ps s ,显然1s 、2s 就是方程q px x +=2的两根,称此方程为二阶线性递推数列11-++=n n n qa pa a 的特征方程。

用特征根方程法求数列通项

用特征根方程法求数列通项

特征方程法求解递推关系中的数列通项当()f x x =时,x 的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。

典型例子:1n n n aa b a ca d ++=+ 令 ax b x cx d+=+,即2()0cx d a x b +--= ,令此方程的两个根为12,x x , (1)若12x x =,则有11111n n p a x a x +=+-- (其中2cp a d =+)(2)若例题 123n n a a ⎧⎫+⎪⎪⎨⎬-⎪⎪⎩⎭是以34-为首项,18为公比的等比数列。

则11312()348n n n a a -+=-⋅-,则11911()482311()48n n n a ---=+例2.已知数列}{n a 满足性质:对于14N,,23n n n a n a a ++∈=+ 且,31=a 求}{n a 的通项公式.解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,则有即11111252n n n n a a a a ++--=-++ 又1113122325a a --==++ ∴数列12n n a a ⎧⎫-⎨⎬+⎩⎭是以25为首项,15-为公比的等比数列例3.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a(1)若,51=a 求;n a (2)若,61=a 求;n a解:作特征方程.32513+-=x x x变形得,025102=+-x x 特征方程有两个相同的特征根 5.x =(1(3(4例1方程,其根1x ,2x 叫做特征方程的特征根。

(1)当12x x ≠时,有1122n n n a c x c x =+; (2)当12x x =时,有111[(1)]n n a a n d x -=+-;其中12,,c c d 由12,a a 代入n a 后确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特征方程法求解递推关系中的数列通项(二)三、(分式递推式)定理3:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有h ra q pa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=. (1)当特征方程有两个相同的根λ(称作特征根)时, 若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中 例3、已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式. 解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第(2)部分,则有 .N ,)221211(2313)(11212111∈⋅-⋅-⋅+-=--⋅--=--n r p r p a a c n n n λλλλ ∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n nn λλ 即.N ,)5(24)5(∈-+--=n a n n n例5.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a (1)若,51=a 求;n a(2)若,31=a 求;n a(3)若,61=a 求;n a(4)当1a 取哪些值时,无穷数列}{n a 不存在? 解:作特征方程.32513+-=x x x 变形得,025102=+-x x 特征方程有两个相同的特征根.5=λ依定理2的第(1)部分解答. (1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a(2)∵.,311λ≠∴=a a ∴λλr p r n a b n --+-=)1(11 51131)1(531⋅-⋅-+-=n ,8121-+-=n 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在, 当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ 令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n ∴.N ,7435581111∈++=+-+=+=n n n n b a n n λ (4)、显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2. ∴当11351--=n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.练习题:求下列数列的通项公式:1、 在数列}{n a 中,,7,121==a a )3(3221≥+=--n a a a n n n ,求n a 。

(key :21)1(32---+⋅=n n n a )2、 在数列}{n a 中,,5,121==a a 且2145---=n n n a a a ,求n a 。

(key :)14(31-=n n a ) 3、 在数列}{n a 中,,7,321==a a )3(2321≥-=--n a a a n n n ,求n a 。

(key :121-=+n n a )4、 在数列}{n a 中,,2,321==a a n n n a a a 313212+=++,求n a 。

(key :2)31(4147--⋅+=n n a ) 5、 在数列}{n a 中,,35,321==a a )4(3112n n n a a a -=++,求n a 。

(key :1321-+=n n a ) 6、 在数列}{n a 中,,,21b a a a ==n n n qa pa a +=++12,且1=+q p .求n a .(key :1=q 时,))(1(a b n a a n --+=;1≠q 时,qq a b b aq a n n +---+=-1))((1) 7、 在数列}{n a 中,,,21b a a a a +==0)(12=++-++n n n qa a q p pa (q p ,是非0常数).求n a .(key : b pq q p p a a n n )](1[1---+= (q p ≠); b n a a n )1(1-+=)(q p =) 8、在数列}{n a 中,21,a a 给定,21--+=n n n ca ba a .求n a .(key:122211)(a c a a n n n n n ⋅--+⋅--=----αβαβαβαβ)(βα≠;若βα=,上式不能应用,此时,.)2()1(1122----⋅-=n n n a n a n a αα附定理3的证明定理3(分式递推问题):如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有h ra q pa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=. (1)当特征方程有两个相同的根λ(称作特征根)时, 若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中 证明:先证明定理的第(1)部分.作交换N ,∈-=n a d n n λ 则λλ-++=-=++hra q pa a d n n n n 11 hra h q r p a n n +-+-=λλ)( h d r h q r p d n n ++-+-+=)())((λλλλ λλλλr h rd q p h r r p d n n -+--+--=])([)(2 ① ∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r h r q p λλλλ 将该式代入①式得.N ,)(1∈-+-=+n rh rd r p d d n n n λλ ②将r p x =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,rp ≠于是.0≠-r p λ ③ 当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ 当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化: .1)(11rp r d r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+ ④ 由λ是方程h rx q px x ++=的两个相同的根可以求得.2rh p -=λ ∴,122=++=---+=-+h p p h r r h p p r r h p h r p r h λλ 将此式代入④式得.N ,111∈-+=+n rp r d d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n r p r b b n n λ故数列}{n b 是以rp r λ-为公差的等差数列. ∴.N ,)1(1∈-⋅-+=n rp r n b b n λ 其中.11111λ-==a d b 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a n n n λλ 当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的.再证明定理的第(2)部分如下: ∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ故21111λλ--=+++n n n a a c ,将hra q pa a n n n ++=+1代入再整理得 N ,)()(22111∈-+--+-=+n hq r p a h q r p a c n n n λλλλ ⑤ 由第(1)部分的证明过程知r p x =不是特征方程的根,故.,21r p r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n r p h q a r p h q a r p r p c n n n λλλλλλ ⑥ ∵特征方程hrx q px x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xr p xh q x --=-与方程0)(2=---q p h x rx 又是同解方程. ∴222111,λλλλλλ-=---=--rp h q r p h q 将上两式代入⑥式得N ,2121211∈--=--⋅--=-n c rp r p a a r p r p c n n n n λλλλλλ 当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为r p r p 21λλ--.此时对于N ∈n 都有 .))(()(12121111211------=--=n n n rp r p a a r p r p c c λλλλλλ 当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n 所以.N ,112∈--=n c c a n n n λλ(证毕)注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,hra q pa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.。

相关文档
最新文档