2009年江苏专转本高等数学真题(附答案)
2009年江苏省普通高校“专转本”统一考试高等数学参考答案
2009年江苏省普通高校“专转本”统一考试高等数学参考答案1、A2、B3、C4、B5、D6、C7、2ln8、xxe249、3π10、yxz z +-2211、212、C x x y y ++=-2ln ln 2213、623lim cos 13lim22020==-=→→xx x x x x . 14、2)1(21122+=++=t t t dt dy ,.)1(411)1(42'22t t t dx dy dxy d +=++== 15、解:令t x =+12,则212-=t x ;所以C t t t dt t t t dx t t dx x ++-=+-==+⎰⎰⎰sin cos cos cos sin 12sinC x x x ++--+=12cos 1212sin16、设t x sin 2=,则当0=x 时,0=t ;当1=x 时,4π=t . 于是有原式.214)2sin 21()2cos 1(cos 2cos 2sin 24040402-=-=-==⎰⎰ππππt t dt t tdt tt17、解:已知直线方向向量为{}1,2,3=→s ,平面法向量为{}1,1,11=→n ,于是所求平面的法向量为 {}1,2,1111123-==→kj i n ,而所求平面经过已知直线,所以点)2,1,0(在该平面上.所以所求平面方程为:0)2()1(2=-+--z y x ,即.02=+-z y x18、解:由2,22=+=y x x y 得交点)1,1(,则⎰⎰⎰⎰⎰⎰+=-21222102xx Dydy dx ydy dx ydxdydx x y dx x y )2(21)22(212122102⎰⎰+-=2=19、解:设x u sin =,xy v =,则),(v u f z =. 所以21cos yf xf xz+=∂∂,.cos cos 222122212xyf f xf x y f y f y f x y x z ++=∂∂++∂∂=∂∂∂ 20、解:对应齐次方程的特征方程为02=-r r ,特征根为01=r ,12=r ,所以对应齐次方程的通解为:)....(21cn dinyuan e C C y x+=,由于01=r 为特征根,故设原方程特解为)(*B Ax x y +=,则B Ax y +=2*',A y 2'*'=.于是有:x B Ax A =+-)2(2,得21-=A ,1-=B ,即有特解.212*x x y --= 故原方程的通解为.21221*x x e C C y y y x--+=+=21、(1))1)(1(333)(2'-+=-=x x x x f ,令0)('=x f ,得驻点11-=x ,12=x . 列表:由表可知:)(x f 的单增区间为()1,-∞-或()+∞,1,单减区间为()1,1-; 极大值为3)1(=-f ,极小值为.1)1(-=f(2)x x f 6)(''=,令0)(''=x f ,得0=x . 列表:由表可知:)0,(-∞为函数的凸区间,),0(+∞为函数的凹区间;)1,0(点为函数的拐点. 22、解:23、24、。
(完整版)江苏专转本高等数学真题(附答案)
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
01—10年江苏专转本数学真题(附答案)
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
江苏省专转本高等数学试题题型分类整理
江苏省普通高校“专转本”统一考试高等数学专转本高数试卷结构知识分类与历年真题●函数、极限和连续●一元函数微分学●一元函数积分学●向量代数与空间解析几何●多元函数微积分●无穷级数●常微分方程时间排序与参考答案◆2004年高等数学真题参考答案◆2005年高等数学真题参考答案◆2006年高等数学真题参考答案◆2007年高等数学真题参考答案◆2008年高等数学真题参考答案◆2009年高等数学真题参考答案◆2010年高等数学真题参考答案◆2011年高等数学真题参考答案◆2012年高等数学真题参考答案◆2013年高等数学真题参考答案江苏省普通高校“专转本”统一考试高等数学试卷结构全卷满分150分一、单选题(本大题共6小题,每小题4分,满分24分) 二、填空题(本大题共6小题,每小题4分,满分24分) 三、解答题(本大题共8小题,每小题8分,满分64分) 四、综合题(本大题共2小题,每小题10分,满分20分) 五、证明题(本大题共2小题,每小题9分,满分18分)知识分类与历年真题一、函数、极限和连续(一)函数(0401)[](]333,0()0,2x x f x x x ⎧∈-⎪=⎨-∈⎪⎩是( ) A.有界函数 B.奇函数 C.偶函数 D.周期函数 (0801)设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是( )A.()y f x =-B.)(43x f x y = C.()y f x =-- D.)()(x f x f y -+= (二)极限(0402)当0→x 时,x x sin 2-是关于x 的( )A.高阶无穷小B.同阶无穷小C.低阶无穷小D.等价无穷小(0407)设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x .(0601)若012lim 2x x f x →⎛⎫ ⎪⎝⎭=,则0lim 3x xx f →=⎛⎫ ⎪⎝⎭( ) A.21 B.2C.3D.31 (0607)已知0→x 时,(1cos )a x ⋅-与x x sin 是等价无穷小,则=a .(0613)计算x →. (0701)若0(2)lim2x f x x→=,则1lim 2x xf x →∞⎛⎫= ⎪⎝⎭( ) A.41B.21 C.2D.4(0702)已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x nsin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A.1B.2C.3D.4(0813)求极限:32lim xx x x →∞-⎛⎫⎪⎝⎭. (0901)已知22lim32x x ax bx →++=-,则常数b a ,的取值分别为( ) A.2,1-=-=b a B.0,2=-=b aC.0,1=-=b aD.1,2-=-=b a(0907)已知lim 2xx x x C →∞⎛⎫= ⎪-⎝⎭,则常数=C . (1001)设当0x →时,()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( ) A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n == (1007) 1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. (1101)当0→x 时,函数1)(--=x e x f x是函数2)(x x g =的( )A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小(1107)已知22lim kxx x e x →∞-⎛⎫= ⎪⎝⎭,则=k _________. (1201)极限1sin 3lim 2sinx x x x x →∞⎛⎫+= ⎪⎝⎭( ) A.0 B.2 C.3D.5(1301)当0x →时,函数()ln(1)f x x x =+-是函数2()g x x =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小D.等价无穷小(1310)设10lim xx a x e a x →+⎛⎫=⎪-⎝⎭,则常数a = . (三)连续(0413)求函数xxx f sin )(=的间断点,并判断其类型. (0501)0=x 是xx x f 1sin )(=的( ) A.可去间断点B.跳跃间断点C.第二类间断点D.连续点(0513)设()2sin 0()0f x xx F x xa x +⎧≠⎪=⎨⎪=⎩在R 内连续,并满足0)0(=f ,(0)6f '=,求a . (0602)函数21sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ) A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续(0608)若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.(0707)设函数1(1)0()20x kx x f x x ⎧⎪+≠=⎨⎪=⎩,在点0=x 处连续,则常数=k .(0807)设函数21()(1)x f x x x -=-,则其第一类间断点为 .(0808)设函数0()tan 30a x x f x x x x+≥⎧⎪=⎨<⎪⎩在点0=x 处连续,则a = .(0902)已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点(1123)设210arctan ()1010sin 2ax axe x ax x x xf x x e x x ⎧---<⎪⎪⎪==⎨⎪-⎪>⎪⎩,问常数为何值时:(1)0=x 是函数)(x f 的连续点? (2)0=x 是函数)(x f 的可去间断点? (3)0=x 是函数)(x f 的跳跃间断点? (1202)设()2(2)sin ()4x xf x x x -⋅=⋅-,则函数)(x f 的第一类间断点的个数为( ) A.0 B.1C.2D.3(1207)要使函数()1()12xf x x =-在点0=x 处连续,则需补充定义(0)f =_________.(1303)设sin 20()0xx x f x x ⎧<⎪⎪=⎨>,这点0x =是函数()f x 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.连续点(1307)设1sin0()0x x f x xa x ⎧≠⎪=⎨⎪=⎩在点0x =处连续,则常数a = . 二、一元函数微分学(一) 导数与微分(0403)直线L 与x 轴平行且与曲线xe x y -=相切,则切点的坐标是( ) A.()1,1B.()1,1-C.()0,1-D.()0,1(0409)设()(1)(2)()f x x x x x n =+++,N n ∈,则=)0('f .(0415)设函数)(x y y =由方程1=-yxe y 所确定,求22d d x yx=的值.(0502)若2=x 是函数1ln 2y x ax ⎛⎫=-+ ⎪⎝⎭的可导极值点,则常数=a ( ) A.1-B.21C.21- D.1 (0514)设函数)(x y y =由方程cos sin cos x t y t t t =⎧⎨=-⎩所确定,求d d y x 、22d d yx .(0614)若函数)(x y y =是由参数方程2ln (1)arctan x t y t t⎧=+⎨=-⎩所确定,求d d y x 、22d d yx .(0708)若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m .(0714)设函数)(x y y =由方程xy e e yx=-确定,求d d x yx=、22d d x y x =.(0802)设函数)(x f 可导,则下列式子中正确的是( ) A.0(0)()lim(0)x f f x f x →-'=- B.000(2)()lim ()x f x x f x f x x→+-'=C.0000()()lim ()x f x x f x x f x x ∆→+∆--∆'=∆D.0000()()lim 2()x f x x f x x f x x∆→-∆-+∆'=∆ (0814)设函数)(x y y =由参数方程sin 1cos x t t y t =-⎧⎨=-⎩(2t n π≠,n Z ∈)所决定,求d d y x 、22d d y x .(0903)设函数00()1sin 0x f x x x x α≤⎧⎪=⎨>⎪⎩在点0=x 处可导,则常数α的取值范围为( ) A.10<<αB.10≤<αC.1>αD.1≥α(0914)设函数)(x y y =由参数方程2ln (1)23x t y t t =+⎧⎨=+-⎩所确定,d d y x 、22d d yx . (0923)已知函数0()10x e x f x x x -⎧<=⎨+≥⎩,证明函数)(x f 在点0=x 处连续但不可导.(1008).若(0)1f '=,则0()()limx f x f x x→--= .(1014)设函数()y y x =由方程2x yy ex ++=所确定,求d d y x 、22d d yx .(1022)设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.(1102)设函数)(x f 在点0x 处可导,且4)()(lim 000=+--→hh x f h x f h ,则=')(0x f ( )A.4-B.2-C.2D.4(1110)设函数x y arctan=,则1d x y==_____________.(1114)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=22ty e tt x y 所确定,求d d y x .(1208)设函数()22221x y x x x e =⋅+++,则=)0()7(y________.(1209)设xy x =(0x >),则函数y 的微分=dy ___________.(1214)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求d d y x 、22d d y x . (1304)设1y f x ⎛⎫= ⎪⎝⎭,其中f 具有二阶导数,则22d d y x =( )A.231121f f x x x x ⎛⎫⎛⎫'''-+ ⎪ ⎪⎝⎭⎝⎭ B.231121f f x x x x ⎛⎫⎛⎫'''+ ⎪ ⎪⎝⎭⎝⎭ C.231121f f x x x x ⎛⎫⎛⎫'''--⎪ ⎪⎝⎭⎝⎭D.231121f f x x x x ⎛⎫⎛⎫'''-⎪ ⎪⎝⎭⎝⎭(1306)已知函数()f x 在点1x =处连续,且21()1lim 12x f x x →=-,则曲线()f x 在点()1,()f x 处切线方程为( ) A.1y x =-B.22y x =-C.33y x =-D.44y x =-(1309)设函数由参数方程2211x t y t ⎧=+⎨=-⎩所确定,则221d d t yx == .(二)中值定理及导数的应用(0423)甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元.问污水处理厂建在何处,才能使铺设排污管道的费用最省?(0507)02limsin x x x e e xx x-→--=- . (0508)函数x x f ln )(=在区间[]1,e 上满足拉格郎日中值定理的=ξ . (0521)证明方程:0133=+-x x 在[]1,1-上有且仅有一根.(0603)下列函数在[]1,1-上满足罗尔定理条件的是( ) A.xe y =B.1y x =+C.21x y -=D.xy 11-= (0621)证明:当2x ≤时,332x x -≤.(0703)设函数()(1)(2)(3)f x x x x x =---,则方程()0f x '=的实根个数为( ) A.1B.2C.3D.4(0713)求极限01lim tan x x e x x x→--.(0722)设函数9)(23-++=cx bx ax x f 具有如下性质:(1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点(1,2)的两侧凹凸性发生改变. 试确定a ,b ,c 的值.(0724)求证:当0>x 时,22(1)ln (1)x x x -⋅≥-.(0809)已知曲线543223++-=x x x y ,则其拐点为 . (0821)求曲线1y x=(0x >)的切线,使其在两坐标轴上的截距之和最小,并求此最小值. (0823)设函数)(x f 在闭区间[]0,2a (0a >)上连续,且)()2()0(a f a f f ≠=,证明:在开区间(0,)a 上至少存在一点ξ,使得()()f f a ξξ=+. (0824)对任意实数x ,证明不等式:(1)1xx e -⋅≤. (0904)曲线221(1)x y x +=-的渐近线的条数为( )A.1B.2C.3D.4(0913)求极限30lim sin x x x x→-.(0921)已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[2,3]-上的最大值与最小值.(0924)证明:当12x <<时,24ln 23x x x x >+-.(1002)曲线223456x x y x x -+=-+的渐近线共有 ( )A.1条B.2条C.3条D.4条 (1006)设3()3f x x x =-,则在区间(0,1)内 ( ) A.函数()f x 单调增加且其图形是凹的 B.函数()f x 单调增加且其图形是凸的 C.函数()f x 单调减少且其图形是凹的 D.函数()f x 单调减少且其图形是凸的(1013)求极限2|011lim tan x x x x →⎛⎫-⎪⎝⎭.(1021)证明:当1x >时,121122x e x ->+. (1103)若点(1,2)-是曲线23bx ax y -=的拐点,则( ) A.3,1==b aB.1,3-=-=b aC.3,1-=-=b aD.6,4==b a(1113)求极限()()22limln 1xx x eex -→-+.(1121)证明:方程()2ln 12x x ⋅+=有且仅有一个小于2的正实根. (1122)证明:当0>x 时,x x201120102011≥+.(1203)设232152)(x x x f -=,则函数)(x f ( ) A.只有一个最大值 B.只有一个极小值 C.既有极大值又有极小值D.没有极值(1213)求极限()2302cos 2lim ln 1x x x x x →+-+. (1223)证明:当10<<x 时,361arcsin x x x +>. (1302)曲线22232x xy x x +=-+的渐近线共有( )A.1条B.2条C.3条D.4条(1313)求极限01lim ln (1)x x e x x →⎡⎤-⎢⎥+⎣⎦.(1323)证明:当1x >时,2(1ln )21x x +<-.三、一元函数积分学(一)不定积分(0410)求不定积分3x = .(0416)设)(x f 的一个原函数为xe x,计算(2)d x f x x '⎰.(0503)若()d ()f x x F x C =+⎰,则sin (cos )d x f x x =⎰( )A.C x F +)(sinB.C x F +-)(sinC.C F +(cos)D.C x F +-)(cos(0515)计算3tan sec d x x x ⎰.(0522)设函数)(x f y =的图形上有一拐点(2,4)P ,在拐点处的切线斜率为3-,又知该函数的二阶导数6y x a ''=+,求)(x f .(0604)已知2()d x f x x e C =+⎰,则()d f x x '-=⎰( )A.C ex+-22B.C e x +-221 C.C e x +--22 D.C e x +--221(0615)计算x . (0622)已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程. (0704)设函数)(x f 的一个原函数为x 2sin ,则(2)d f x x '=⎰( )A.C x +4cosB.C x +4cos 21C.C x +4cos 2D.C x +4sin(0715)求不定积分2d x x e x -⎰.(0810)设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分()d f x x =⎰ . (0815)求不定积分3d 1x x x +⎰. (0905)设()ln (31)F x x =+是函数)(x f 的一个原函数,则(21)d f x x '+=⎰( )A.C x ++461B.C x ++463C.C x ++8121D.C x ++8123(0915)求不定积分x ⎰.(1015)求不定积分arctan d x x x ⎰.(1115)设)(x f 的一个原函数为x x sin 2,求不定积分()d f x x x⎰. (1215)求不定积分sin 2d x x x ⎰. (1315)求不定积分sin 2d x x x ⎰.(二)定积分(0404)2228R y x =+设所围的面积为S ,则0x ⎰的值为( )A.SB.4S C.2S D.S 2(0421)证明:0(sin )d (sin )d 2x f x x f x x πππ=⎰⎰,并利用此式求20sin d 1cos xxx xπ+⎰.(0509)1211d 1x x x π-+=+⎰.(0516)计算10arctan d x x ⎰.(0609)设)(x f 在[]0,1上有连续的导数且(1)2f =,10()d 3f x x =⎰,则1()d x f x x '=⎰ .(0616)计算22cos d x x x π⎰.(0709)定积分)231cos d x x x -+⎰的值为 .(0716)计算定积分x . (0811)定积分1212sin d 1xx x -++⎰的值为 .(0816)求定积分10d x ⎰.(0916)求定积分:210⎰.(1009)定积分31211d 1x x x -++⎰的值为 . (1016)计算定积分40x ⎰. (1111)定积分()32221sin d xx x ππ-+⋅⎰的值为____________.(1116)计算定积分3⎰ . (1216)计算定积分21⎰.(1316)计算定积分20⎰(1324)设函数()f x 在[,]a b 上连续,证明:[]2()d ()()d a b b aaf x x f x f a b x x +=++-⎰⎰.(三)变限积分与广义积分(0417)计算广义积分2+∞⎰(0422)设函数)(x f 可导,且满足方程20()d 1()x t f t t x f x =++⎰,求)(x f .(0705)设221()sin d x f x t t =⎰,则()f x '=( )A.4sin x B.2sin 2x xC.2cos 2x xD.4sin 2x x(0803)设函数)(x f 122sin d xt t t =⎰,则()f x '等于( )A.x x 2sin 42B.x x 2sin 82C.x x 2sin 42-D.x x 2sin 82-(0908)设函数20()d x t x te t ϕ=⎰,则()x ϕ'= .(1003)设函数22()cos d t xx e t t Φ=⎰,则函数()x Φ的导数()x 'Φ等于 ( )A.222cos x xe x B.222cos x xe x - C.2cos xxe x - D.22cos x e x - (1108)设函数2()ln (1)d x x t t Φ=+⎰ ,则=Φ'')1(____________.(1211)设反常积分1d 2x ae x +∞-=⎰,则常数=a ______. (1222)已知定义在(),-∞+∞上的可导函数)(x f 满足方程31()4()d 3xx f x f t t x -=-⎰,试求:(1)函数()f x 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线()y f x =的凹凸区间与拐点.(1224)设0()d 0()(0)0x g t t x f x g x ⎧≠⎪=⎨⎪=⎩⎰,其中函数)(x g 在(,)-∞+∞上连续,且3cos 1)(lim 0=-→xx g x .证明:函数)(x f 在0=x 处可导,且1(0)2f '=. (1322)已知251320()95d x F x t t t ⎛⎫=- ⎪⎝⎭⎰是()f x 的一个原函数,求曲线()y f x =的凹凸区间、拐点. (四)定积分的几何应用(0523)已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕x 轴旋转一周的旋转体体积.(0623)已知一平面图形由抛物线2x y =、82+-=x y 围成.(1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.(0721)设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.(0822)设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积;(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.(0922)设1D 是由抛物线22x y =和直线x a =,0y =所围成的平面封闭区域,2D 是由抛物线22x y =和直线x a =,2x =及0=y 所围成的平面封闭区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V ; (2)求常数a 的值,使得1D 的面积与2D 的面积相等.(1023)设由抛物线2y x =(0x ≥),直线2y a =(01a <<)与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0x ≥),直线2y a =(01a <<)与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.(1024)设函数()f x 满足方程()()2xf x f x e '+=,且(0)2f =,记由曲线'()()f x y f x =与直线1y =,x t =(0t >)及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞.(1124)设函数)(x f 满足微分方程()2()(1)x f x f x a x '-=-+(其中a 为正常数),且1)1(=f ,由曲线()y f x =(1x ≤)与直线1x =,0y =所围成的平面图形记为D .已知D 的面积为32. (1)求函数)(x f 的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积x V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积y V .(1221)在抛物线2y x =(0x >)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积.(1321)设平面图形D 是由曲线x =y =1y =所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积.四、向量代数与空间解析几何(一)向量代数(0510)设向量{}3,4,2=-a 、{}2,1,k =b ;a 、b 互相垂直,则=k . (0610)设1=a ,⊥a b ,则()⋅+=a a b . (0710)已知a 、b 均为单位向量,且12⋅=a b ,则以a 、b 为邻边的平行四边形面积为 . (0804)设向量(1,2,3)=a ,(3,2,4)=b ,则⨯a b 等于( )A.(2,5,4)B.(2,5,4)--C.(2,5,4)-D.(2,5,4)--(0909)已知向量{}1,0,1=-a ,{}1,2,1=-b ,则+a b 与a 的夹角为 . (1010)设{}1,2,3=a ,{}2,5,k=b ,若a 与b 垂直,则常数k = .(1109)若1=a ,4=b ,2⋅=a b ,则⨯=a b ____________.(1210)设向量a 、b 互相垂直,且3=a ,2=b ,则2+=a b ________.(1308)已知空间三点(1,1,1)A ,(2,3,4)B ,(3,4,5)C ,则ABC ∆的面积为 .(二)平面与直线(0518)求过点(3,1,2)A -且通过直线L :43521x y z-+==的平面方程. (0619)求过点(3,1,2)M -且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.(0719)求过点(1,2,3)且垂直于直线20210x y z x y z +++=⎧⎨-++=⎩的平面方程.(0817)设平面∏经过点(2,0,0)A ,(0,3,0)B ,(0,0,5)C ,求经过点(1,2,1)P 且与平面∏垂直的直线方程. (0917)求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. (1017)求通过点(1,1,1),且与直线23253x ty t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.(1117)求通过x 轴与直线132zy x ==的平面方程. (1217)已知平面∏通过(1,2,3)M 与x 轴,求通过(1,1,1)N 且与平面∏平行,又与x 轴垂直的直线方程.(1318)已知直线10330x y z x y z -+-=⎧⎨--+=⎩在平面∏上,又知直线23132x ty t z t=-⎧⎪=+⎨⎪=+⎩与平面∏平行,求平面∏的方程.五、多元函数微积分(一)多元函数微分学(0418)设(,)z f x y xy =-,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.(0505)设yxy x u arctan),(=,(,)v x y =,则下列等式成立的是( )A.yv x u ∂∂=∂∂ B.xvx u ∂∂=∂∂ C.x v y u ∂∂=∂∂ D.y v y u ∂∂=∂∂ (0517)已知函数2(sin ,)z f x y =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.(0611)设x e u xysin =,=∂∂xu. (0620)设2(,)z x f x xy =⋅其中(,)f u v 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.(0711)设yxz =,则全微分d z = . (0717)设(23,)z f x y xy =+其中f 具有二阶连续偏导数,求yx z∂∂∂2.(0805)函数xyz ln =在点(2,2)处的全微分d z 为( )A.11d d 22x y -+B.11d d 22x y +C.11d d 22x y -D.11d d 22x y --(0818)设函数,y z f x y x ⎛⎫=+ ⎪⎝⎭,其中)(x f 具有二阶连续偏导数,求y x z ∂∂∂2.(0910)设函数(,)z z x y =由方程12=+yz xz 所确定,则xz∂∂= . (0919)设函数(sin ,)z f x xy =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.(1011)设函数z =,则10d x y z=== .(1018)设()2,xz y f xy e =⋅,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.(1104)设),(y x f z =为由方程8333=+-x yz z 所确定的函数,则=∂∂==00y x yz ( )A.21-B.21C.2-D.2(1118)设)(y xyxf z ,=,其中函数f 具有二阶连续偏导数,求y x z ∂∂∂2.(1204)设3ln 2z x y=+在点()1,1处的全微分为 ( )A.d 3d x y -B.d 3d x y +C.1d 3d 2x y +D.1d 3d 2x y -(1218)设函数22(,)()z f x xy x y ϕ=++,其中函数f 具有二阶连续偏导数,函数()x ϕ具有二阶连续导数,求yx z∂∂∂2.(1314)设函数(,)z z x y =由方程3331z xy z +-=所确定,求d z 及22zx∂∂.(1317)设()223,x yz fx e+=,其中函数f 具有二阶连续偏导数,求2zy x∂∂∂.(二)二重积分(0411)交换二次积分的次序2120d (,)d x x x f x y y -=⎰⎰.(0419)计算二重积分sin d d Dyx y y ⎰⎰,其中D 由曲线x y =及x y =2所围成. (0504)设区域D 是xoy 平面上以点(1,1)A 、(1,1)B -、(1,1)C --为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )d d Dxy x y x y +=⎰⎰( )A.⎰⎰1)sin (cos 2D dxdy y xB.⎰⎰12D xydxdyC.⎰⎰+1)sin cos (4D dxdy y x xyD. 0(0511)交换二次积分的次序11d (,)d x x f x y y -+=⎰;(0524)设)(x f 为连续函数,且1)2(=f ,1()d ()d uuyF u y f x x =⎰⎰(1u >). (1)交换)(u F 的积分次序; (2)求(2)F '.(0606)设对一切x 有(,)(,)f x y f x y -=-,22{(,)|1,0}D x y x y y =+≤≥,=1D 22{(,)|1,0,0}x y x y x y +≤≥≥,则(,)d d Df x y x y =⎰⎰( )A. 0B.1(,)d d D f x y x y ⎰⎰C.21(,)d d D f x y x y ⎰⎰D.41(,)d d D f x y x y ⎰⎰(0612)D 为以点(0,0)O 、(1,0)A 、(0,2)B 为顶点的三角形区域,d d Dx y =⎰⎰ .(0624)设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g连续;(2)求)('t g .(0720)计算二重积分d Dx y ,其中{}22(,)|2,0D x y x y x y =+≤≥.(0723)设0>>a b ,证明:()232d ()d ()d b b b x y xx a ayay f x e x ee f x x ++⋅=-⎰⎰⎰.(0819)计算二重积分2d d Dx x y ⎰⎰,其中D 是由曲线xy 1=,直线y x =,2x =及0=y 所围成的平面区域. (0918)计算二重积分d Dy σ⎰⎰,其中22{(,)02,2,2}D x y x x y x y =≤≤≤≤+≥. (1005)二次积分111d (,)d y y f x y x +⎰⎰交换积分次序后得 ( )A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111(,)d x dx f x y y -⎰⎰(1019)计算d d Dx x y ⎰⎰,其中D 是由曲线x =y x =及x 轴所围成的闭区域.(1105)若(,)d d Df x y x y ⎰⎰可转化为二次积分1201d (,)d y y f x y x +⎰⎰ ,则积分域D 可表示为( ) A.{}(,)01,11x y x x y ≤≤-≤≤ B.{}(,)12,11x y x x y ≤≤-≤≤C.{}(,)01,10x y x x y ≤≤-≤≤D.{}(,)12,01x y x y x ≤≤≤≤-(1119)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线y =直线x y -=及y 轴所围成的平面闭区域. (1205)二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A.sec 40d (cos ,sin )d f πθθρθρθρ⎰⎰ B.sec 40d (cos ,sin )d f πθθρθρθρρ⎰⎰C.sec 24d (cos ,sin )d f πθπθρθρθρ⎰⎰D .sec 24d (cos ,sin )d f πθπθρθρθρρ⎰⎰ (1220)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线y =2xy =及x 轴所围成的平面闭区域.(1320)计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线y =0x >)与三条直线y x =,3x =,0y =所围成的平面闭区域.六、无穷级数(一)数项级数(0506)正项级数(1)∑∞=1n n u 、(2)∑∞=13n n u ,则下列说法正确的是( ) A.若(1)发散、则(2)必发散 B.若(2)收敛、则(1)必收敛C.若(1)发散、则(2)不确定D.(1)、(2)敛散性相同(0605)设∑∞=1n nu为正项级数,如下说法正确的是( )A.若0lim 0=→n n u ,则∑∞=1n nu必收敛 B.若l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C.若∑∞=1n nu收敛,则∑∞=12n nu必定收敛D.若∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛(0706)下列级数收敛的是( )A.∑∞=122n nnB.∑∞=+11n n n C.∑∞=-+1)1(1n nnD.∑∞=-1)1(n nn(0906)设α为非零常数,则数项级数∑∞=+12n n n α( )A.条件收敛B.绝对收敛C.发散D.敛散性与α有关(1004)下列级数收敛的是( )A.11n nn ∞=+∑B.2121n n n n ∞=++∑C.nn ∞= D.212n n n ∞=∑(1206)下列级数中条件收敛的是( )A.1(1)21nn nn ∞=-+∑B.13(1)2nnn ∞=⎛⎫- ⎪⎝⎭∑C.21(1)nn n ∞=-∑D.1nn ∞=(1305)下列级数中收敛的是( )A.211n n n∞=+∑ B.11nn n n ∞=⎛⎫ ⎪+⎝⎭∑C.1!2n n n ∞=∑D.1n ∞= (二)幂级数(0412)幂级数∑∞=-12)1(n nnx 的收敛区间为 .(0420)把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间. (0512)幂级数1(21)nn n x∞=-∑的收敛区间为 .(0519)把函数222)(x x x x f --=展开为x 的幂级数,并写出它的收敛区间.(0618)将函数()ln (1)f x x x =+展开为x 的幂函数(要求指出收敛区间).(0812)幂函数12n nn x n ∞=⋅∑的收敛域为 . (0911)若幂函数21n nn a x n∞=∑(0a >)的收敛半径为21,则常数=a .(1012)幂级数0(1)n nn x n ∞=-∑的收敛域为 .(1106)若x x f +=21)(的幂级数展开式为0()nn n f x a x ∞==∑(22x -<<),则系数=n a ( )A.n 21B.121+n C.(1)2nn -D.1(1)2nn +-(1112)幂级数0nn ∞=的收敛域为_ _ _________. (1212)幂级数1(1)(3)3nn nn x n ∞=--⋅∑的收敛域为____________. (1312)幂级数1n nn ∞=的收敛域为 . 七、常微分方程(一)一阶微分方程(0520)求微分方程0'=-+xe y xy 满足1x ye ==的特解.(0617)求微分方程22x y xy y '=-的通解. (0718)求微分方程22007xy y x '-=满足初始条件12008x y==的特解.(0820)求微分方程22xy y x '=+的通解.(0912)微分方程2(1)d (2)d 0x y x y x y +--=的通解为 . (1311)微分方程d d y x y x x+=的通解为 . (二)二阶线性微分方程(0406)微分方程232xy y y xe '''-+=的特解*y 的形式应为( )A.xAxe 2B.xe B Ax 2)(+C.xeAx 22D.xeB Ax x 2)(+(0712)设x xe C eC y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为 .(0806)微分方程321y y y '''++=的通解为( )A.1221++=--x xe c e c yB.21221++=--x xe c ec yC.1221++=-xxec e c yD.21221++=-xxec e c y (0920)求微分方程y y x ''-=的通解. (1020)已知函数xy e =和2xy e-=是二阶常系数齐次线性微分方程0y py qy '''++=的两个解,试确定常数p 、q 的值,并求微分方程xy py qy e '''++=的通解.(1120)已知函数(1)xy x e =+⋅是一阶线性微分方程2()y y f x '+=的解,求二阶常系数线性微分方程)(23x f y y y =+'+''的通解.(1219)已知函数)(x f 的一个原函数为xxe ,求微分方程)(44x f y y y =+'+''的通解. (1319)已知函数()y f x =是一阶微分方程d d yy x=满足初始条件(0)1y =的特解,求二阶常系数非齐次线性微分方程32()y y y f x '''-+=的通解.时间排序与参考答案2004年高等数学真题参考答案1、A .2、B .3、C .4、B .5、A .6、D .7、1-e . 8、32241-+==-z y x . 9、!n . 10、C x +4arcsin 41. 11、12201d (,)d d (,)d y y f x y x y f x y x -+⎰⎰⎰.12、()3,1-.13、解:间断点为πk x =(Z k ∈),当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =(0≠k ,Z k ∈)时,∞=→xxx sin lim0,为第二类间断点.14、解:原式0430(tan sin )d tan sin limlim312xx x t t tx xx x →→--==⎰233001tan (1cos )12lim lim 121224x x x x x x x x →→⋅-===. 15、解:0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y yy,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、解:因为)(x f 的一个原函数为x e x,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, 原式11(2)d(2)d (2)22xf x x x f x '==⎰⎰11(2)(2)d 22x f x f x x =-⎰ 222211(21)1(2)(2)d(2)24884x x xx x e e x x f x f x x C e C x x x--=-=-+=+⎰. 17211122d d 22arctan (1)12t tt tt t t π+∞∞+∞+===++⎰.18、解:12zf f y x∂''=+⋅∂; []21112221221112222(1)(1)()zf f x f y f f x f x y f xy f f x y∂''''''''''''''''=⋅-+⋅++⋅-+⋅=-+-⋅+⋅+∂∂.19、解:原式21100sin sin d d d d (1)sin d y y Dyy x y y x y y y y y ===-⎰⎰⎰⎰⎰ 1100(1)cos cos d 1sin1y y y y =--=-⎰.20、解:01111(2)()(1)24244414n n nn x f x x x ∞=-==⋅=--+-+∑)62(<<-x . 21、证:00(sin )d ()[sin ()]d ()(sin )d t xx f x xt f t t t f t I t πππππππ=-=---=-⎰⎰⎰(sin )d (sin )d (sin )d f x x x f x x f x x I πππππ=-=-⎰⎰⎰解得: 0(sin )d (sin )d 2f x x f x x I x πππ==⎰⎰, 原命题证毕.222000sin sin d d arctan (cos )1cos 21cos 24x x x x x x x x ππππππ⋅==-=++⎰⎰. 22、解:等式两边求导得()2()x f x x f x '=+,即()()2f x x f x x '-=-,且(0)1f =-,x p -=,x q 2-=,而2()d 2x x xe e --⎰=,由公式求得通解:222222()2d 2x x x f x e xq x C C e -⎡⎤⎛⎫=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 将初始条件(0)1f =-代入通解,解得:3-=C ,故22()23x f x e =-.23、解:设污水厂建在河岸离甲城x 公里处,则()500M x x =+500≤≤x ),由150070002M '=+⨯=解得:650050-=x (公里),唯一驻点,即为所求.2005年高等数学真题参考答案1、A .2、C .3、D .4、A .5、A .6、C .7、2. 8、1-e . 9、2π. 10、5. 11、11d (,)d y y f x y x -⎰⎰.12、(1,1)-.13、解:因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,'00()2sin ()(0)lim ()limlim 2(0)28x x x f x x f x f F x f x x→→→+-==+=+=, 解得:a F =)0(,故8=a .14、解:d d cos cos sin d d d sin d yy t t t t t t x x t t-+===--,22d ()csc d (cos )y t t x t '-=='.15、解:原式22tan tan sec d (sec1)d(sec )x x x xx x =⋅-⎰⎰积进去231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰.16、解:原式211120002d 1d(1)arctan 1421x x x x x x x π+=--++⎰⎰积进去 ()12011ln 1ln 24242x ππ⎡⎤=-+=-⎣⎦.17、解:1cos zx f x∂'=⋅∂,()21212cos 22cos z x f y y x f x y ∂''''=⋅⋅=⋅∂∂. 18、解:直线L 的方向向量{}5,2,1=s ,过点()4,3,0B -,{}1,4,2AB =-;所求平面的法向量{}5218,9,22142AB =⨯==---ij kn s ,点法式为8(3)9(1)22(2)0x y z ----+=,即592298=--z y x .19、解:2222101111(1)()13216313212n nn n x x x x f x x x x x x ∞+=⎡⎤-⎛⎫=+=⋅+⋅=+⋅ ⎪⎢⎥+--⎝⎭⎣⎦+∑, 收敛域为:11<<-x .20、解:1x e y y x x '+⋅=,即1p x=,x e q x =,而1d 1x x e x -⎰=;故通解为1d xx e e C y x x C x x x ⎛⎫+=+= ⎪⎝⎭⎰.把初始条件1x y e ==解得:0=C ;故所求特解为:xe y x=.21、证:令13)(3+-=x x x f ,[]1,1x ∈-,且(1)30f -=>,(1)10f =-<,(1)(1)0f f -⋅<;由连续函数零点定理知:)(x f 在(1,1)-内至少有一实根;对于()1,1x ∈-恒有()22()33310f x x x '=-=-<,即)(x f 在(1,1)-内单调递减, 故方程0133=+-x x 在[]1,1-上有且仅有一根; 原命题获证.22、解:设所求函数为)(x f y =,则有4)2(=f ,(2)3f '=-,(2)0f ''=;由()6f x x a ''=+和(2)0f ''=解得:12-=a ,即()612f x x ''=-,故21()312f x x x C '=-+,由(2)3f '=-解得:91=C ,故22396C x x x y ++-=,由(2)4f =解得:22=C ; 所求函数为:29623++-=x x x y .23、解:(1)112300111d 266S y y y ===⎰;(如图1所示) (2)()()112222012d 4x V x x x xπππ=-=-=⎰.24、解:积分区域D 为:u y ≤≤1,u x y ≤≤;(1)111()()d d ()d (1)()d u xuDF u f x x f x y x f x x σ===-⎰⎰⎰⎰⎰;(2)()(1)()F u u f u '=-,(2)(21)(2)(2)1F f f '=-==.2006年高等数学真题参考答案1、C .2、B .3、C .4、C .5、C .6、A .7、2. 8、)(0x f . 9、1-. 10、1. 11、(sin cos )xye y x x +. 12、1.13、解:原式322131lim 21341==--→x xx .图114、解:2211d 12d 21t t y y t t t x x t-'+==='+,2222d 1d d 122d 41ty x y t t x x t t '⎛⎫ ⎪+⎝⎭==='+. 15、解:原式322ln )(1ln )3x x C =+=++.16、解:原式()2222220d(sin )sin 2sin d x x x xx x πππ=-⎰⎰积进去222220sin 2sin d 2d(cos )4x xx x xx x ππππ-+⎰⎰积进去导出来2222002cos 2cos d 244x x x x ππππ=+-=-⎰.17、解:方程变形为2y y y x x ⎛⎫'=- ⎪⎝⎭,即得到了形如d d y y f x x ⎛⎫= ⎪⎝⎭齐次方程; 令y u x =,则d d d d y u u x x x =+,代入得:2d d u x u x =-,分离变量得:211d d u x u x-=; 两边积分,得:211d d u x u x -=⎰⎰,1ln x C u=+,故ln x y x C =+. 18、解:令()ln (1)g x x =+,则(0)0g =;由于01()(1)1n n n g x x x ∞='==-+∑((]1,1x ∈-), 所以01(1)((1))d x n n n g x n x g t t ∞+='=+=-∑⎰((]1,1x ∈-),故20(1)()1n n n f x x n ∞+=-=+∑,收敛域为:11x -<≤.19、解:由题意知:{}11,1,1=-n ,{}24,3,1=-n ;{}12311232,3,1431=⨯=-=++=-i j ks n n i j k ,故所求直线方程的对称式方程为:123123+=-=-z y x .20、解:22z x f x∂'=∂,2'2'''''3''2''22122221222(2)22z x f x f x f y x f x f x y f y x ∂=+⋅+⋅=++∂∂. 21、证:令33)(x x x f -=,[]2,2x ∈-,由2()330f x x '=-=解得驻点:1±=x ,比较以下函数值的大小:(1)2f -=-,(1)2f =,(2)2f =-,(2)2f -=; 所以2min -=f ,2m ax =f ,故2)(2≤≤-x f ,即332x x -≤,原命题获证.22、解:0)0(=y ,2y x y '=+,通解为:xCe x y +--=)22(;将0)0(=y 代入通解解得:2=C ,故所求特解为:xe x y 222+--=.23、解:(1)()2222648d 3S x x x -=--=⎰; (2)224804d d 16y V y y πππ=+=⎰⎰.24、解:()d d d ()d ()d tt tt D f x x y x f x y t f x x ==⎰⎰⎰⎰⎰,0()d 0()0t f x x t g t a t ⎧≠⎪=⎨⎪=⎩⎰;(1)00lim ()lim()d 0t t t g t f x x →→==⎰,由)(t g 的连续性可知:0)(lim )0(0===→t g g a t ;(2)当0≠t 时,()()g t f t '=,当0=t 时,0000()d ()(0)(0)limlim lim ()(0)hh h h f x x g h g g f h f h h→→→-'====⎰; 综上,()()g t f t '=.2007年高等数学真题参考答案1、B .2、C .3、C .4、A .5、D .6、D .7、2ln . 8、1. 9、π2. 10、23. 11、21d d xx y y y-. 12、06'5''=+-y y y . 13、解:212lim 21lim 1lim tan 1lim00200==-=--=--→→→→x x x x x x x x e x e x x e x x x e . 14、解:当0=x 时,0=y ;。
2011—2001年江苏专转本高等数学真题及答案
2011年江苏省普通高校“专转本”统一考试一、选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把所选项前的字母填在答题卷的指定位置上)l. 当0→x 时,函数)(x f =e x -x -1是函数g(x )=x 2的 ▲ .A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小2. 设函数)(x f 在点x 0处可导,且lim→h 4)()(00=+--hh x f h x f ,则)('0x f = ▲ .A. -4B. -2C. 2D. 43. 若点(1,-2)是曲线23bx ax y -=的拐点,则 ▲ .A. a =l, b =3B. a =-3,b =-1C. a =-l, b =-3D. a =4,b =6 4. 设),(y x f z =为由方程8333=+-x yz z所确定的函数,则=∂∂==00y x yz▲ .A.-21B.21C.一2D. 2 5. 如果二重积分y x Dd d y x f ),(⎰⎰可化为二次积分⎰⎰+1221,),(y dx y x f dy 则积分域D 可表示为▲ .A. { 11,10,≤≤-≤≤y x x y x )( }B. { 11,21,≤≤-≤≤y x x y x )( }C. { 01,10,≤≤-≤≤y x x y x )( }D. { 10,21,-≤≤≤≤x y x y x )( }6. 若函数xx f +=21)(的幕级数展开式为∑∞=<<-=)22()(n n nx x ax f ,则系数=n a▲ .A.n 21B. 121+nC. nn 2)1(- D. 12)1(+-n n 二、填空题{本大题共6小题,每小题4分,共24分)7. 已知lim→x kx xx )2(- =2e ,则k = ▲ .8. 设函数⎰=Φ+=Φ21,)1ln(x dt t x )(则)(“▲ .9.若1=,=⨯=⋅=b a ,2,4 ▲ .10. 设函数y = arctan==1,x dy x 则 ▲ .11. 定积分⎰-+2223sin )1(ππxdx x 的值为 ▲ . 12.幕级数∑∞=+01n n n x 的收敛域为 ▲ .三、计算题(本大题共8小题,每小题8分,共64分}13. 求极限lim 0→x )1ln(22x e e x x +--)(. 14.设函数)(x y y =由参数方程⎩⎨⎧+==+tt x t y e y22所确定,求dxdy. 15.设)(x f 的一个原函数为,sin 2x x 求不定积分⎰.)(dx xx f 高等数学试题卷第2页(共3页)16. 计算定积分dx x x ⎰++311.17. 求通过x 轴与直线132zy x ==的平面方程. 18. 设),(y x y xf z = ,其中函数f 具有二阶连续偏导数,求yx z∂∂∂2.19. 计算二重积分⎰⎰Dydxdy ,其中D 是由曲线22x y -=,直线y=-x 及y 轴所围成的平面闭区域.20. 已知函数xe x y )1(+=是一阶线性微分方程y ˊ+2y= f(x)的解,求二阶常系数线性微分 方程y +3y ˊ+2y= f(x)的通解.四、证明题(本大题共2小题,每小题9分,共18分) 21. 证明:方程2)1ln(2=+x x 有且仅有一个小于2的正实根.22. 证明:当x>O 时, x x201120102011≥+ .五、综合题(本大题共2小题,每小题10分,共20分)23. 设=fx (1) x=O 是函数f(x)的连续点? (2) x=O 是函数f(x)的可去间断点? (3) x=O 是函数f(抖的跳跃间断点?24. 设函数f(x)满足微分方程xf' (x)一2f(x) =一(α+ 1)x(其中a 为正常数),且f(1) = 1 由曲线y= f(x)x ≤1与直线x=1,y=O 所围成的平面图形记为D.已知D 的面积为32. (1)求函数f(x)的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积X V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积Y V .2010年江苏省普通高校“专转本”统一考试一、单项选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()n g x ax =是等价无穷小,则常数,a n 的值为 ( ) A. 1,36a n == B. 1,33a n == C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有 ( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()cos t xx e tdt Φ=⎰,则函数()x Φ的导数()x 'Φ等于 ( ) A. 222cos x xe x B. 222cos x xe x - C. 2cos xxe x - D. 22cos x e x -4.下列级数收敛的是 ( )A. 11n nn ∞=+∑ B.2121n n n n∞=++∑C. 1nn ∞= D. 212nn n ∞=∑ 5.二次积分111(,)y dy f x y dx +⎰⎰交换积分次序后得 ( )A. 111(,)x dx f x y dy +⎰⎰B. 2110(,)x dx f x y dy -⎰⎰C.2111(,)x dx f x y dy -⎰⎰D.2111(,)x dx f x y dy -⎰⎰6.设3()3f x x x =-,则在区间(0,1)内 ( ) A. 函数()f x 单调增加且其图形是凹的 B. 函数()f x 单调增加且其图形是凸的 C. 函数()f x 单调减少且其图形是凹的 D. 函数()f x 单调减少且其图形是凸的 二、填空题(本大题共6小题,每小题4分,满分24分)7. 1lim()1xx x x →∞+=-8. 若(0)1f '=,则0()()limx f x f x x→--= 9. 定积分312111x dx x -++⎰的值为 10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k = 11.设函数lnz =10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分) 13、求极限2011lim()tan x x x x→-14、设函数()y y x =由方程2x yy e x ++=所确定,求22,dy d ydx dx15、求不定积分arctan x xdx ⎰16、计算定积分4⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程。
2009年江苏专转本(高等数学)真题试卷(题后含答案及解析)
2009年江苏专转本(高等数学)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.已知:则常数a,b的取值分别为( )A.z=-1,b=-2B.a=-2,b=0C.a=-1,b=0D.a=-2,b=-1正确答案:A解析:由已知得+ax+b=0,4+2a+b=0,+a=4+a=3解得a=-1,b=-2.2.已知函数f(x)=则x=2为f(x)的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点正确答案:B解析:由于,所以x=2为f(x)的可去间断点.3.设函数在点x=0处可导,则常数a的取值范围为( )A.0<a<1B.0<a≤1C.a>1D.a≥1正确答案:C解析:由已知f(x)在点x=0处可导,则存在,所以a-1>0,即a>1.4.曲线的渐近线的条数为( )A.1B.2C.3D.4正确答案:B解析:两条,一条垂直渐近线,一条水平渐近线.5.设F(x)=ln(3x+1)是函数f(x)的一个原函数,则f’(2x+1)dx=( )A.B.C.D.正确答案:D解析:由已知f(x)=F’(x)=,则∫f’(2x+1)dx=∫f’(2x+1)d(2x+1)=f(2x+1)+C=6.设a为非零常数,则数项级数( )A.条件收敛B.绝对收敛C.发散D.敛散性与a有关正确答案:C解析:,故原级数发散.填空题7.已知,则常数C=_____.正确答案:ln2解析:所以C=ln2.8.设函数φ(x)=∫02xtetdt,则φ’(x)=______.正确答案:4xe2x解析:利用变上限积分求导,φ’(x)=2xe2x.2=4xe2x.9.已知向量a=(1,0,-1),b=(1,-2,1),则a+b与a的夹角为_____.正确答案:解析:利用向量夹角公式10.设函数z=z(x,y)由方程xz2+yz=1所确定,则_______.正确答案:解析:隐函数求导,方程两边对x求导,得z2+x.2z.zx+zx.y=0,整理得zx=11.若幂级数(a>0)的收敛半径为,则常数a=______.正确答案:2解析:根据所给幂级数an=(2n-1) 收敛半径R=所以a=2.12.微分方程(1+x2)ydx-(2-y)xdy=0的通解为_____.正确答案:2ln|y|-y=ln|x|+x2+C解析:这是一个可分离变量的常微分方程,分离变量得,化简得(+x)dx=(-1)dy.两边积分得2ln|y|-y=ln|x|++C 解答题解答时应写出推理、演算步骤。
2009年江苏“专转本”高等数学试题及参考答案
2009年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将其字母标号填在题后的括号内。
)1、已知32lim 22=-++→x bax x x ,则常数a ,b 的取值分别为A 、2,1-=-=b aB 、0,2=-=b aC 、0,1=-=b aD 、1,2-=-=b a 2、已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、震荡间断点3、设函数⎪⎩⎪⎨⎧>≤=0,1sin 0,0)(x x x x x f a 在0=x 处可导,则常数a的取值范围是A 、10<<aB 、10≤<aC 、1>aD 、1≥a 4、曲线2)1(12-+=x x y 的渐近线条数为A 、1B 、2C 、3D 、45、设)13ln()(+=x x F 是函数)(x f 的一个原函数,则=+⎰dx x f )12('A 、C x ++461B 、C x ++463C 、C x ++8121D 、Cx ++81236、设a 为非零常数,则数项级数∑∞=+12n nan A 、条件收敛B 、绝对收敛C 、发散D 、敛散性与a 有关二、填空题(本大题共6小题,每小题4分,满分24分)7、已知2)(lim =-∞→x x Cx x ,则常数=C 8、设函数⎰=x t te x 20)(ϕ,则=)('x ϕ9、已知向量)1,0,1(-=→a ,)1,2,1(-=→b ,则→→+b a 与→a 的夹角为10、设函数),(y x z z =由方程12=+yz xz 所确定,则=∂∂x z 11、若幂级数n n n x na ∑∞=12)0(>a 的收敛半径为21,则常数=a 12、微分方程0)2()1(2=--+xdy y ydx x 的通解为三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限xx x x sin lim 30-→14、设函数)(x y y =由参数方程⎩⎨⎧-+=+=32)1ln(2t t y t x 所确定,求dt dy ,22dx y d 15、求不定积分dx x ⎰+12sin 16、求定积分dxx x ⎰-1022217、求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程.18、计算二重积分⎰⎰D ydxdy,其中{}2,2,20|),(22≥+≤≤≤≤=y x y x x y x D .19、设),(sin xy x f z =,其中f 具有二阶连续偏导数,求yx z ∂∂∂2.20、求微分方程x y y =-'''的通解.四、综合题(本大题共2小题,每小题10分,满分20分)21、已知13)(3+-=x x x f ,试求:(1)函数)(x f 的单调区间与极值;(2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[]3,2-上的最大值和最小值.22、设1D 是由抛物线22x y =和直线0,==y a x 所围成的平面区域,2D 是由抛物线22x y =和直线a x =,2=x 及0=y 所围成的平面区域,其中20<<a .试求:(1)1D 绕y 轴旋转而成的旋转体的体积1V ,以及2D 绕x 轴旋转而成的旋转体的体积2V ;(2)常数a 的值,使得1D 的面积与2D 的面积相等.五、证明题(本大题共2小题,每小题9分,满分18分)23、已知⎩⎨⎧≥+<=-010)(x x x e x f x ,证明)(x f 在0=x 处连续但不可导.24、证明:当21<<x 时,32ln 42-+>x x x x .。
2009年江苏考试数学真题-推荐下载
【解析】 考查利用导数判断函数的单调性。
f (x) 3x2 30x 33 3(x 11)(x 1) , 由 (x 11)(x 1) 0 得单调减区间为 (1,11) 。亦
可填写闭区间或半开半闭区间。
4.函数 y Asin(x ) ( A,, 为常数, A 0, 0 )在闭区间[ , 0]上的图象如图所示,则 = ▲ .
参考公式:
样本数据 x1, x2 ,, xn 的方差 s2
1 n
n
i1
( xi
一、填空题:本大题共 14 小题,每小题 5 分,共 70 分。请把答案填写在答题卡相应的位置
上.
1.若复数 z1 4 29i, z2 6 9i, 其中 i 是虚数单位,则复数 (z1 z2 )i 的实部为 ▲ 。
7
7
第二象限内,已知曲线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为 ▲ . 【解析】 考查导数的几何意义和计算能力。
y 3x2 10 2 x 2 ,又点 P 在第二象限内, x 2 点 P 的坐标为(-2,15)
10.已知 a
关系为 ▲ .
5
2
1
,函数
【解析】考查复数的减法、乘法运算,以及实部的概念。 -20
2.已知向量 a 和向量 b 的夹角为 30o ,| a | 2,| b | 3 ,则向量 a 和向量 b 的数量积 a b = ▲。
【解析】 考查数量积的运算。
3.函数 f (x) x3 15x2 33x 6 的单调减区间为 ▲ .
中c= ▲ .
【解析】 考查集合的子集的概念及利用对数的性质解不等式。
由 log2 x 2 得 0 x 4 , A (0, 4];由 A B 知 a 4 ,所以 c 4。
2009年江苏专转本高等数学真题(附答案)
2009年江苏专转本⾼等数学真题(附答案)2009年江苏省普通⾼校“专转本”统⼀考试⾼等数学⼀、单项选择题(本⼤题共6⼩题,每⼩题4分,满分24分) 1、已知32lim 22=-++→x b ax x x ,则常数ba ,的取值分别为()A 、2,1-=-=b aB 、0,2=-=b aC 、0,1=-=b aD 、1,2-=-=b a2、已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的 A 、跳跃间断点 B 、可去间断点 C 、⽆穷间断点 D 、震荡间断点3、设函数??>≤=0,1s i n 0,0)(x x x x x f α在点0=x 处可导,则常数α的取值范围为() A 、10<<α B 、10≤<αC 、1>αD 、1≥α 4、曲线2)1(12-+=x x y 的渐的条数为() A 、1B 、2C 、3D 、45、设)13l n ()(+=xx F 是函数)(x f 的⼀个原函数,则=+?dx x f )12('() A 、C x ++461B 、C x ++463C 、C x ++8121D 、C x ++81236、设α为⾮零常数,则数项级数∑∞=+12n n n α()A 、条件收敛D 、敛散性与α有关⼆、填空题(本⼤题共6⼩题,每⼩题4分,满分24分) 7、已知2)( lim =-∞→xx Cx x ,则常数=C . 8、设函数dt te x x t ?=20)(?,则)('x ?=.9、已知向量)1,0,1(-=→a ,)1,2,1(-=→b ,则→→+b a 与→a 的夹⾓为.10、设函数),(y x z z =由⽅程12=+yz xz 所确定,则xz=. 11、若幂函数)0(12>∑∞=a x na nn n 的收敛半径为21,则常数=a .12、微分⽅程0)2()1(2=--+xdy y ydx x 的通解为.三、计算题(本⼤题共8⼩题,每⼩题8分,满分64分)13、求极限:xx x x sin lim 30-→14、设函数)(x y y =由参数⽅程-+=+=32)1ln(2t t y t x 所确定,,求22,dx yd dx dy . 15、求不定积分:?-10222dx xx .17、求通过直线12213-=-=z y x 且垂直于平⾯02=+++z y x 的平⾯⽅程. 18、计算⼆重积分Dyd σ,其中}2,2,20),{(22≥+≤≤≤≤=y x y x x y x D . 19、设函数),(sin xy x f z =,其中)(x f 具有⼆阶连续偏导数,求yx z2.20、求微分⽅程x y y =-''的通解.四、综合题(本⼤题共2⼩题,每⼩题10分,满分20分)21、已知函数13)(3+-=x x x f ,试求:(1)函数)(x f 的单调区间与极值;(2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间]3,2[-上的最⼤值与最⼩值.22、设1D 是由抛物线22x y =和直线0,==y a x 所围成的平⾯区域,2D 是由抛物线22x y =和直线2,==x a x 及0=y 所围成的平⾯区域,其中20<(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V . (2)求常数a 的值,使得1D 的⾯积与2D 的⾯积相等.五、证明题(本⼤题共2⼩题,每⼩题9分,满分18分)23、已知函数≥+<=-0,10,)(x x x e x f x ,证明函数)(x f 在点0=x 处连续但不可导.24、证明:当21<-+>x x x x .2009年江苏省普通⾼校“专转本”统⼀考试⾼等数学参考答案 1、A 2、B 3、C 4、B 5、D 6、C 7、2ln 8、xxe 249、3π 10、yxz z +-22 11、2 12、C y y x x +-=+ln 221ln 2030=-=-→→xx x x x x x ,. 14、dt t dy dt tdx )22(,11+=+=,2)1(211)22(+=++=t dt tdt t dx dy , 222)1(411)1(4+=++==t dt tdt t dx dx dyddx y d .15、令21,122-==+t x t x ,dt t t t t td tdt t dx x +-=-=?=+cos cos cos sin 12sinC x x x C t t t +++++-=++-=12sin 12cos 12sin cos16、令θsin 2=x ,当0,0==θx ;当4,1πθ==x .21404)2sin 21()2cos 1(cos 2cos 2sin 224421022-=-=-==-ππd d dx x x17、已知直线的⽅向向量为)1,2,3(0=s ,平⾯的法向量为)1,1,1(0=n .由题意,所求平⾯的法向量可取为)1,2,1(111123)1,1,1()1,2,3(00-==?=?=kj in s n .⼜显然点)2,1,0(在所求平⾯上,故所求平⾯⽅程为0)2(1)1)(2()1(1=-+--+-z y x ,即02=+-z y x . 18、-===242cos 222242)sin 22csc 8(31sin sin ππθππθθθρρθθθρθρσd d d d d yd DD242)cos 22cot 8(31=+-=ππθθ19、y f x f x z ?+?=??'2'1cos ;''22''12'22cos xyf f x x f yx z +?+= 20、积分因⼦为.1)(2ln 22xe==?=--µ 化简原⽅程22x y xy +=,为.2x x y dx dy =- 在⽅程两边同乘以积分因⼦21x ,得到.1232x xy dx x dy =- 化简得:.1)(2xdx y x d =-等式两边积分得到通解??=-.1)(2dx xdx y x d 故通解为C x x x y 22ln +=21、(1)函数)(x f 的定义域为R ,33)(2'-=x x f ,令0)('=x f 得1±=x ,函数)(x f 的单调增区间为),1[,]1,(∞+--∞,单调减区间为]1,1[-,极⼤值为3)1(=-f ,极⼩值为1)1(-=f .(2)x x f 6)(''=,令0)(''=x f ,得0=x ,曲线)(x f y =在]0,(-∞上是凸的,在),0[∞+上是凹的,点)1,0(为拐点.(3)由于3)1(=-f ,1)1(-=f ,19)3(=f ,故函数)(x f 在闭区间]3,2[-上的最⼤值为19)3(=f ,最⼩值为1)2()1(-=-=f f . 22、(1)4 20222122a dy x a a V a πππ=-=. )32(54)2(52222a dy x V a -==?ππ.(2)).8(322.32232223021a dx x A a dx x A a a-=====-→→--xx x e x f ,1)1(lim )(lim 0=+=++→→x x f x x ,且1)0(=f ,所以函数)(x f 在0=x 处连续。
2009年专升本(高等数学一)真题试卷(题后含答案及解析)
2009年专升本(高等数学一)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.A.0B.2/3C.1D.3/2正确答案:A解析:本题考查的知识点为无穷小量的性质:有界变量与无穷小量之积仍为无穷小量.当x→∞时,1/3x→0,即1/3x为无穷小量,又sin2x为有界变量:-1≤sin2x≤1.由有界变量与无穷小量之积仍为无穷小量可知故选A.2.A.-2B.-1C.1D.2正确答案:B解析:本题考查的知识点为连续的性质:函数f(x)在点x0处连续的充分必要条件是f(x)在点x0左连续且右连续.所给函数f(x)为分段函数,x=1为分段点,在x=1两侧f(x)的表达式不同.应考虑左连续与右连续.注意f(1)=-1.f(x)在点x=1处连续,必有,因此a=1,故选B.3.A.2x-2eB.2x-e2C.2x-eD.2x正确答案:D解析:本题考查的知识点为导数的运算.y=x2-e2,则y’=(x2)’-(e2)’=2x-0=2x.[错误防范] 有些考生没能将e认定为常量,忘记常量的导数为零,错误地选A.4.A.B.C.D.正确答案:C解析:本题考查的知识点为复合函数的微分运算.由于y=e-3x,可得故选C.5.A.1B.1/3C.0D.-1/3正确答案:B解析:本题考查的知识点为复合函数求导运算,在某点处的导数值.故选B.6.A.f(2x)B.2f(x)C.-f(2x)D.-2f(x)正确答案:A解析:本题考查的知识点为可变上限积分求导:若f(x)为连续函数,则F’(x)=,即可变上限的导数为被积函数在上限处值.因此故选A.[错误防范] 有些考生误选B.如果令f1(2t)=f1(x).则上述错误可以避免.7.A.sinx+CB.-sinx+CC.cosx+CD.-cosx+C正确答案:D解析:本题考查的知识点为不定积分基本公式.∫sinxdx=-cosx+C.故选D.8.A.2x+1B.2xy+1C.x2+1D.2xy正确答案:B解析:本题考查的知识点为偏导数计算.求时,只需将y认定为常量,依一元函数求导法则运算.由于z=x2y+x-3,因此,故选B.9.A.B.C.D.正确答案:C解析:本题考查的知识点为正项级数的比较判别法.由正项级数的比较判别法可知:若与都为正项级数,且un<vn(n=1,2,…),则当收敛时,必定收敛.故选C.10.A.B.C.D.正确答案:C解析:本题考查的知识点为求解可分离变量方程.可得,故选C.填空题11.=______.正确答案:e-1解析:本题考查的知识点为重要极限公式.12.______.正确答案:0解析:本题考查的知识点为极限运算.所求极限的表达式为分式,其分母的极限不为零.因此13.设y=e-x,则y“=______”.正确答案:e-x解析:本题考查的知识点为二阶导数运算.14.设,则y’=______.正确答案:解析:本题考查的知识点为导数运算.由于所给函数为分式,由商的求导法则可得15.∫(1-2x)dx=______.正确答案:x-x2+C.解析:本题考查的知识点为不定积分计算.∫(1-2x)dx=∫dx-∫2xdx=x-x2+C.16.=______.正确答案:解析:本题考查的知识点为定积分的换元积分法.设t=x/2,则x=2t,dx=2dt.当x=0时,t=0;当x=π时,t=π/2.因此17.设z=sin(y-x2),则=______.正确答案:COS(y-x2).解析:本题考查的知识点为偏导数运算.求时,只需将x认定为常量.z=sin(y-x2),因此18.过点M0(1,-1,0)且与平面x-y+3z=1平行的平面方程为______.正确答案:(x-1)-(y+1)+3z=0(或x-y+3z=2).解析:本题考查的知识点为平面方程.已知平面π1:x-y+3z=1的法线向量n1=(1,-1,3).所求平面π与π1,平行,则平面π的法线向量n∥n1,可取n=(1,-1,3),由于所给平面过点M0(1,-1,0).由平面的点法式方程可知所求平面方程为(x-1)-[y-(-1)]+3(z-0)=0,即(x-1)-(y+1)+3z=0,或写为x-y+3z=2.19.设区域D={(x,y)|-1≤x≤1,0≤y≤2},则______.正确答案:4。
2009年普通高等学校招生全国统一考试数学(江苏卷)全解全析
绝密★启用前2009年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将本卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.6.请保持答题卡卡面清洁,不要折叠、破损.参考公式:样本数据x 1,x 2,…,x n 的方差()2211ni i s x x n ==-∑,其中11ni i x x n ==∑.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1. 若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1−z 2)i 的实部为 ▲ . 2. 已知向量a 和向量b 的夹角为30︒,|a |=2,|b |=3,则向量a和向量b 的数量积a ·b = ▲ .3. 函数f (x )=x 3−15x 2−33x +6的单调减区间为 ▲ . 4. 函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)2π3-在闭区间[−π,0]上的图象如图所示,则ω= ▲ .5. 现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 ▲ .6. 某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个2s 为 ▲ . 7. 右图是一个算法的流程图,最后输出的W = ▲ .8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4.类似地,在空间中,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ .9. 在平面直角坐标系xOy 中,点P 在曲线C :y =x 3−10x +3上,且在第二象限内,已知曲线C在点P 处的切线的斜率为2,则点P 的坐标为 ▲ . 10. 已知a =f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为 ▲. 11. 已知集合A ={x |log 2x ≤2},B =(−∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =▲ . 12. 设α 和β为不重合的两个平面,给出下列命题:(1)若α 内的两条相交直线分别平行于β内的两条直线,则α 平行于β; (2)若α 外一条直线l 与α 内的一条直线平行,则l 和α 平行;(3)设α 和β相交于直线l ,若α 内有一条直线垂直于l ,则α 和β垂直; (4)直线l 与α 垂直的充分必要条件是l 与α 内的两条直线垂直. 上面命题中,真命题的序号 ▲ .(写出所有真命题的序号). 13. 如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆22221(0)y x a b a b +=>>的四个顶点,F 为其右焦点,直线A 1B2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段O T 的中点,则该椭圆的离心率为 ▲ .14. 设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…)若数列{b n }有连续四项在集合{−53,−23,19,37,82}中,则6q = ▲ .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15. (本小题满分14分)设向量a =(4cos α ,sin α ),b =(sin β,4cos β),c =(cos β,−sin β), (1)若a 与b −2c 垂直,求tan(α +β)的值; (2)求+b c 的最大值;(3)若tan α tan β=16,求证:a ∥b .16. (本小题满分14分)如图,在直三棱柱ABC −A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .ABC A1B 1C 1 EF D第16题图17. (本小题满分14分)设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足22225234a a a a +=+,S 7=7. (1)求数列{a n }的通项公式及前n 项和S n ; (2)试求所有的正整数m ,使得12m m m a a a ++为数列{S n }中的项.18. (本小题满分16分)在平面直角坐标系xOy 中,已知圆C 1∶(x +3)2+(y −1)2=4和圆C 2∶(x −4)2+(y −5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.19. (本小题满分16分)按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为m m a +;如果他买进该产品的单价为n 元,则他的满意度为n n a+.如果一个人对两种交易(卖出或买进)的满意度分别为h 1和h 2,现假设甲生产A ,B 两种产品的单件成本分别为12元和5元,乙生产A ,B 两种产品的单件成本分别为3元和20元,设产品A ,B 的单价分别为m A 元和m B 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙.(1)求h 甲和h 乙关于m A ,m B 的表达式;当35A B m m =时,求证:h 甲=h 乙;(2)设35A B m m =,当m A ,m B 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为h 0,试问能否适当选取m A ,m B 的值,使得0h h 甲≥和0h h 乙≥同时成立,但等号不同时成立?试说明理由.20. (本小题满分16分)设a 为实数,函数f (x )=2x 2+(x −a )|x −a |. (1)若f (0)≥1,求a 的取值范围; (2)求f (x )的最小值;(3)设函数h (x )=f (x ),x ∈(a ,+∞),直接写出(不需给出演算步骤)不等式h (x )≥1的解集.2009年普通高等学校招生全国统一考试(江苏卷)全解全析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复数(z1−z2)i的实部为▲.【答案】−20.【解析】z1−z2=−2+20i,故(z1−z2)i=−20−2i.【说明】考查复数的四则运算.2.已知向量a和向量b的夹角为30︒,|a|=2,|b|=3,则向量a和向量b的数量积a·b= ▲.【答案】3.【解析】cos 23θ===a b a b.【说明】考查向量的数量积(代数)运算.3.函数f (x)=x3−15x2−33x+6的单调减区间为▲.【答案】(1,11)-.【解析】2()330333(11)(1)f x x x x x=--=-+',由(11)(1)0x x-+<得单调减区间为(1,11)-.【说明】考查函数的单调性,考查导数在研究函数性质中的应用.4.函数y=A sin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)2π3-在闭区间[−π,0]上的图象如图所示,则ω= ▲.【答案】3.【解析】如图,2π3T=,所以3ω=.【说明】考查三角函数的图象和性质,考查周期性的概念.5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为▲.【答案】0.2【解析】随机抽取2根竹竿的取法有10种,而长度恰好相差0.3m的取法有2种,所以概率为0.2.【说明】考查古典概型.6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个2s为▲.【答案】25.【解析】第一组数据7x =甲,212(10010)55S =++++=甲;第二组数据7x =乙,245S =乙.【说明】考查总体特征数的估计.实际上,根据数据的分布,知甲班的数据较为集中(甲班极差为2,众数为7,乙班极差为3,众数为6,7). 7. 右图是一个算法的流程图,最后输出的W = ▲ . 【答案】22.W =22.【说明】本题考查算法初步,考查流程图(循环结构).值得注意的是,本题的循环结构并非是教材中所熟悉的当型或直到型,因此该流程图是一个非结构化的流程图,对学生的识图能力要求较高.8. 在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4.类似地,在空间中,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ . 【答案】1:8 【解析】由题意知,面积比是边长比的平方,由类比推理知:体积比是棱长比的立方.【说明】本题考查合情推理之类比推理.9. 在平面直角坐标系xOy 中,点P 在曲线C :y =x 3−10x +3上,且在第二象限内,已知曲线C在点P 处的切线的斜率为2,则点P 的坐标为 ▲ . 【答案】(2,15)-.【解析】设点P 的横坐标为x 0,由2310y x '=-知203102x -=,又点P 在第二象限,02x =-,所以(2,15)P -.【说明】本题考查导数的几何意义——曲线切线的斜率.10. 已知a =f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为 ▲.【答案】m n <【解析】由01<<知01a <<,函数()x f x a =是减函数,由()()f m f n >知m n <.【说明】本题考查函数的单调性,指数函数的性质等概念.11. 已知集合A ={x |log 2x ≤2},B =(−∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =▲ . 【答案】4【解析】由log 2x ≤2得0<x ≤4,(0,4]A =;由A B ⊆知4a >,所以c =4. 【说明】本题考查对数函数的性质,集合间的基本关系(子集)等概念. 12. 设α 和β为不重合的两个平面,给出下列命题:(1)若α 内的两条相交直线分别平行于β内的两条直线,则α 平行于β; (2)若α 外一条直线l 与α 内的一条直线平行,则l 和α 平行;(3)设α 和β相交于直线l ,若α 内有一条直线垂直于l ,则α 和β垂直; (4)直线l 与α 垂直的充分必要条件是l 与α 内的两条直线垂直. 上面命题中,真命题的序号 ▲ .(写出所有真命题的序号). 【答案】(1)(2)【解析】由线面平行的判定定理知,(2)正确;相应地(1)可转化为一个平面内有两相交直线分别平行于另一个平面,所以这两个平面平行.【说明】本题考查空间点、线、面的位置关系.具体考查线面、面面平行、垂直间的关系与转化. 13. 如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆22221(0)y x a b a b +=>>的四个顶点,F 为其右焦点,直线A 1B2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段O T 的中点,则该椭圆的离心率为 ▲ .【答案】5【解析】直线12A B 的方程为1yx a b+=-,直线1B F 的方程为1y x c b +=-,两方程联立方程组得T 2(,)ac ab bc a c a c+--,则点M (,)2()ac ab bc a c a c +--,由点M 在椭圆上,代入整理得:223100a ac c --=,23100e e --=,又 0e >,所以离心率为5. 【说明】本题考查椭圆的概念、标准方程与几何性质.14. 设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…)若数列{b n }有连续四项在集合{−53,−23,19,37,82}中,则6q = ▲ . 【答案】9-【解析】由条件知数列{a n }中连续四项在集合{}54,24,18,36,81--中,由||1q >,所以{a n }中连续四项可能为(1)24-,36,54-,81,32q =-,69q =-;(2)18,24-,36,54-,不合;其它情形都不符合.【说明】本题考查等比数列的概念与通项公式.在本题中,如果将集合中的各数均除以3,得到集合{}232323,2,23,32,3-⨯-⨯⨯,再从其中选出四个数进行适当地排列,这样的解法更利于看清问题本质.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15. (本小题满分14分)设向量a =(4cos α ,sin α ),b =(sin β,4cos β),c =(cos β,−sin β), (1)若a 与b −2c 垂直,求tan(α +β)的值; (2)求+b c 的最大值;(3)若tan α tan β=16,求证:a ∥b . 【解析】(1)∵a ⊥b −2c ,∴(2)20⋅-=⋅-⋅=a b c a b a c .即4sin()8cos()0αβαβ+-+=,∴tan()2αβ+=. (2)(sin cos ,4cos 4sin )ββββ+=+-b c ,()()222sin cos 16cos sin ββββ+=++-b c 1730sin cos ββ=-1715sin 2β=-,∴当sin2β=−1时,2+b c 最大值为32,所以+b c的最大值为(3)∵tan tan 16αβ=,∴sin sin 16cos cos αβαβ=,即4cos 4cos sin sin 0αβαβ⋅-=, 所以a ∥b .16. (本小题满分14分)如图,在直三棱柱ABC −A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .【解析】(1)因为E ,F 分别是A 1B ,A 1C 的中点,所以EF ∥BC ,又EF ⊄平面ABC ,BC ⊂平面ABC ,∴EF ∥平面ABC ; (2)在直三棱柱ABC −A 1B 1C 1中,1111BB A BC ⊥面,∵A 1D ⊂平面A 1B 1C 1,∴11BB AD ⊥. 又11AD BC ⊥,BB 1 B 1C =B 1,∴111AD BC C ⊥面B . 又11AD AFD ⊂面,所以平面A 1FD ⊥平面BB 1C 1C .17. (本小题满分14分)设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足22225234a a a a +=+,S 7=7. (1)求数列{a n }的通项公式及前n 项和S n ; (2)试求所有的正整数m ,使得12m m m a a a ++为数列{S n }中的项. 【解析】(1)设公差为d ,则22225243a a a a -=-,由性质得43433()()d a a d a a -+=+,因为0d ≠,所以430a a +=,即1250a d +=,又由77S =得176772a d ⨯+=,解得15a =-,2d =所以{}n a 的通项公式为27n a n =-,前n 项和26n S n n =-. (2)12(27)(25)(23)m m m m m a a a m ++--=-,令23m t -=,12(4)(2)m m m t t a aa t++--=86t t =+-, 因为t 是奇数,所以t 可取的值为1±,当1t =,2m =时,863t t +-=,2573⨯-=,是数列{}n a 中的项;1t =-,1m =时,8615t t +-=-,数列{}n a 中的最小项是5-,不符合.所以满足条件的正整数2m =. 18. (本小题满分16分)在平面直角坐标系xOy 中,已知圆C 1∶AB CA1B 1C1 EF D第16题图(x +3)2+(y −1)2=4和圆C 2∶(x −4)2+(y −5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.【解析】(1) 0y =或7(4)24y x =--,(2)法一)设点P (,)a b ,1l :()y b k x a -=-,则2l :1()y b x a k-=--由截得的弦长相等可得1C 到1l 与2C 到2l 的距离相等,即11|4()5()|a b k k ----+=,即 |31||45|k ka b k a kb ---+=--++,整理得:222222(3)2(3)(1)(1)(5)2(4)(5)(4)a k ab k bb k a b k a +++-+-=-+--+- 因为有无数组解,所以对应项系数相等,解得:32a =-,132b =;或52a =,12b =-.所以满足条件的点P 坐标为313(,)22-或51(,)22-.法二)依题意点P 在线段1C 2C 的中垂线上,且与1C 、2C 构成等腰直角三角形,设点P (,)a b , 则713()42b a -=--,又120PC PC ⋅=,即22670a b a b +---=,解得:32a =-,132b =;或52a =,12b =-. 满足条件的点P 坐标为313(,)22-或51(,)22-.19. (本小题满分16分)按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为m m a +;如果他买进该产品的单价为n 元,则他的满意度为n n a+.如果一个人对两种交易(卖出或买进)的满意度分别为h 1和h 2,现假设甲生产A ,B 两种产品的单件成本分别为12元和5元,乙生产A ,B 两种产品的单件成本分别为3元和20元,设产品A ,B 的单价分别为m A 元和m B 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙.(1)求h 甲和h 乙关于m A ,m B 的表达式;当35A B m m =时,求证:h 甲=h 乙;(2)设35A B m m =,当m A ,m B 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为h 0,试问能否适当选取m A ,m B 的值,使得0h h 甲≥和0h h 乙≥同时成立,但等号不同时成立?试说明理由.【解析】h =甲h =乙当35A B m m =时,h =甲,h =乙h 甲=h 乙.当35A B m m =时,h =甲,而520B m ≤≤, 所以当20B m =时,甲、乙两人的综合满意度均最大,此时12A m =.(3≥即31024120A B A B m m m m ≥++ ①且3406120A B A B m m m m ≥++ ②, 由①及520B m ≤≤得:24120310B A B m m m +≥-,又241202008[12,48]310310B B B m m m +=+∈--, 只有当12A m =,20B m =时,不等式①成立. 由②及312A m ≤≤得:4012036A B A m m m +≥-,又4012040200[20,80]36336A A A m m m +=+∈--, 只有当20B m =,12A m =时,不等式②成立.综上,不存在满足条件的A m 、B m 的值.20. (本小题满分16分)设a 为实数,函数f (x )=2x 2+(x −a )|x −a |. (1)若f (0)≥1,求a 的取值范围; (2)求f (x )的最小值;(3)设函数h (x )=f (x ),x ∈(a ,+∞),直接写出(不需给出演算步骤)不等式h (x )≥1的解集. 【解析】(1)若(0)1f ≥,即||1a a -≥,则{21a a <≥,所以1a ≤-. (2)当x a ≥时,22()32,f x x ax a =-+22min(),02,0()2(),0,033f a a a a f x a a f a a ≥≥⎧⎧⎪⎪==⎨⎨<<⎪⎪⎩⎩ 当x a ≤时,22()2,f x x ax a =+-{{2min 2(),02,0()(),02,0f a a a a f x f a a a a -≥-≥==<<综上22min2,0()2,03a a f x a a -≥⎧⎪=⎨<⎪⎩. (3)x a ≥时,()1h x ≥得223210x ax a -+-≥,222412(1)128a a a ∆=--=-,①当a a ≤≥时,0∆≤,不等式的解集为(,)a +∞;②当a <<0,∆>得(0x x x a ⎧⎪≥⎨>⎪⎩,i a <<时,不等式的解集为(,)a +∞;ii )a ≤≤)+∞;iii )a <<时,不等式的解集为3([)3a a +-+∞.。
【专升本】2009年高等数学(二)及参考答案
2009年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上的指定位置,答在试卷上无效.......。
一、 选择题:1~10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上.............。
1. 2tan(1)lim 1x x x →-=-A. 0B. tan1C. 4πD. 22. 设2sin ln 2y x x =++,则y '=A. 2sin x x +B. 2cos x x +C.12cos 2x x ++ D. 2x3. 设函数()ln x f x e x =,则(1)f '=A. 0B. 1C. eD.2e4. 函数()f x 在[0,2]上连续,且在(0,2)内()0f x '>,则下列不等式成立的是A. (0)(1)(2)f f f >>B. (0)(1)(2)f f f <<C. (0)(2)(1)f f f <<D. (0)(2)(1)f f f >>5. (2)x x e dx +=⎰A. 2x x e C ++B. 22x x e C ++C. 2x x xe C ++D. 22x x xe C ++6. A.B. C. 4π D. 07. 若22()x x f x e dx e C =+⎰,则()f x =A. 2xB. 2xC. 2x eD. 18. 设函数tan()z xy =,则zx ∂=∂ A. 2cos ()xxy - B. 2cos ()xxy C. 2cos ()y xy D.2cos ()yxy -9. 设函数()z f u =,22u x y =+且()f u 二阶可导,则2zx y ∂=∂∂A. 4()f u ''B. 4()xf u ''C. 4()yf u ''D.4()xyf u ''10. 任意三个随机事件,,A B C 中至少有一个发生的事件可表示为A. A B CB. A B CC. A B CD.A B C二、 填空题:11~20小题,每小题4分,共40分。
近十年江苏省专转本高等数学试题分类整理
江苏省普通高校“专转本”统一考试高等数学专转本高数试卷结构知识分类与历年真题●函数、极限和连续●一元函数微分学●一元函数积分学●向量代数与空间解析几何●多元函数微积分●无穷级数●常微分方程时间排序与参考答案◆2004年高等数学真题参考答案◆2005年高等数学真题参考答案◆2006年高等数学真题参考答案◆2007年高等数学真题参考答案◆2008年高等数学真题参考答案◆2009年高等数学真题参考答案◆2010年高等数学真题参考答案◆2011年高等数学真题参考答案◆2012年高等数学真题参考答案◆2013年高等数学真题参考答案江苏省普通高校“专转本”统一考试高等数学试卷结构全卷满分150分一、单选题(本大题共6小题,每小题4分,满分24分) 二、填空题(本大题共6小题,每小题4分,满分24分) 三、解答题(本大题共8小题,每小题8分,满分64分) 四、综合题(本大题共2小题,每小题10分,满分20分) 五、证明题(本大题共2小题,每小题9分,满分18分)知识分类与历年真题一、函数、极限和连续(一)函数(0401)[](]333,0()0,2x x f x x x ⎧∈-⎪=⎨-∈⎪⎩是( ) A.有界函数 B.奇函数 C.偶函数 D.周期函数 (0801)设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是( )A.()y f x =-B.)(43x f x y = C.()y f x =-- D.)()(x f x f y -+= (二)极限(0402)当0→x 时,x x sin 2-是关于x 的( )A.高阶无穷小B.同阶无穷小C.低阶无穷小D.等价无穷小(0407)设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x .(0601)若012lim2x x f x →⎛⎫ ⎪⎝⎭=,则0lim 3x xx f →=⎛⎫ ⎪⎝⎭( ) A.21 B.2C.3D.31 (0607)已知0→x 时,(1cos )a x ⋅-与x x sin 是等价无穷小,则=a .(0613)计算311lim1x x x →--. (0701)若0(2)lim2x f x x→=,则1lim 2x xf x →∞⎛⎫= ⎪⎝⎭( ) A.41B.21 C.2D.4(0702)已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x nsin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A.1B.2C.3D.4(0813)求极限:32lim xx x x →∞-⎛⎫⎪⎝⎭. (0901)已知22lim32x x ax bx →++=-,则常数b a ,的取值分别为( ) A.2,1-=-=b a B.0,2=-=b aC.0,1=-=b aD.1,2-=-=b a(0907)已知lim 2xx x x C →∞⎛⎫= ⎪-⎝⎭,则常数=C . (1001)设当0x →时,()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( ) A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n == (1007) 1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. (1101)当0→x 时,函数1)(--=x e x f x是函数2)(x x g =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小D.等价无穷小(1107)已知22lim kxx x e x →∞-⎛⎫= ⎪⎝⎭,则=k _________. (1201)极限1sin 3lim 2sinx x x x x →∞⎛⎫+= ⎪⎝⎭( ) A.0 B.2 C.3D.5(1301)当0x →时,函数()ln(1)f x x x =+-是函数2()g x x =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小D.等价无穷小(1310)设10lim xx a x e a x →+⎛⎫=⎪-⎝⎭,则常数a = . (三)连续(0413)求函数xxx f sin )(=的间断点,并判断其类型. (0501)0=x 是xx x f 1sin )(=的( ) A.可去间断点B.跳跃间断点C.第二类间断点D.连续点(0513)设()2sin 0()0f x xx F x xa x +⎧≠⎪=⎨⎪=⎩在R 内连续,并满足0)0(=f ,(0)6f '=,求a . (0602)函数21sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ) A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续(0608)若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.(0707)设函数1(1)0()20x kx x f x x ⎧⎪+≠=⎨⎪=⎩,在点0=x 处连续,则常数=k .(0807)设函数21()(1)x f x x x -=-,则其第一类间断点为 .(0808)设函数0()tan 30a x x f x x x x+≥⎧⎪=⎨<⎪⎩在点0=x 处连续,则a = .(0902)已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点(1123)设210arctan ()1010sin 2ax axe x ax x x xf x x e x x ⎧---<⎪⎪⎪==⎨⎪-⎪>⎪⎩,问常数为何值时:(1)0=x 是函数)(x f 的连续点? (2)0=x 是函数)(x f 的可去间断点? (3)0=x 是函数)(x f 的跳跃间断点? (1202)设()2(2)sin ()4x xf x x x -⋅=⋅-,则函数)(x f 的第一类间断点的个数为( ) A.0 B.1C.2D.3(1207)要使函数()1()12xf x x =-在点0=x 处连续,则需补充定义(0)f =_________.(1303)设sin 20()011xx x f x x x x ⎧<⎪⎪=⎨⎪>⎪+-⎩,这点0x =是函数()f x 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.连续点(1307)设1sin0()0x x f x xa x ⎧≠⎪=⎨⎪=⎩在点0x =处连续,则常数a = . 二、一元函数微分学(一) 导数与微分(0403)直线L 与x 轴平行且与曲线xe x y -=相切,则切点的坐标是( ) A.()1,1B.()1,1-C.()0,1-D.()0,1(0409)设()(1)(2)()f x x x x x n =+++,N n ∈,则=)0('f .(0415)设函数)(x y y =由方程1=-yxe y 所确定,求22d d x yx=的值.(0502)若2=x 是函数1ln 2y x ax ⎛⎫=-+ ⎪⎝⎭的可导极值点,则常数=a ( ) A.1-B.21C.21- D.1 (0514)设函数)(x y y =由方程cos sin cos x t y t t t =⎧⎨=-⎩所确定,求d d y x 、22d d yx .(0614)若函数)(x y y =是由参数方程2ln (1)arctan x t y t t⎧=+⎨=-⎩所确定,求d d y x 、22d d yx .(0708)若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m .(0714)设函数)(x y y =由方程xy e e yx=-确定,求d d x yx=、22d d x y x =.(0802)设函数)(x f 可导,则下列式子中正确的是( ) A.0(0)()lim(0)x f f x f x →-'=- B.000(2)()lim ()x f x x f x f x x→+-'=C.0000()()lim ()x f x x f x x f x x ∆→+∆--∆'=∆D.0000()()lim 2()x f x x f x x f x x∆→-∆-+∆'=∆ (0814)设函数)(x y y =由参数方程sin 1cos x t t y t =-⎧⎨=-⎩(2t n π≠,n Z ∈)所决定,求d d y x 、22d d y x .(0903)设函数00()1sin 0x f x x x x α≤⎧⎪=⎨>⎪⎩在点0=x 处可导,则常数α的取值范围为( ) A.10<<αB.10≤<αC.1>αD.1≥α(0914)设函数)(x y y =由参数方程2ln (1)23x t y t t =+⎧⎨=+-⎩所确定,d d y x 、22d d yx . (0923)已知函数0()10x e x f x x x -⎧<=⎨+≥⎩,证明函数)(x f 在点0=x 处连续但不可导.(1008).若(0)1f '=,则0()()limx f x f x x→--= .(1014)设函数()y y x =由方程2x yy ex ++=所确定,求d d y x 、22d d yx .(1022)设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.(1102)设函数)(x f 在点0x 处可导,且4)()(lim 000=+--→hh x f h x f h ,则=')(0x f ( )A.4-B.2-C.2D.4(1110)设函数x y arctan=,则1d x y==_____________.(1114)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=22ty e tt x y 所确定,求d d y x .(1208)设函数()22221x y x x x e =⋅+++,则=)0()7(y________.(1209)设xy x =(0x >),则函数y 的微分=dy ___________.(1214)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求d d y x 、22d d y x . (1304)设1y f x ⎛⎫= ⎪⎝⎭,其中f 具有二阶导数,则22d d y x =( )A.231121f f x x x x ⎛⎫⎛⎫'''-+ ⎪ ⎪⎝⎭⎝⎭ B.231121f f x x x x ⎛⎫⎛⎫'''+ ⎪ ⎪⎝⎭⎝⎭ C.231121f f x x x x ⎛⎫⎛⎫'''--⎪ ⎪⎝⎭⎝⎭D.231121f f x x x x ⎛⎫⎛⎫'''-⎪ ⎪⎝⎭⎝⎭(1306)已知函数()f x 在点1x =处连续,且21()1lim 12x f x x →=-,则曲线()f x 在点()1,()f x 处切线方程为( ) A.1y x =-B.22y x =-C.33y x =-D.44y x =-(1309)设函数由参数方程2211x t y t ⎧=+⎨=-⎩所确定,则221d d t yx == .(二)中值定理及导数的应用(0423)甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元.问污水处理厂建在何处,才能使铺设排污管道的费用最省?(0507)02limsin x x x e e xx x-→--=- . (0508)函数x x f ln )(=在区间[]1,e 上满足拉格郎日中值定理的=ξ . (0521)证明方程:0133=+-x x 在[]1,1-上有且仅有一根.(0603)下列函数在[]1,1-上满足罗尔定理条件的是( ) A.xe y =B.1y x =+C.21x y -=D.xy 11-= (0621)证明:当2x ≤时,332x x -≤.(0703)设函数()(1)(2)(3)f x x x x x =---,则方程()0f x '=的实根个数为( ) A.1B.2C.3D.4(0713)求极限01lim tan x x e x x x→--.(0722)设函数9)(23-++=cx bx ax x f 具有如下性质:(1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点(1,2)的两侧凹凸性发生改变. 试确定a ,b ,c 的值.(0724)求证:当0>x 时,22(1)ln (1)x x x -⋅≥-.(0809)已知曲线543223++-=x x x y ,则其拐点为 . (0821)求曲线1y x=(0x >)的切线,使其在两坐标轴上的截距之和最小,并求此最小值. (0823)设函数)(x f 在闭区间[]0,2a (0a >)上连续,且)()2()0(a f a f f ≠=,证明:在开区间(0,)a 上至少存在一点ξ,使得()()f f a ξξ=+.(0824)对任意实数x ,证明不等式:(1)1xx e -⋅≤.(0904)曲线221(1)x y x +=-的渐近线的条数为( )A.1B.2C.3D.4(0913)求极限30lim sin x x x x→-.(0921)已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[2,3]-上的最大值与最小值.(0924)证明:当12x <<时,24ln 23x x x x >+-.(1002)曲线223456x x y x x -+=-+的渐近线共有 ( )A.1条B.2条C.3条D.4条 (1006)设3()3f x x x =-,则在区间(0,1)内 ( ) A.函数()f x 单调增加且其图形是凹的 B.函数()f x 单调增加且其图形是凸的 C.函数()f x 单调减少且其图形是凹的 D.函数()f x 单调减少且其图形是凸的(1013)求极限2|011lim tan x x x x →⎛⎫-⎪⎝⎭.(1021)证明:当1x >时,121122x e x ->+. (1103)若点(1,2)-是曲线23bx ax y -=的拐点,则( ) A.3,1==b aB.1,3-=-=b aC.3,1-=-=b aD.6,4==b a(1113)求极限()()22limln 1xx x eex -→-+.(1121)证明:方程()2ln 12x x ⋅+=有且仅有一个小于2的正实根. (1122)证明:当0>x 时,x x201120102011≥+.(1203)设232152)(x x x f -=,则函数)(x f ( ) A.只有一个最大值 B.只有一个极小值 C.既有极大值又有极小值D.没有极值(1213)求极限()2302cos 2lim ln 1x x x x x →+-+. (1223)证明:当10<<x 时,361arcsin x x x +>. (1302)曲线22232x xy x x +=-+的渐近线共有( )A.1条B.2条C.3条D.4条(1313)求极限01lim ln (1)x x e x x →⎡⎤-⎢⎥+⎣⎦.(1323)证明:当1x >时,2(1ln )21x x +<-.三、一元函数积分学(一)不定积分(0410)求不定积分32arcsin d 1x x x=-⎰.(0416)设)(x f 的一个原函数为xe x,计算(2)d x f x x '⎰.(0503)若()d ()f x x F x C =+⎰,则sin (cos )d x f x x =⎰( )A.C x F +)(sinB.C x F +-)(sinC.C F +(cos)D.C x F +-)(cos(0515)计算3tan sec d x x x ⎰.(0522)设函数)(x f y =的图形上有一拐点(2,4)P ,在拐点处的切线斜率为3-,又知该函数的二阶导数6y x a ''=+,求)(x f .(0604)已知2()d x f x x e C =+⎰,则()d f x x '-=⎰( )A.C ex+-22B.C e x +-221 C.C e x +--22 D.C e x +--221(0615)计算1ln d xx x+⎰. (0622)已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程. (0704)设函数)(x f 的一个原函数为x 2sin ,则(2)d f x x '=⎰( )A.C x +4cosB.C x +4cos 21C.C x +4cos 2D.C x +4sin(0715)求不定积分2d x x e x -⎰.(0810)设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分()d f x x =⎰ . (0815)求不定积分3d 1x x x +⎰. (0905)设()ln (31)F x x =+是函数)(x f 的一个原函数,则(21)d f x x '+=⎰( )A.C x ++461B.C x ++463C.C x ++8121D.C x ++8123(0915)求不定积分sin21d x x +⎰.(1015)求不定积分arctan d x x x ⎰.(1115)设)(x f 的一个原函数为x x sin 2,求不定积分()d f x x x⎰. (1215)求不定积分sin 2d x x x ⎰. (1315)求不定积分sin 2d x x x ⎰.(二)定积分(0404)2228R y x =+设所围的面积为S ,则222208d R R x x -⎰的值为( )A.SB.4S C.2S D.S 2(0421)证明:0(sin )d (sin )d 2x f x x f x x πππ=⎰⎰,并利用此式求20sin d 1cos xxx xπ+⎰.(0509)1211d 1x x x π-+=+⎰.(0516)计算10arctan d x x ⎰.(0609)设)(x f 在[]0,1上有连续的导数且(1)2f =,10()d 3f x x =⎰,则1()d x f x x '=⎰ .(0616)计算22cos d x x x π⎰.(0709)定积分()223241cos d x x x x --+⎰的值为 .(0716)计算定积分212221d x x x-⎰. (0811)定积分1212sin d 1xx x -++⎰的值为 .(0816)求定积分10d xe x ⎰.(0916)求定积分:212d 2x x x-⎰.(1009)定积分31211d 1x x x -++⎰的值为 . (1016)计算定积分403d 21x x x ++⎰. (1111)定积分()32221sin d xx x ππ-+⋅⎰的值为____________.(1116)计算定积分3d 11x xx ++⎰ . (1216)计算定积分21d 21xx x -⎰.(1316)计算定积分22d 24x x+-⎰.(1324)设函数()f x 在[,]a b 上连续,证明:[]2()d ()()d a b b aaf x x f x f a b x x +=++-⎰⎰.(三)变限积分与广义积分(0417)计算广义积分2d 1xx x +∞⋅-⎰.(0422)设函数)(x f 可导,且满足方程20()d 1()x t f t t x f x =++⎰,求)(x f .(0705)设221()sin d x f x t t =⎰,则()f x '=( )A.4sin x B.2sin 2x xC.2cos 2x xD.4sin 2x x(0803)设函数)(x f 122sin d xt t t =⎰,则()f x '等于( )A.x x 2sin 42B.x x 2sin 82C.x x 2sin 42-D.x x 2sin 82-(0908)设函数20()d x t x te t ϕ=⎰,则()x ϕ'= .(1003)设函数22()cos d t xx e t t Φ=⎰,则函数()x Φ的导数()x 'Φ等于 ( )A.222cos x xe x B.222cos x xe x - C.2cos xxe x - D.22cos x e x - (1108)设函数2()ln (1)d x x t t Φ=+⎰ ,则=Φ'')1(____________.(1211)设反常积分1d 2x ae x +∞-=⎰,则常数=a ______. (1222)已知定义在(),-∞+∞上的可导函数)(x f 满足方程31()4()d 3xx f x f t t x -=-⎰,试求:(1)函数()f x 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线()y f x =的凹凸区间与拐点.(1224)设0()d 0()(0)0x g t t x f x g x ⎧≠⎪=⎨⎪=⎩⎰,其中函数)(x g 在(,)-∞+∞上连续,且3cos 1)(lim 0=-→xx g x .证明:函数)(x f 在0=x 处可导,且1(0)2f '=. (1322)已知251320()95d x F x t t t ⎛⎫=- ⎪⎝⎭⎰是()f x 的一个原函数,求曲线()y f x =的凹凸区间、拐点. (四)定积分的几何应用(0523)已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕x 轴旋转一周的旋转体体积.(0623)已知一平面图形由抛物线2x y =、82+-=x y 围成.(1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.(0721)设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.(0822)设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积;(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.(0922)设1D 是由抛物线22x y =和直线x a =,0y =所围成的平面封闭区域,2D 是由抛物线22x y =和直线x a =,2x =及0=y 所围成的平面封闭区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V ; (2)求常数a 的值,使得1D 的面积与2D 的面积相等.(1023)设由抛物线2y x =(0x ≥),直线2y a =(01a <<)与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0x ≥),直线2y a =(01a <<)与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.(1024)设函数()f x 满足方程()()2xf x f x e '+=,且(0)2f =,记由曲线'()()f x y f x =与直线1y =,x t =(0t >)及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞.(1124)设函数)(x f 满足微分方程()2()(1)x f x f x a x '-=-+(其中a 为正常数),且1)1(=f ,由曲线()y f x =(1x ≤)与直线1x =,0y =所围成的平面图形记为D .已知D 的面积为32. (1)求函数)(x f 的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积x V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积y V .(1221)在抛物线2y x =(0x >)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. (1321)设平面图形D 是由曲线2x y =,y x =-与直线1y =所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积.四、向量代数与空间解析几何(一)向量代数(0510)设向量{}3,4,2=-a 、{}2,1,k =b ;a 、b 互相垂直,则=k . (0610)设1=a ,⊥a b ,则()⋅+=a a b . (0710)已知a 、b 均为单位向量,且12⋅=a b ,则以a 、b 为邻边的平行四边形面积为 . (0804)设向量(1,2,3)=a ,(3,2,4)=b ,则⨯a b 等于( )A.(2,5,4)B.(2,5,4)--C.(2,5,4)-D.(2,5,4)--(0909)已知向量{}1,0,1=-a ,{}1,2,1=-b ,则+a b 与a 的夹角为 . (1010)设{}1,2,3=a ,{}2,5,k=b ,若a 与b 垂直,则常数k = .(1109)若1=a ,4=b ,2⋅=a b ,则⨯=a b ____________.(1210)设向量a 、b 互相垂直,且3=a ,2=b ,则2+=a b ________.(1308)已知空间三点(1,1,1)A ,(2,3,4)B ,(3,4,5)C ,则ABC ∆的面积为 .(二)平面与直线(0518)求过点(3,1,2)A -且通过直线L :43521x y z-+==的平面方程. (0619)求过点(3,1,2)M -且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.(0719)求过点(1,2,3)且垂直于直线20210x y z x y z +++=⎧⎨-++=⎩的平面方程.(0817)设平面∏经过点(2,0,0)A ,(0,3,0)B ,(0,0,5)C ,求经过点(1,2,1)P 且与平面∏垂直的直线方程. (0917)求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. (1017)求通过点(1,1,1),且与直线23253x ty t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.(1117)求通过x 轴与直线132zy x ==的平面方程. (1217)已知平面∏通过(1,2,3)M 与x 轴,求通过(1,1,1)N 且与平面∏平行,又与x 轴垂直的直线方程.(1318)已知直线10330x y z x y z -+-=⎧⎨--+=⎩在平面∏上,又知直线23132x ty t z t=-⎧⎪=+⎨⎪=+⎩与平面∏平行,求平面∏的方程.五、多元函数微积分(一)多元函数微分学(0418)设(,)z f x y xy =-,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.(0505)设yxy x u arctan),(=,22(,)ln v x y x y =+,则下列等式成立的是( )A.yv x u ∂∂=∂∂ B.xvx u ∂∂=∂∂ C.x v y u ∂∂=∂∂ D.y v y u ∂∂=∂∂ (0517)已知函数2(sin ,)z f x y =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.(0611)设x e u xysin =,=∂∂xu. (0620)设2(,)z x f x xy =⋅其中(,)f u v 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.(0711)设yxz =,则全微分d z = .(0717)设(23,)z f x y xy =+其中f 具有二阶连续偏导数,求yx z∂∂∂2.(0805)函数xyz ln =在点(2,2)处的全微分d z 为( )A.11d d 22x y -+B.11d d 22x y +C.11d d 22x y -D.11d d 22x y --(0818)设函数,y z f x y x ⎛⎫=+ ⎪⎝⎭,其中)(x f 具有二阶连续偏导数,求y x z ∂∂∂2.(0910)设函数(,)z z x y =由方程12=+yz xz 所确定,则xz∂∂= . (0919)设函数(sin ,)z f x xy =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.(1011)设函数2ln4z x y =+,则10d x y z=== .(1018)设()2,xz y f xy e =⋅,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.(1104)设),(y x f z =为由方程8333=+-x yz z 所确定的函数,则=∂∂==00y x yz ( )A.21-B.21C.2-D.2(1118)设)(y xyxf z ,=,其中函数f 具有二阶连续偏导数,求y x z ∂∂∂2.(1204)设3ln 2z x y=+在点()1,1处的全微分为 ( )A.d 3d x y -B.d 3d x y +C.1d 3d 2x y +D.1d 3d 2x y -(1218)设函数22(,)()z f x xy x y ϕ=++,其中函数f 具有二阶连续偏导数,函数()x ϕ具有二阶连续导数,求yx z∂∂∂2.(1314)设函数(,)z z x y =由方程3331z xy z +-=所确定,求d z 及22zx∂∂.(1317)设()223,x yz fx e+=,其中函数f 具有二阶连续偏导数,求2zy x ∂∂∂.(二)二重积分(0411)交换二次积分的次序2120d (,)d x x x f x y y -=⎰⎰.(0419)计算二重积分sin d d Dy x y y ⎰⎰,其中D 由曲线x y =及x y =2所围成. (0504)设区域D 是xoy 平面上以点(1,1)A 、(1,1)B -、(1,1)C --为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )d d Dxy x y x y +=⎰⎰( )A.⎰⎰1)sin (cos 2D dxdy y xB.⎰⎰12D xydxdyC.⎰⎰+1)sin cos (4D dxdy y x xyD. 0(0511)交换二次积分的次序20111d (,)d x x x f x y y --+=⎰⎰;(0524)设)(x f 为连续函数,且1)2(=f ,1()d ()d uuyF u y f x x =⎰⎰(1u >). (1)交换)(u F 的积分次序; (2)求(2)F '.(0606)设对一切x 有(,)(,)f x y f x y -=-,22{(,)|1,0}D x y x y y =+≤≥,=1D 22{(,)|1,0,0}x y x y x y +≤≥≥,则(,)d d Df x y x y =⎰⎰( )A. 0B.1(,)d d D f x y x y ⎰⎰C.21(,)d d D f x y x y ⎰⎰D.41(,)d d D f x y x y ⎰⎰(0612)D 为以点(0,0)O 、(1,0)A 、(0,2)B 为顶点的三角形区域,d d Dx y =⎰⎰ .(0624)设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g 连续;(2)求)('t g .(0720)计算二重积分22d d Dx y x y +⎰⎰,其中{}22(,)|2,0D x y x y x y =+≤≥.(0723)设0>>a b ,证明:()232d ()d ()d b b b x y xx a ayay f x e x ee f x x ++⋅=-⎰⎰⎰.(0819)计算二重积分2d d Dx x y ⎰⎰,其中D 是由曲线xy 1=,直线y x =,2x =及0=y 所围成的平面区域.(0918)计算二重积分d Dy σ⎰⎰,其中22{(,)02,2,2}D x y x x y x y =≤≤≤≤+≥.(1005)二次积分111d (,)d y y f x y x +⎰⎰交换积分次序后得 ( )A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111(,)d x dx f x y y -⎰⎰(1019)计算d d Dx x y ⎰⎰,其中D 是由曲线21x y =-,直线y x =及x 轴所围成的闭区域.(1105)若(,)d d Df x y x y ⎰⎰可转化为二次积分1201d (,)d y y f x y x +⎰⎰ ,则积分域D 可表示为( ) A.{}(,)01,11x y x x y ≤≤-≤≤ B.{}(,)12,11x y x x y ≤≤-≤≤C.{}(,)01,10x y x x y ≤≤-≤≤D.{}(,)12,01x y x y x ≤≤≤≤-(1119)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线22y x =-,直线x y -=及y 轴所围成的平面闭区域. (1205)二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A.sec 40d (cos ,sin )d f πθθρθρθρ⎰⎰ B.sec 40d (cos ,sin )d f πθθρθρθρρ⎰⎰C.sec 24d (cos ,sin )d f πθπθρθρθρ⎰⎰D .sec 24d (cos ,sin )d f πθπθρθρθρρ⎰⎰ (1220)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线1y x =-,直线2xy =及x 轴所围成的平面闭区域.(1320)计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线24y x =-(0x >)与三条直线y x =,3x =,0y =所围成的平面闭区域.六、无穷级数(一)数项级数(0506)正项级数(1)∑∞=1n nu、(2)∑∞=13n nu,则下列说法正确的是( )A.若(1)发散、则(2)必发散B.若(2)收敛、则(1)必收敛C.若(1)发散、则(2)不确定D.(1)、(2)敛散性相同(0605)设∑∞=1n nu为正项级数,如下说法正确的是( )A.若0lim 0=→n n u ,则∑∞=1n nu必收敛 B.若l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C.若∑∞=1n nu收敛,则∑∞=12n nu必定收敛D.若∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛(0706)下列级数收敛的是( )A.∑∞=122n nnB.∑∞=+11n n n C.∑∞=-+1)1(1n nnD.∑∞=-1)1(n nn(0906)设α为非零常数,则数项级数∑∞=+12n nn α( )A.条件收敛B.绝对收敛C.发散D.敛散性与α有关(1004)下列级数收敛的是( )A.11n n n ∞=+∑B.2121n n n n ∞=++∑ C.11(1)nn n ∞=+-∑ D.212n n n ∞=∑(1206)下列级数中条件收敛的是( )A.1(1)21nn nn ∞=-+∑B.13(1)2nn n ∞=⎛⎫- ⎪⎝⎭∑C.21(1)nn n ∞=-∑ D.1(1)nn n ∞=-∑(1305)下列级数中收敛的是( )A.211n n n∞=+∑ B.11nn n n ∞=⎛⎫ ⎪+⎝⎭∑ C.1!2n n n ∞=∑ D.13n n n ∞=∑(二)幂级数(0412)幂级数∑∞=-12)1(n nnx 的收敛区间为 . (0420)把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间. (0512)幂级数1(21)nn n x∞=-∑的收敛区间为 .(0519)把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间. (0618)将函数()ln (1)f x x x =+展开为x 的幂函数(要求指出收敛区间).(0812)幂函数12nnn x n ∞=⋅∑的收敛域为 . (0911)若幂函数21n nn a x n∞=∑(0a >)的收敛半径为21,则常数=a .(1012)幂级数0(1)n nn x n ∞=-∑的收敛域为 .(1106)若x x f +=21)(的幂级数展开式为0()nn n f x a x ∞==∑(22x -<<),则系数=n a ( )A.n 21B.121+n C.(1)2nn- D.1(1)2n n +-(1112)幂级数01nn x n ∞=+∑的收敛域为_ _ _________. (1212)幂级数1(1)(3)3n nnn x n ∞=--⋅∑的收敛域为____________. (1312)幂级数12n nn x n∞=∑的收敛域为 . 七、常微分方程(一)一阶微分方程(0520)求微分方程0'=-+xe y xy 满足1x ye ==的特解.(0617)求微分方程22x y xy y '=-的通解. (0718)求微分方程22007xy y x '-=满足初始条件12008x y==的特解.(0820)求微分方程22xy y x '=+的通解.(0912)微分方程2(1)d (2)d 0x y x y x y +--=的通解为 . (1311)微分方程d d y x y x x+=的通解为 . (二)二阶线性微分方程(0406)微分方程232xy y y xe '''-+=的特解*y 的形式应为( )A.xAxe 2B.xe B Ax 2)(+C.xeAx 22D.xeB Ax x 2)(+(0712)设x xe C eC y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为 .(0806)微分方程321y y y '''++=的通解为( )A.1221++=--x xe c e c yB.21221++=--x xe c ec yC.1221++=-xxec e c yD.21221++=-xxec e c y (0920)求微分方程y y x ''-=的通解. (1020)已知函数xy e =和2xy e-=是二阶常系数齐次线性微分方程0y py qy '''++=的两个解,试确定常数p 、q 的值,并求微分方程xy py qy e '''++=的通解.(1120)已知函数(1)xy x e =+⋅是一阶线性微分方程2()y y f x '+=的解,求二阶常系数线性微分方程)(23x f y y y =+'+''的通解.(1219)已知函数)(x f 的一个原函数为xxe ,求微分方程)(44x f y y y =+'+''的通解. (1319)已知函数()y f x =是一阶微分方程d d yy x=满足初始条件(0)1y =的特解,求二阶常系数非齐次线性微分方程32()y y y f x '''-+=的通解.时间排序与参考答案2004年高等数学真题参考答案1、A .2、B .3、C .4、B .5、A .6、D .7、1-e . 8、32241-+==-z y x . 9、!n . 10、C x +4arcsin 41. 11、12201d (,)d d (,)d y y y f x y x y f x y x -+⎰⎰⎰⎰.12、()3,1-.13、解:间断点为πk x =(Z k ∈),当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =(0≠k ,Z k ∈)时,∞=→xxx sin lim0,为第二类间断点.14、解:原式04300(tan sin )d tan sin limlim312xx x t t tx xx x→→--==⎰ 233001tan (1cos )12lim lim 121224x x x x x x x x →→⋅-===. 15、解:0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y yy,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、解:因为)(x f 的一个原函数为x e x,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, 原式11(2)d(2)d (2)22xf x x x f x '==⎰⎰11(2)(2)d 22x f x f x x =-⎰222211(21)1(2)(2)d(2)24884x x x x x e e x x f x f x x C e C x x x--=-=-+=+⎰. 17、解:原式2111122d d 22arctan (1)12t x t tt t t t t π+∞=∞-+∞+===++⎰⎰.18、解:12zf f y x∂''=+⋅∂; []21112221221112222(1)(1)()zf f x f y f f x f x y f xy f f x y∂''''''''''''''''=⋅-+⋅++⋅-+⋅=-+-⋅+⋅+∂∂.19、解:原式21100sin sin d d d d (1)sin d y y Dyy x y y x y y y y y ===-⎰⎰⎰⎰⎰ 1100(1)cos cos d 1sin1y y y y =--=-⎰.20、解:01111(2)()(1)24244414n n nn x f x x x ∞=-==⋅=--+-+∑)62(<<-x . 21、证:00(sin )d ()[sin ()]d ()(sin )d t xx f x xt f t t t f t I t πππππππ=-=---=-⎰⎰⎰(sin )d (sin )d (sin )d f x x x f x x f x x I πππππ=-=-⎰⎰⎰解得: 0(sin )d (sin )d 2f x x f x x I x πππ==⎰⎰, 原命题证毕.222000sin sin d d arctan (cos )1cos 21cos 24x x x x x x x x ππππππ⋅==-=++⎰⎰. 22、解:等式两边求导得()2()x f x x f x '=+,即()()2f x x f x x '-=-,且(0)1f =-,x p -=,x q 2-=,而2()d 2x x xe e --⎰=,由公式求得通解:222222()2d 2x x x f x e xq x C C e -⎡⎤⎛⎫=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 将初始条件(0)1f =-代入通解,解得:3-=C ,故22()23x f x e =-.23、解:设污水厂建在河岸离甲城x 公里处,则22()50070040(50)M x x x =++-(500≤≤x ), 由2212(50)5007000240(50)x M x -'=+⨯⨯=+-解得:650050-=x (公里),唯一驻点,即为所求.2005年高等数学真题参考答案1、A .2、C .3、D .4、A .5、A .6、C .7、2. 8、1-e . 9、2π. 10、5. 11、2111d (,)d y y y f x y x ---⎰⎰.12、(1,1)-.13、解:因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,'00()2sin ()(0)lim ()limlim 2(0)28x x x f x x f x f F x f x x→→→+-==+=+=, 解得:a F =)0(,故8=a .14、解:d d cos cos sin d d d sin d yy t t t t t t x x t t-+===--,22d ()csc d (cos )y t t x t '-=='.15、解:原式22tan tan sec d (sec1)d(sec )x x x xx x =⋅-⎰⎰积进去231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰.16、解:原式211120002d 1d(1)arctan 1421x x x x x x x π+=--++⎰⎰积进去 ()12011ln 1ln 24242x ππ⎡⎤=-+=-⎣⎦.17、解:1cos zx f x∂'=⋅∂,()21212cos 22cos z x f y y x f x y ∂''''=⋅⋅=⋅∂∂. 18、解:直线L 的方向向量{}5,2,1=s ,过点()4,3,0B -,{}1,4,2AB =-;所求平面的法向量{}5218,9,22142AB =⨯==---ij kn s ,点法式为8(3)9(1)22(2)0x y z ----+=,即592298=--z y x .19、解:2222101111(1)()13216313212n nn n x x x x f x x x x x x ∞+=⎡⎤-⎛⎫=+=⋅+⋅=+⋅ ⎪⎢⎥+--⎝⎭⎣⎦+∑, 收敛域为:11<<-x .20、解:1x e y y x x '+⋅=,即1p x=,x e q x =,而1d 1x x e x -⎰=;故通解为1d xx e e C y x x C x x x ⎛⎫+=+= ⎪⎝⎭⎰.把初始条件1x y e ==解得:0=C ;故所求特解为:xe y x=.21、证:令13)(3+-=x x x f ,[]1,1x ∈-,且(1)30f -=>,(1)10f =-<,(1)(1)0f f -⋅<;由连续函数零点定理知:)(x f 在(1,1)-内至少有一实根;对于()1,1x ∈-恒有()22()33310f x x x '=-=-<,即)(x f 在(1,1)-内单调递减, 故方程0133=+-x x 在[]1,1-上有且仅有一根; 原命题获证.22、解:设所求函数为)(x f y =,则有4)2(=f ,(2)3f '=-,(2)0f ''=;由()6f x x a ''=+和(2)0f ''=解得:12-=a ,即()612f x x ''=-,故21()312f x x x C '=-+,由(2)3f '=-解得:91=C ,故22396C x x x y ++-=,由(2)4f =解得:22=C ; 所求函数为:29623++-=x x x y .23、解:(1)112300111d 266S y y y ===⎰;(如图1所示) (2)()()112222012d 4x V x x x x πππ=-=-=⎰.24、解:积分区域D 为:u y ≤≤1,u x y ≤≤;(1)111()()d d ()d (1)()d u xuDF u f x x f x y x f x x σ===-⎰⎰⎰⎰⎰;(2)()(1)()F u u f u '=-,(2)(21)(2)(2)1F f f '=-==.2006年高等数学真题参考答案1、C .2、B .3、C .4、C .5、C .6、A .7、2. 8、)(0x f . 9、1-. 10、1. 11、(sin cos )xye y x x +. 12、1.13、解:原式322131lim 21341==--→x xx . yOS1x12y x=图114、解:2211d 12d 21t t y y t t t x x t-'+==='+,2222d 1d d 122d 41ty x y t t x x t t '⎛⎫ ⎪+⎝⎭==='+. 15、解:原式3221ln d(1ln )(1ln )3x x x C =++=++⎰.16、解:原式()2222220d(sin )sin 2sin d x x x xx x πππ=-⎰⎰积进去222220sin 2sin d 2d(cos )4x xx x xx x ππππ-+⎰⎰积进去导出来2222002cos 2cos d 244x x x x ππππ=+-=-⎰.17、解:方程变形为2y y y x x ⎛⎫'=- ⎪⎝⎭,即得到了形如d d y y f x x ⎛⎫= ⎪⎝⎭齐次方程; 令yu x=,则d d d d y u u x x x =+,代入得:2d d u x u x =-,分离变量得:211d d u x u x -=; 两边积分,得:211d d u x u x -=⎰⎰,1ln x C u=+,故ln x y x C =+. 18、解:令()ln (1)g x x =+,则(0)0g =;由于01()(1)1n n n g x x x ∞='==-+∑((]1,1x ∈-), 所以01(1)((1))d x n n n g x n x g t t ∞+='=+=-∑⎰((]1,1x ∈-),故20(1)()1n n n f x x n ∞+=-=+∑,收敛域为:11x -<≤.19、解:由题意知:{}11,1,1=-n ,{}24,3,1=-n ;{}12311232,3,1431=⨯=-=++=-i j ks n n i j k ,故所求直线方程的对称式方程为:123123+=-=-z y x . 20、解:22z x f x∂'=∂,2'2'''''3''2''22122221222(2)22z x f x f x f y x f x f x y f y x ∂=+⋅+⋅=++∂∂.21、证:令33)(x x x f -=,[]2,2x ∈-,由2()330f x x '=-=解得驻点:1±=x ,比较以下函数值的大小:(1)2f -=-,(1)2f =,(2)2f =-,(2)2f -=; 所以2min -=f ,2m ax =f ,故2)(2≤≤-x f ,即332x x -≤,原命题获证.22、解:0)0(=y ,2y x y '=+,通解为:xCe x y +--=)22(;将0)0(=y 代入通解解得:2=C ,故所求特解为:xe x y 222+--=.23、解:(1)()2222648d 3S xx x -=--=⎰; (2)()()224804d 8d 16y V y y yy πππ=+-=⎰⎰.24、解:()d d d ()d ()d tt t tD f x x y x f x y t f x x ==⎰⎰⎰⎰⎰,0()d 0()0t f x x t g t a t ⎧≠⎪=⎨⎪=⎩⎰;(1)00lim ()lim()d 0t t t g t f x x →→==⎰,由)(t g 的连续性可知:0)(lim )0(0===→t g g a t ;(2)当0≠t 时,()()g t f t '=,当0=t 时,0000()d ()(0)(0)limlim lim ()(0)hh h h f x x g h g g f h f h h→→→-'====⎰; 综上,()()g t f t '=.2007年高等数学真题参考答案1、B .2、C .3、C .4、A .5、D .6、D .7、2ln . 8、1. 9、π2. 10、23. 11、21d d xx y y y-. 12、06'5''=+-y y y . 13、解:212lim 21lim 1lim tan 1lim00200==-=--=--→→→→x x x x x x x x e x e x x e x x x e . 14、解:当0=x 时,0=y ;在方程xy e e yx=-两边对x 求导得:''xye e y y x y -⋅=+⋅,故d 'd x yy e y y x e x-==+;。
江苏专升本高等数学真题(附答案)
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
2001—江苏专转本高等数学真题附答案11
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( ) A 、0)('<x f ,0)(''<x fB 、0)('<x f ,0)(''>x fC 、0)('>x f ,0)(''<x fD 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim 202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解. 18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2009年江苏省普通高校“专转本”统一考试真题
2009年江苏省普通高校“专转本”统一考试真题 一. 单选题(本大题6小题,每小题4分,满分24分)1、已知22lim 32→++=-x x ax b x ,则常,a b 数的值分别为( ) A 、1,2=-=-a b B 、2,0=-=a b C 、1,0=-=a b D 、2,1=-=-a b2、已知函数2232()4-+=-x x f x x ,则2=x 为()f x 的( ) A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、震荡间断点3.设函数0,0()1sin ,0≤⎧⎪=⎨⎪⎩a x f x x x x 在0=x 处可导,则常数a 的取值范围是( ) A 、01a B 、01≤a C 、1a D 、1≥a4.曲线221(1)+=-x y x 的渐近线条数为( ) A 、1 B 、2 C 、3 D 、45.设()ln(31)=+F x x 是函数()f x 的一个原函数,则(21)'+=⎰f x dx ( )A 、164++C xB 、364++C x C 、1128++C xD 、3128++C x 6.设为非零常数,则数项级数21∞=+∑n n a n ( ) A 、条件收敛 B 、绝对收敛 C 、发散 D 、敛散性与a 有关二、填空题(本大题共6小题,每小题4分,共24分)7.已知lim()2→∞=-x x x x C,则常数C = 。
8.设函数20()ϕ=⎰xt x te dt ,则()ϕ'=x 。
9.已知向量设101a →=-(,,),121b →=-(,,)则a b +与a →的夹角为 。
10.设函数(,)=z z x y 由方程21+=xz yz 所确定,则∂∂z x= 。
11. 若幂级数21(0)∞=∑n nn a x a n 的收敛半径为12,则常数a = 12.微分方程2(1)(2)0+--=x ydx y xdy 的通解为 。
三、计算题(本大题共8小题,每小题8分,共64分). 13.求极限30lim sin →-x x x x。
专升本高等数学(一)真题2009年
,其中σ为区域D的面积.由于积分区域D是边长为2的正方形,其面积 为4,可知
. 20.设y=f(x)可导,点x0=2为f(x)的极小值点,且f(2)=3.则曲线y=f(x)
在点(2,3)处的切线方程为______. [答案] y=3. [解题指导] 本题考查的知识点为:极值的必要条件、切线方程. 由于y=f(x)可导,点x0=2为f(x)的极值点,由极值的必要条件知
.因此
解法2
. 17.设z=sin(y-x2),则
=______. [答案] COS(y-x2). [解题指导] 本题考查的知识点为偏导数运算. 求
时,只需将x认定为常量.z=sin(y-x2),因此
. 18.过点M0(1,-1,0)且与平面x-y+3z=1平行的平面方程为______. [答案] (x-1)-(y+1)+3z=0(或x-y+3z=2). [解题指导] 本题考查的知识点为平面方程. 已知平面π1:x-y+3z=1的法线向量n1=(1,-1,3).所求平面π与π1,平
[答案] B [解题指导] 本题考查的知识点为复合函数求导运算,在某点处的导数 值.
故选B. 6.设f(x)为连续函数,
( ). A.f(2x) B.2f(x) C.-f(2x) D.-2f(x) [答案] A [解题指导] 本题考查的知识点为可变上限积分求导:若f(x)为连续函
数,则F'(x)=
=( ). A.2x+1 B.2xy+1 C.x2+1 D.2xy [答案] B.
[解题指导] 本题考查的知识点为偏导数计算. 求 时,只需将y认定为常量,依一元函数求导法则运算.由于z=x2y+x-3, 因此
01—10年江苏专转本数学真题(附答案)
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
历年江苏卷数学 2009年普通高等学校招生全国统一考试(江苏卷)数学试题及详细解答
绝密★启用前2009年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题参考公式:样本数据12,,,n x x x L 的方差221111(),n n i i i i s x x x x n n ===-=∑∑其中一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位置........上.. 1.若复数12429,69,z i z i =+=+其中i 是虚数单位,则复数12()z z i -的实部为 ▲ 。
【解析】考查复数的减法、乘法运算,以及实部的概念。
-202.已知向量a r 和向量b r 的夹角为30o,||2,||3a b ==r r ,则向量a r 和向量b r 的数量积a b ⋅r r = ▲。
【解析】 考查数量积的运算。
3233a b ⋅=⋅⋅=r r3.函数32()15336f x x x x =--+的单调减区间为 ▲ . w.w.w.k.s.5.u.c.o.m【解析】 考查利用导数判断函数的单调性。
2()330333(11)(1)f x x x x x '=--=-+,由(11)(1)0x x -+<得单调减区间为(1,11)-。
亦可填写闭区间或半开半闭区间。
注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
江苏省专转本高数真题及答案
江苏省 2013 年普通高校“专转本”选拔考试高等数学 试题卷(二年级)1、本试卷分为试题卷和答题卡两部分,试题卷共 3 页,全卷满分 150 分,考试时间 120 分钟.2、必须在答题卡上作答,作答在试题卷上无效。
作答前未必将自己的姓名和准考证号准确清晰地填在试题卷和答题卡上的指定位置。
3、考试结束时,须将试题卷和答题卡一并交回。
(本大题共 6 小题,每小题 4 分,满分 24 分。
在下列每小题中,选出一个正确答案,请在答题卡上将所选项的字母标号涂黑) 1、当 x 0时,函数 f (x) ln(1 x) x 是函数 g(x) x 2的 ( )2、曲线y22x x 的渐近线共有 ( )x 23x 2A. 1 条B. 2 条C. 3 条D. 4 条x0,则点 x 0 是函数 f (x)的x01dy4、设 y f ( ) ,其中 f 具有二阶导数,则2 xdx1 121 1 121 A.2 f ( )3 f ( ) B.4 f ( ) 3 f ( )x xx x x xx x 1 121 1 121 C. 2 f ( ) 3 f ( ) D. 4 f ( ) 3 f ( )注意事项: A. 高阶无穷小 B. 低阶无穷小C. 同阶无穷小D. 等价无穷小3、已知函数 f(x)sin 2x x x1x1A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、连续点x xx xx xx x5、下列级数中收敛的是6、已知函数f (x) 在点 x 1 处连续,且lim f(x)x 1x 21切线方程为A 、 n1 2 n1 nn B 、n 1(n 1)C 、n!12nD 、 n n 1 3n1 1 ,则曲线f(x)在点 (1,f (1))处的A. y x 1B. y 2x 2C. y 3x 3D.二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)A(1,1,1),B(2,3,4), C(3,4,5) ,则 ABC 的面积为▲111、设 lim( a x)xe ,则常数 a ▲x0a x2n2 x n的收敛域为▲ n1 n8 小题,每小题 8 分,共 64 分)13 、求极限 lim e x 1x 0ln(1 x) x14 、设函数 z(x, y) 由方程 z 33xy 3z1 所确定,求2dz 及2.x15 、求不定积分 2x cos2xdx . 16 、计算定积分 2 dx2 4 x 217 、设函数 z 2 2xf(x ,e 3y) ,其中函数 f具有二阶连续偏导数,求 yx18 、 已知直线 yz 3y z0 平面 0x上, 又知直线 y 3tt 与平面 平行, 求平面 的 方程. 19 、已知函数f (x)是一阶微分方程2tdy y 满 y(0) 1 的特解, 求二阶常系数非齐次线性dxy 4x 47、设函数 f (x)xsin 1xx 0 在点 x 0 处连续,则常数 a ▲8、已知空间三点 x 9、设函数 y y(x) 由参数方程 y t 2t 3 1d 2所确定,则 dyx110、设向量a, b 互相垂直,且 a 3, b 2, ,则a 2 b12 、幂级数微分方程y 3y 2y f (x)的通解.20 、计算二重积分xdxdy ,其中D 是由曲线y 4 x2(x 0) 与三条直线 Dy x, x 3, y 0 所围成的平面闭区域.四、综合题(本大题共2 小题,每小题10 分,共 20 分)21、设平面图形 D 由曲线x 2 y,y x 与直线y 1 围成,试求:( 1)平面图形 D 的面积;( 2)平面图形 D 绕x 轴旋转一周所形成的旋转体的体积.x2 1 122、已知F(x) (9t35t2)dt是函数f (x) 的一个原函数,求曲线y f(x) 的凹凸区间与拐点.五、证明题(本大题共2 小题,每小题9 分,共 18 分)223、证明:当x 1 时,(1 ln x)2 2x 1 .abb24、设函数f(x)在[a,b] 上连续,证明:函数f(x)dx 2[ f(x) f(a b x)]dx .aa江苏省 2013 年普通高校“专转本”统一考试等数学(二年级) 试卷答案6 小题,每小题 4 分,共 24 分) B 4、B 5、D 6、A6 小题,每小题 4 分,共 24 分)31110 、 2 11 、 y xln x cx 12 、 [ , ) 4 228 小题,每小题 8 分,共 64 分)xx x e e xe12 1 1x sin 2x xcos2x sin2x C 22416、令 x 2sin t,dx 2costdt,x 0,t 0;x 2,t ,213 、原式= lim xe x ln(1 x) x 0 x ln(1 x) x e lim x0 ln (1 2x x ) xe lim x0x xe 1 1x 2x zx 3y y z F y 3z 2 3 1 z 2 , y F z 3x x 3z 2 3 1 z 2 d z d x x1 z2 d y 2 z 2 x15、( z )x ( y 2 1zy( 2z) z 2yz y 2 x 1z 22 22 (1 z ) (1 z ) 2y 2z (1 z 2)32 1 2 12 12x cos2xdx x d sin 2x x sin 2x xsin 2xdx x sin 2x 22 2 xd cos2x 2 一、选择题(本大题共1、 C 2 、 C 3 7、 0 8 、6 9三、计算题(本大 1 (1 x)*2 3x, F z 3z 23 1 x 2sin 2x 1 xcos2x cos2xd x则原式 = 2cost 2dt 02 2costcost 2dt 01 cost 2t 2cos 1122t dt 02(1 2t )dt2cos2cos21dttan t 22z2x 3yyx2x 3y 2x 3y 2x 3y( f 21 2x f 22 2e ) 3e 6e f 218、 直 线 方 向 向 量 S 1 (1, 1,1) (1, 3, 1)(4, 2, 2), S 2 ( 3,1,2), 平 面 的 法 向 量(6, 2,10), 在第一条直线上任取一点(1,1,1),该点也在平dy 1 1 19、 由 y 得 dy dx, dy dx y yy(0) 1 得 C 1, 所以 y e x ,即 y 3y 2y e x , r 2 3r 2 0,r 1 1,r 2 2,齐次方程的通解为 Y C 1e xC 2e 2x . 令特解为 y xAe x , yy Ae x Ae x xAe x , 代入原方程得: Ae x e x, A 1 ,所以通解为 y Y C 1e x C 2e 2x xex41 428sin ) (27 tan 8sin ) 903 4 432 小题,每小题 10 分,共 20 分)1 (2 y y 2)dy (2 2 y 2 1y 3)得 x 1 , 另外 x 0为二导不存在的点, 通过列表分析得: 在 ( ,0),(1,拐点为 (0,0),(1,8) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分) 1、已知32lim 22=-++→x b ax x x ,则常数ba ,的取值分别为( )A 、2,1-=-=b aB 、0,2=-=b aC 、0,1=-=b aD 、1,2-=-=b a2、已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、震荡间断点3、设函数⎪⎩⎪⎨⎧>≤=0,1sin 0,0)(x x x x x f α在点0=x 处可导,则常数α的取值范围为( ) A 、10<<α B 、10≤<αC 、1>αD 、1≥α 4、曲线2)1(12-+=x x y 的渐近线的条数为( ) A 、1B 、2C 、3D 、45、设)13ln()(+=x x F 是函数)(x f 的一个原函数,则=+⎰dx x f)12('( ) A 、C x ++461B 、C x ++463C 、C x ++8121D 、C x ++81236、设α为非零常数,则数项级数∑∞=+12n n n α( ) A 、条件收敛 B 、绝对收敛 C 、发散 D 、敛散性与α有关二、填空题(本大题共6小题,每小题4分,满分24分) 7、已知2)(lim =-∞→xx Cx x ,则常数=C . 8、设函数dt te x x t ⎰=20)(ϕ,则)('x ϕ= .9、已知向量)1,0,1(-=→a ,)1,2,1(-=→b ,则→→+b a 与→a 的夹角为 . 10、设函数),(y x z z =由方程12=+yz xz 所确定,则xz∂∂= . 11、若幂函数)0(12>∑∞=a x na nn n 的收敛半径为21,则常数=a .12、微分方程0)2()1(2=--+xdy y ydx x 的通解为 .三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限:xx x x sin lim 30-→14、设函数)(x y y =由参数方程⎩⎨⎧-+=+=32)1ln(2t t y t x 所确定,,求22,dx yd dx dy . 15、求不定积分:⎰+dx x 12sin .16、求定积分:⎰-10222dx xx .17、求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. 18、计算二重积分⎰⎰Dyd σ,其中}2,2,20),{(22≥+≤≤≤≤=y x y x x y x D .19、设函数),(sin xy x f z =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.20、求微分方程x y y =-''的通解.四、综合题(本大题共2小题,每小题10分,满分20分) 21、已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间]3,2[-上的最大值与最小值.22、设1D 是由抛物线22x y =和直线0,==y a x 所围成的平面区域,2D 是由抛物线22x y =和直线2,==x a x 及0=y 所围成的平面区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V . (2)求常数a 的值,使得1D 的面积与2D 的面积相等.五、证明题(本大题共2小题,每小题9分,满分18分)23、已知函数⎩⎨⎧≥+<=-0,10,)(x x x e x f x ,证明函数)(x f 在点0=x 处连续但不可导.24、证明:当21<<x 时,32ln 42-+>x x x x .2009年江苏省普通高校“专转本”统一考试高等数学参考答案 1、A 2、B 3、C 4、B 5、D 6、C 7、2ln 8、xxe249、3π 10、yxz z +-22 11、2 12、C y y x x +-=+ln 221ln 213、6cos 13lim sin lim2030=-=-→→xx x x x x x ,. 14、dt t dy dt tdx )22(,11+=+=,2)1(211)22(+=++=t dt tdt t dx dy ,222)1(411)1(4+=++==t dt tdt t dx dx dyddx y d .15、令21,122-==+t x t x ,dt t t t t td tdt t dx x ⎰⎰⎰⎰+-=-=⋅=+cos cos cos sin 12sinC x x x C t t t +++++-=++-=12sin 12cos 12sin cos16、令θsin 2=x ,当0,0==θx ;当4,1πθ==x .21404)2sin 21()2cos 1(cos 2cos 2sin 224421022-=-=-==-⎰⎰⎰ππθθθθθθθθππd d dx x x17、已知直线的方向向量为)1,2,3(0=s ,平面的法向量为)1,1,1(0=n .由题意,所求平面的法向量可取为)1,2,1(111123)1,1,1()1,2,3(00-==⨯=⨯=kj in s n .又显然点)2,1,0(在所求平面上,故所求平面方程为0)2(1)1)(2()1(1=-+--+-z y x ,即02=+-z y x . 18、⎰⎰⎰⎰⎰⎰⎰-===242cos 222242)sin 22csc 8(31sin sin ππθππθθθρρθθθρθρσd d d d d yd DD242)cos 22cot 8(31=+-=ππθθ19、y f x f x z ⋅+⋅=∂∂'2'1cos ;''22''12'22cos xyf f x x f yx z +⋅+=∂∂∂ 20、积分因子为.1)(2ln 22xeex xdx x==⎰=--μ 化简原方程22x y xy +=,为.2x xy dx dy =-在方程两边同乘以积分因子21x ,得到.1232xx y dx x dy =- 化简得:.1)(2xdx y x d =- 等式两边积分得到通解⎰⎰=-.1)(2dx xdx y x d 故通解为C x x x y 22ln +=21、(1)函数)(x f 的定义域为R ,33)(2'-=x x f ,令0)('=x f 得1±=x ,函数)(x f 的单调增区间为),1[,]1,(∞+--∞,单调减区间为]1,1[-,极大值为3)1(=-f ,极小值为1)1(-=f .(2)x x f 6)(''=,令0)(''=x f ,得0=x ,曲线)(x f y =在]0,(-∞上是凸的,在),0[∞+上是凹的,点)1,0(为拐点.(3)由于3)1(=-f ,1)1(-=f ,19)3(=f ,故函数)(x f 在闭区间]3,2[-上的最大值为19)3(=f ,最小值为1)2()1(-=-=f f . 22、(1)420222122a dy x a a V a πππ=-⋅=⎰. )32(54)2(52222a dy x V a-==⎰ππ.(2)).8(322.32232223021a dx x A a dx x A a a -====⎰⎰由21A A =得34=a .23、证(1)因为1lim )(lim 0==-→→--xx x ex f ,1)1(lim )(lim 0=+=++→→x x f x x ,且1)0(=f ,所以函数)(x f 在0=x 处连续。
(2)因为11lim 0)0()(lim 00-=-=---→→--x e x f x f x x x ,111lim 0)0()(lim 00-=-+=--++→→xx x f x f x x ,所以1)0(,1)0(''=-=+-ff . 由于)0()0(''+-≠ff,所以函数)(x f 在0=x 处不可导.24、证 令32ln 4)(2+--=x x x x x f ,则22ln 4)('+-=x x x f ,xx x x f 2424)(''-=-=,由于当21<<x 时,0)(''>x f ,故函数)('x f 在)2,1[上单调增加,从而当21<<x 时0)1()(''=>f x f ,于是函数)(x f 在)2,1[上单调增加,从而当21<<x 时,0)1()(=>f x f ,即当21<<x 时,32ln 42-+>x x x x。