数值分析非线性方程求根实验

合集下载

数值分析2024上机实验报告

数值分析2024上机实验报告

数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。

在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。

本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。

一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。

1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。

常见的数值方法有二分法、牛顿法、割线法等。

在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。

2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。

插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。

在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。

3.数值积分这部分实验要求使用数值方法计算给定函数的积分。

常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。

在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。

4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。

常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。

在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。

二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。

结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。

2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。

结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。

数值分析--非线性方程的迭代解法

数值分析--非线性方程的迭代解法

非线性方程的迭代解法1.迭代函数对收敛性的影响实验目的:初步认识非线性问题的迭代法及其收敛性,认识迭代函数对收敛性的影响,知道当迭代函数满足什麽条件时,迭代法收敛。

实验内容:用迭代法求方程 012)(3=--=x x x f 的根。

方案一: 化012)(3=--=x x x f 为等价方程 )(213x x x φ=+= 方案二: 化012)(3=--=x x x f 为等价方程 )(123x x x φ=-= 实验要求:分别对方案一、方案二取初值00=x ,迭代10次,观察其计算值,并加以分析。

实验程序:实验结果:2. 初值的选取对迭代法的影响实验目的:通过具体的数值实验,体会选取不同的初值对同一迭代法的影响。

实验内容:用牛顿迭代法求方程 013=--x x 在x =1.5附近的根。

实验要求:对牛顿迭代公式 131231----=+k k k k k x x x x x ,分别取00=x ,5.10=x 迭代10次,观察比较其计算值,并分析原因。

实验程序:实验结果:3.收敛性与收敛速度的比较实验目的:通过用不同迭代法解同一非线性方程,比较各种方法的收敛性与收敛速度。

实验内容:求解非线性方程 0232=-+-x e x x 的根,准确到106-。

实验要求:(1) 用你自己设计的一种线性收敛的迭代法求方程的根,然后用斯蒂芬森加速迭代计算。

输出迭代初值、各次迭代值及迭代次数。

(2) 用牛顿迭代法求方程的根,输出迭代初值、各次迭代值及迭代次数,并与(1)的结果比较。

实验程序:1.普通迭代,选用初值0.52. 斯蒂芬森加速迭代3.牛顿迭代法实验结果:。

数值分析实验报告——非线性方程求根

数值分析实验报告——非线性方程求根

数值分析实验报告——非线性方程求根一、实验目的:1.掌握求解非线性方程的常用方法;2.了解非线性方程求根问题的数值解法;3.熟悉使用数值分析软件进行非线性方程求根的实现。

二、实验原理:非线性方程指的是形如f(x)=0的方程,其中f(x)是一个非线性函数。

非线性方程求根的常用方法包括二分法、割线法和牛顿法等。

其中,二分法是通过不断缩小区间范围来逼近方程的解;割线法是通过使用割线来逼近方程的解;牛顿法则是通过使用切线来逼近方程的解。

对于给定的非线性方程,可以根据实际情况选择合适的方法进行求根。

三、实验内容:1.编写求解非线性方程的函数,包括二分法、割线法和牛顿法;2.使用编写的函数求解给定的非线性方程,比较各个方法的收敛速度和精确程度;3.根据实际情况分析和选择合适的方法进行求根。

四、实验步骤:1.针对给定的非线性方程,编写二分法的函数实现:(1)首先确定方程的解存在的区间;(2)根据方程的解存在的区间,使用二分法逐步缩小区间范围;(3)根据设定的精度要求,不断循环迭代,直至满足要求或达到迭代次数限制;2.针对给定的非线性方程,编写割线法的函数实现:(1)首先需要确定方程的解存在的初始点;(2)根据方程的解存在的初始点,根据割线的定义进行迭代;(3)设定迭代的精度要求和限制次数,结束迭代;3.针对给定的非线性方程,编写牛顿法的函数实现:(1)首先需要确定方程的解存在的初始点;(2)根据方程的解存在的初始点,根据牛顿法的定义进行迭代;(3)设定迭代的精度要求和限制次数,结束迭代;4.根据给定的非线性方程,分别使用二分法、割线法和牛顿法进行求解,并比较各个方法的收敛速度和精确程度;5.分析实际情况,选择合适的方法进行求解。

五、实验结果:4.通过比较,发现割线法和牛顿法的收敛速度较快,精确程度较高,因此选择割线法进行求解。

六、实验总结:通过本次实验,我掌握了求解非线性方程的常用方法,并使用数值分析软件实现了二分法、割线法和牛顿法。

实验五 用Newton法计算方程的根

实验五 用Newton法计算方程的根

五. 讨论分析当初始值选取离零点较远时将导致算法无法使用,例如第三题,将初始值改为2就无法计算出结果了,显示如下例如求020sin 35=-+-x x e x 的根,其中控制精度1010-=eps ,最大迭代次数40=M ,在steffensen 加速迭代方法的程序中,我们只需改动:it_max=40; ep=1e-10, 其余不变 。

利用以上程序,我们只需输入:phi=inline('exp(5*x)-sin(x)+(x)^3-20');[x_star,index,it]=steffensen(phi,0.5)可得:x_star = 0.637246094753909index = 0it = 41观察上述结果,index = 0,it = 41表明迭代失败,所以使用以上方法估计的时候,应该尽量估计出解的范围,偏离不应过大,距离增加迭代次数增加,也有可能迭代失败六. 改进实验建议根据上述分析,我认为,应该先对函数作一个简图,方便知道解的大概位置,然后我们才将这个大概值代入Newton 法或者Steffensen 中进行求解。

当然,我们可以用其他数学软件实现Newton 迭代法,我们可以用z-z 超级画板,其操作流程为:牛顿迭代法的公式是:x n+1=x n-f(x n)/f'(x n)。

下面我们就用牛顿迭代法设计程序求方程f(x)=ln(x)+2*x-6的近似解。

(一)观察方程f(x)=0的零点位置(1)显示坐标系的坐标刻度。

(2)作出函数y=ln(x)+2*x-6的图像,如下图所示:可以观察到方程的根在区间[2,3]上,我们可以设定近似解的初始值为2。

(二)设计求方程近似解的程序(1)在程序工作区中输入:f(x){ln(x)+2*x-6;}执行后,返回结果为:>> f(x) #这表示在计算机已经完成了函数f(x)的定义。

(2)定义f(x)的导函数g(x),在程序工作区中输入:Diff(f(x),x);执行后,返回结果为:>> 2+1/x #得到了f(x)的导函数。

数值分析实验报告总结

数值分析实验报告总结

一、实验背景数值分析是研究数值计算方法及其理论的学科,是计算机科学、数学、物理学等领域的重要基础。

为了提高自身对数值分析理论和方法的理解,我们进行了数值分析实验,通过实验加深对理论知识的掌握,提高实际操作能力。

二、实验目的1. 理解数值分析的基本理论和方法;2. 掌握数值分析实验的基本步骤和技巧;3. 培养实验设计和数据分析能力;4. 提高编程和计算能力。

三、实验内容本次实验主要分为以下几个部分:1. 线性方程组求解实验:通过高斯消元法、LU分解法等求解线性方程组,并分析算法的稳定性和误差;2. 矩阵特征值问题计算实验:利用幂法、逆幂法等计算矩阵的特征值和特征向量,分析算法的收敛性和精度;3. 非线性方程求根实验:运用二分法、牛顿法、不动点迭代法等求解非线性方程的根,比较不同算法的优缺点;4. 函数插值实验:运用拉格朗日插值、牛顿插值等方法对给定的函数进行插值,分析插值误差;5. 常微分方程初值问题数值解法实验:运用欧拉法、改进的欧拉法、龙格-库塔法等求解常微分方程初值问题,比较不同算法的稳定性和精度。

四、实验过程1. 线性方程组求解实验:首先,编写程序实现高斯消元法、LU分解法等算法;然后,对给定的线性方程组进行求解,记录计算结果;最后,分析算法的稳定性和误差。

2. 矩阵特征值问题计算实验:编写程序实现幂法、逆幂法等算法;然后,对给定的矩阵进行特征值和特征向量的计算,记录计算结果;最后,分析算法的收敛性和精度。

3. 非线性方程求根实验:编写程序实现二分法、牛顿法、不动点迭代法等算法;然后,对给定的非线性方程进行求根,记录计算结果;最后,比较不同算法的优缺点。

4. 函数插值实验:编写程序实现拉格朗日插值、牛顿插值等方法;然后,对给定的函数进行插值,记录计算结果;最后,分析插值误差。

5. 常微分方程初值问题数值解法实验:编写程序实现欧拉法、改进的欧拉法、龙格-库塔法等算法;然后,对给定的常微分方程初值问题进行求解,记录计算结果;最后,比较不同算法的稳定性和精度。

数值分析实验报告——非线性方程求根

数值分析实验报告——非线性方程求根

数值分析实验报告——非线性方程求根二分法一、题目用二分法求方程=的所有根x.13要求每个根的误差小于-x+0.001..21二、方法二分法三、程序1、Jiangerfen.M的程序function[c,yc]=jiangerfen(f,a,b,tol1,tol2)if nargin<4 tol1=1e-3;tol2=1e-3;end%nargin<4表示若赋的值个数小于4,则tol1和tol2取默认值。

ya=feval('f',a);%令x=a代入到方程f中,ya即f(a)。

yb=feval('f',b);if ya*yb>0,disp('(a,b)不是有根区间');return,endmax=1+round((log(b -a)-log(tol2))/log(2));%round函数是将数据取整,使数据等于其最接近的整数。

for k=1:maxc=(a+b)/2;yc=feval('f',c);if((b-a)/2<tol2)|(abs(yc)<tol1),break,endif yb*yc<0a=c;ya=yc;elseb=c;yb=yc;endendk,c=(a+b)/2,yc=feval('f',c)2、f.M的程序function y=f(x);y=x^3-2*x-1;四、结果>> format compact>> fplot('[x^3-2*x-1,0]',[-1.5,2]);>> jiangerfen('f',-1.5,-0.8);k =8c =-0.9996yc =3.9017e-004>> jiangerfen('f',-0.8,-0.3);k =8c =-0.6184yc =2.7772e-004>> jiangerfen('f',1.3,2);k =10c =1.6179yc =-9.5348e-004>> jiangerfen('f',2,3);(a,b)不是有根区间方程f(x)=x^3-2*x-1的所有根为-0.9996,-0.6184 ,1.6179 。

数值分析实验报告纸非线性方程的数值解法及其并行算法

数值分析实验报告纸非线性方程的数值解法及其并行算法

>>二 :牛顿切线
[k,piancha,xdpiancha,xk,yk]=diedai2(1.5,0.0001,100) ans = 1.0000 ans = 2.0000 ans = 3.0000 ans = 4.0000 ans = 5.0000 ans = 6.0000 ans = 7.0000 ans = 0.8306 1.2408 0.6694 1.5361
i=i+1;xk=x(i);[(i-1) piancha xdpiancha xk] end if (piancha >1)&(xdpiancha>0.5)&(k>3) disp('请用户注意:此迭代序列发散,请重新输入新的迭 代公式') return; end if (piancha < 0.001)&(xdpiancha< 0.0000005)&(k>3) disp('祝贺您!此迭代序列收敛,且收敛速度较快') return; end p=[(i-1) piancha xdpiancha xk]'; 建立并保存下面的M文件fun.m function y=fun(x) y=2*x^3-x^2-5; >>[k,piancha,xdpiancha,xk,yk]=diedai2(1.5,0.0001,30) 牛顿切线法的 MATLAB 主程序 现提供名为 newtonqx.m 的 M 文件: function [k,xk,yk,piancha,xdpiancha]=newtonqx(x0,tol,ftol,gxma x) x(1)=x0; for i=1: gxmax x(i+1)=x(i)-fnq(x(i))/(dfnq(x(i))+eps); piancha=abs(x(i+1)-x(i)); xdpiancha= piancha/( abs(x(i+1))+eps); i=i+1; xk=x(i);yk=fnq(x(i)); [(i-1) xk yk piancha

非线性方程求解数值分析上机实验报告

非线性方程求解数值分析上机实验报告

实验报告一题目:非线性方程求解摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。

本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。

前言:(目的和意义)掌握二分法与Newton法的基本原理和应用。

数学原理:对于一个非线性方程的数值解法很多。

在此介绍两种最常见的方法:二分法和Newton 法。

对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。

重复运行计算,直至满足精度为止。

这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式产生逼近解x*的迭代数列{x k},这就是Newton法的思想。

当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。

另外,若将该迭代公式改进为其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。

程序设计:本实验采用Matlab的M文件编写。

其中待求解的方程写成function的方式,如下function y=f(x);y=-x*x-sin(x);写成如上形式即可,下面给出主程序。

二分法源程序:clear%%%给定求解区间b=1.5;a=0;%%%误差R=1;k=0;%迭代次数初值while (R>5e-6) ;c=(a+b)/2;if f12(a)*f12(c)>0;a=c;elseb=c;endR=b-a;%求出误差k=k+1;endx=c%给出解Newton法及改进的Newton法源程序:clear%%%% 输入函数f=input('请输入需要求解函数>>','s')%%%求解f(x)的导数df=diff(f);%%%改进常数或重根数miu=2;%%%初始值x0x0=input('input initial value x0>>');k=0;%迭代次数max=100;%最大迭代次数R=eval(subs(f,'x0','x'));%求解f(x0),以确定初值x0时否就是解while (abs(R)>1e-8)x1=x0-miu*eval(subs(f,'x0','x'))/eval(subs(df,'x0','x'));R=x1-x0;x0=x1;k=k+1;if (eval(subs(f,'x0','x'))<1e-10);breakendif k>max;%如果迭代次数大于给定值,认为迭代不收敛,重新输入初值ss=input('maybe result is error,choose a new x0,y/n?>>','s');if strcmp(ss,'y')x0=input('input initial value x0>>');k=0;elsebreakendendendk;%给出迭代次数x=x0;%给出解结果分析和讨论:1.用二分法计算方程在[1,2]内的根。

数值分析 数值分析 Newton迭代法求解非线性方程实验

数值分析  数值分析  Newton迭代法求解非线性方程实验
intf("%Lf\n",u[k][j]);
}//计算出u[i][j]并输出.
第二部分 for(i=k+1;i<n;i++)
{s=0.0;
for(r=0;r<k-1;r++)
{s=s+l[k][r]*u[r][k];}
l[i][k]=(a[i][k]-s)/u[k][k];
printf("%Lf\n",l[i][k]);
{s=0.0;
for(r=0;r<k-1;r++)
{s=s+l[k][r]*u[r][k];}
l[i][k]=(a[i][k]-s)/u[k][k];
printf("l[%d][%d]%Lf\n",i,k,l[i][k]);}
}
}
六、实验结果
七、上机实验体会
在这个试验中同样叶出现了很多问题,对L,U的求解输出中,输出的位置的不同,结果也就会出差错.经过多次调整,结果总算输出了.
通过此次试验,我理解了多重循环的运用,并了解了古人的聪明智慧,]讲将复杂问题简单化,现在的大学生们,应该学习他们的创新及钻研精神。
for(k=0;k<n;k++)
{for(j=k;j<n;j++)
{s=0.0;
for (r=0;r<k-1;r++)
{s=s+l[k][r]*u[r][j];}
u[k][j]=a[k][j]-s;
printf("u[%d][%d]=%Lf\n",k,j,u[k][j]); }
for(i=k+1;i<n;i++)

数值分析实验总结

数值分析实验总结
ifabs(x-x1)<ep
break;
end
x0=x1; x1=x;
k=k+1;
end
执行程序:
f=@(x)x^3-x-1;
>> [x,k]=mqnewt(f,1.0,2.0,1e-5)
结果:
x =
1.3247
k =
6
各种方法的优缺点的比较分析
首先,三种方法得出的解是一样的,而二分法的迭代次数最多(17次),而牛顿法的迭代次数最少(3次),割线法的迭代次数也较少(6次)。
b=x;
else
a=x;
end
x=(a+b)/2.0; k=k+1;
end
执行程序:
f=@(x)x^3-x-1;
[x,k]=mbisec(f,1,2,1e-5)
结果:
x =
1.3247
k =
17
牛顿法解非线性方程
Matlab程序:
function[x,k]=mnewton(f,df,x0,ep,N)
割线法的优点是无需计算函数导数,但仍具有超线性收敛速度;其缺点是收敛速度没有牛顿法快。
2.使用列主元高斯消去法和LU分解法解同一个线性方程组,并对所得结果进行数值分析。
题目:求下列方程组的近似解
列主元高斯消去法解线性方程组
Matlab程序:
function[x]=mgauss(A,b,flag)
ifnargin<3, flag=0;end
1. 用二分法、牛顿法和割线法求解同一个非线性方程,对各种方法的优缺点进行比较分析;
题目:求解下列方程
二分法解非线性方程
Matlab程序:
function[x,k]=mbisec(f,a,b,ep)

第二次实验报告(非线性方程求根)

第二次实验报告(非线性方程求根)

班级: 学号: 姓名: 成绩:实验2 非线性方程的数值解法实验1实验目的1)进一步熟练掌握求解非线性方程的牛顿迭代法和弦截法。

2)根据牛顿迭代法和弦截法的原理,编写程序求解非线性方程,提高编程解决问题的能力。

2 实验内容(1)用牛顿法和割线法求下列方程的根x^2-e^x=0;x*e^x-1=0;(23实验原理(1)牛顿迭代公式:1()/'()k k k k x x f x f x +=- 双点弦法公式:111()()()()k k k k k k k f x x x x x f x f x +--=--- (2)令2()f x x A =-,再用牛顿法求根。

4实验步骤1)根据牛顿迭代法,双点弦法的算法编写相应的求根函数;2)用牛顿迭代法和双点弦法分别对方程进行求解;5 程序设计牛顿迭代法x0=1.0;N=100;k=0;eps=5e-6;delta=1e-6;while(1)x1=x0-fc1(x0)/fc2(x0);k=k+1;if k>Ndisp('Newton method failed')breakendif(abs(x1-x0)<delta || abs(fc1(x1))<delta) break;endx0=x1;endfprintf('%f',x0)fprintf('%f',abs(fc1(x1)))双点弦法function cutline(x0,x1)N=100;k=0;delta=5e-8;while(1)(abs(x1-x0)>=delta)c=x1;x1=cutnext(x0,x1);x0=c;k=k+1;if k>Ndisp('Cutline method failed')break;endif(abs(x1-x0)<delta || abs(fc1(x1))<delta) break;endendfprintf('%10f\n',x1);function y=cutnext(a,b)y=b-fc(b)/(fc(b)-fc(a))*(b-a);1)原函数function fc1=fc1(x)fc1=x^2-exp(x);end导函数function fc2=fc2(x)fc2=2*x-exp(x);end2)原函数导函数3)原函数导函数6实验结果及分析注:牛顿迭代法由于设置delta=1e-6,所以算出的误差e<1.0*10^-6;割线法由于设置delta=5e-8,所以误差e<5.0*10^-8.7总结。

数值分析求解非线性方程根的二分法、简单迭代法和牛顿迭代法说课材料

数值分析求解非线性方程根的二分法、简单迭代法和牛顿迭代法说课材料

数值分析求解非线性方程根的二分法、简单迭代法和牛顿迭代法实验报告一:实验题目 一、 实验目的掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。

二、 实验内容1、编写二分法、牛顿迭代法程序,并使用这两个程序计算02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 410- ,比较两种方法收敛速度。

2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。

3、由中子迁移理论,燃料棒的临界长度为下面方程的根,用牛顿迭代法求这个方程的最小正根。

4、用牛顿法求方程的根,精确至8位有效数字。

比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。

三、 实验程序第1题:02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。

画图函数:function Test1()% f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0r = 0:0.01:1;y = r + exp(r) - 2plot(r, y);grid on 二分法程序:计算调用函数:[c,num]=bisect(0,1,1e-4)function [c,num]=bisect(a,b,delta)%Input –a,b 是取值区间范围% -delta 是允许误差%Output -c 牛顿迭代法最后计算所得零点值% -num 是迭代次数ya = a + exp(a) - 2;yb = b + exp(b) - 2;if ya * yb>0return;endfor k=1:100c=(a+b)/2;yc= c + exp(c) - 2;if abs(yc)<=deltaa=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif abs(b-a)<deltanum=k; %num为迭代次数break;endendc=(a+b)/2;err=abs(b-a);yc = c + exp(c) - 2;牛顿迭代法程序:计算调用函数:[c,num]=newton(@func1,0.5,1e-4) 调用函数:function [y] = func1(x)y = x + exp(x) - 2;end迭代算法:function[c,num]=newton(func,p0,delta)%Input -func是运算公式% -p0是零点值% -delta是允许误差%Output -c牛顿迭代法最后计算所得零点值num=-1;for k=1:1000y0=func(p0);dy0=diff(func([p0 p0+1e-8]))/1e-8;p1=p0-y0/dy0;err=abs(p1-p0);p0=p1;if(err<delta)num=k;%num为迭代次数break;endendc=p0;第2题:由题意得到算式:计算调用函数:[c,num]=newton(@func2,0.02,1e-8)程序:先用画图法估计出大概零点位置在0.02附近。

实验5非线性方程求根及其MATLAB实现

实验5非线性方程求根及其MATLAB实现

实验5非线性方程求根及其MATLAB实现实验要求:1.掌握二分法、牛顿迭代法和二次迭代法等求根方法;2.能够通过MATLAB实现非线性方程求根算法。

实验背景:非线性方程求根是数值计算中的一个重要问题。

对于一般的非线性方程,往往无法用解析的方法得到根的精确值。

因此,需要采用数值计算的方法来逼近方程的根。

本实验将介绍三种常用的非线性方程求根算法:二分法、牛顿迭代法和二次迭代法,并通过MATLAB实现这些算法。

一、二分法二分法是一种简单直观的求根方法。

它的基本思想是:通过对函数值的符号变化情况进行判断,将方程的根所在的区间逐渐减小,直至满足精度要求。

具体实现过程如下:1.选择一个区间[a,b],使得f(a)和f(b)异号,即f(a)f(b)<0;2.确定区间的中点c=(a+b)/2,并计算f(c);3.如果f(c)为0,说明c就是方程的根。

如果不为0,再判断f(c)和f(a)的符号,如果异号,则根位于[a,c]区间;如果同号,则根位于[c,b]区间;4.根据上一步的判断,缩小区间,重复2和3步骤,直至满足精度要求。

二、牛顿迭代法牛顿迭代法利用导数与函数近似线性关系的思想,通过迭代不断逼近方程的根。

具体实现过程如下:1.选择一个初始值x0,计算f(x0)和f'(x0);2.根据一阶泰勒展开公式,得到下一个近似值x1=x0-f(x0)/f'(x0);3.计算f(x1)的绝对值,如果小于给定的精度要求,则x1是方程的近似根;否则,x1成为新的初始值,重复2和3步骤,直至满足精度要求。

三、二次迭代法二次迭代法也是一种常用的求根方法。

它通过构建二次复合函数并对其进行迭代,逐步逼近方程的根。

具体实现过程如下:1.选择一个初始点x0,计算f(x0)和f'(x0);2.利用初始点和导数构建二次复合函数g(x)=x-f(x)/f'(x),即g(x)=x0-f(x0)/f'(x0)+f''(x0)(x-x0)^2/2;3.将g(x)视为新的非线性方程,利用牛顿迭代法计算出下一个近似值y1;4.利用y1和x0计算原方程的下一个近似值x1=y1+f(x0)/f'(x0);5.计算f(x1)的绝对值,如果小于给定的精度要求,则x1是方程的近似根;否则,x1成为新的初始值,重复3到5步骤,直至满足精度要求。

数值分析大作业2014

数值分析大作业2014

完成时间:2014年10月20日课程设计课程名称: 设计题目:学 号:姓 名:题目一:非线性方程求根用Newton 法计算下列方程(1)疋一— 1=°,初值分别为兀=1,儿=0.45,心=0.65;高等数值计算数值计算B 课程设计(2)++94.J—389^ + 294 = 0其三个根分别为1,3,-98。

当选择初值无=2时给出结果并分析现象,当£ = 5x10",迭代停止。

一、摘要非线性方程的解析解通常很难给出,因此非线性方程的数值解就尤为重要。

本实验通过使用常用的求解方法二分法和Newton法及改进的Newton法处理几个题目,分析并总结不同方法处理问题的优缺点。

观察迭代次数,收敛速度及初值选取对迭代的影响。

二、数学原理构造迭代函数的一条很重要的途径是,用近似方程来代替原方程去求根。

因此,如果能将非线性方程用线性方程来代替的话,求近似根问题就很容易解决,而且十分方便。

Newton法就是把非线性方程线性化的一种方法。

在求解非线性方程/(x) = 0时,它的困难在于/(对是非线性函数,为克服这一困难,考虑它的线性展开。

设当前点为丑,在忑处的Taylor展开式为f(x)« f(x t) + f(x k)(x - x k)令/(x) = 0 ,可以得到上式的近似方程f(x k)+f\x k Xx ) = 0设八兀)工0 ,解其方程得到和f {'(I)这就是牛顿迭代公式。

用牛顿迭代公式求方程/(A-) = 0根的方法称为牛顿迭代法。

牛顿迭代法的几何意义为,不断用切线来近似曲线得到方程的根,我们知道方程f(x) = 0的实根x*是函数y = f(x)的图形与横坐标的交点,忑+]是函数/■(*)在点(忑丿代))处的切线与x轴的交点,此时就是用切线的零点代替曲线的零点,因此,牛顿迭代法又称为切线法。

三、程序设计基于MATLAB软件编写程序,先定义一个用Newton法求解的功能函数,然后调用函数用于计算不同的方程。

计算方法非线性方程求根实验报告

计算方法非线性方程求根实验报告

实验报告一.MATLAB程序代码(1)function x=agui_bisect(fname,a,b,e)fa=feval(fname,a);fb=feval(fname,b);if fa*fb>0 error('两端函数值为同号');endk=0x=(a+b)/2while(b-a)>(2*e)fx=feval(fname,x);if fa*fx<0b=x;fb=fx;elsea=x;fa=fx;endk=k+1x=(a+b)/2end(2)function x=agui_diedai(fname,x0,e)N=100;x=x0;x0=x+2*e;k=0;while abs(x0-x)>e&k<Nk=k+1x0=x;x=feval(fname,x0);disp(x)endif k==N warning('已达到最大迭代次数');end(3)function x=agui_newton(fname,dfname,x0,e)N=100;x=x0;x0=x+2*e;k=0;while abs(x0-x)>e&k<Nk=k+1x0=x;x=x0-feval(fname,x0)/feval(dfname,x0);disp(x)endif k==N warning('已达最大迭代次数');end二. 实验结果及分析实验结果(1)x11=0.0903 (2)x5=0.0903 (3)x2=0.0903实验分析由三个结果对比可知,牛顿迭代法的迭代次数较少,且比较简单可靠。

可见牛顿迭代法要比二分法和迭代法的收敛速度快的多。

但是对函数有一定的要求。

牛顿迭代要求函数能求导。

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根1.实验目的掌握迭代法求非线性方程根的基本原理和使用方法,加深对数值计算方法的理解与应用。

2.实验原理迭代法是一种通过不断逼近的方法求解非线性方程的根。

根据不同的函数特点和问题需求,可以选择不同的迭代公式进行计算,如牛顿迭代法、二分法、弦截法等。

3.实验内容本次实验使用牛顿迭代法求解非线性方程的根。

牛顿迭代法基于函数的局部线性逼近,通过不断迭代逼近零点,直至满足收敛条件。

具体步骤如下:Step 1:选择初始点X0。

Step 2:计算函数f(x)在X0处的导数f'(x0)。

Step 3:计算迭代公式Xn+1 = Xn - f(Xn) / f'(Xn)。

Step 4:判断收敛准则,若满足则迭代结束,输出解Xn;否则返回Step 2,继续迭代。

Step 5:根据实际情况判断迭代过程是否收敛,并输出结果。

4.实验步骤步骤一:选择初始点。

根据非线性方程的特点,选择恰当的初始点,以便迭代公式收敛。

步骤二:计算导数。

根据选择的非线性方程,计算函数f(x)的导数f'(x0),作为迭代公式的计算基础。

步骤三:迭代计算。

根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),计算下一个迭代点Xn+1步骤四:判断收敛。

判断迭代过程是否满足收敛条件,通常可以通过设置迭代次数上限、判断前后两次迭代结果的差值是否足够小等方式进行判断。

步骤五:输出结果。

根据实际情况,输出最终的迭代结果。

5.实验结果与分析以求解非线性方程f(x)=x^3-x-1为例,选择初始点X0=1进行迭代计算。

根据函数f(x)的导数计算公式,得到导数f'(x0)=3x0^2-1,即f'(1)=2根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),带入计算可得:X1=X0-(X0^3-X0-1)/(3X0^2-1)=1-(1-1-1)/(3-1)=1-0/2=1根据收敛准则,判断迭代结果是否满足收敛条件。

数值分析实验一非线性方程组求解

数值分析实验一非线性方程组求解
x ,f( x )) ( x , f( x )) 和( 。 重复计算(b)(c), 直至相邻两次迭代值之差在容许范围之内。 0 0 1 1
// MainFrm.cpp : implementation of the CMainFrame class // #include "stdafx.h"
实 验 源 代 码
#include "20141501069 于童实验一.h" #include "math.h" #include "MainFrm.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif

算法思想: 选定初始值 x0 , x1 ,并计算 f ( x0 ) 和 f ( x1 ) ;
弦 位 法
f ( x ) x n ( x x ) n 1 n n n 1 用迭代公式 x 计算 x2 ,再求 f ( x2 ) ; f ( x ) f ( x ) n n 1
0 x ,f ( x )) x , f( x )) 判别:如果 f (x 则迭代停止;否则,用 ( 和( 分别代替 2) 2 2 1 1
ReleaseDC(pDC); } void CMainFrame::Ondd() { // TODO: Add your command handler code here CDC*pDC=GetDC(); pDC->Rectangle(0,0,10000,10000); pDC->TextOut(10,30,"迭代法:方程 X^3-3X-1=0,迭代方程为:Xn+1=(3*Xn+1)^1/3"); double a=2; double b=pow(3*a+1,1.0/3); inti=0; intss=0; int s=0; int t=0; CString date; pDC->TextOut(20+20,50,"x0 : 2.000000"); while (fabs(a-b)>=0.00001) { i+=20; t++; ss++; if (t>=10) s=-10; pDC->TextOut(40+s,50+i,"x"); date.Format("%d",ss); pDC->TextOut(50+s+10,50+i,date); pDC->TextOut(60+10,50+i,":"); date.Format("%lf",b); pDC->TextOut(70+10,50+i,date); double temp=b-(b*b*b-3*b-1)/(3*b*b-3); a=b; b=temp; } } void CMainFrame::Onxw() { // TODO: Add your command handler code here CDC*pDC=GetDC(); pDC->Rectangle(0,0,10000,10000);

数值分析的实验报告

数值分析的实验报告

数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。

本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。

实验一:方程求根方程求根是数值分析中的基础问题之一。

我们选取了一个非线性方程进行求解。

首先,我们使用二分法进行求解。

通过多次迭代,我们得到了方程的一个近似解。

然后,我们使用牛顿法进行求解。

与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。

通过比较两种方法的结果,我们验证了牛顿法的高效性。

实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。

我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。

通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。

同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。

实验三:数值积分数值积分是数值分析中的重要内容之一。

我们选取了一个定积分进行计算。

首先,我们使用复化梯形公式进行积分计算。

通过增加分割区间的数量,我们得到了更精确的结果。

然后,我们使用复化辛普森公式进行积分计算。

与复化梯形公式相比,复化辛普森公式具有更高的精度。

通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。

实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。

我们选取了一个常微分方程进行数值解的计算。

首先,我们使用欧拉方法进行数值解的计算。

然后,我们使用改进的欧拉方法进行数值解的计算。

通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。

实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。

我们选取了一个线性方程组进行数值解的计算。

首先,我们使用高斯消元法进行数值解的计算。

然后,我们使用追赶法进行数值解的计算。

通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。

数值分析- 非线性方程求根

数值分析- 非线性方程求根
那么迭代过程在
( x *) 0,
( p)
( x *) 0 ,
x * 附近是 p 阶收敛的 .
特别地,当
0 | ( x *) | 1时 , 迭代法线性收敛
;
当 ( x *) 0 , ( x *) 0时 , 平方收敛 .
§3
迭代收敛的加速方法
由迭代公式校正一次得
x 0 [ a , b ], 迭代序列 (2.2) 均收敛于 x *, L
k
1 L 1 1 L
| x1 x 0 |, | x k 1 x k | .
在 [1,2] 内考查如下迭代法的敛 1) x k 1
3 3 k
散性:
x k 1 ; 2) x k 1 x 1 .
• • •
设函数f(x)在区间[a,b]上单调连续,且 f(a)·f(b)<0 则方程(1.1)在区间(a,b)内有且仅有 一个实根x。
二、二分法
二分法简述.
设 f ( a ) f ( b ) 0 , 取 x 0 ( a b ) / 2 . 假如 f ( x 0 ) 是 f ( x )的零点, 那么输出 x 0 , 停止 . 假若不然, 若 f ( a ) 与 f ( x 0 )同号,则 a1 x 0 , b1 b ; 否则 a1 a , b1 x 0 .
一、埃特金加速收敛方法
对于收敛的迭代过程, x1 ( x 0 ),
再校正一次得 x 2 ( x1 ).
如果 ( x ) 变化不大 , ( x ) L , 则
x1 x * ( x 0 ) ( x *) L ( x 0 - x *), x 2 x * ( x1 ) ( x *) L ( x1 - x *).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
一、实验目的
1.迭代函数对收敛性的影响。

2.初值的选择对收敛性的影响。

二、实验题目
1.用简单迭代法求方程01)(3
=--=x x x f 的根。

分别化方程为如下等价方程: 31+=x x ;13
-=x x ;x x 11+=;213-+=x x x 取初值5.10=x ,精度为410-,最大迭代次数为500,观察其计算结果并加以分析。

2.①用牛顿法求方程01)(3
=-+=x x x f 在0.5附近的根,
分别取初值1000,100,2,1,5.0,5.0,1,2,100,10000-----=x
观察并比较计算结果,并加以分析。

②用牛顿法求方程0)(3=-=x x x f 所有根。

三、实验原理
简单迭代法程序,牛顿迭代法程序。

四、实验内容及结果
fun=inline('x^3-x-1');
dfun=inline('3*x^2-1');
-1000,x1=manewton(fun,dfun,-1000,1e-4) -100,x2=manewton(fun,dfun,-100,1e-4)
-2,x3=manewton(fun,dfun,-2,1e-4)
-1,x4=manewton(fun,dfun,-1,1e-4)
-0.5,x5=manewton(fun,dfun,-0.5,1e-4) 0.5,x6=manewton(fun,dfun,0.5,1e-4)
1,x7=manewton(fun,dfun,1,1e-4)
2,x8=manewton(fun,dfun,2,1e-4)
100,x9=manewton(fun,dfun,100,1e-4) 1000,x10=manewton(fun,dfun,1000,1e-4)
3)在MA TLAB的主程序窗口输出以下结果:ans =
-1000
k=21
x1 =
0.682327804075895
ans =
-100
k=16
x2 =
0.682327803903413
ans =
-2
k=6
x3 =
0.682327803828020
ans =
-1
k=5
x4 =
0.682327803828020
ans =
-0.500000000000000
k=4
x5 =
0.682327803903932
ans =
0.500000000000000
k=3
x6 =
0.682327803828347
五、实验结果分析
(1)实验1中用简单迭代法求方程01)(3=--=x x x f 的根:
取初始值5.10=x 的时候,等价方程2和4是不收敛的。

等价方程1的迭代次数为6,近似值为1.324719474534364。

等价方程3的迭代次数为7,近似值为1.324718688942791。

说明不同的等价方程得到的结果以及迭代的次数是不一样的。

(2)实验2中用牛顿迭代法求方程01)(3=-+=x x x f 在0.5附近的根:
通过结果可知,当初始值越接近真实值时,迭代的次数就越少。

(3)实验3中用牛顿法求方程0)(3=-=x x x f 所有根:
可知该方程的根为01=x ,12=x ,13-=x ,由于方程是无重根的,所以可以直接用牛顿迭代法做,而不需要使用牛顿迭代加速法做。

相关文档
最新文档