南宁市中考数学试题解析版

合集下载

2023年广西南宁市中考数学试题及参考答案

2023年广西南宁市中考数学试题及参考答案

2023年广西南宁市中考数学试题及参考
答案
一、选择题
1. 一台电视机原价5000元,先降价20%,然后又降价10%,
现在的价格是多少元?
A. 4000元
B. 4400元
C. 4500元
D. 4600元
2. 在一个几何图形中,如果一个角为90°,则这个角是什么角?
A. 顶角
B. 平角
C. 直角
D. 钝角
3. 图1是一个正方形,边长为40厘米。

其中的线段AB为边长的1/5,线段CD为边长的1/3,求线段BE的长度是多少厘米?
![图1](image1.png)
A. 20
B. 15
C. 12
D. 10
二、填空题
1. 某公司制作计划生产个产品,已完成7956个产品的制作,
还剩下____个产品未完成。

2. 某股票第1天涨了5%,第2天下跌了10%,那么第2天的
收盘价相对于第1天的涨跌幅为____。

3. 若a=5、b=3,则a的平方加b的平方等于____。

三、解答题
1. 某超市促销活动,购买3件相同商品可以打折,原价100元,现在以90元的价格销售,如果购买5件相同商品,应付多少元?
2. 现有一条长为28厘米的线段,将它分成3段,比为1:3:4,求第一段的长度是多少厘米?
四、参考答案
一、选择题
1. B
2. C
3. D
二、填空题
1. 4566
2. -4%
3. 34
三、解答题
1. 150元
2. 4厘米
以上是2023年广西南宁市中考数学试题及参考答案。

广西南宁市(六市同城)中考数学真题试题(含解析)

广西南宁市(六市同城)中考数学真题试题(含解析)

h3 3 3 广西南宁市(六市同城)xx 年中考数学真题试题(考试时间:120 分钟 满分:120 分)注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。

2. 答题前,请认真阅读答题卡上的注意事项。

3. 不能使用计算器,考试结束前,将本试卷和答题卡一并交回。

一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A. -3B. 3C. -1D. 1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。

因此-3 的倒数为-1【点评】主要考察倒数的定义2. 下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转 180°后,能与自身重合,那么这个图形就叫做中心对称图形。

【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.3.xx 年俄罗斯世界杯开幕式于 6 月 14 日在莫斯科卢日尼基球场举行,该球场可容纳 81000名观众,其中数据 81000 用科学计数法表示为()A. 81103B.8.1104C.8.1105D. 0.81105【答案】B【考点】科学计数法【解析】81000 8.1104,故选 B【点评】科学计数法的表示形式为a 10n的形式,其中1 a 10,n为整数4.某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】 B【考点】求平均分 【解析】124 10 684【点评】本题考查用折线图求数据的平均分问题5. 下列运算正确的是A. a (a +1)=a 2+1B. (a 2)3=a 5C. 3a 2+a =4a 3D. a 5÷a 2=a 3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项 A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得 a (a +1)=a 2+a ;选项 B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a 2)3=a 6; 选项 C 错误,直接运用整式的加法法则,3a 2 和 a 不是同类项,不可以合并;选项 D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得 a 5÷a 2=a 3. 【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。

南宁市中考数学试题及答案(详细解析版)

南宁市中考数学试题及答案(详细解析版)
直径AB上的一动点,若MN=1,则△PMN周长的最小值为().
(A)4(B)5 (C)6(D)7
答案:C
考点:圆和三角形、轴对称(最短路径)(初二上-轴对称,初三上-圆)。
【海壁分析】关键是找到点M关于AB对称点C,连接CN,则与AB的交点就是我们要找的点P,此时PM+PN最小。ΔPMN的周长最小。
答案:
考点:菱形的性质,反比例函数。(初二下-四边形;初三下-反比例函数)
【海壁分析】这是海壁总结题型中常见的求解析式题型。设菱形的边长为 ,根据菱形的性质,可知A( ),再根据AB// 轴,可知B点的坐( ),因为点A在 上,
所以 ,解得 = ,A( )
答案:
考点:概率(初三上-概率)
【海壁分析】奇数有1、3、5总共3个,所以取出奇数的概率是 。
16.如图7,在正方形ABCD的外侧,作等边△ADE,则 BED的度数是.
答案:
考点:正方形和等边三角形性质。(初二上-轴对称;初二下-四边形)
【海壁分析】这是海壁总结特殊三角形与四边形的经典模型之一,利用正方形四边相等,AB=AD等
答案:A
考点:等腰三角形角度计算(初二上-轴对称)。
8.下列运算正确的是().
(A) (B) (C) (D)
答案:C
考点:幂的乘方、积的乘方,整式和二次根式的化简(初二上-整式乘除,幂的运算;初二下-二次根式)。
9.一个正多边形的内角和为540°,则这个正多边形的每个外角等于().
(A)60°(B)72°(C)90° (D)108°
三、(本大题共2小题,每小题满分6分,共12分)
19.计算: .
原式=1+1-2 1+2=2
考点:零指数幂;负数的乘方;三角函数值;二次根式;实数。(初一上-有理数,初二下-二次根式,初三下-三角函数)

2020年广西南宁市中考数学试题及参考答案(word解析版)

2020年广西南宁市中考数学试题及参考答案(word解析版)

2020年广西南宁市中考数学试题及参考答案与解析(考试时间120分钟,满分120分)第Ⅰ卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.下列实数是无理数的是()A.B.1 C.0 D.﹣52.下列图形是中心对称图形的是()A.B.C.D.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×1064.下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x25.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量6.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.9.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15 B.20 C.25 D.3010.甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣2011.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x>0)于点C,D.若AC=BD,则3OD2﹣OC2的值为()A.5 B.3C.4 D.2第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分.)13.如图,在数轴上表示的x的取值范围是.14.计算:﹣=.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9环以上”的次数15 33 78 158 231 801“射中9环以上”的频率0.75 0.83 0.78 0.79 0.80 0.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是(结果保留小数点后一位).16.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是.17.以原点为中心,把点M (3,4)逆时针旋转90°得到点N,则点N的坐标为.18.如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:﹣(﹣1)+32÷(1﹣4)×2.20.(6分)先化简,再求值:÷(x﹣),其中x=3.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.22.(8分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<85 85≤x<90 90≤x<95 95≤x<1003 4 a 8分析数据:平均分中位数众数92 b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23.(8分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.(10分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B 型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.25.(10分)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=,求的值.26.(10分)如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=﹣2相交于点D,点A 是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A 的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)s关于t的函数解析式为s=,其图象如图2所示,结合图1、2的信息,求出a与b的值;(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC 的面积;若不存在,请说明理由.答案与解析第Ⅰ卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.下列实数是无理数的是()A.B.1 C.0 D.﹣5【知识考点】算术平方根;无理数.【思路分析】无限不循环小数是无理数,而1,0,﹣5是整数,也是有理数,因此是无理数.【解题过程】解:无理数是无限不循环小数,而1,0,﹣5是有理数,因此是无理数,故选:A.【总结归纳】本题考查无理数的意义,准确把握无理数的意义是正确判断的前提.2.下列图形是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解题过程】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【总结归纳】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于889000有6位,所以可以确定n=6﹣1=5.【解题过程】解:889000=8.89×105.故选:C.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2【知识考点】整式的混合运算.【思路分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解题过程】解:A、2x2+x2=3x2,故此选项错误;B、x3•x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;D、2x7÷x5=2x2,正确.故选:D.【总结归纳】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量【知识考点】全面调查与抽样调查.【思路分析】利用全面调查、抽样调查的意义,结合具体的问题情境进行判断即可.【解题过程】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”“调查某批次汽车的抗撞击能力”“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.【总结归纳】本题考查全面调查、抽样调查的意义,在具体实际的问题情境中理解全面调查、抽样调查的意义是正确判断的前提.6.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定【知识考点】根的判别式.【思路分析】先根据方程的一般式得出a、b、c的值,再计算出△=b2﹣4ac的值,继而利用一元二次方程的根的情况与判别式的值之间的关系可得答案.【解题过程】解:∵a=1,b=﹣2,c=1,∴△=(﹣2)2﹣4×1×1=4﹣4=0,∴有两个相等的实数根,故选:B.【总结归纳】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°【知识考点】等腰三角形的性质;作图—基本作图.【思路分析】根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE 的度数.【解题过程】解:∵BA=BC,∠B=80°,∴∠A=∠ACB=(180°﹣80°)=50°,∴∠ACD=180°﹣∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=ACD=65°,∴∠DCE的度数为65°故选:B.【总结归纳】本题考查了作图﹣基本作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.【知识考点】列表法与树状图法.【思路分析】由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.【解题过程】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是=,故选:C.【总结归纳】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15 B.20 C.25 D.30【知识考点】正方形的性质;相似三角形的判定与性质.【思路分析】设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF∥BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.【解题过程】解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴=(相似三角形对应边上的高的比等于相似比),∵BC=120,AD=60,∴AN=60﹣x,∴=,解得:x=40,∴AN=60﹣x=60﹣40=20.故选:B.【总结归纳】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.10.甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣20【知识考点】由实际问题抽象出分式方程.【思路分析】直接利用总时间的差值进而得出等式求出答案.【解题过程】解:因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:﹣=.故选:A.【总结归纳】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶时间是解题关键.11.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【知识考点】勾股定理的应用.【思路分析】画出直角三角形,根据勾股定理即可得到结论.【解题过程】解:过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.【总结归纳】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x >0)于点C,D.若AC=BD,则3OD2﹣OC2的值为()A.5 B.3C.4 D.2【知识考点】一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【思路分析】延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据AC=BD得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【解题过程】解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=(x>0)上,则CE=,DF=.∴BD=BF﹣DF=b﹣,AC=﹣a.又∵AC=BD,∴﹣a=(b﹣),两边平方得:a2+﹣2=3(b2+﹣2),即a2+=3(b2+)﹣4,在直角△ODF中,OD2=OF2+DF2=b2+,同理OC2=a2+,∴3OD2﹣OC2=3(b2+)﹣(a2+)=4.故选:C.【总结归纳】本题考查了反比例函数、一次函数图象上点的坐标特征,勾股定理,正确利用AC =BD得到a,b的关系是解题的关键.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分.)13.如图,在数轴上表示的x的取值范围是.【知识考点】在数轴上表示不等式的解集.【思路分析】根据“小于向左,大于向右及边界点含于解集为实心点,不含于解集即为空心点”求解可得.【解题过程】解:在数轴上表示的x的取值范围是x<1,故答案为:x<1.【总结归纳】本题主要考查在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.14.计算:﹣=.【知识考点】二次根式的加减法.【思路分析】先化简=2,再合并同类二次根式即可.【解题过程】解:=2﹣=.故答案为:.【总结归纳】本题主要考查了二次根式的加减,属于基础题型.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9环以上”的次数15 33 78 158 231 801“射中9环以上”的频率0.75 0.83 0.78 0.79 0.80 0.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是(结果保留小数点后一位).【知识考点】利用频率估计概率.【思路分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解题过程】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为:0.8.【总结归纳】本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.16.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是.【知识考点】规律型:数字的变化类.【思路分析】根据题意可得前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.【解题过程】解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.【总结归纳】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.17.以原点为中心,把点M (3,4)逆时针旋转90°得到点N,则点N的坐标为.【知识考点】坐标与图形变化﹣旋转.【思路分析】如图,根据点M (3,4)逆时针旋转90°得到点N,则可得点N的坐标为(﹣4,3).【解题过程】解:如图,∵点M (3,4)逆时针旋转90°得到点N,则点N的坐标为(﹣4,3).故答案为:(﹣4,3).【总结归纳】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.18.如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质;轨迹.【思路分析】如图,作△CBD的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠DPB =120°,推出B,C,D,P四点共圆,利用弧长公式计算即可.【解题过程】解:如图,作△CBD的外接圆⊙O,连接OB,OD.∵四边形ABCD是菱形,∵∠A=∠C=60°,AB=BC=CD=AD,∴△ABD,△BCD都是等边三角形,∴BD=AD,∠BDF=∠DAE,∵DF=AE,∴△BDF≌△DAE(SAS),∴∠DBF=∠ADE,∵∠ADE+∠BDE=60°,∴∠DBF+∠BDP=60°,∴∠BPD=120°,∵∠C=60°,∴∠C+∠DPB=180°,∴B,C,D,P四点共圆,由BC=CD=BD=2,可得OB=OD=2,∵∠BOD=2∠C=120°,∴点P的运动的路径的长==π.故答案为π.【总结归纳】本题考查菱形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:﹣(﹣1)+32÷(1﹣4)×2.【知识考点】有理数的混合运算.【思路分析】直接利用有理数的混合运算法则计算得出答案.【解题过程】解:原式=1+9÷(﹣3)×2=1﹣3×2=1﹣6=﹣5.【总结归纳】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.20.(6分)先化简,再求值:÷(x﹣),其中x=3.【知识考点】分式的化简求值.【思路分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x的值代入计算可得答案.【解题过程】解:原式=÷(﹣)=÷=•=,当x=3时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.【知识考点】全等三角形的判定与性质;平行四边形的判定.【思路分析】(1)证出BC=EF,由SSS即可得出结论;(2)由全等三角形的性质得出∠B=∠DEF,证出AB∥DE,由AB=DE,即可得出结论.【解题过程】(1)证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)证明:由(1)得:△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE,又∵AB=DE,∴四边形ABED是平行四边形.【总结归纳】本题考查了平行四边形的判定、全等三角形的判定与性质以及平行线的判定等知识;熟练掌握平行四边形的判定,证明三角形全等是解题的关键.22.(8分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<85 85≤x<90 90≤x<95 95≤x<1003 4 a 8分析数据:平均分中位数众数92 b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.【知识考点】用样本估计总体;频数(率)分布表;中位数;众数;统计量的选择.【思路分析】(1)将数据从小到大重新排列,再根据中位数和众数的概念求解可得;(2)用总人数乘以样本中不低于90分的人数占被调查人数的比例即可得;(3)从众数和中位数的意义求解可得.【解题过程】解:(1)将这组数据重新排列为:81,82,83,86,87,88,89,90,90,90,92,93,96,96,98,99,100,100,100,100,∴a=5,b==91,c=100;(2)估计成绩不低于90分的人数是1600×=1040(人);(3)中位数,在被调查的20名学生中,中位数为91分,有一半的人分数都是再91分以上.【总结归纳】考查中位数、众数的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.23.(8分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】(1)过B作PM⊥AB于C,解直角三角形即可得到结论;(2)在Rt△BCM中,解直角三角形求得∠CBM=60°,即可求得∠CBG=45°,BC=40nmile,即可得到结论.【解题过程】解:(1)过B作BM⊥AC于M,由题意可知∠BAM=45°,则∠ABM=45°,在Rt△ABM中,∵∠BAM=45°,AB=40nmile,∴BM=AM=AB=20nmile,∴渔船航行20nmile距离小岛B最近;(2)∵BM=20nmile,MC=20nmile,∴tan∠MBC===,∴∠MBC=60°,∴∠CBG=180°﹣60°﹣45°﹣30°=45°,在Rt△BCM中,∵∠CBM=60°,BM=20nmile,∴BC==2BM=40nmile,故救援队从B处出发沿点B的南偏东45°的方向航行到达事故地点航程最短,最短航程是40 nmile.【总结归纳】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.(10分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h 共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.【知识考点】二元一次方程组的应用;一次函数的应用.【思路分析】(1)1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨,根据题意列出方程即可求出答案.(2)根据题意列出方程即可求出答案.(3)根据a的取值,求出w与a的函数关系,从而求出w的最小值.【解题过程】解:(1)1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨,由题意可知:,解得:,答:1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨.(2)由题意可知:0.4a+0.2b=20,∴b=100﹣2a(10≤a≤45).(3)当10≤a<30时,此时40≤b≤80,∴w=20×a+0.8×12(100﹣2a)=0.8a+960,当a=10时,此时w有最小值,w=968万元,当30≤a≤35时,此时30≤b≤40,∴w=0.9×20a+0.8×12(100﹣2a)=﹣1.2a+960,当a=35时,此时w有最小值,w=918万元,当35<a≤45时,此时10≤b<30,∴w=0.9×20a+12(100﹣2a)=﹣6a+1200当a=45时,w有最小值,此时w=930,答:选购A型号机器人35台时,总费用w最少,此时需要918万元.【总结归纳】本题考查一次函数,解题的关键正确找出题中的等量关系,本题属于中等题型.25.(10分)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=,求的值.。

2021年广西南宁市中考数学试卷(附答案详解)

2021年广西南宁市中考数学试卷(附答案详解)

2021年广西南宁市中考数学试卷(附答案详解)2021年广西南宁市中考数学试卷一、选择题(共12小题,共36.0分)1.下列各数中是有理数的是()A.πB.√2C.3√3D.2.如图是一个几何体的主视图,则该几何体是()A。

B。

C。

D.3.如图,XXX从A入口进入博物馆参观,参观后可从B、C、D三个出口走出,他恰好从C出口走出的概率是()A。

4 B。

3 C。

2 D。

34.我国天问一号火星探测器于2021年5月15日成功着陆火星表面。

经测算,地球跟火星最远距离约xxxxxxxx0千米,其中数据xxxxxxxx0科学记数法表示为()A。

4×109 B。

40×107 C。

4×108 D。

0.4×1095.如图是某市一天的气温随时间变化的情况,下列说法正确的是()A。

这一天最低温度是−4℃B。

这一天12时温度最高C。

最高温比最低温高8℃ D。

时至8时气温呈下降趋势6.下列运算正确的是()A。

π2⋅π3=π5 B。

(π2)3=π5 C。

π6÷π2=π3 D。

3π2−2π=π27.平面直角坐标系内与点π(3,4)关于原点对称的点的坐标是()A。

(−3,4) B。

(−3,−4) C。

(3,−4) D。

(4,3)8.如图,⊙XXX的半径OB为4,ππ⊥ππ于点D,∠πππ=30°,则OD的长是()A。

√2 B。

√3 C。

2 D。

39.一次函数π=2π+1的图象不经过()A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限10.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步。

问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为()A。

{π=2π+9π=3π−2B。

y=2x+9y=3(x-2)C.y=2x-9y=3x-2D.y=2x-9y=3(x-2)11.(2021·广西壮族自治区崇左市·历年真题) 如图,矩形纸片ABCD,A。

2024年广西中考数学真题卷含答案解析

2024年广西中考数学真题卷含答案解析

2024年广西初中学业水平考试数学(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A. B. C. D.2. 端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A. B. C. D.3. 广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A. 90.84910⨯B. 88.4910⨯C. 784.910⨯D. 684910⨯4. 榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是( )A. B. C. D.5. 不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是( )A. 1B. 13 C. 12 D. 236. 如图,2时整,钟表的时针和分针所成的锐角为( )A. 20︒B. 40︒C. 60︒D. 80︒7. 如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A. ()3,0B. ()0,2C. ()3,2D. ()1,28. 激光测距仪L 发出的激光束以5310km s ⨯的速度射向目标M ,s t 后测距仪L 收到M 反射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( )A. 53102d t ⨯= B. 5310d t =⨯ C. 52310d t =⨯⨯ D. 6310d t=⨯9. 已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( )A. 120y y << B. 210y y << C. 120y y << D. 120y y <<10. 如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A. 0B. 1C. 4D. 911. 《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A. 1345x x x ++= B. 100345x x x ++=C. 3451x x x ++= D. 345100x x x ++=12. 如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A 1 B. 2 C. 5 D. 10二、填空题(本大题共6小题,每小题2分,共12分.)13. 已知1∠与2∠为对顶角,135∠=︒,则2∠=______°.14.__.15. 八桂大地孕育了丰富药用植物.某县药材站把当地药市交易的400种药用植物按“草.的本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有______种.16. 不等式7551x x +<+的解集为______.17. 如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为______cm .18. 如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =______m .三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)19 计算:()()2342-⨯+-20. 解方程组:2321x y x y +=⎧⎨-=⎩21. 某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:.进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.22. 如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.23 综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5d d w=+前后.其中d 前、d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?.【(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.24. 如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.25. 课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5-15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.26. 如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M'①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.2024年广西初中学业水平考试数学(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A. B. C. D.【答案】A【解析】【分析】本题考查了温度的比较以及正负数的概念,熟悉掌握概念是解决本题的关键.0℃以下记为负数,0℃以上记为正数,温度都小于0℃时,绝对值最大的,温度最低.【详解】解:∵ 4.6 4.6-=, 3.2 3.2-=,4.6 3.2>,∴ 4.6 3.2 5.88.1-<-<<,∴气温最低的是北京.故选:A .2. 端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A .不是轴对称图形,故不符合题意;B .是轴对称图形,故符合题意;C .不是轴对称图形,故不符合题意;D .不是轴对称图形,故不符合题意;故你:B .3. 广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A. 90.84910⨯B. 88.4910⨯C. 784.910⨯D. 684910⨯【答案】B【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法:()10110,n a a n ⨯≤<为整数,进行表示即可.【详解】解:88490000008.4910=⨯;故选B .4. 榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是()A. B. C. D.【答案】A【解析】【分析】本题考查三视图,根据主视图是从前往后看,得到的图形,进行判断即可.【详解】解:由图可知:几何体的主视图为:故选A.5. 不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A. 1B. 13C. 12D.23【答案】D【解析】【分析】本题考查求概率,直接利用概率公式进行计算即可.【详解】解:从袋子中随机取出1个球,有213+=种等可能的结果,其中取出白球的情况有2种,∴23P=;故选D.6. 如图,2时整,钟表的时针和分针所成的锐角为()A. 20︒B. 40︒C. 60︒D. 80︒【答案】C【解析】【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .7. 如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A. ()3,0 B. ()0,2 C. ()3,2 D. ()1,2【答案】C【解析】【分析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P 的坐标可得出横、纵轴上一格代表一格单位长度,然后观察坐标系即可得出答案.【详解】解:∵点P 的坐标为()2,1,∴点Q 坐标为()3,2,故选:C .8. 激光测距仪L 发出的激光束以5310km s ⨯的速度射向目标M ,s t 后测距仪L 收到M反的射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( )A. 53102d t ⨯= B. 5310d t =⨯ C. 52310d t =⨯⨯ D. 6310d t=⨯【答案】A【解析】【分析】本题考查列函数关系式,熟练掌握路程=速度×时间是解题的关键.根据路程=速度×时间列式即可.【详解】解:55131031022d t t =⨯⨯=⨯⋅,故选:A .9. 已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( )A. 120y y << B. 210y y << C. 120y y << D. 120y y <<【答案】A【解析】【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点()11,M x y ,()22,N x y 在反比例函数图象上,则满足关系式2y x =,横纵坐标的积等于2,结合120x x <<即可得出答案.【详解】解: 点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,∴ 112x y =,222x y =,120x x <<,∴ 10y <,20y >,∴ 120y y <<.故选:A .10. 如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A. 0B. 1C. 4D. 9【答案】D【解析】【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .11. 《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A. 1345x x x ++= B. 100345x x x ++=C. 3451x x x ++= D. 345100x x x ++=【答案】B【解析】【分析】本题考查了一元一次方程的应用,根据“第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱”列方程即可.【详解】解:根据题意,得100345x x x ++=,故选:B .12. 如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A. 1B. 2C. 5D. 10【答案】C【解析】【分析】先证明四边形AECG 是平行四边形,得出AG CE ∥,同理AF BH ∥,则可证四边形MNPQ 是平行四边形,利用平行线分线段成比例可得出DQ PQ =,AM QM =,证明()SAS ADG BAH ≌得出DAG ABH ∠=∠,则可得出90QMN AMB ∠=∠=︒,同理90AQD ∠=︒,得出平行四边形MNPQ 是矩形,证明()AAS ADQ BAM ≌,得出DQ AM =,进而得出DQ AM PQ QM ===,得出矩形MNPQ 是正方形,在Rt ADQ △中,利用勾股定理求出25QM =,然后利用正方形的面积公式求解即可.【详解】解:∵四边形ABCD 是正方形,∴AB BC CD DA ===,AB CD ∥,AD BC ∥,90DAB ABC BCD CDA ∠=∠=∠=∠=︒,∵E ,F ,G ,H 分别为各边中点,∴12CG DG CD AH ===,12AE AB =,∴DG CG AE ==,∴四边形AECG 是平行四边形,∴AG CE ∥,同理DF BH ,∴四边形MNPQ 是平行四边形,∵AG CE ∥,∴1DQ DG PQ CG==,∴DQ PQ =,同理AM QM =,∵DG AH =,90ADG BAH ∠=∠=︒,AD BA =,∴()SAS ADG BAH ≌,∴DAG ABH ∠=∠,∵90DAG GAB ∠+∠=︒,∴90ABH GAB ∠+∠=︒,∴90QMN AMB ∠=∠=︒,同理90AQD ∠=︒,∴平行四边形MNPQ 是矩形,∵90AQD AMB ∠=∠=︒,DAG ABH ∠=∠,AD BA =,∴()AAS ADQ BAM ≌,∴DQ AM =,又DQ PQ =,AM QM =,∴DQ AM PQ QM ===,∴矩形MNPQ 是正方形,在Rt ADQ △中,222AD DQ AQ =+,∴()22252QM QM =+,∴25QM =,∴正方形MNPQ 的面积为5,故选:C .【点睛】本题考查了正方形的判定与性质,全等三角形判定与性质,平行线分线段成比例,勾股定理等知识,明确题意,灵活运用相关知识求解是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13. 已知1∠与2∠为对顶角,135∠=︒,则2∠=______°.【答案】35【解析】【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒,∴2135∠=∠=︒.故答案为:35.14.__.【答案】2(答案不唯一)【解析】【分析】本题考查实数大小比较,估算无理数的大小是解题的关键.大小,再找出符合条件的整数即可.【详解】解:134<<,12∴<<,∴符合条件的数可以是:2(答案不唯一).故答案为:2.15. 八桂大地孕育了丰富的药用植物.某县药材站把当地药市交易的400种药用植物按“草本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有______种.【答案】80【解析】【分析】本题考查了扇形统计图,用400乘以藤本类的百分比即可求解,看懂统计图是解题的关键.【详解】解:由扇形统计图可得,藤本类有40020%80⨯=种,故答案为:80.16. 不等式7551x x +<+的解集为______.【答案】<2x -【解析】的【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x -<-,合并同类项得,24x <-,系数化为1得,<2x -,故答案为:<2x -.17. 如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为______cm .【答案】【解析】【分析】本题考查了平行四边形的判定,菱形的判定和性质,菱形的周长,过点A 作AM BC ⊥于M ,AN CD ⊥于N ,由题意易得四边形ABCD 是平行四边形,进而由平行四边形的面积可得AM AN =,即可得到四边形ABCD 是菱形,再解Rt ADN △可得sin 60AN AD ==︒,即可求解,得出四边形ABCD 是菱形是解题的关键.【详解】解:过点A 作AM BC ⊥于M ,AN CD ⊥于N ,则90AND ∠=︒,∵两张纸条的对边平行,∴AB CD ∥,AD BC ∥,∴四边形ABCD 是平行四边形,又∵两张纸条的宽度相等,∴AM AN =,∵··ABCD S BC AM CD AN == ,∴BC CD =,∴四边形ABCD 是菱形,在Rt ADN △中,60ADN ∠=︒,3cm AN =,∴sin 60AN AD ===︒,∴四边形ABCD的周长为4=,故答案为:18. 如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =______m .【答案】353【解析】【分析】本题考查的是二次函数的实际应用,设抛物线为()254y a x =-+,把点70,4⎛⎫ ⎪⎝⎭,代入即可求出解析式;当0y =时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:()254y a x =-+,把点70,4⎛⎫ ⎪⎝⎭代入得:72544a +=,解得:9100a =-,∴抛物线解析式为:()2954100y x =--+;当0y =时,()29540100x --+=,解得,153x =-(舍去),2353x =,即此次实心球被推出的水平距离OM 为35m 3.故答案为:353三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)19. 计算:()()2342-⨯+-【答案】8-【解析】【分析】本题主要考查了有理数的混合运算.先算乘法和乘方,再算加法即可.【详解】解:原式124=-+8=-.20. 解方程组:2321x y x y +=⎧⎨-=⎩【答案】212x y =⎧⎪⎨=⎪⎩【解析】【分析】本题考查的是二元一次方程组的解法,直接利用加减消元法解方程组即可.【详解】解:2321x y x y +=⎧⎨-=⎩①②,+①②得:24=x ,解得:2x =,把2x =代入①得:12y =,∴方程组的解为:212x y =⎧⎪⎨=⎪⎩.21. 某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.【答案】(1)众数为1、中位数为2、平均数为1.9(2)估计为“优秀”等级的女生约为50人【解析】【分析】(1)根据平均数、中位数、众数的定义求解即可;(2)算出样本的优秀率,再估计总体的优秀人数.【小问1详解】解:女生进球数的平均数为()1011826334151 1.920⨯⨯+⨯+⨯+⨯+⨯+⨯=(个),女生进球数的中位数是第10个和第11个成绩的平均数,即2222+=(个),女生进球个数为1个人最多,故众数是1个;【小问2详解】解:3112005020++⨯=(人),答:估计为“优秀”等级的女生约为50人.的【点睛】本题考查了中位数,众数,平均数,用样本件估计总体,掌握中位数,平均数、众数的定义以及优秀率的求法是解题的关键.22. 如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.【答案】(1)见详解(2)【解析】【分析】(1)分别以A 、B 为圆心,大于12AB 为半径画弧,分别交AB ,AC 于点D ,E ,作直线DE ,则直线l 即为所求.(2)连接BE ,由线段垂直平分线的性质可得出BE AE =,由等边对等角可得出45EBA A ∠=∠=︒,由三角形内角和得出90BEA ∠=︒,则得出ABE 为等腰直角三角形,再根据正弦的定义即可求出BE 的长.小问1详解】解:如下直线l 即为所求.【小问2详解】连接BE如下图:【∵DE 为线段AB 的垂直平分线,∴BE AE =,∴45EBA A ∠=∠=︒,∴90BEA ∠=︒,∴ABE 为等腰直角三角形,∴sin BE A AB ==∴8BE AB ===【点睛】本题主要考查了作线段的垂线平分线,线段的垂线平分线的性质,等腰三角形的性质,三角形内角和定理以及正弦的定义.掌握线段的垂直平分线的性质是解题的关键.23. 综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg 水.浓度关系式:0.50.5d d w=+前后.其中d 前、d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水. (2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习【解析】【分析】本题考查的是分式方程的实际应用,求解代数式的值,理解题意是关键;(1)把0.01%d =后,0.2%d =前代入0.50.5d d w =+前后, 再解方程即可;(2)分别计算两次漂洗后的残留洗衣液浓度,即可得到答案;(3)根据(1)(2)的结果得出结论即可.【小问1详解】解:把0.01%d =后,0.2%d =前代入0.50.5d d w=+前后得.0.50.2%0.01%05w =+⨯,解得9.5w =.经检验符合题意;∴只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水.【小问2详解】解:第一次漂洗:把2kg w =,0.2%d =前代入0.50.5d d w =+前后,∴0.50.2%0.04%0.52d ⨯==+后,第二次漂洗:把2kg w =,0.04%d =前代入0.50.5d d w =+前后,∴0.50.04%0.008%0.52d ⨯==+后,而0.008%0.01%<,∴进行两次漂洗,能达到洗衣目标;【小问3详解】解:由(1)(2)的计算结果发现:经过两次漂洗既能达到洗衣目标,还能大幅度节约用水,∴从洗衣用水策略方面来讲,采用两次漂洗的方法值得推广学习.24. 如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.【答案】(1)证明见解析 (2)证明见解析(3)10【解析】【分析】(1)先证明BD CD =,DE EF =,再证明AEF CED △≌△,可得AF CD =,F EDC ∠=∠,再进一步解答即可;(2)如图,连接AD ,证明AD BC ⊥,可得AD 过圆心,结合∥A F B D ,证明AF AD ⊥,从而可得结论;(3)如图,过B 作BQ AC ⊥于Q ,连接OB ,设BQ 3x =,则4AQ x =,可得CQ AC AQ x =-=,求解x ==5AB x ==18AD ==,设O 半径为r ,可得18OD r =-,再利用勾股定理求解即可.【小问1详解】证明:∵点D ,E 分别是BC ,AC 的中点,∴BD CD =,AE CE =,又∵AEF CED ∠=∠,DE EF =,∴AEF CED △≌△,∴AF CD =,F EDC ∠=∠,∴AF BD =,∥A F B D ,∴四边形ABDF 是平行四边形;【小问2详解】证明:如图,连接AD ,∵AB AC =,D 为BC 中点,∴AD BC ⊥,∴AD 过圆心,∵∥A F B D ,∴AF AD ⊥,而OA 为半径,∴AF 为O 的切线;【小问3详解】解:如图,过B 作BQ AC ⊥于Q ,连接OB ,∵3tan 4BAC ∠=,∴34BQAQ =,设BQ 3x =,则4AQ x =,∴5AC AB x ===,∴CQ AC AQ x =-=,∴BC ==,12=,∴x ==,∴5AB x ==∵AB AC =,12BC =,AD BC ⊥,∴6BD CD ==,∴18AD ==,设O 半径为r ,∴18OD r =-,∴()222186r r =-+,解得:10r =,∴O 的半径为10.【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的性质,勾股定理的应用,平行四边形的判定与性质,切线的判定,垂径定理的应用,做出合适的辅助线是解本题的关键.25. 课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5-15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.【答案】(1)①287y x x =--;②当4x =时,y 有最小值为23-(2)见解析(3)正确,114-【解析】【分析】本题考查二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解题的关键:(1)①把4a =-代入解析式,写出函数解析式即可;②将一般式转化为顶点式,进行求解即可;(2)将一般式转化为顶点式,根据二次函数的性质进行解释即可;(3)将一般式转化为顶点式,表示出y 的最大值,再利用二次函数求最值即可.【详解】解:(1)①把4a =-代入223y x ax a =++-,得:()()22244387y x x x x =+⋅-+--=--;∴287y x x =--;②∵()2287423y x x x =--=--,∴当4x =时,y 有最小值为23-;(2)∵()222233y x ax a x a a a =+-+-=++-,∵抛物线的开口向上,∴当x a =-时,y 有最小值;∴甲的说法合理;(3)正确;∵()222233y x ax a x a a a =+-+-=++-,∴当x a =-时,y 有最小值为23a a -+-,即:22min 111324y a a a ⎛⎫=-+-=--- ⎪⎝⎭,∴当12a =时,min y 有最大值,114-.26. 如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.为(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M'①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.【答案】(1)见解析(2)①180α=︒;②120︒或240︒【解析】【分析】(1)利用线段垂直平分线的性质得出OA OC =,利用等边对等角得出A ACO ∠=∠,结合角平分线定义可得出A ACO OCB ∠=∠=∠,最后根据相似三角形的判定即可得证;(2)先求出30A ACO OCB ∠=∠=∠=︒,然后利用含30︒的直角三角形性质求出2BO =,4AO =,2MO =,利用勾股定理求出AM =AC =A C ''中点M ',连接OM ',MM ',作MN A C ''⊥于N ,由旋转的性质知AOC A OC '' ≌,OM '为OM 旋转α所得线段,则OM A C '''⊥,A C AC ''==,2OM OM '==,根据点到直线的距离,垂线段最短知MN MM '≤,三角形三边关系得出MN OM OM '≤+,故当M 、O 、M '三点共线,且点O 在线段MM '时,MN 取最大值,最大值为224+=,此时180α=︒,最后根据三角形面积公式求解即可;②先利用三角形三边关系判断出MC A C '''<,MA A C '''<,则当A MC ''△为直角三角形时,只有90A MC ''∠=︒,然后分A 和C '重合,A '和C 重合,两种情况讨论即可.【小问1详解】证明:∵MO 垂直平分AC ,∴OA OC =,∴A ACO ∠=∠,∵CO 平分ACB∠∴ACO OCB ∠=∠,∴A OCB ∠=∠,又B B ∠=∠;∴ABC CBO △∽△;【小问2详解】解:①∵90B Ð=°,∴90A ACO OCB ∠+∠+∠=︒,∴30A ACO OCB ∠=∠=∠=︒,∴1122BO CO AO ==,又6AB AO BO =+=,∴2BO =,4AO =,∵MO 垂直平分AC ,∴122OM AO ==,2AC AM =,∴AM ==,∴AC =,取A C ''中点M ',连接OM ',MM ',作MN A C ''⊥于N ,由旋转的性质知AOC A OC '' ≌,OM '为OM 旋转α所得线段,∴OM A C '''⊥,A C AC ''==,2OM OM '==,根据垂线段最短知MN MM '≤,又MM OM OM ≤'+',∴当M 、O 、M '三点共线,且点O 在线段MM '时,MN 取最大值,最大值为224+=,此时180α=︒,∴A MC ''△面积的最大值为142⨯=;②∵246MC MO OC ''≤+=+=,A C ''=,∴MC A C '''<,同理MA A C '''<∴A MC ''△为直角三角形时,只有90A MC ''∠=︒,当A 和C '重合时,如图,∵AOC A OA'≌∴30A CAO '∠=∠=︒,30OAA OCA '∠=∠=︒,∴120A OA '∠=︒,∵90AMO ∠=︒,∴60AOM ∠=︒,∴180A OA AOM '∠+∠=︒,∴A '、O 、M 三点共线,∴A MC ''△为直角三角形,此时旋转角120A OA α'=∠=︒;当A '和C 重合时,如图,同理30OCC CAO '∠=∠=︒,30C OCA '∠=∠=︒,∴120COC '∠=︒,∵AO CO =,60AOM ∠=︒∴60COM AOM ∠=∠=︒,∴180COM COC '∠+∠=︒,∴C '、O 、M 三点共线,又90AMO ∠=︒∴A MC ''△为直角三角形,此时旋转角360240A OA α'=︒-∠=︒;综上,旋转角α的度数为120︒或240︒时,A MC ''△为直角三角形.【点睛】本题考查了线段垂直平分线的性质,含30︒的直角三角形的性质,勾股定理,旋转的性质等知识,明确题意,正确画出图形,添加辅助线,合理分类讨论是解题的关键.。

广西南宁市(六市同城)中考数学真题试题(含解析)

广西南宁市(六市同城)中考数学真题试题(含解析)

--精品3 3 3 广西南宁市(六市同城)xx 年中考数学真题试题(考试时间:120 分钟 满分:120 分)注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。

2. 答题前,请认真阅读答题卡上的注意事项。

3. 不能使用计算器,考试结束前,将本试卷和答题卡一并交回。

一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A. -3B. 3C. -1D. 1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。

因此-3 的倒数为-1【点评】主要考察倒数的定义2. 下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转 180°后,能与自身重合,那么这个图形就叫做中心对称图形。

【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.3.xx 年俄罗斯世界杯开幕式于 6 月 14 日在莫斯科卢日尼基球场举行,该球场可容纳 81000名观众,其中数据 81000 用科学计数法表示为()A. 81103B. 8.1104C. 8.1105D. 0.81105【答案】B【考点】科学计数法【解析】81000 8.1104,故选 B【点评】科学计数法的表示形式为a 10n的形式,其中1 a 10,n为整数4.某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】 B【考点】求平均分 【解析】124 10 684【点评】本题考查用折线图求数据的平均分问题5. 下列运算正确的是A. a (a +1)=a 2+1B. (a 2)3=a 5C. 3a 2+a =4a 3D. a 5÷a 2=a 3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项 A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得 a (a +1)=a 2+a ;选项 B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a 2)3=a 6; 选项 C 错误,直接运用整式的加法法则,3a 2 和 a 不是同类项,不可以合并; 选项 D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得 a 5÷a 2=a 3. 【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。

广西南宁市2021年中考[数学]考试真题与答案解析

广西南宁市2021年中考[数学]考试真题与答案解析

广西南宁市2021年中考[数学]考试真题与答案解析一、选择题1.下列各数是有理数的是A. B.C. D. 02.如图是一个几何体的主视图,则该几何体是A.B.C.D.3.如图,小明从A入口进入博物馆参观,参观后可从B,C,D三个出口走出,他恰好从C出口走出的概率是A.B.C.D.4.我国天问一号火星探测器于2021年5月15日成功着陆火星表面经测算,地球跟火星最远距离约400000000千米,其中数据400000000科学记数法表示为A. B. C. D.5.如图是某市一天的气温随时间变化的情况,下列说法正确的是A. 这一天最低温度是B. 这一天12时温度最高C. 最高温比最低温高D. 0时至8时气温呈下降趋势6.下列运算正确的是A. B.C. D.7.平面直角坐标系内与点关于原点对称的点的坐标是A. B. C. D.8.如图,的半径OB为4,于点D,,则OD的长是A.B.C. 2D. 39.一次函数的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.九章算术是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为A.B.C.D.11.如图,矩形纸片ABCD,AD::1,点E,F分别在AD,BC上,把纸片如图沿EF折叠,点A,B的对应点分别为,,连接并延长交线段CD于点G,则的值为A.B.C.D.12.定义一种运算:,则不等式的解集是A. 或B.C. 或D. 或二、填空题13.要使分式有意义,则x的取值范围是______.14.分解因式:______.15.如图,从楼顶A处看楼下荷塘C处的俯角为,看楼下荷塘D处的俯角为,已知楼高AB为30米,则荷塘的宽CD为______ 米结果保留根号.16.为了庆祝中国共产党成立100周年,某校举行“党在我心中”演讲比赛,评委将从演讲内容,演讲能力,演讲效果三个方面给选手打分,各项成绩均按百分制计,然后再按演讲内容占,演讲能力占,演讲效果占,计算选手的综合成绩百分制小婷的三项成绩依次是84,95,90,她的综合成绩是______ .17.如图,从一块边长为2,的菱形铁片上剪出一个扇形,这个扇形在以A为圆心的圆上阴影部分,且圆弧与BC,CD分别相切于点E,F,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径是______ .18.如图,已知点,,两点,在抛物线上,向左或向右平移抛物线后,C,D的对应点分别为,当四边形的周长最小时,抛物线的解析式为______ .三、解答题19.计算:.20.解分式方程:.21.如图,四边形ABCD中,,,连接AC.求证:≌;尺规作图:过点C作AB的垂线,垂足为不要求写作法,保留作图痕迹;在的条件下,已知四边形ABCD的面积为20,,求CE的长.22.某水果公司以10元的成本价新进2000箱荔枝,每箱质量5kg,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取20箱,去掉损坏荔枝后称得每箱的质量单位:如下:整理数据:质量数量箱217a31分析数据:平均数众数中位数b c直接写出上述表格中a,b,c的值.平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这2000箱荔枝共损坏了多少千克?根据中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本结果保留一位小数?23.【阅读理解】如图,,的面积与的面积相等吗?为什么?解:相等在和中,分别作,,垂足分别为E,F.,.,四边形AEFD是平行四边形,.又,..【类比探究】如图,在正方形ABCD的右侧作等腰,,,连接AE,求的面积.解:过点E作于点F,连接AF.请将余下的求解步骤补充完整.【拓展应用】如图,在正方形ABCD的右侧作正方形CEFG,点B,C,E 在同一直线上,,连接BD,BF,DF,直接写出的面积.24.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A 作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线:近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线:运动.当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线的函数解析式不要求写出自变量x的取值范围;在的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b的取值范围.25.如图,在中,于点D,,,,点E是AD上一动点不与点A,D重合,在内作矩形EFGH,点F在DC上,点G,H 在AC上,设,连接BE.当矩形EFGH是正方形时,直接写出EF的长;设的面积为,矩形EFGH的面积为,令,求y关于x的函数解析式不要求写出自变量x的取值范围;如图,点是中得到的函数图象上的任意一点,过点P的直线l分别与x轴正半轴,y轴正半轴交于M,N两点,求面积的最小值,并说明理由.26.如图,已知AD,EF是的直径,,与▱OABC的边AB,OC分别交于点E,M,连接CD并延长,与AF的延长线交于点G,.求证:CD是的切线;若,求的值;在的条件下,若的平分线BH交CO于点H,连接AH交于点N,求的值.答案解析1.D答案解析:0是有理数.故选:D.2.C答案解析:由该几何体的主视图可知,该几何体是.故选:C.3.B答案解析:画树状图如下:由树状图知,共有6种等可能结果,其中从C出口出来的有2种结果,所以恰好在C出口出来的概率为,故选:B.4.C答案解析:,故选:C.5.A答案解析:从图象可以看出,这一天中的最高气温是大概14时是,最低气温是,从0时至4时,这天的气温在逐渐降低,从4时至8时,这天的气温在逐渐升高,故A正确,B,D错误;这一天中最高气温与最低气温的差为,故C错误;故选:A.6.A答案解析:,故此选项符合题意;B.,故此选项不合题意;C.,故此选项不合题意;D.,不是同类项,无法合并,故此选项不合题意.故选:A.直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法除法运算法则7.B答案解析:点关于中心对称的点的坐标为.故选:B.8.C答案解析:连接OA,,,,,为等边三角形,,,故选:C.9.D答案解析:,图象过一三象限,,图象过第二象限,直线经过一、二、三象限,不经过第四象限.故选:D.10.B答案解析:设共有y人,x辆车,依题意得:.故选:B.11.A答案解析:过点F作于点H,设AG与EF交于点O,如图所示:由折叠A与对应易知:,,,,即,又,∽,,故选:A.12.C答案解析:由新定义得或,解得或故选:C.13.答案解析:当分母,即时,分式有意义.故答案为:.14.答案解析:.故答案为:.15.答案解析:由题意可得,,,,在中,,,在中,,,,故答案为:16.89分答案解析:小婷的综合成绩为分,故答案为:89分.17.答案解析:连接AC、AE,如图,四边形ABCD为菱形,,,为等边三角形,圆弧与BC相切于E,,,,设圆锥的底面圆半径为r,根据题意得,解得,即圆锥的底面圆半径为.故答案为.18.答案解析:过C、D作x轴平行线,作B关于直线的对称点,过作,且,连接AE交直线于,过作,交直线于,如图:作图可知:四边形和四边形是平行四边形,,,且,,且,四边形是平行四边形,,关于直线的对称点,,,,即此时转化到一条直线上,最小,最小值为AE的长度,而AB、CD为定值,此时四边形的周长最小,关于直线的对称点,,四边形是平行四边形,,,,设直线AE解析式为,则,解得,直线AE解析式为,令得,,,,即将抛物线向右移个单位后,四边形的周长最小,此时抛物线为,故答案为:.19.解:原式.20.解:去分母得:,解得:,检验:当时,,分式方程的解为.21.证明:,,在和中,,≌;解:过点C作AB的垂线,垂足为E,如图:解:由知:≌,四边形ABCD的面积为20,,,,.22.解:,分析数据:样本中,出现的次数最多;故众数b为,将数据从小到大排列,找最中间的两个数为,,故中位数,,,;选择平均数,这2000箱荔枝共损坏了千克;元,答:该公司销售这批荔枝每千克定为元才不亏本.23.解:【类比探究】过点E作于点F,连接AF,四边形ABCD是正方形,,,,,,,,,;【拓展应用】如图,连接CF,四边形ABCD和四边形CGFE都是正方形,,,,,,.【解析】【类比探究】由等腰三角形的性质可得,,可证,可得,由三角形的面积公式可求解;【拓展应用】连接CF,由正方形的性质可得,可得,可得,由三角形的面积公式可求解.本题是四边形综合题,考查了正方形的性质,等腰三角形的性质,三角形面积公式等知识,能掌握和运用“阅读理解”中的知识是解题的关键.24.解:由题意可知抛物线:过点和,将其代入得:,解得:,抛物线的函数解析式为:;设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意得:,整理得:,解得:,舍去,故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米;:,当时,运动员到达坡顶,即,解得:.【解析】根据题意将点和代入:求出b、c的值即可写出的函数解析式;设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意得:,解出m即可;求出山坡的顶点坐标为,根据题意即,再解出b的取值范围即可.本题考查二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.25.解:设.,,,,,,,,四边形EFGH是正方形,,,,,,,,,,,.,,,,,,.如图中,由可知点P在上,当OP最小时,点P在第一象限的角平分线时,此时,当直线时,的面积最小,此时,的面积的最小值.【解析】设证明,构建方程求解即可.解直角三角形可得,,利用三角形面积公式,矩形的面积公式求解即可.如图中,由可知点P在上,当OP最小时,点P在第一象限的角平分线时,此时,当直线时,的面积最小.本题属于四边形综合题,考查了矩形的性质正方形的性质,等腰直角三角形的判定和性质,反比例函数的性质等知识,解题的关键是学会利用参数解决问题,学会寻找特殊位置解决最值问题,属于中考常考题型.26.证明:四边形OABC是平行四边形,,,,,,是的直径,,,,,,,,是的切线;连接DF,如图:是的直径,,是的切线,,,又,∽,,,,,解得或舍去,在中,,;延长CO交AF于K,连接MN、MF,如图:是直径,,,,即,,,,,中,,,,且,,,即,,即,解得,平分,,,,,,在中,,而,且,∽,.【解析】由,得,根据EF是的直径,可得,且已知,即可证明,CD是的切线;连接DF,先证明∽,,由,,得,在中,,即可求出;延长CO交AF于K,连接MN、MF,由,可得,即,而,,在中,,再证,可得,,根据BH平分,,得,从而,,,在中,,最后证明∽,即可得.本题考查圆的综合应用,涉及圆切线的判定、相似三角形的判定和性质、勾股定理等知识,解题的关键是观察、构造相似三角形,把所求线段的比转化为两个相似三角形其它边的比,。

广西南宁市兴宁区达标名校2024届中考联考数学试卷含解析

广西南宁市兴宁区达标名校2024届中考联考数学试卷含解析

广西南宁市兴宁区达标名校2024学年中考联考数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.2.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是()A.线段PB B.线段BC C.线段CQ D.线段AQ3.下列计算正确的是().A.(x+y)2=x2+y2B.(-12xy2)3=-16x3y6C.x6÷x3=x2D.2(2)=24.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°5.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A.35°B.60°C.70°D.70°或120°6.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A.B.C.D.7.在3,0,-2,-四个数中,最小的数是()A.3 B.0 C.-2 D.-8.下面调查中,适合采用全面调查的是()A.对南宁市市民进行“南宁地铁1号线线路”B.对你安宁市食品安全合格情况的调查C.对南宁市电视台《新闻在线》收视率的调查D.对你所在的班级同学的身高情况的调查9.下列四个几何体中,左视图为圆的是( )A .B .C .D .10.已知一元二次方程ax 2+ax ﹣4=0有一个根是﹣2,则a 值是( ) A .﹣2B .23C .2D .4二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO=90°,OA 与反比例函数y=kx的图象交于点D ,且OD=2AD ,过点D 作x 轴的垂线交x 轴于点C .若S 四边形ABCD =10,则k 的值为 .12.计算a 3÷a 2•a 的结果等于_____. 13.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是 .14.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .15.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.16.如图,在菱形ABCD 中,点E 、F 在对角线BD 上,BE=DF=13BD ,若四边形AECF 为正方形,则tan ∠ABE=_____.17.8的算术平方根是_____. 三、解答题(共7小题,满分69分)18.(10分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里: 三角形数 1 3 6 10 15 21 a … 正方形数 1 4 9 16 25 b 49 … 五边形数151222C5170…(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n 个“正方形数”是________;若第n 个“三角形数”是x ,则用含x 、n 的代数式表示第n 个“五边形数”是___________.19.(5分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?20.(8分)如图,用红、蓝两种颜色随机地对A ,B ,C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A ,C 两个区域所涂颜色不相同的概率.21.(10分)如图,要修一个育苗棚,棚的横截面是Rt ABC ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)22.(10分)在平面直角坐标系xOy 中,将抛物线21:23G y mx =+(m ≠0)向右平移3个单位长度后得到抛物线G 2,点A 是抛物线G 2的顶点. (1)直接写出点A 的坐标;(2)过点(0,3)且平行于x 轴的直线l 与抛物线G 2交于B ,C 两点. ①当∠BAC =90°时.求抛物线G 2的表达式; ②若60°<∠BAC <120°,直接写出m 的取值范围.23.(12分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)24.(14分)如图,在四边形ABCD 中,∠ABC =90°,AB =3,BC =4,CD =10,DA =55,求BD 的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.【题目详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.2、C【解题分析】根据三角形高线的定义即可解题.【题目详解】解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,故选C.【题目点拨】本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.3、D【解题分析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-12xy2)3=-18x3y6,B错误;x6÷x3=x3,C错误;=2,D正确;故选D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.4、C【解题分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【题目详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【题目点拨】本题主要考查平行线的性质,熟悉掌握性质是关键.5、D【解题分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【题目详解】①当点B落在AB边上时,∵,∴,∴,②当点B 落在AC 上时, 在中,∵∠C=90°, ,∴,∴,故选D. 【题目点拨】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论. 6、A 【解题分析】当点F 在MD 上运动时,0≤x <2;当点F 在DA 上运动时,2<x≤4.再按相关图形面积公式列出表达式即可. 【题目详解】解:当点F 在MD 上运动时,0≤x <2,则: y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则: y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A. 【题目点拨】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键. 7、C 【解题分析】根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解. 【题目详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小, 所以,所以最小的数是, 故选C. 【题目点拨】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.8、D【解题分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【题目详解】A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;C、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;D、对你所在的班级同学的身高情况的调查适宜采用普查方式;故选D.【题目点拨】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、A【解题分析】根据三视图的法则可得出答案.【题目详解】解:左视图为从左往右看得到的视图,A.球的左视图是圆,B.圆柱的左视图是长方形,C.圆锥的左视图是等腰三角形,D.圆台的左视图是等腰梯形,故符合题意的选项是A.【题目点拨】错因分析较容易题.失分原因是不会判断常见几何体的三视图.10、C【解题分析】分析:将x=-2代入方程即可求出a的值.详解:将x=-2代入可得:4a-2a-4=0,解得:a=2,故选C.点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、﹣1【解题分析】∵OD=2AD,∴23 ODOA=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴23 DC OC ODAB OB OA===,∴22439 ODCOABSS⎛⎫==⎪⎝⎭,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.12、a1【解题分析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.【题目详解】解:原式=a3﹣1+1=a1.故答案为a1.【题目点拨】本题考查了同底数幂的乘除法,关键是掌握计算法则.13、n1+n+1.【解题分析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,…第n 个为n 1+n+1.考点:规律型:图形的变化类.14、6或2或12【解题分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算.【题目详解】由方程2680x x -+=,得x =2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.15、(2019,2)【解题分析】分析点P 的运动规律,找到循环次数即可.【题目详解】分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).【题目点拨】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.16、13【解题分析】 利用正方形对角线相等且互相平分,得出EO=AO=12BE ,进而得出答案. 【题目详解】解:∵四边形AECF为正方形,∴EF与AC相等且互相平分,∴∠AOB=90°,AO=EO=FO,∵BE=DF=13 BD,∴BE=EF=FD,∴EO=AO=12 BE,∴tan∠ABE=AOBO=13.故答案为:1 3【题目点拨】此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=12BE是解题关键.17、2.【解题分析】试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.由算术平方根的定义可知:8882,∴8的算术平方根是2故答案为2.考点:算术平方根.三、解答题(共7小题,满分69分)18、1 2 3 n2n2 +x-n【解题分析】分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.详解:(1)∵前6个“三角形数”分别是:1=122⨯、3=232⨯、6=342⨯、10=452⨯、15=562⨯、21=672⨯,∴第n个“三角形数”是()12n n+,∴a=7×82=17×82=1.∵前5个“正方形数”分别是:1=12,4=22,9=32,16=42,25=52,∴第n个“正方形数”是n2,∴b=62=2.∵前4个“正方形数”分别是:1=()13112⨯⨯-,5=()23212⨯⨯-,12=()33312⨯⨯-,22=()43412⨯⨯-,∴第n个“五边形数”是n(3n−1)2n(3n−1)2,∴c=() 53512⨯⨯-=3.(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,∴第n个“五边形数”是n2+x-n.点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.19、(1)y=﹣30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【解题分析】(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量⨯(销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据(1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【题目详解】(1)y=300+30(60﹣x)=﹣30x+1.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55时,W最大值=2.∴每件售价定为55元时,每星期的销售利润最大,最大利润2元.(3)由题意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【题目点拨】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.20、1 2 .【解题分析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,∴P(A,C两个区域所涂颜色不相同)=41 82 =.考点:1.画树状图或列表法;2.概率.21、33.3【解题分析】根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可. 【题目详解】解:∵AC=sin ABACB∠=1.5sin27︒=1.50.45=103∴矩形面积=10⨯103≈33.3(平方米)答:覆盖在顶上的塑料薄膜需33.3平方米【题目点拨】本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.<<22、(1);(2)①y=x2+;②m【解题分析】(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;(2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出,从而求出点B的坐标,代入即可得解;②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.【题目详解】(1)∵将抛物线G1:y=mx2+m≠0个单位长度后得到抛物线G2,∴抛物线G2:y=m(x2+∵点A是抛物线G2的顶点.∴点A.(2)①设抛物线对称轴与直线l交于点D,如图1所示.∵点A是抛物线顶点,∴AB=AC.∵∠BAC=90°,∴△ABC为等腰直角三角形,∴CD=AD∴点C的坐标为(.∵点C在抛物线G2上,m(2+解得:m=②依照题意画出图形,如图2所示.同理:当∠BAC=60°时,点C1;当∠BAC=120°时,点C+3.∵60°<∠BAC<120°,1G23G2上方,∴()()22313233333233 mm⎧+-+>⎪⎨⎪+-+<⎩,解得:339m-<<-.【题目点拨】此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.23、2.7米【解题分析】解:作BF⊥DE于点F,BG⊥AE于点G在Rt△ADE中∵tan∠ADE=,∴DE="AE" ·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15 ∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF —DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD 的高度为2.7米.24、BD =41【解题分析】作DM ⊥BC ,交BC 延长线于M ,连接AC ,由勾股定理得出AC 2=AB 2+BC 2=25,求出AC 2+CD 2=AD 2,由勾股定理的逆定理得出△ACD 是直角三角形,∠ACD=90°,证出∠ACB=∠CDM ,得出△ABC ∽△CMD ,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD 即可.【题目详解】作DM ⊥BC ,交BC 延长线于M ,连接AC ,如图所示:则∠M =90°,∴∠DCM+∠CDM =90°,∵∠ABC =90°,AB =3,BC =4,∴AC 2=AB 2+BC 2=25,∵CD =10,AD =55,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∠ACD =90°,∴∠ACB+∠DCM =90°,∴∠ACB =∠CDM ,∵∠ABC =∠M =90°,∴△ABC ∽△CMD , ∴12AB CM =, ∴CM =2AB =6,DM =2BC =8,∴BM =BC+CM =10,∴BD =22BM DM +22108+=241【题目点拨】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.。

广西南宁二中学2024届中考联考数学试题含解析

广西南宁二中学2024届中考联考数学试题含解析

广西南宁二中学2024年中考联考数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(共10小题,每小题3分,共30分)1.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点D D .点B 和点C2.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( ) A .31DE BC = B .DE1BC 4= C .31AE AC = D .AE 1AC 4=3.关于x 的方程x 2+(k 2﹣4)x+k+1=0的两个根互为相反数,则k 值是( )A .﹣1B .±2C .2D .﹣24.若正六边形的边长为6,则其外接圆半径为( )A .3B .32C .33D .65.在同一平面直角坐标系中,一次函数y =kx ﹣2k 和二次函数y =﹣kx 2+2x ﹣4(k 是常数且k ≠0)的图象可能是() A . B .C .D .6.一个几何体的三视图如图所示,这个几何体是( )A .三菱柱B .三棱锥C .长方体D .圆柱体7.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥38.用加减法解方程组323415x yx y-=⎧⎨+=⎩①②时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①9.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.1010D.3101010.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=48,S1=9,则S1的值为()A.18 B.12 C.9 D.1二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.12.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A.B.C.D.13.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.14.分解因式:2x2-8x+8=__________.15.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)16.⊙M的圆心在一次函数y=12x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.三、解答题(共8题,共72分)17.(8分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.18.(8分)先化简,再求值1xx-÷(x﹣21xx-),其中x=76.19.(8分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.20.(8分)已知平行四边形.尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.21.(8分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:甲种乙种丙种进价(元/台)1200 1600 2000售价(元/台)1420 1860 2280经预算,商场最多支出132000元用于购买这批电冰箱.(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?22.(10分)(1)计算:(﹣2)2﹣8+(2+1)2﹣4cos60°;(2)化简:2321x xx x-+-÷(1﹣1x)23.(12分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.24.先化简,再求值:22111211a a a a a a ---÷----,其中21a =.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】根据相反数的定义进行解答即可.【题目详解】解:由A 表示-2,B 表示-1,C 表示0.75,D 表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点.故答案为C.【题目点拨】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.2、D【解题分析】如图,∵AD=1,BD=3, ∴AD 1AB 4=, 当AE 1AC 4=时,AD AE AB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.3、D【解题分析】根据一元二次方程根与系数的关系列出方程求解即可.【题目详解】设方程的两根分别为x1,x1,∵x1+(k1-4)x+k-1=0的两实数根互为相反数,∴x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;∴k=-1.故选D.【题目点拨】本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−ba,x1x1=ca,反过来也成立.4、D【解题分析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【题目详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【题目点拨】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.5、C【解题分析】根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.【题目详解】解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,-22k-=1k>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.【题目点拨】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.6、A【解题分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【题目详解】由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.故选:B.【题目点拨】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.7、C【解题分析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.8、D【解题分析】试题解析:用加减法解方程组323415x yx y-=⎧⎨+=⎩①②时,如果消去y,最简捷的方法是②×2+①,故选D.9、A【解题分析】【分析】根据锐角三角函数的定义求出即可.【题目详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为31BCAC==3,故选A.【题目点拨】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.10、D【解题分析】过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.【题目详解】∵S2=48,∴BCA作AH∥CD交BC于H,则∠AHB=∠DCB.∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故选D.【题目点拨】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、12【解题分析】连接AO,BO,CO,如图所示:∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,∴∠AOB=36060o=60°,∠AOC=3604o=90°,∴∠BOC=30°,∴n=36030oo=12,故答案为12.12、C【解题分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【题目详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=1 2 x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x 图像,后面为水平直线,故选C 【题目点拨】 本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P 的运动状态13、106.710⨯【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为106.710⨯,故答案为:106.710⨯.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14、2(x-2)2【解题分析】先运用提公因式法,再运用完全平方公式.【题目详解】:2x 2-8x+8=()()2224422x x x -+=-. 故答案为2(x-2)2.【题目点拨】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.15、①②③⑤【解题分析】根据图象可判断①②③④⑤,由x=1时,y <0,可判断⑥【题目详解】由图象可得,a >0,c <0,b <0,△=b 2﹣4ac >0,对称轴为x=1,2∴abc >0,4ac <b 2,当12x <时,y 随x 的增大而减小.故①②⑤正确,∵11,22bxa=-=<∴2a+b>0,故③正确,由图象可得顶点纵坐标小于﹣2,则④错误,当x=1时,y=a+b+c<0,故⑥错误故答案为:①②③⑤【题目点拨】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.16、(1,52)或(﹣1,32)【解题分析】设当⊙M与y轴相切时圆心M的坐标为(x,12x+2),再根据⊙M的半径为1即可得出y的值.【题目详解】解:∵⊙M的圆心在一次函数y=12x+2的图象上运动,∴设当⊙M与y轴相切时圆心M的坐标为(x, 12x+2),∵⊙M的半径为1,∴x=1或x=−1,当x=1时,y=52,当x=−1时,y=3 2 .∴P点坐标为:(1, 52)或(−1,32).故答案为(1, 52)或(−1,32).【题目点拨】本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.三、解答题(共8题,共72分)17、(1)证明见解析;(2)3.【解题分析】(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【题目详解】(1)∵AB是⊙O直径,BC⊥AB,∴BC是⊙O的切线,∵CD切⊙O于点D,∴BC=CD;(2)连接BD,∵BC=CD,∠C=60°,∴△BCD是等边三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直径,∴∠ADB=90°,∴AD=BD•tan∠ABD=3.【题目点拨】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.18、6【解题分析】【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.【题目详解】原式=2121 x x xx x--+÷=()211x x x x -⋅- =11x -, 当x=76,原式=1716-=6. 【题目点拨】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.19、(1)BC=2;(2)见解析【解题分析】试题分析:(1)连接OB ,根据已知条件判定△OBC 的等边三角形,则BC=OC=2;(2)欲证明PB 是⊙O 的切线,只需证得OB ⊥PB 即可.(1)解:如图,连接OB .∵AB ⊥OC ,∠AOC=60°,∴∠OAB=30°,∵OB=OA ,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC ,∴△OBC 的等边三角形,∴BC=OC .又OC=2,∴BC=2;(2)证明:由(1)知,△OBC 的等边三角形,则∠COB=60°,BC=OC .∵OC=CP ,∴BC=PC ,∴∠P=∠CBP .又∵∠OCB=60°,∠OCB=2∠P ,∴∠P=30°,∴∠OBP=90°,即OB ⊥PB .又∵OB 是半径,∴PB 是⊙O 的切线.考点:切线的判定.20、(1)见解析;(2)见解析.【解题分析】试题分析:(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,据此可得出结论.试题解析:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考点:作图—基本作图;平行四边形的性质.21、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【解题分析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.【题目详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商场至少购进乙种电冰箱14台;(2)由题意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W随x的增大而减小,∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【题目点拨】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.22、(1)5(2)11 x【解题分析】(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算. 【题目详解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=•=.【题目点拨】本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.23、(1).(2)①判断:.理由见解析;②或.【解题分析】(1)利用代点法可以求出参数;(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;②根据①中的情况,可知或再结合图像可以确定的取值范围;【题目详解】解:(1)∵函数的图象经过点,∴将点代入,即,得:∵直线与轴交于点,∴将点代入,即,得:(2)①判断:.理由如下:当时,点P的坐标为,如图所示:∴点C的坐标为,点D的坐标为∴,.∴.②由①可知当时所以由图像可知,当直线往下平移的时也符合题意,即,得;当时,点P的坐标为∴点C的坐标为,点D的坐标为∴,∴当时,即,也符合题意,所以的取值范围为:或.【题目点拨】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.24、1a-1,22【解题分析】先根据完全平方公式进行约分化简,再代入求值即可.【题目详解】原式=2a 1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a +1. 【题目点拨】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.。

广西南宁市中考数学试卷(解析版)

广西南宁市中考数学试卷(解析版)

广西南宁市中考2021 年数学试卷一、选择题〔本大题共12 小题,每题 3 分,共 36 分〕每题都给出代号〔A〕、〔B〕、〔C〕、〔D 〕四个结论,其中只有一个是正确的,请考上用2B 铅笔在答题卡上将选定答案标号涂黑.1.〔 3 分〕〔 2021?南宁〕在﹣ 2, 1,5, 0 这四个数中,最大的数是〔〕A.﹣ 3B.1C.5D. 0考点:有理数大小比拟.分析:根据有理数大小比拟的法那① 正数都大于0;②负数都小于0;③ 正数大于一切么:负数进行比拟即可.解答:解:在﹣2, 1,5, 0 这四个数中,大小顺序为:﹣2< 0< 1< 5,所以最大的数是5.应选 C.点评:此题主要考查了有理数的大小的比拟,解题的关键利用熟练掌握有理数的大小比拟法那么,属于根底题.2.〔 3 分〕〔 2021?南宁〕如下图,将平面图形绕轴旋转一周,得到的几何体是〔〕A.B.C.D.考点:点、线、面、体.分析:根据半圆绕它的直径旋转一周形成球即可得出答案.解答:解:半圆绕它的直径旋转一周形成球体.应选: A.点评:此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.3.〔 3 分〕〔 2021?南宁〕 2021 年 6 月 11 日,神舟十号飞船发射成功,神舟十号飞船身高米,重约 8 吨,飞行速度约每秒7900 米,将数 7900 用科学记数法表示,表示正确的选项是〔9 〕A.0.79 ×104 B.×104 C.×103 D.×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为 a×10n的形式,其中 1≤|a< 10, n 为整数.确定 n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解答:解:将应选:7900 用科学记数法表示为:C.7.9 ×103.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为<10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.a×10n的形式,其中 1≤|a4.〔 3 分〕〔 2021?南宁〕小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是〔〕A.三角形B.线段C.矩形D.正方形考点:平行投影.分析:根据平行投影的性质分别分析得出即可即可.解答:解:将矩形木框立起与地面垂直放置时,形成的影子为线段;将矩形木框与地面平行放置时,形成的影子为矩形;将木框倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且矩形对边相等,故得到的投影不可能是三角形.应选: A.点评:此题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.5.〔 3 分〕〔 2021?南宁〕甲、乙、丙、丁四名选手参加四个跑道,选手以随机抽签的方式决定各自的跑道,率是〔〕A.1B.C.100 米决赛,赛场只设假设甲首先抽签,那么甲抽到D.1、 2、 3、 41 号跑道的概考点:概率公式.分析:由设1、2、3、4四个跑道,甲抽到1号跑道的只有 1 种情况,直接利用概率公式求解即可求得答案.解答:解:∵ 设1、2、3、4四个跑道,甲抽到 1 号跑道的只有 1 种情况,∴甲抽到 1 号跑道的概率是:.应选 D .点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.〔 3 分〕〔 2021?南宁〕假设分式的值为0,那么x 的值为〔〕A.﹣ 1B.0 C.2 D.﹣ 1 或2考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣2=0 ,再解方程即可.解答:解:由题意得:x﹣ 2=0,且 x+1≠0,解得: x=2,应选: C.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零〞这个条件不能少.7.〔 3 分〕〔 2021?南宁〕如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是〔〕2 2 2 2A.150πcm B.300π cm C.600π cm D. 150π cm考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:烟囱帽所需要的铁皮面积=×20×2π×15=300π〔cm2〕.应选 B.点评:此题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.8.〔 3 分〕〔 2021?南宁〕以下各式计算正确的选项是〔〕A.3a3+2a2=5a6 B.C.a4?a2=a8 D.〔 ab2〕3=ab6考点:二次根式的加减法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:分别根据合并同类项、同底数幂的乘法法那么及幂的乘方与积的乘方法那么对各选项进行逐一判断即可.解答:解: A、 3a 3与 2a2不是同类项,不能合并,故本选项错误;B、 2 + =3 ,故本选项正确;C、a 4?a2=a6,故本选项错误;D 、〔 ab 2〕3=a3b6,故本选项错误.应选 B.点评:此题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.9.〔 3 分〕〔 2021?南宁〕陈老师打算购置气球装扮学校 “六一 〞儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购置时以一束〔 4 个气球〕为单位,第一、二束气球的价格如下图,那么第三束气球的价格为〔〕A .19B .18C .16D . 15考点 : 二元一次方程组的应用.分析: 要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.解答: 解:设笑脸形的气球x 元一个,爱心形的气球 y 元一个,由题意,得,解得: 2x+2y=16 .应选 C .点评: 此题考查了学生观察能力和识图能力,体思想的运用,解答此题时根据单价列二元一次方程组解实际问题的运用和数学整×数量 =总价的数量关系建立方程是关键.10.〔 3 分〕〔 2021?南宁〕二次函数y=ax 2+bx+c 〔 a ≠0〕的图象如下图,以下说法错误的是〔〕A . 图象关于直线 x=1 对称B . 函数 ax 2+bx+c 〔 a ≠0〕的最小值是﹣ 4C .﹣ 1 和 3 是方程 ax 2+bx+c 〔a ≠0〕的两个根 D . 当 x <1 时, y 随 x 的增大而增大考点:二次函数的性质.分析:根据对称轴及抛物线与x 轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解:A、观察图象,可知抛物线的对称轴为直线x=1,那么图象关于直线 x=1 对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为〔1,﹣ 4〕,又抛物线开口向上,所以函数ax2+bx+c〔 a≠0〕的最小值是﹣4,正确,故本选项不符合题意;C、由图象可知抛物线与x 轴的一个交点为〔﹣1, 0〕,而对称轴为直线x=1,所以抛ax2+bx+c〔 a≠0〕的两个根,物线与x 轴的另外一个交点为〔3,0〕,那么﹣ 1 和 3 是方程正确,故本选项不符合题意;D、由抛物线的对称轴为x=1 ,所以当xx< 1 时, y 随x 的增大而减小,错误,故本选项符合题意.应选 D .点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.11.〔3 分〕〔 2021?南宁〕如图, AB 是⊙ O 的直径,弦CD 交 AB 于点 E,且 AE=CD =8,∠BAC =∠ BOD,那么⊙ O的半径为〔〕A.4B.5C.4D. 3考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据∠ BAC=∠ BOD可得出=,故可得出AB⊥ CD,由垂径定理即可求出DE 的长,再根据勾股定理即可得出结论.解答:解:∵ ∠ BAC=∠BOD,∴= ,∴AB ⊥CD ,∵AE =CD =8,∴DE = CD=4,设OD=r,那么 OE =AE﹣r =8﹣ r,在RtODE 中, OD=r, DE=4,OE=8﹣ r ,22222 2∵OD =DE +OE ,即 r =4 +〔 8﹣r 〕,解得 r =5.点评:此题考查的是垂径定理及圆周角定理,熟知平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.12.〔 3 分〕〔 2021?南宁〕如图,直线y=与双曲线y=〔k>0,x>0〕交于点A,将直线y=向上平移 4 个单位长度后,与y 轴交于点 C,与双曲线y=〔k>0,x>0〕交于点B,假设 OA=3BC,那么 k 的值为〔〕A.3B.6C.D.考点:反比例函数综合题.专题:探究型.分析:先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B 作 AD ⊥ x 轴,BE⊥ x 轴,CF⊥ BE 于点 F ,再设 A〔 3x, x〕,由于 OA=3BC,故可得出B〔 x, x+4〕,再根据反比例函数中k=xy 为定值求出x解答:解:∵将直线 y= 向上平移 4 个单位长度后,与∴平移后直线的解析式为 y= x+4,y 轴交于点C,分别过点 A、 B 作 AD ⊥ x 轴, BE⊥ x 轴, CF⊥ BE 于点 F,设 A〔 3x,x〕,∵OA=3BC, BC∥ OA, CF ∥ x 轴,∴C F = OD ,∵点 B 在直线 y= x+4 上,∴B〔 x,x+4〕,∵点 A、B 在双曲线y=上,∴3x? x=x?〔 x+4〕,解得 x=1,∴k=3 ×1 × ×1= .应选 D .点评:此题考查的是反比例函数综合题,根据题意作出辅助线,设出根据 k=xy 的特点求出k 的值即可.A、B 两点的坐标,再二、填空题〔本大题共 6 小题,每题 3 分,共 18 分〕13.〔 3 分〕〔 2021?南宁〕假设二次根式有意义,那么x 的取值范围是x≥2 .考点:二次根式有意义的条件.分析:根据二次根式有意义的条件,可得解答:解:根据题意,使二次根式x﹣ 2≥0,解不等式求范围.有意义,即x﹣ 2≥0,解得 x ≥2;故答案为 x ≥2.点评: 此题考查二次根式的意义,只需使被开方数大于或等于0 即可.14.〔 3 分〕〔 2021?南宁〕一副三角板如下图放置,那么 ∠ AOB= 105°.考点 : 角的计算.分析: 根据三角板的度数可得:∠ 1=45°, ∠ 2=60°,再根据角的和差关系可得∠AOB =∠ 1+∠ 2,进而算出角度.解答: 解:根据三角板的度数可得:∠1=45°, ∠ 2=60°,∠AOB =∠ 1+∠ 2=45 °+60 °=105 ,°故答案为: 105.点评: 此题主要考查了角的计算,关键是掌握角之间的关系.15.〔 3 分〕〔 2021?南宁〕分解因式:x 2﹣ 25=〔 x+5 〕〔 x ﹣ 5〕 .考点 : 因式分解-运用公式法.分析: 直接利用平方差公式分解即可.解答: 解: x 2﹣ 25=〔 x+5〕〔 x ﹣5〕.故答案为:〔 x+5〕〔 x ﹣ 5〕.点评: 此题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.16.〔 3 分〕〔 2021?南宁〕某中学定:学生的学期体育合成分100 分,其中,期中考成占40% ,期末考成占60%,小海个学期的期中、期末成〔百分制〕分是 80 分、 90 分,小海个学期的体育合成是86 分.考点:加平均数.分析:利用加平均数的公式直接算.用80 分, 90 分分乘以它的百分比,再求和即可.解答:解:小海学期的体育合成=〔 80×40%+90× 60% 〕 =86〔分〕.故答案86.点:本考的是加平均数的求法.本易出的是求80、90 两个数的平均数,平均数的理解不正确.17.〔 3 分〕〔 2021?南宁〕有一数据 a ,a , a ,⋯ a ,足以下律:123 n,〔 n≥2且 n 正整数〕, a2021的 1 〔果用数字表示〕.考点:律型:数字的化.:律型.分析:求出前几个数便不,每三个数一个循依次循,用 2021 除以 3,根据商和余数的情况确定答案即可.解答:解: a1= ,2=2,a =a3== 1,a4= =,⋯,依此推,每三个数一个循依次循,∵2021 ÷3=671,∴a2021为第671 循环组的最后一个数,与a3相同,为﹣1.故答案为:﹣1.点评:此题是对数字变化规律的考查,根据计算得到每三个数为一个循环组依次循环是解题的关键.18.〔 3 分〕〔 2021?南宁〕如图,在边长为2 的正三角形中,将其内切圆和三个角切圆〔与角两边及三角形内切圆都相切的圆〕的内部挖去,那么此三角形剩下局部〔阴影局部〕的面积为﹣π .考点:三角形的内切圆与内心.分析:连接OB,以及⊙ O与BC的切点,在构造的直角三角形中,通过解直角三角形易求得⊙ O 的半径,然后作⊙O 与小圆的公切线 EF ,易知△ BEF 也是等边三角形,那么小圆的圆心也是等边△ BEF 的重心;由此可求得小圆的半径,即可得到四个圆的面积,从而由等边三角形的面积减去四个圆的面积和所得的差即为阴影局部的面积.解答:解:如图,连接OB、 OD;设小圆的圆心为P,⊙ P 与⊙ O 的切点为 G;过 G 作两圆的公切线EF,交交 BC 于 F ,AB 于E,那么∠ BEF=∠ BFE =90°﹣ 30°=60°,所以△ BEF 是等边三角形.在Rt△ OBD 中,∠ OBD=30°,那么 OD=BD ?tan30°=1×=,OB=2 OD=,BG=OB﹣OG=;由于⊙ P 是等边△BEF 的内切圆,所以点P 是△BEF 的内心,也是重心,故 PG= BG=;∴S⊙O=π×〔〕2=π,S⊙P=π×〔〕2=π;∴S 阴影 =S △ABC ﹣S ⊙O ﹣ 3S ⊙P = ﹣ π﹣ π=﹣π.故答案为﹣π.点评: 此题主要考查了等边三角形的性质、相切两圆的性质以及图形面积的计算方法,难度适中.三、〔本大题共 2 小题,每题6 分,共 12 分〕19.〔 6 分〕〔 2021?南宁〕计算: 20210﹣+2cos60°+〔﹣ 2〕考点 : 实数的运算;零指数幂;特殊角的三角函数值.分析: 分别进行零指数幂、二次根式的化简,然后代入特殊角的三角函数值合并即可得出答案.解答:解:原式 =1﹣ 3 +2× ﹣ 2=﹣ 3 .点评: 此题考查了实数的运算,属于根底题,关键是掌握零指数幂的运算法那么及一些特殊角的三角函数值.20.〔 6 分〕〔 2021?南宁〕先化简,再求值:,其中 x=﹣ 2.考点 : 分式的化简求值.专题 : 计算题.分析: 先算括号里面的,再把除式的分母分解因式,并把除法转化为乘法,然后进行约分,最后把 x 的值代入进行计算即可得解.解答:解:〔+〕 ÷=÷=?=x﹣ 1,当 x=﹣ 2 时,原式 =﹣2﹣ 1=﹣ 3.点评:此题考查了分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.四、本大题共 2 小题,每题 8 分,共21.〔 8 分〕〔 2021?南宁〕如图,△ABC 16 分三个定点坐标分别为A〔﹣ 1, 3〕, B〔﹣ 1, 1〕,C〔﹣ 3, 2〕.〔1〕请画出△ ABC 关于y 轴对称的△ A1B1C1;〔2〕以原点 O 为位似中心,将△A1B1C1放大为原来的 2 倍,得到△ A2B2C2,请在第三象限内画出△ A2B2C2,并求出S△A1B1C1: S△A2B2C2的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:〔1〕根据网格结构找出点 A、 B、 C 关于 y 轴的对称点 A1、 B1、 C1的位置,然后顺次连接即可;(2〕连接 A1O 并延长至 A2,使 A2O=2 A1O,连接 B1O 并延长至 B2,使 B2O=2B1O,连接 C1O 并延长至 C2,使 C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.解答:解:〔1〕△A1B1C1如下图;〔2〕△ A2B 2C2 如下图,∵△ A1B1C1 放大为原来的 2 倍得到△A2B2C2,∴△ A B C ∽ △A B C ,且相似比为,1 1 12 2 2∴S△A1B1C1: S△A2B2C2=〔〕2 =.点评:此题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键,还利用了相似三角形面积的比等于相似比的平方的性质.22.〔8 分〕〔 2021?南宁〕 2021 年 6 月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍〞为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图 1 和图 2 提供的信息,解答以下问题:(1〕在这次抽样调查中,一共调查了多少名学生?(2〕请把折线统计图〔图 1〕补充完整;(3〕求出扇形统计图〔图 2〕中,体育局部所对应的圆心角的度数;(4〕如果这所中学共有学生 1800 名,那么请你估计最喜爱科普类书籍的学生人数.考点:折线统计图;用样本估计总体;扇形统计图.专题:图表型.分析:〔1〕用文学的人数除以所占的百分比计算即可得解;(2〕根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3〕用体育所占的百分比乘以360°,计算即可得解;(4〕用总人数乘以科普所占的百分比,计算即可得解.解答:解:〔1〕90÷30%=300〔名〕,故,一共调查了300 名学生;(2〕艺术的人数: 300×20%=60 名,其它的人数: 300×10%=30 名;补全折线图如图;(3〕体育局部所对应的圆心角的度数为:×360°=48°;(4〕 1800×=480〔名〕.答: 1800 名学生中估计最喜爱科普类书籍的学生人数为480.点评:此题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每局部占总局部的百分比等于该局部所对应的扇形圆心角的度数与 360°的比.五、〔本大题总分值8 分〕中, AC 为对角线,点E、 F 分别是边BC、23.〔 8 分〕〔 2021?南宁〕如图,在菱形ABCDAD 的中点.(1〕求证:△ ABE≌ △CDF ;(2〕假设∠B=60°, AB=4,求线段 AE 的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:〔1〕首先根据菱形的性质,得到AB=BC=AD =CD ,∠ B=∠ D,结合点 E、F 分别是边BC、 AD 的中点,即可证明出△ ABE≌ △CDF;(2〕首先证明出△ ABC 是等边三角形,结合题干条件在 Rt△AEB 中,∠ B=60°,AB=4,即可求出 AE 的长.解答:解:〔1〕∵四边形ABCD是菱形,∴AB =BC =AD=CD,∠ B=∠ D,∵点 E、F 分别是边BC、 AD 的中点,∴BE =DF ,在△ ABE 和△ CDF 中,∵,∴△ ABE≌ △ CDF 〔 SAS〕;(2〕∵ ∠B=60°,∴△ ABC 是等边三角形,∵点 E 是边 BC 的中点,∴AE ⊥BC,在Rt△ AEB 中,∠ B=60°, AB=4,sin60°= =,解得 AE=2.点评:此题主要考查菱形的性质等知识点,解答此题的关键是熟练掌握菱形的性质、全等三角形的证明以及等边三角形的性质,此题难度不大,是一道比拟好的中考试题.六、〔本大题总分值10 分〕24.〔 10 分〕〔 2021?南宁〕在一条笔直的公路上有A、 B 两地,甲骑自行车从 A 地到B 地;乙骑自行车从 B 地到 A 地,到达 A 地后立即按原路返回,如图是甲、乙两人离 B 地的距离y〔km〕与行驶时x〔 h〕之间的函数图象,根据图象解答以下问题:(1〕写出 A、 B 两地直接的距离;(2〕求出点 M 的坐标,并解释该点坐标所表示的实际意义;(3〕假设两人之间保持的距离不超过3km 时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x 的取值范围.考点:一次函数的应用.分析:〔1〕x=0时甲的y值即为A、B两地的距离;(2〕根据图象求出甲、乙两人的速度,再利用相遇问题求出相遇时间,然后求出乙的路程即可得到点 M 的坐标以及实际意义;〔3〕分相遇前和相遇后两种情况求出x 的值,再求出最后两人都到达 B 地前两人相距3 千米的时间,然后写出两个取值范围即可.解答:解:〔 1〕 x=0 时,甲距离 B 地 30 千米,所以, A、 B 两地的距离为 30 千米;〔2〕由图可知,甲的速度:30÷2=15 乙的速度: 30÷1=30 千米 /时,30÷〔 15+30〕 =,×30=20 千米,所以,点M 的坐标为〔,20〕,表示千米 /时,小时后两车相遇,此时距离 B 地20 千米;〔3〕设 x 小时时,甲、乙两人相距3km,①假设是相遇前,那么15x+30x=30 ﹣ 3,解得 x=,②假设是相遇后,那么15x+30x=30+3 ,解得 x=,③假设是到达 B 地前,那么 15x﹣ 30〔 x﹣ 1〕=3,解得 x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.点评:此题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,难点在于〔 3〕要分情况讨论.七、〔本大题总分值10 分〕25.〔 10 分〕〔 2021?南宁〕如图,在△ ABC 中,∠ BAC=90 °,AB=AC, AB 是⊙ O 的直径,⊙O 交 BC 于点 D, DE ⊥ AC 于点 E, BE 交⊙O 于点 F ,连接 AF , AF 的延长线交 DE 于点P.(1〕求证: DE 是⊙ O 的切线;(2〕求 tan∠ ABE 的值;(3〕假设 OA=2,求线段 AP 的长.考点:切线的判定;圆周角定理;解直角三角形.专题:证明题.分析:〔1〕连结 AD 、OD ,根据圆周角定理得∠ ADB=90°,由 AB=AC,根据等腰三角形的直线得 DC =DB ,所以 OD 为△ BAC 的中位线,那么 OD ∥ AC,然后利用 DE ⊥AC 得到OD⊥ DE ,这样根据切线的判定定理即可得到结论;〔2〕易得四边形OAED 为正方形,然后根据正切的定义计算tan∠ ABE 的值;〔3〕由 AB 是⊙ O 的直径得∠ AFB=90°,再根据等角的余角相等得∠ EAP=∠ ABF,那么tan∠ EAP=tan∠ ABE=,在Rt△EAP中,利用正切的定义可计算出EP,然后利用勾股定理可计算出AP.解答:〔1〕证明:连结AD 、 OD,如图,∵AB 是⊙ O 的直径,∴∠ ADB =90 °,∵AB =AC ,∴AD 垂直平分BC,即 DC =DB ,∴OD 为△ BAC 的中位线,∴OD ∥ AC,而DE⊥AC,∴OD ⊥ DE ,∴DE 是⊙ O 的切线;(2〕解:∵ OD⊥ DE , DE⊥ AC,∴四边形 OAED 为矩形,而OD=OA,∴四边形 OAED 为正方形,∴AE =AO ,∴t an ∠ABE= = ;(3〕解:∵ AB 是⊙ O 的直径,∴∠ AFB=90 °,∴∠ABF+∠FAB=90 °,而∠EAP+∠FAB=90°,∴∠ EAP=∠ ABF ,∴tan ∠EAP=tan∠ ABE= ,在Rt△ EAP 中, AE =2,∵tan ∠EAP= = ,∴EP =1,∴AP ==.点评:此题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和解直角三角形.八、〔本大题总分值10 分〕226.〔 10 分〕〔 2021?南宁〕如图,抛物线 y=ax +c〔 a≠0〕经过 C〔 2,0〕,D〔 0,﹣ 1〕两点,并与直线 y=kx 交于 A、B 两点,直线 l 过点 E〔 0,﹣ 2〕且平行于 x 轴,过 A、 B 两点分别作直线 l 的垂线,垂足分别为点 M、N.(1〕求此抛物线的解析式;(2〕求证: AO=AM;(3〕探究:①当 k=0 时,直线y=kx 与 x 轴重合,求出此时的值;②试说明无论k 取何值,的值都等于同一个常数.考点:二次函数综合题.专题:代数几何综合题.分析:〔1〕把点 C、 D 的坐标代入抛物线解析式求出a、 c,即可得解;〔2〕根据抛物线解析式设出点 A 的坐标,然后求出AO、 AM 的长,即可得证;〔3〕① k=0 时,求出 AM、 BN 的长,然后代入+ 计算即可得解;②设点 A〔x1, x12﹣1〕, B〔 x2, x22﹣ 1〕,然后表示出+ ,再联立抛物线与直线解析式,消掉未知数y 得到关于 x 的一元二次方程,利用根与系数的关系表示出x 1+x2, x1?2,并求出 x12 2 2 2+x2,x1 ?x2 ,然后代入进行计算即可得解.解答:〔1〕解:∵ 抛物线y=ax2+c〔a≠0〕经过C〔2,0〕,D〔0,﹣1〕,∴,解得,所以,抛物线的解析式为y=x2﹣ 1;〔2〕证明:设点 A 的坐标为〔 m,m2﹣ 1〕,那么 AO= = m 2+1,∵直线 l 过点 E〔 0,﹣ 2〕且平行于x 轴,∴点 M 的纵坐标为﹣2,∴AM = m 2﹣ 1﹣〔﹣ 2〕=m2+1 ,∴AO=AM;(3〕解:① k=0 时,直线 y=kx 与 x 轴重合,点 A、 B 在 x 轴上,∴AM =BN=0﹣〔﹣ 2〕 =2,∴ + = + =1;② k 取任何值时,设点A〔 x1,x12﹣ 1〕, B〔 x2,x22﹣ 1〕,那么 += + = = ,联立,消掉 y 得, x 2﹣ 4kx ﹣ 4=0,由根与系数的关系得,所以, x 12+x 22=〔 x 1+x 2〕 2﹣ 2x 1 ?x 2=16k 2+8,2 2x 1 ?x 2 =16 ,∴+ = = =1,∴无论 k 取何值,+ 的值都等于同一个常数 1.点评: 此题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,勾股定理以及点到直线的距离, 根与系数的关系, 根据抛物线上点的坐标特征设出点A 、B 的坐标,然后用含有 k 的式子表示出+ 是解题的关键,也是此题的难点,计算量较大,要认真仔细. x 1+x 2=4k , x 1?x 2=﹣ 4,。

2020年广西南宁市中考数学试题及参考答案(word解析版)

2020年广西南宁市中考数学试题及参考答案(word解析版)

2020 年广西南宁市中考数学试题及参考答案与解析(考试时间120 分钟,满分120 分)第Ⅰ卷一、选择题(共12 小题,每小题 3 分,共36 分.在每小题给出的四个选项中只有一项是符合要求的)1.下列实数是无理数的是()A .B.1 C.0 D.﹣52.下列图形是中心对称图形的是()A .B.C.D.3.2020 年2 月至 5 月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000 次,则数据889000 用科学记数法表示为()A .88.9×103 B.88.9×104 C.8.89×105 D.8.89×1064.下列运算正确的是()A .2x2+x2=2x4 B.x3?x3=2x3 C.(x5)2=x7 D.2x7÷x5=2x25.以下调查中,最适合采用全面调查的是()A .检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量2﹣2x+1=0 的根的情况是()6.一元二次方程xA .有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图,在△ABC 中,BA =BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE 的度数为()A .60°B.65°C.70°D.75°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A .B.C.D.9.如图,在△ABC 中,BC=120,高AD =60,正方形EFGH 一边在BC 上,点E,F 分别在AB ,AC 上,AD 交EF 于点N,则AN 的长为()A .15 B.20 C.25 D.3010.甲、乙两地相距600km,提速前动车的速度为vkm/h ,提速后动车的速度是提速前的 1.2 倍,提速后行车时间比提速前减少20min,则可列方程为()A .﹣=B.=﹣C.﹣20=D.=﹣2011.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图 2 为图 1 的平面示意图),推开双门,双门间隙CD 的距离为 2 寸,点C 和点 D 距离门槛AB 都为 1 尺(1 尺=10 寸),则AB 的长是()A .50.5 寸B.52 寸C.101 寸D.104 寸12.如图,点 A ,B 是直线y=x 上的两点,过A,B 两点分别作x 轴的平行线交双曲线y=(x>0)于点C,D.若AC =BD,则3OD2﹣OC2 的值为()A .5 B.3 C.4 D.2第Ⅱ卷二、填空题(本大题共 6 小题,每小题 3 分,共18 分.)13.如图,在数轴上表示的x 的取值范围是.14.计算:﹣=.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9 环以上”的次数15 33 78 158 231 801“射中9 环以上”的频率0.75 0.83 0.78 0.79 0.80 0.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9 环以上”的概率是(结果保留小数点后一位).16.如图,某校礼堂的座位分为四个区域,前区一共有8 排,其中第1 排共有20 个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10 排,则该礼堂的座位总数是.17.以原点为中心,把点M (3,4)逆时针旋转90°得到点N,则点N 的坐标为.18.如图,在边长为 2 的菱形ABCD 中,∠C=60°,点E,F 分别是AB ,AD 上的动点,且AE=DF,DE 与BF 交于点P.当点 E 从点 A运动到点 B 时,则点P 的运动路径长为.三、解答题(本大题共8 小题,共66 分.解答应写出文字说明、证明过程或演算步骤.)2÷(1﹣4)×2.19.(6 分)计算:﹣(﹣1)+320.(6 分)先化简,再求值:÷(x﹣),其中x=3.21.(8 分)如图,点B,E,C,F 在一条直线上,AB =DE,AC =DF,BE=CF.(1)求证:△ABC ≌△DEF;(2)连接AD ,求证:四边形ABED 是平行四边形.22.(8 分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20 份答卷,并统计成绩(成绩得分用x 表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<85 85≤x<90 90≤x<95 95≤x<1003 4 a 8分析数据:平均分中位数众数92 b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c 的值;(2)该校有1600 名家长参加了此次问卷测评活动,请估计成绩不低于90 分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23.(8 分)如图,一艘渔船位于小岛 B 的北偏东30°方向,距离小岛40nmile的点 A 处,它沿着点 A 的南偏东15°的方向航行.(1)渔船航行多远距离小岛 B 最近(结果保留根号)?(2)渔船到达距离小岛 B 最近点后,按原航向继续航行20 nmile 到点C 处时突然发生事故,渔船马上向小岛 B 上的救援队求救,问救援队从 B 处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.(10 分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出 A 型和 B 型两款垃圾分拣机器人,已知 2 台A 型机器人和 5 台B 型机器人同时工作2h 共分拣垃圾 3.6 吨,3 台A 型机器人和 2 台B 型机器人同时工作5h 共分拣垃圾8 吨.(1)1 台A 型机器人和 1 台B 型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批 A 型和B 型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20 吨.设购买 A 型机器人 a 台(10≤a≤45),B 型机器人 b 台,请用含 a 的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30 台购买数量不少于30 台A 型20 万元/台原价购买打九折B 型12 万元/台原价购买打八折在(2)的条件下,设购买总费用为w 万元,问如何购买使得总费用w 最少?请说明理由.25.(10 分)如图,在△ACE 中,以AC 为直径的⊙O 交CE 于点D,连接AD ,且∠DAE =∠ACE ,连接OD 并延长交AE 的延长线于点P,PB 与⊙O 相切于点B.(1)求证:AP 是⊙O 的切线;(2)连接AB 交OP 于点F,求证:△FAD∽△DAE ;(3)若tan∠OAF=,求的值.26.(10 分)如图1,在平面直角坐标系中,直线l 1:y=x+1 与直线l2:x=﹣2 相交于点D,点 A 是直线l2 上的动点,过点 A 作AB ⊥l1 于点B,点 C 的坐标为(0,3),连接AC,BC.设点 A 的纵坐标为t,△ABC 的面积为s.(1)当t=2 时,请直接写出点 B 的坐标;(2)s关于t 的函数解析式为s=,其图象如图 2 所示,结合图1、2 的信息,求出a与b 的值;(3)在l2 上是否存在点A,使得△ABC 是直角三角形?若存在,请求出此时点 A 的坐标和△ABC 的面积;若不存在,请说明理由.答案与解析第Ⅰ卷一、选择题(共12 小题,每小题 3 分,共36 分.在每小题给出的四个选项中只有一项是符合要求的)1.下列实数是无理数的是()A .B.1 C.0 D.﹣5【知识考点】算术平方根;无理数.【思路分析】无限不循环小数是无理数,而1,0,﹣5 是整数,也是有理数,因此是无理数.【解题过程】解:无理数是无限不循环小数,而1,0,﹣5 是有理数,因此是无理数,故选:A.【总结归纳】本题考查无理数的意义,准确把握无理数的意义是正确判断的前提.2.下列图形是中心对称图形的是()A .B.C.D.【知识考点】中心对称图形.【思路分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解题过程】解: A 、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【总结归纳】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180 度后两部分重合.3.2020 年2 月至 5 月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000 次,则数据889000 用科学记数法表示为()A .88.9×103 B.88.9×104 C.8.89×105 D.8.89×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于889000 有6 位,所以可以确定n=6﹣1=5.【解题过程】解:889000=8.89×105.故选:C.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定 a 与n 值是关键.4.下列运算正确的是()A .2x2+x2=2x4 B.x3?x3=2x3 C.(x5)2=x7 D.2x7÷x5=2x2【知识考点】整式的混合运算.【思路分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解题过程】解: A 、2x2+x2=3x2,故此选项错误;3?x3=x6,故此选项错误;B、 x5)2=x10,故此选项错误;C、(x7÷x5=2x2,正确.D、2x故选:D.【总结归纳】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.以下调查中,最适合采用全面调查的是()A .检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量【知识考点】全面调查与抽样调查.【思路分析】利用全面调查、抽样调查的意义,结合具体的问题情境进行判断即可.【解题过程】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”“调查某批次汽车的抗撞击能力”“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.【总结归纳】本题考查全面调查、抽样调查的意义,在具体实际的问题情境中理解全面调查、抽样调查的意义是正确判断的前提.6.一元二次方程x2﹣2x+1=0 的根的情况是()A .有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定【知识考点】根的判别式.【思路分析】先根据方程的一般式得出a、b、c 的值,再计算出△=b2﹣4ac 的值,继而利用一元二次方程的根的情况与判别式的值之间的关系可得答案.【解题过程】解:∵a=1,b=﹣2,c=1,∴△=(﹣2)2﹣4×1×1=4﹣4=0,∴有两个相等的实数根,故选:B.【总结归纳】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0 时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根.7.如图,在△ABC 中,BA =BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE 的度数为()A .60°B.65°C.70°D.75°【知识考点】等腰三角形的性质;作图—基本作图.【思路分析】根据等腰三角形的性质可得∠ACB 的度数,观察作图过程可得,进而可得∠DCE 的度数.【解题过程】解:∵BA =BC,∠B=80°,∴∠A=∠ACB =(180°﹣80°)=50°,∴∠ACD =180°﹣∠ACB =130°,观察作图过程可知:CE 平分∠ACD ,∴∠DCE=ACD =65°,∴∠DCE 的度数为65°故选:B.【总结归纳】本题考查了作图﹣基本作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A .B.C.D.【知识考点】列表法与树状图法.【思路分析】由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有 6 种路径,且获得食物的有 2 种路径,然后利用概率公式求解即可求得答案.【解题过程】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有 6 种路径,∵获得食物的有 2 种路径,∴获得食物的概率是=,故选:C.【总结归纳】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,在△ABC 中,BC=120,高AD =60,正方形EFGH 一边在BC 上,点E,F 分别在AB ,AC 上,AD 交EF 于点N,则AN 的长为()A .15 B.20 C.25 D.30【知识考点】正方形的性质;相似三角形的判定与性质.【思路分析】设正方形EFGH 的边长EF=EH=x,易证四边形EHDN 是矩形,则DN =x,根据正方形的性质得出EF∥BC,推出△AEF∽△ABC ,根据相似三角形的性质计算即可得解.【解题过程】解:设正方形EFGH 的边长EF=EH=x,∵四边EFGH 是正方形,∴∠HEF=∠EHG =90°,EF∥BC,∴△AEF ∽△ABC ,∵AD 是△ABC 的高,∴∠HDN =90°,∴四边形EHDN 是矩形,∴DN =EH=x,∵△AEF ∽△ABC ,∴=(相似三角形对应边上的高的比等于相似比),∵BC=120,AD =60,∴AN =60﹣x,∴=,解得:x=40,∴AN =60﹣x=60﹣40=20.故选:B.【总结归纳】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.10.甲、乙两地相距600km,提速前动车的速度为vkm/h ,提速后动车的速度是提速前的 1.2 倍,提速后行车时间比提速前减少20min,则可列方程为()A .﹣=B.=﹣C.﹣20=D.=﹣20【知识考点】由实际问题抽象出分式方程.【思路分析】直接利用总时间的差值进而得出等式求出答案.【解题过程】解:因为提速前动车的速度为vkm/h ,提速后动车的速度是提速前的 1.2 倍,所以提速后动车的速度为 1.2vkm/h ,根据题意可得:﹣=.故选:A.【总结归纳】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶时间是解题关键.11.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图 2 为图 1 的平面示意图),推开双门,双门间隙CD 的距离为 2 寸,点C 和点 D 距离门槛AB 都为 1 尺(1 尺=10 寸),则AB 的长是()A .50.5 寸B.52 寸C.101 寸D.104 寸【知识考点】勾股定理的应用.【思路分析】画出直角三角形,根据勾股定理即可得到结论.【解题过程】解:过 D 作DE⊥AB 于E,如图 2 所示:由题意得:OA =OB=AD =BC,设OA =OB=AD =BC=r,则AB =2r,DE=10,OE=CD=1,AE =r﹣1,在Rt△ADE 中,AE 2+DE2=AD 2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB =101 寸,故选:C.【总结归纳】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.12.如图,点 A ,B 是直线y=x 上的两点,过A,B 两点分别作x 轴的平行线交双曲线y=(x >0)于点C,D.若AC =BD ,则3OD2﹣OC2 的值为()A .5 B.3 C.4 D.2【知识考点】一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【思路分析】延长CA 交y 轴于E,延长BD 交y 轴于F.设A 、B 的横坐标分别是a,b,点A 、B 为直线y=x 上的两点, A 的坐标是(a,a),B 的坐标是(b,b).则AE=OE=a,BF=OF=b.根据AC=BD 得到a,b 的关系,然后利用勾股定理,即可用a,b 表示出所求的式子从而求解.【解题过程】解:延长CA 交y 轴于E,延长BD 交y 轴于F.设A 、B 的横坐标分别是a,b,∵点A、B 为直线y=x 上的两点,∴A 的坐标是(a,a),B 的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D 两点在交双曲线y=(x>0)上,则CE=,DF=.∴BD=BF﹣DF=b﹣,AC =﹣a.又∵AC =BD,∴﹣a=(b﹣),两边平方得:a2+ ﹣2=3(b2+ ﹣2),即a2+ =3(b2+ )﹣4,在直角△ODF 中,OD2=OF2+DF2=b2+ ,同理OC2=a2+ ,∴3OD2﹣OC2=3(b2+ )﹣(a2+ )=4.故选:C.【总结归纳】本题考查了反比例函数、一次函数图象上点的坐标特征,勾股定理,正确利用AC =BD 得到a,b 的关系是解题的关键.第Ⅱ卷二、填空题(本大题共 6 小题,每小题 3 分,共18 分.)13.如图,在数轴上表示的x 的取值范围是.【知识考点】在数轴上表示不等式的解集.【思路分析】根据“小于向左,大于向右及边界点含于解集为实心点,不含于解集即为空心点”求解可得.【解题过程】解:在数轴上表示的x 的取值范围是x<1,故答案为:x<1.【总结归纳】本题主要考查在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.14.计算:﹣=.【知识考点】二次根式的加减法.【思路分析】先化简=2 ,再合并同类二次根式即可.【解题过程】解:=2 ﹣=.故答案为:.【总结归纳】本题主要考查了二次根式的加减,属于基础题型.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9 环以上”的次数15 33 78 158 231 801“射中9 环以上”的频率0.75 0.83 0.78 0.79 0.80 0.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9 环以上”的概率是(结果保留小数点后一位).【知识考点】利用频率估计概率.【思路分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解题过程】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9 环以上”的概率是0.8.故答案为:0.8.【总结归纳】本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.16.如图,某校礼堂的座位分为四个区域,前区一共有8 排,其中第 1 排共有20 个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10 排,则该礼堂的座位总数是.【知识考点】规律型:数字的变化类.【思路分析】根据题意可得前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.【解题过程】解:因为前区一共有8 排,其中第 1 排共有20 个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10 排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556 个.故答案为:556 个.【总结归纳】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.17.以原点为中心,把点M (3,4)逆时针旋转90°得到点N,则点N 的坐标为.【知识考点】坐标与图形变化﹣旋转.【思路分析】如图,根据点M (3,4)逆时针旋转90°得到点N,则可得点N 的坐标为(﹣4,3).【解题过程】解:如图,∵点M (3,4)逆时针旋转90°得到点N,则点N 的坐标为(﹣4,3).故答案为:(﹣4,3).【总结归纳】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.18.如图,在边长为 2 的菱形ABCD 中,∠C=60°,点E,F 分别是AB ,AD 上的动点,且AE=DF,DE 与BF 交于点P.当点 E 从点 A 运动到点 B 时,则点P 的运动路径长为.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质;轨迹.【思路分析】如图,作△CBD 的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠DPB =120°,推出B,C,D,P 四点共圆,利用弧长公式计算即可.【解题过程】解:如图,作△CBD 的外接圆⊙O,连接OB,OD.∵四边形ABCD 是菱形,∵∠A=∠C=60°,AB =BC=CD=AD ,∴△ABD ,△BCD 都是等边三角形,∴BD=AD ,∠BDF =∠DAE ,∵DF=AE ,∴△BDF ≌△DAE (SAS),∴∠DBF =∠ADE ,∵∠ADE+ ∠BDE=60°,∴∠DBF+ ∠BDP=60°,∴∠BPD=120°,∵∠C=60°,∴∠C+∠DPB=180°,∴B,C,D,P 四点共圆,由BC=CD=BD=2 ,可得OB=OD=2,∵∠BOD=2∠C=120°,∴点P 的运动的路径的长==π.故答案为π.【总结归纳】本题考查菱形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题(本大题共8 小题,共66 分.解答应写出文字说明、证明过程或演算步骤.)2÷(1﹣4)×2.19.(6 分)计算:﹣(﹣1)+3【知识考点】有理数的混合运算.【思路分析】直接利用有理数的混合运算法则计算得出答案.【解题过程】解:原式=1+9÷(﹣3)×2=1﹣3×2=1﹣ 6=﹣5.【总结归纳】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.20.(6 分)先化简,再求值:÷(x﹣),其中x=3.【知识考点】分式的化简求值.【思路分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x 的值代入计算可得答案.【解题过程】解:原式=÷(﹣)=÷=?=,当x=3 时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.(8 分)如图,点B,E,C,F 在一条直线上,AB =DE,AC =DF,BE =CF.(1)求证:△ABC ≌△DEF;(2)连接AD ,求证:四边形ABED 是平行四边形.【知识考点】全等三角形的判定与性质;平行四边形的判定.【思路分析】(1)证出BC=EF,由SSS即可得出结论;(2)由全等三角形的性质得出∠B=∠DEF ,证出AB ∥DE ,由AB =DE,即可得出结论.【解题过程】(1)证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC 和△DEF 中,,∴△ABC ≌△DEF(SSS);(2)证明:由(1)得:△ABC ≌△DEF,∴∠B=∠DEF,∴AB ∥DE,又∵AB =DE,∴四边形ABED 是平行四边形.【总结归纳】本题考查了平行四边形的判定、全等三角形的判定与性质以及平行线的判定等知识;熟练掌握平行四边形的判定,证明三角形全等是解题的关键.22.(8 分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20 份答卷,并统计成绩(成绩得分用x 表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<85 85≤x<90 90≤x<95 95≤x<1003 4 a 8分析数据:平均分中位数众数92 b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c 的值;(2)该校有1600 名家长参加了此次问卷测评活动,请估计成绩不低于90 分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.【知识考点】用样本估计总体;频数(率)分布表;中位数;众数;统计量的选择.【思路分析】(1)将数据从小到大重新排列,再根据中位数和众数的概念求解可得;(2)用总人数乘以样本中不低于90 分的人数占被调查人数的比例即可得;(3)从众数和中位数的意义求解可得.【解题过程】解:(1)将这组数据重新排列为:81,82,83,86,87,88,89,90,90,90,92,93,96,96,98,99,100,100,100,100,∴a=5,b==91,c=100;(2)估计成绩不低于90 分的人数是1600×=1040(人);(3)中位数,在被调查的20 名学生中,中位数为91 分,有一半的人分数都是再91 分以上.【总结归纳】考查中位数、众数的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.23.(8 分)如图,一艘渔船位于小岛 B 的北偏东30°方向,距离小岛40nmile 的点 A 处,它沿着点A 的南偏东15°的方向航行.(1)渔船航行多远距离小岛 B 最近(结果保留根号)?(2)渔船到达距离小岛 B 最近点后,按原航向继续航行20 nmile 到点 C 处时突然发生事故,渔船马上向小岛 B 上的救援队求救,问救援队从 B 处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】(1)过B 作PM⊥AB 于C,解直角三角形即可得到结论;(2)在Rt△BCM 中,解直角三角形求得∠CBM =60°,即可求得∠CBG=45°,BC=40 nmile,即可得到结论.【解题过程】解:(1)过 B 作BM ⊥AC 于M ,由题意可知∠BAM =45°,则∠ABM =45°,在Rt△ABM 中,∵∠BAM =45°,AB =40nmile ,∴BM =AM =AB =20 nmile,∴渔船航行20 nmile 距离小岛 B 最近;(2)∵BM=20 nmile,MC =20 nmile ,∴tan∠MBC ===,∴∠MBC =60°,∴∠CBG=180°﹣60°﹣45°﹣30°=45°,在Rt△BCM 中,∵∠CBM =60°,BM =20 nmile,∴BC==2BM =40 nmile ,故救援队从 B 处出发沿点 B 的南偏东45°的方向航行到达事故地点航程最短,最短航程是40 nmile.【总结归纳】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.(10 分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出 A 型和 B 型两款垃圾分拣机器人,已知 2 台A 型机器人和 5 台B 型机器人同时工作2h 共分拣垃圾 3.6 吨,3 台A 型机器人和 2 台B 型机器人同时工作5h 共分拣垃圾8 吨.(1)1 台A 型机器人和 1 台B 型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批 A 型和B 型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20 吨.设购买 A 型机器人 a 台(10≤a≤45),B 型机器人 b 台,请用含 a 的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30 台购买数量不少于30 台A 型20 万元/台原价购买打九折B 型12 万元/台原价购买打八折在(2)的条件下,设购买总费用为w 万元,问如何购买使得总费用w 最少?请说明理由.【知识考点】二元一次方程组的应用;一次函数的应用.【思路分析】(1)1 台A 型机器人和 1 台B 型机器人每小时各分拣垃圾x 吨和y 吨,根据题意列出方程即可求出答案.(2)根据题意列出方程即可求出答案.(3)根据 a 的取值,求出w 与a 的函数关系,从而求出w 的最小值.【解题过程】解:(1)1 台A 型机器人和 1 台B 型机器人每小时各分拣垃圾x 吨和y 吨,由题意可知:,解得:,答:1 台A 型机器人和 1 台B 型机器人每小时各分拣垃圾0.4 吨和0.2 吨.(2)由题意可知:0.4a+0.2b=20,∴b=100﹣2a(10≤a≤45).(3)当10≤a<30 时,此时40≤b≤80,∴w=20×a+0.8×12(100﹣2a)=0.8a+960,当a=10 时,此时w 有最小值,w=968 万元,当30≤a≤35 时,此时30≤b≤40,∴w=0.9×20a+0.8×12(100﹣2a)=﹣1.2a+960,当a=35 时,此时w 有最小值,w=918 万元,当35<a≤45 时,此时10≤b<30,∴w=0.9×20a+12(100﹣2a)=﹣6a+1200当a=45 时,w 有最小值,此时w=930,答:选购 A 型号机器人35 台时,总费用w 最少,此时需要918 万元.【总结归纳】本题考查一次函数,解题的关键正确找出题中的等量关系,本题属于中等题型.25.(10 分)如图,在△ACE 中,以AC 为直径的⊙O 交CE 于点D,连接AD ,且∠DAE =∠ACE ,连接OD 并延长交AE 的延长线于点P,PB 与⊙O 相切于点B.(1)求证:AP 是⊙O 的切线;(2)连接AB 交OP 于点F,求证:△FAD∽△DAE ;(3)若tan∠OAF=,求的值.。

2022年广西南宁市中考数学试卷(解析版)

2022年广西南宁市中考数学试卷(解析版)

2022年广西南宁市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)(2022•广西)﹣的相反数是()A.B.﹣C.3D.﹣32.(3分)(2022•广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是()A.B.C.D.3.(3分)(2022•广西)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图4.(3分)(2022•广西)如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是()A.﹣2B.0C.1D.25.(3分)(2022•广西)不等式2x﹣4<10的解集是()A.x<3B.x<7C.x>3D.x>76.(3分)(2022•广西)如图,直线a∥b,∠1=55°,则∠2的度数是()A.35°B.45°C.55°D.125°7.(3分)(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况8.(3分)(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC 的夹角为α,则高BC是()A.12sinα米B.12cosα米C.米D.米9.(3分)(2022•广西)下列运算正确的是()A.a+a2=a3B.a•a2=a3C.a6÷a2=a3D.(a﹣1)3=a3 10.(3分)(2022•广西)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.=B.=C.=D.=11.(3分)(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A 逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π12.(3分)(2022•广西)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题2分,共12分.)13.(2分)(2022•广西)化简:=.14.(2分)(2022•广西)当x=时,分式的值为零.15.(2分)(2022•广西)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是.16.(2分)(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是米.17.(2分)(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是.18.(2分)(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).20.(6分)(2022•广西)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y =.21.(10分)(2022•广西)如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);(3)连接BE,若∠DBE=25°,求∠AEB的度数.22.(10分)(2022•广西)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:123456789103.8 3.7 3.5 3.4 3.84.0 3.6 4.0 3.6 4.0芒果树叶的长宽比2.0 2.020 2.4 1.819 1.8 2.0 1.3 1.9荔枝树叶的长宽比【实践探究】分析数据如下:平均数中位数众数方差3.74m4.00.0424芒果树叶的长宽比1.912.0n0.0669荔枝树叶的长宽比【问题解决】(1)上述表格中:m=,n=;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是(填序号);(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.23.(10分)(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.24.(10分)(2022•广西)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.25.(10分)(2022•广西)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接P A,PC,设点P的纵坐标为m,当P A=PC时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.26.(10分)(2022•广西)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.2022年广西南宁市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)(2022•广西)﹣的相反数是()A.B.﹣C.3D.﹣3【分析】根据只有符号不同的两个数互为相反数求解后选择即可.【解答】解:﹣的相反数是.故选:A.【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2022•广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是()A.B.C.D.【分析】平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做平移,平移不改变图形的形状大小.【解答】解:根据平移的性质可知:能由如图经过平移得到的是D,故选:D.【点评】本题考查了利用平移设计图案,解决本题的关键是熟记平移的定义.确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.3.(3分)(2022•广西)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【解答】解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:C.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.4.(3分)(2022•广西)如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是()A.﹣2B.0C.1D.2【分析】关于原点对称的数是互为相反数.【解答】解:∵关于原点对称的数是互为相反数,又∵1和﹣1是互为相反数,故选:C.【点评】本题考查数轴和相反数的知识,掌握基本概念是解题的关键.5.(3分)(2022•广西)不等式2x﹣4<10的解集是()A.x<3B.x<7C.x>3D.x>7【分析】根据解一元一次不等式的方法可以求得该不等式的解集.【解答】解:2x﹣4<10,移项,得:2x<10+4,合并同类项,得:2x<14,系数化为1,得:x<7,故选:B.【点评】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法.6.(3分)(2022•广西)如图,直线a∥b,∠1=55°,则∠2的度数是()A.35°B.45°C.55°D.125°【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据对顶角相等可得∠2=∠3.【解答】解:如图,∵a∥b,∴∠3=∠1=55°,∴∠2=∠3=55°.故选:C.【点评】本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.7.(3分)(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况【分析】根据三角形内角和定理,随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、三角形内角和是180°,是必然事件,故A符合题意;B、端午节赛龙舟,红队获得冠军,是随机事件,故B不符合题意;C、掷一枚均匀骰子,点数是6的一面朝上,是随机事件,故C不符合题意;D、打开电视,正在播放神舟十四号载人飞船发射实况,是随机事件,故D不符合题意;故选:A.【点评】本题考查了三角形内角和定理,随机事件,熟练掌握随机事件,必然事件,不可能事件的定义是解题的关键.8.(3分)(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是()A.12sinα米B.12cosα米C.米D.米【分析】直接根据∠A的正弦可得结论.【解答】解:Rt△ABC中,sinα=,∵AB=12,∴BC=12sinα.故选:A.【点评】本题考查了解直角三角形的应用,掌握正弦的定义是解本题的关键.9.(3分)(2022•广西)下列运算正确的是()A.a+a2=a3B.a•a2=a3C.a6÷a2=a3D.(a﹣1)3=a3【分析】按照整式幂的运算法则逐一计算进行辨别.【解答】解:∵a与a2不是同类项,∴选项A不符合题意;∵a•a2=a3,∴选项B符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a﹣1)3=()3=,∴选项D不符合题意,故选:B.【点评】此题考查了整式幂的相关运算能力,关键是能准确理解并运用该计算法则.10.(3分)(2022•广西)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.=B.=C.=D.=【分析】根据题意可知,装裱后的长为2.4+2x,宽为1.4+2x,再根据整幅图画宽与长的比是8:13,即可得到相应的方程.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.11.(3分)(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A 逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π【分析】根据旋转的性质可得AC′∥B′D,则可得∠C′AD=∠C′AB′+∠B′AB=90°,即可算出α的度数,根据已知可算出AD的长度,根据弧长公式即可得出答案.【解答】解:根据题意可得,AC′∥B′D,∵B′D⊥AB,∴∠C′AD=∠C′AB′+∠B′AB=90°,∵∠C′AD=α,∴α+2α=90°,∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==.故选:B.【点评】本题主要考查了弧长的计算及旋转的性质,熟练掌握弧长的计算及旋转的性质进行求解是解决本题的关键.12.(3分)(2022•广西)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】本题形数结合,根据二次函数y=(b≠0)的图象位置,可判断b>0;再由二次函数y=ax2+bx+c(a≠0)的图象性质,排除A,B,再根据一次函数y=cx﹣a(c ≠0)的图象和性质,排除C.【解答】解:∵反比例函数y=(b≠0)的图象位于一、三象限,∴b>0;∵A、B的抛物线都是开口向下,∴a<0,根据同左异右,对称轴应该在y轴的右侧,故A、B都是错误的.∵C、D的抛物线都是开口向上,∴a>0,根据同左异右,对称轴应该在y轴的左侧,∵抛物线与y轴交于负半轴,∴c<0由a>0,c<0,排除C.故选:D.【点评】此题考查一次函数,二次函数及反比例函数中的图象和性质,因此,掌握函数的图象和性质是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13.(2分)(2022•广西)化简:=2.【分析】应用二次根式的化简的方法进行计算即可得出答案.【解答】解:===2.故答案为:2.【点评】本题主要考查了二次根式的化简,熟练掌握二次根式的化简的计算方法进行求解是解决本题的关键.14.(2分)(2022•广西)当x=0时,分式的值为零.【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x=0且x+2≠0,然后进行计算即可解答.【解答】解:由题意得:2x=0且x+2≠0,∴x=0且x≠﹣2,∴当x=0时,分式的值为零,故答案为:0.【点评】本题考查了分式值为0的条件,熟练掌握分式值为0的条件是解题的关键.15.(2分)(2022•广西)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是.【分析】根据题意可写出所有的可能性,然后再写出其中指向的区域内的数是奇数的可能性,从而可以计算出指向的区域内的数是一个奇数的概率.【解答】解:由图可知,指针指向的区域有5种可能性,其中指向的区域内的数是奇数的可能性有3种,∴这个数是一个奇数的概率是,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.16.(2分)(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为,,解得:x=134,答:金字塔的高度BO是134米,故答案为:134.【点评】本题主要考查同一时刻物高和影长成正比.考查利用所学知识解决实际问题的能力.17.(2分)(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是14.【分析】根据x=2是关于x的一元一次方程ax+b=3的解,可得:b=3﹣2a,直接代入所求式即可解答.【解答】解:∵x=2是关于x的一元一次方程ax+b=3的解,∴2a+b=3,∴b=3﹣2a,∴4a2+4ab+b2+4a+2b﹣1=4a2+4a(3﹣2a)+(3﹣2a)2+4a+2(3﹣2a)﹣1=4a2+12a﹣8a2+9﹣12a+4a2+4a+6﹣4a﹣1=14.故答案为:14.【点评】此题主要考查了一元一次方程的解和代数式求值,要熟练掌握,解答此题的关键是判断出a、b的关系.18.(2分)(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是5+.【分析】作辅助线,构建全等三角形,先根据翻折的性质得△EGH'≌△EGH,所以△EGH′的周长=△EGH的周长,接下来计算△EGH的三边即可;证明△BME≌△FNE (ASA)和△BEO≌△EFP(AAS),得OE=PF=2,OB=EP=4,利用三角函数和勾股定理分别计算EG,GH和EH的长,相加可得结论.【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.【点评】本题考查了正方形的判定和性质,全等三角形的判定和性质,解直角三角形,图形的翻折等知识,本题十分复杂,解决问题的关键是关注特殊性,添加辅助线,需要十分扎实的基础和很强的能力.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).【分析】先算乘方,再算括号里面的和乘除法,最后算加减.【解答】解:原式=1×3+4÷(﹣4)=3﹣1=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解决本题的关键20.(6分)(2022•广西)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y =.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x、y 的值代入化简后的式子计算即可.【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y=时,原式=12﹣2×=0.【点评】本题考查整式的混合运算—化简求值,解答本题的关键是明确整式混合运算的运算法则,注意平方差公式的应用.21.(10分)(2022•广西)如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);(3)连接BE,若∠DBE=25°,求∠AEB的度数.【分析】(1)由平行四边形的性质得出AB=CD,AD=BC,再由BD=BD,即可证明△ABD≌△CDB;(2)利用线段垂直平分线的作法进行作图即可;(3)由垂直平分线的性质得出EB=ED,进而得出∠DBE=∠BDE=25°,再由三角形外角的性质即可求出∠AEB的度数.【解答】(1)证明:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵BD=BD,∴△ABD≌△CDB(SSS);(2)如图所示,(3)解:如图3,∵EF垂直平分BD,∠DBE=25°,∴EB=ED,∴∠DBE=∠BDE=25°,∵∠AEB是△BED的外角,∴∠AEB=∠DBE+∠BDE=25°+25°=50°.【点评】本题考查了平行四边形的性质,全等三角形的判定,线段垂直平分线的性质,基本作图,三角形外角的性质,掌握平行四边形的性质,全等三角形的判定方法,线段垂直平分线的作法,线段垂直平分线的性质,三角形外角的定义与性质是解决问题的关键.22.(10分)(2022•广西)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:12345678910芒果树叶3.8 3.7 3.5 3.4 3.84.0 3.6 4.0 3.6 4.0的长宽比2.0 2.020 2.4 1.819 1.8 2.0 1.3 1.9荔枝树叶的长宽比【实践探究】分析数据如下:平均数中位数众数方差芒果树叶的长宽3.74m4.00.0424比1.912.0n0.0669荔枝树叶的长宽比【问题解决】(1)上述表格中:m= 3.75,n= 2.0;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是B(填序号);(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.【分析】(1)根据中位数和众数的定义解答即可;(2)根据题目给出的数据判断即可;(3)根据树叶的长宽比判断即可.【解答】解:(1)把10片芒果树叶的长宽比从小到大排列,排在中间的两个数分别为3.7、3.8,故m==3.75;10片荔枝树叶的长宽比中出现次数最多的是2.0,故n=2.0;故答案为:3.75;2.0;(2)∵0.0424<0.0669,∴芒果树叶的形状差别小,故A同学说法不合理;∵荔枝树叶的长宽比的平均数1.91,中位数是2.0,众数是2.0,∴B同学说法合理.故答案为:B;(3)∵一片长11cm,宽5.6cm的树叶,长宽比接近2,∴这片树叶更可能来自荔枝.【点评】本题考查了众数,中位数,平均数和方差,掌握相关定义是解答本题的关键.23.(10分)(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.【分析】(1)可用待定系数法来确定y与x之间的函数关系式,根据图象可得x的取值范围即可;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润.【解答】解:(1)设函数解析式为y=kx+b,由题意得:,解得:,∴y=﹣5x+500,当y=0时,﹣5x+500=0,∴x=100,∴y与x之间的函数关系式为y=﹣5x+500(50<x<100);(2)设销售利润为w元,w=(x﹣50)(﹣5x+500)=﹣5x2+750x﹣25000=﹣5(x﹣75)2+3125,∵抛物线开口向下,∴50<x<100,∴当x=75时,w有最大值,是3125,∴当销售单价定为75元时,该种油茶的月销售利润最大,最大利润是3125元.【点评】本题考查了一次函数的应用,二次函数的最值问题,在本题中,还需注意的是自变量的取值范围.24.(10分)(2022•广西)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.【分析】(1)连接OD,进而判断出OD∥AB,即可得出结论;(2)设AE=2m,DE=3m,进而表示出AD=m,再判断出△ABD∽△ADE,得出比例式,进而表示出AB=m,BD=m,再判断出△ADB∽△CFB,得出比例式建立方程求出m,最后根据勾股定理求出AC=26,即可求出答案.【解答】(1)证明:如图1,连接OD,则OD=OC,∴∠ODC=∠OCD,∵AB=AC,∴∠B=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AD,∵=,∴设AE=2m,DE=3m,∵DE⊥AB,∴∠AED=∠BED=90°,在Rt△ADE中,根据勾股定理得,AD==m,∵AC为直径,∴∠ADB=∠ADC=90°=∠AED,∴∠A=∠A,∴△ABD∽△ADE,∴=,∴,∴AB=m,BD=m,∵AB=AC,∠ADC=90°,∴DC=m,BC=2BD=3m,连接AF,则∠ADB=∠F,∵∠B=∠B,∴△ADB∽△CFB,∴,∵AF=10,∴BF=AB+AF=m+10,∴,∴m=4,∴AD=4,CD=6,在Rt△ADC中,根据勾股定理得,AC==26,∴⊙O的半径为AC=13.【点评】此题是圆的综合题,主要考查了切线的判定,平行线的性质,相似三角形的判定和性质,勾股定理,作出辅助线构造出相似三角形是解本题的关键.25.(10分)(2022•广西)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接P A,PC,设点P的纵坐标为m,当P A=PC时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.【分析】(1)令y=0,从而﹣x2+2x+3=0,解方程进而求得结果;(2)设点P(1,m),根据P A=PC列出方程,进一步求得结果;(3)分为a>0和a<0两种情形.当a>0时,抛物线的顶点等于5及x=0时,y>0,当a<0时,将x=4代入抛物线解析式,y的值大于等于5,从而求得结果.【解答】解:(1)当y=0时,﹣x2+2x+3=0,∴x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)∵抛物线对称轴为:x==1,∴设P(1,m),由﹣x2+2x+3=﹣x﹣1得,x3=﹣1(舍去),x4=4,当x=4时,y=﹣4﹣1=﹣5,∴C(4,﹣5),由P A2=PC2得,22+m2=(4﹣1)2+(m+5)2,∴m=﹣3;(3)可得M(0,5),N(4,5),当a>0时,∵y=﹣a(x﹣1)2+4a,∴抛物线的顶点为:(1,4a),当4a=5时,只有一个公共点,∴a=,当x=0时,y>5,∴3a>5,∴a>,∴a>或a=,当a<0时,(﹣16+8+3)a≥5,∴a≤﹣1,综上所述:a>或a=或a≤﹣1.【点评】本题考查二次函数图象与x轴的交点与一元二次方程的关系,勾股定理列方程,分类讨论等知识思想,解决问题的关键是正确分类.26.(10分)(2022•广西)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.【分析】(1)根据“直角三角形斜边中线等于斜边一半”可得OD=,OD′=,进而得出结论;(2)作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,求出CD和等边三角形AO′B上的高O′D,进而求得结果;(3)作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,取AB的中点C,连接CI 并延长交⊙I于O,此时△AOB的面积最大,进一步求得结果.【解答】解:(1)OD=OD′,理由如下:在Rt△AOB中,点D是AB的中点,∴OD=,同理可得:OD′=,∵AB=A′B′,∴OD=OD′;(2)如图1,作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,此时△AOB是等边三角形,∴BO′=AB=6,OC最大=CO′=CD+DO′=+BO′=3+3;(3)如图2,作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,∴AI==3,∠AOB=,则点O在⊙I上,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,∵OC=CI+OI=AB+3=3+3,∴S△AOB最大==9+9.【点评】本题考查了直角三角形性质,等腰三角形性质,确定圆的条件等知识,解决问题的关键是熟练掌握“定弦对定角”的模型.。

初中毕业升学考试(广西南宁卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西南宁卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西南宁卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】﹣2的相反数是()A.﹣2 B.0 C.2 D.4【答案】C【解析】试题分析:根据只有符号不同的两个数叫做互为相反数解答.﹣2的相反数是2考点:相反数【题文】把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A. B. C. D.【答案】A【解析】试题分析:根据平行投影特点以及图中正六棱柱的摆放位置即可求解.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.考点:平行投影.【题文】据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106 B.3.32×105 C.3.32×104 D.33.2×104【答案】B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将332000用科学记数法表示为:3.32×105.考点:科学记数法—表示较大的数.【题文】已知正比例函数y=3x的图象经过点(1,m),则m的值为()评卷人得分A. B.3 C.﹣ D.﹣3【答案】B【解析】试题分析:本题较为简单,把坐标代入解析式即可求出m的值.把点(1,m)代入y=3x,可得:m=3考点:一次函数图象上点的坐标特征.【题文】某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分 B.82分 C.84分 D.86分【答案】D【解析】试题分析:利用加权平均数的公式直接计算即可得出答案.由加权平均数的公式可知===86考点:加权平均数.【题文】如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A. 5sin36°米B. 5cos36°米C. 5tan36°米D. 10tan36°米【答案】C【解析】试题分析:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选C.考点:解直角三角形的应用.【题文】下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6 D.(y3)2=y5【答案】C【解析】试题分析:结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.考点:(1)幂的乘方与积的乘方;(2)合并同类项;(3)同底数幂的乘法.【题文】下列各曲线中表示y是x的函数的是()A. B. C. D.【答案】D【解析】试题分析:根据函数的意义求解即可求出答案.根据函数的意义可知:对于自变量x的任何值,y 都有唯一的值与之相对应,故D正确.考点:函数的概念.【题文】如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【答案】B【解析】试题分析:先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°考点:圆周角定理.【题文】超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x ﹣10=90【答案】A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.【题文】有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1: B.1:2 C.2:3 D.4:9【答案】D【解析】试题分析:设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9考点:正方形的性质.【题文】二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【答案】C【解析】试题分析:设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣l【答案】50°【解析】试题分析:根据两直线平行,同位角相等可得∠1=∠A.∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,考点:平行线的性质【题文】分解因式:a2﹣9=.【答案】(a+3)(a-3)【解析】试题分析:直接利用平方差公式分解因式进而得出答案.a2﹣9=(a+3)(a﹣3)考点:因式分解-运用公式法【题文】如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(2016•南宁)如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC 的面积为8,则k的值为.【答案】2【解析】试题分析:过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2考点:反比例函数系数k的几何意义【题文】观察下列等式:在上述数字宝塔中,从上往下数,2016在第层.【答案】44【解析】试题分析:先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层考点:(1)规律型:(2)数字的变化类【题文】计算:|﹣2|+4cos30°﹣()﹣3+.【答案】4-6【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质化简,进而求出答案.试题解析:原式=2+4×﹣8+2=2+2-8+2=4-6考点:(1)实数的运算;(2)负整数指数幂;(3)特殊角的三角函数值.【题文】解不等式组,并把解集在数轴上表示出来.【答案】﹣3<x≤1;数轴见解析【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.试题解析:,解①得x≤1,解②得x>﹣3,不等式组的解集是:﹣3<x≤1.考点:(1)解一元一次不等式组;(2)在数轴上表示不等式的解集.【题文】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4)(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2,并求出∠A2C2B2的正弦值.【答案】(1)答案见解析;(2)【解析】试题分析:(1)将A、B、C三点分别向左平移6个单位即可得到的△A1B1C1;(2)连接OA、OC,分别取OA、OB、OC的中点即可画出△A2B2C2,求出直线AC与OB的交点,求出∠ACB的正弦值即可解决问题.试题解析:(1)如图1所示,(2)如图2所示,∵A(2,2),C(4,﹣4),B(4,0),∴直线AC解析式为y=﹣3x+8,与x轴交于点D(,0),∵∠CBD=90°,∴CD==,∴sin∠DCB===.∵∠A2C2B2=∠ACB,∴sin∠A2C2B2=sin∠DCB=.考点:(1)作图-位似变换;(2)作图-平移变换.【题文】在图“书香八桂,阅读圆梦”读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目(2016•南宁)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB 为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【答案】(1)证明过程见解析;(2)12.【解析】试题分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA为直径,即可得证;(2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.试题解析:(1)连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∵OD∥BC,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.考点:切线的判定【题文】在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?【答案】(1)450天;(2)7.5倍.【解析】试题分析:(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.试题解析:(1)设乙队单独完成这项工程需要x天,根据题意得×(30+15)+×15=,解得:x=450,经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=7.5倍,答:乙队的最大工作效率是原来的7.5倍考点:(1)一次函数的应用;(2)分式方程的应用【题文】已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【答案】(1)AE=EF=AF;(2)证明过程见解析;(3)3-【解析】试题分析:(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形;(2)欲证明BE=CF,只要证明△BAE≌△CAF即可;(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.试题解析:(1)结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAl在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=l【题文】如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x;C(-1,-3);(2)证明过程见解析;(3)(,0)或(,0)或(﹣1,0)或(5,0)【解析】试题分析:(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.试题解析:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x ,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).考点:(1)二次函数综合题;(2)三角形相似;(3)分类讨论思想。

南宁中考数学试题及答案

南宁中考数学试题及答案

南宁中考数学试题及答案今年南宁市中考数学试题涵盖了多个知识点,包括代数、几何、概率等。

考试题目难度适中,要求考生综合运用所学知识解决实际问题。

以下是南宁中考数学试题及答案的详细内容:一、选择题1. 设函数 f(x) = 3x^2 + 2x - 5,则 f(2) = ?A. 9B. 14C. 17D. 192. 一条直线上有三个点 A(-3, 2)、B(1, -4)、C(5, -10),则这三个点是否共线?A. 是B. 否3. 设集合 A = {x | -3 ≤ x ≤ 3},集合 B = {y | y = 2x + 1},则A ∩ B = ?A. {-3, 3}B. {-1, 1}C. {-2, 2}D. {-∞, +∞}4. 甲、乙两人摇掷一颗骰子,同时进行。

甲的目标是出现奇数点数,乙的目标是出现偶数点数。

则两人获胜的概率之和为?A. 1/3B. 2/3C. 5/9D. 7/9二、填空题1. 已知直线 y = 2x + 3,点 P(1, 5) 在直线上,求直线上另一个点的坐标。

2. 南宁市某中学学生身高数据如下:140, 145, 150, 155, 160, 165, 170, 175, 180。

求学生身高的平均数。

三、解答题1. 已知平行四边形 ABCD 中,边 AD 的长度为 6cm,且通过点 M 在 BD 上作线段 MN,使得 AM:AD = 2:1。

求线段 MN 的长度。

解答步骤:根据平行四边形的性质,平行四边形的对角线互相平分。

所以,由题意可知线段 BM 的长度为 6cm。

根据 AM:AD = 2:1 可以推出 AM 的长度为 4cm。

根据 BM:BN = AM:AD,可以得出 BN = 2cm。

由此可知线段 MN 的长度为 4cm + 2cm = 6cm。

2. 有一圆的半径为4cm,一只苍蝇从圆的某一点出发,每秒沿着圆的边缘随机行走1cm的距离。

当苍蝇的路径第一次围绕圆一周回到起点时,求苍蝇行走的总路径长度。

广西省南宁市中考数学试题(纯word版含答案)

广西省南宁市中考数学试题(纯word版含答案)

南宁市中等学校招生考试数 学本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟.注意:答案一律填写在答题卷上,在试题卷上作答无效..........考试结束,将本试卷和答题卷一并交回.第Ⅰ卷(选择题 共36分)一、选择题:(本大题共12小题,每小题3分,共36分)每小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.使用机改卷的考生........,请用2B 铅笔在答题卷上将选定的答案标号涂黑;使用非机改卷的六县考生...........,请用黑(蓝黑)墨水笔将每小题选定的答案的序号填写在答题卷相应的表格内.1.13的相反数是( ) A .3 B .13C .3-D .13-2.图1是一个五边形木架,它的内角和是( )A .720°B .540°C .360°D .180°3.今年6月,南宁市举行了第五届泛珠三角区域经贸合作洽谈会.据估算,本届大会合同总额达2260亿元.将2260用科学记数法表示为(结果保留2个有效数字)( ) A .32.310⨯B .32.210⨯C .32.2610⨯D .40.2310⨯4.与左边三视图所对应的直观图是( )5.不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )6.要使式子1x x+有意义,x 的取值范围是( ) A .1x ≠ B .0x ≠ C .10x x >-≠且 D .10x x ≠≥-且7.如图2,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )图1-1 01 2 A .-1 01 2 B .-1 01 2 C .-1 01 2 D .A .B .C .D .A .210cmB .220cmC .240cmD .280cm8.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x - B .()224x -C .()222x -D .()222x +9.在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1- B .0 C .1D .210.如图3,AB O是⊙的直径,弦303cm CD AB E CDB O ⊥∠=于点,°,⊙的半径为,则弦CD 的长为( ) A .3cm 2B .3cmC .23cmD .9cm11.已知二次函数2y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个12.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对B .6对C .5对D .3对A BCD图2图3CABOE D1图4O y3第Ⅱ卷(非选择题,共84分)二、填空题:(本大题共6小题,每小题2分,共12分)13.如图5,直线a 、b 被c 所截,且11202a b ∠=∠=∥,°,则 °. 14.计算:()22a ba ÷ .15.三角尺在灯泡O 的照射下在墙上形成影子(如图6所示).现测得20cm 50cm OA OA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是 .16.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是 .17.如图7,一艘海轮位于灯塔P 的东北方向,距离灯塔402海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶的路程AB 为 _____________海里(结果保留根号).18.正整数按图8的规律排列.请写出第20行,第21列的数字 .考生注意:第三至第八大题为解答题,要求在答题卷...上写出解答过程. 三、(本大题共2小题,每小题满分6分,共12分) 19.计算:()12009311sin 6022-⎛⎫-+-- ⎪⎝⎭°20.先化简,再求值:cab 12 图5 图6 A A O 灯 三角尺 投影 图7 BAC P 东北45° 30° 第一行第二行 第三行 第四行 第五行 第一列 第二列 第三列 第四列 第五列1 2 5 10 17 … 4 3 6 11 18 … 9 8 7 12 19 … 16 15 14 1320 … 25 24 23 22 21 … ……图8()2111211x x x ⎛⎫+÷-- ⎪--⎝⎭,其中2x =四、(本大题共2小题,每小题满分10分,共20分)21.为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整 分数段 频数 频率 60≤x <70 30 0.1570≤x <80 m 0.4580≤x <90 60 n90≤x <100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)表中m n 和所表示的数分别为:__________m n ==,__________; (2)请在图9中,补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段?(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?22.已知ABC △在平面直角坐标系中的位置如图10所示. (1)分别写出图中点A C 和点的坐标;(2)画出ABC △绕点C 按顺时针方向旋转90A B C '''°后的△; (3)求点A 旋转到点A '所经过的路线长(结果保留π).五、(本大题满分10分)图9 频数120 90 60 30 0分数(分)90 100 80 60 70 图108 76 5 4 3 210 87 6 5 4 3 2 1 B C A23.如图11,PA 、PB 是半径为1的O ⊙的两条切线,点A 、B 分别为切点,60APB OP AB C O D ∠=°,与弦交于点,与⊙交于点.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形; (2)求阴影部分的面积(结果保留π).六、(本大题满分10分)24.南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系如图12所示;乙工程队铺设广场砖的造价y 乙(元)与铺设面积()2m x 满足函数关系式:y kx =乙.(1)根据图12写出甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系式;(2)如果狮山公园铺设广场砖的面积为21600m ,那么公园应选择哪个工程队施工更合算?七、(本大题满分10分)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.图11A OBDC图12y 元48000 280005001000()2m x图13-1 A D C B E 图13-2 B C E D A F P F八、(本大题满分10分)26.如图14,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是 5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?图14南宁市中等学校招生考试 数学试题参考答案与评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B A A C D A C D B C B13.60 14.32a b 15.25 16.4517.()40340 18.420 三、(本大题共2小题,每小题满分6分,共 12分) 19.解:()12009311sin 6022-⎛⎫-+-- ⎪⎝⎭°=()3312-+······················································································ 4分 =12-- ········································································································ 5分 3=- ··········································································································· 6分 20.解:()2111211x x x ⎛⎫+÷-- ⎪--⎝⎭ =()()11211x x x x x +--+-· ············································································· 3分 22x =+ ······································································································· 4分当2x =222=+ ········································································ 5分4= ·················································································· 6分 四、(本大题共2小题,每小题满分10分,共20分)21.解:(1)900.3m n ==,; ····································································· 4分(2)图略. ·································································································· 6分 (3)比赛成绩的中位数落在:70分~80分. ························································ 8分 (4)获奖率为:6020100200+⨯%=40%(或0.3+0.1=0.4) ····································· 10分 22.解:(1)()04A ,、()31C ,; ···································································· 2分 (2)图略. ·································································································· 6分 (3)32AC =···························································································· 7分9032πAA ⨯⨯'=························································································ 9分32π2=···································································································· 10分 五、(本大题满分10分)23.解:(1)ACO BCO APC BPC PAO PBO △≌△,△≌△,△≌△ ··················· 3分 (写出一个全等式子得1分)(2)PA 、PB 为O ⊙的切线PO ∴平分90APB PA PB PAO ∠=∠=,,° ················· 5分 PO AB ∴⊥ ····························································· 6分 ∴由圆的对称性可知:AODS S =阴影扇形 ························ 7分在Rt PAO △中,11603022APO APB ∠=∠=⨯=︒° 90903060AOP APO ∴∠=-∠=-︒=︒°° ························································· 8分 260π1360AODS S ⨯⨯∴==阴影扇形 ·········································································· 9分π6=·················································································· 10分 六、(本大题满分10分)24.解:(1)当0500x ≤≤时,设1y k x =甲,把()50028000,代入上式得:11280002800050056500k k =∴==, 56y x ∴=甲 ··································································································· 2分当500x ≥时,设2y k x b =+甲,把()50028000,、()100048000,代入上式得:2250028000100048000k b k b +=⎧⎨+=⎩ ····················································································· 3分 解得:2408000k b =⎧⎨=⎩··························································································· 4分408000y x ∴=+甲()()560500408000500x x y x x <⎧⎪∴=⎨+⎪⎩甲≤≥ ········································································ 5分 (2)当1600x =时,401600800072000y =⨯+=甲 ·········································· 6分1600y k =乙···································································· 7分①当y y <乙甲时,即:720001600k <AOB DC得:45k > ··································································································· 8分②当y y >乙甲时,即:720001600k >得:045k << ······························································································ 9分③当y y =乙甲时,即720001600k =,45k ∴=答:当45k >时,选择甲工程队更合算,当045k <<时,选择乙工程队更合算,当45k =时,选择两个工程队的花费一样. ·························································· 10分 七、(本大题满分10分) 25.解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=°12∠=∠ ··························································· 1分 90DAM ABE DA AB ∠=∠==°, DAM ABE ∴△≌△DM AE ∴=································································································· 9分 AE EP =DM PE ∴=∴四边形DMEP 是平行四边形. ···································································· 10分 (备注:作平行四边形DMEP ,并计算出AM 或BM 的长度,但没有证明点M 在AB 边上的扣1分)解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形 ························· 8分 证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP . 90AD BA DAM ABE =∠=∠=,°Rt Rt DAM ABE ∴△≌△14DM AE ∴=∠=∠, ································· 9分 1590∠+∠=° 4590∴∠+∠=°AE DM ∴⊥AE EP ⊥DM EP ∴⊥∴四边形DMEP 为平行四边形 ······································································· 10分(备注:此小题若有其他的证明方法,只要证出判定平行四边形的一个条件,即可得1分)八、(本大题满分10分)26.解:(1)横向甬道的面积为:()2120180150m 2x x += ·································· 2分 (2)依题意:2112018028015028082x x x +⨯+-=⨯⨯ ······································· 4分整理得:21557500x x -+=F A D C B E 1 3 2B C E D A FP5 41M125150x x ==,(不符合题意,舍去) ····························································· 6分 ∴甬道的宽为5米.(3)设建设花坛的总费用为y 万元.()21201800.028******** 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦······································ 7分20.040.5240x x =-+当0.56.25220.04b x a =-==⨯时,y 的值最小. ··················································· 8分 因为根据设计的要求,甬道的宽不能超过6米,6x ∴=当米时,总费用最少. ·········································································· 9分最少费用为:20.0460.56240238.44⨯-⨯+=万元 ··········································· 10分。

广西南宁2022中考试卷-数学(解析版)

广西南宁2022中考试卷-数学(解析版)

广西南宁2022中考试卷-数学(解析版)一、选择题(共12小题,每小题3分,满分36分)1.4的倒数是( D )A .4-B .4C .14- D .14【考点】倒数.【专题】运算题.【分析】依照倒数的定义:乘积是1的两个数,即可求解. 【解答】解:4的倒数是14.故选D .【点评】本题要紧考查了倒数的定义,正确明白得定义是解题关键.2.如图是由六个小正方体组合而成的一个立体图形,它的主视图是( B )A .B .C .D .【考点】考点:简单组合体的三视图. 【专题】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【解答】解:从正面看易得第一层有3个正方形,第二层中间有2个正方形.故选B .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.考查了学生们的空间想象能力.3.芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为( A )A .2.01×10-6千克B .0.201×10-5千克C .20.1×10-7千克D .2.01×10-7千克 【考点】科学记数法—表示较小的数. 【专题】【分析】绝对值小于1的正数也能够利用科学记数法表示,一样形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 00201=2.01×10-6。

故选A .【点评】此题考查了用科学记数法表示较小的数,一样形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列图形中,既是轴对称图形又是中心对称图形的是(A)A.B.C.D.【考点】考点:中心对称图形;轴对称图形.【专题】常规题型.【分析】依照中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形;轴对称图形的定义:假如一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那个图形叫做轴对称图形,这条直线叫做对称轴,即可判定出答案.【解答】解:A、此图形是中心对称图形,也是轴对称图形,故此选项正确;B、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A.【点评】此题要紧考查了中心对称图形与轴对称的定义,解题关键是找出图形的对称中心与对称轴,属于基础题,比较容易解答.5.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业聘请,对应聘人员进行面试.其中符合用抽样调查的是(B)A.①②B.①③C.②④D.②③【考点】全面调查与抽样调查.【专题】【分析】本题需要依照具体情形正确选择普查或抽样调查等方法,并明白得有些调查是不适合使用普查方法的.【解答】解:①调查一批灯泡的使用寿命,适合抽样调查;②调查全班同学的身高,适合全面调查;③调查市场上某种食品的色素含量是否符合国家标准,适合抽样调查;④企业聘请,对应聘人员进行面试,适合全面调查;故选B.【点评】本题要紧考查了全面调查和抽样调查,在解题时选择普查依旧抽样调查要依照所要考查的对象的特点灵活选用是本题的关键.6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范畴是(C)A.2cm<OA<5cm B.2cm<OA<8cmC.1cm<OA<4cm D.3cm<OA<8cm【考点】平行四边形的性质;三角形三边关系.【专题】【分析】由在平行四边形ABCD中,AB=3cm,BC=5cm,依照平行四边形对角线互相平分与三角形三边关系,即可求得OA=OC=12AC ,2cm <AC <8cm ,继而求得OA 的取值范畴.【解答】解:∵平行四边形ABCD 中,AB=3cm ,BC=5cm ,∴OA=OC=12AC ,2cm <AC <8cm ,∴1cm <OA <4cm . 故选C .【点评】此题考查了平行四边形的性质与三角形三边关系.此题比较简单,注意数形结合思想的应用,注意把握平行四边形对角线互相平分定理的应用.7.若点A (2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是( A ) A .(1,1) B .(-1,1) C .(-2,-2) D .(2,-2) 【考点】一次函数图象上点的坐标特点. 【专题】探究型.【分析】将点A (2,4)代入函数解析式求出k 的值,再把各点的坐标代入解析式,逐一检验即可.【解答】解:∵点A (2,4)在函数y=kx-2的图象上,∴2k-2=4,解得k=3,∴此函数的解析式为:y=3x-2,A 、∵3×1-2=1,∴此点在函数图象上,故本选项正确;B 、∵3×(-1)-2=-5≠1,∴此点在不函数图象上,故本选项错误;C 、∵3×(-2)-2=-7≠-2,∴此点在不函数图象上,故本选项错误;D 、∵3×2-2=4≠-2,∴此点在不函数图象上,故本选项错误. 故选A . 【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.8.下列运算正确的是( C )A .(m-n )2=m 2-n 2B .(2ab 3)2=2a 2b 6C .2xy+3xy=5xyD 324a a a =【考点】二次根式的性质与化简;合并同类项;幂的乘方与积的乘方;完全平方公式. 【专题】推理填空题.【分析】依照完全平方公式即可判定A ;依照积的乘方和幂的乘方,求出式子的结果,即可判定B ;依照合并同类项法则求出后即可判定C ;依照二次根式的性质求出后即可判定D .【解答】解:A 、(m-n )2=m 2-2mn+n 2,故本选项错误;B 、(2ab 3)2=4a 2b 6,故本选项错误;C 、2xy+3xy=5xy ,故本选项正确;D 、342a a a =故选C .【点评】本题考查了二次根式的性质,合并同类项,幂的乘方和积的乘方,完全平方公式的应用,题目比较典型,然而一道比较容易出错的题目.要紧考查学生的辨析能力和运算能力.9.如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是( A ) A .k=n B .h=m C .k <n D .h <0,k <0【考点】二次函数的性质. 【专题】【分析】借助图象找出顶点的位置,判定顶点横坐标、纵坐标大小关系. 【解答】解:依照二次函数解析式确定抛物线的顶点坐标分别为(h ,k ),(m ,n ),因为点(h ,k )在点(m ,n )的下方,因此k=n 不正确. 故选A .【点评】本题是抛物线的顶点式定义在图形中的应用.能直截了当依照函数的解析式说出其顶点坐标是解决此题的关键.10.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),打算安排10场竞赛,则参加竞赛的球队应有( C )A .7队B .6队C .5队D .4队 【考点】一元二次方程的应用.【分析】设邀请x 个球队参加竞赛,那么第一个球队和其他球队打(x-1)场球,第二个球队和其他球队打(x-2)场,以此类推能够明白共打(1+2+3+…+x-1)场球,然后依照打算安排15场竞赛即可列出方程求解.【解答】解:设邀请x 个球队参加竞赛,依题意得1+2+3+…+x-1=10,即(1)102x x -=,∴x 2-x-20=0,∴x=5或x=-4(不合题意,舍去). 故选C .【点评】此题和实际生活结合比较紧密,准确找到关键描述语,从而依照等量关系准确的列出方程是解决问题的关键.此题还要判定所求的解是否符合题意,舍去不合题意的解.11.如图,在等腰直角三角形ABC 中,AB=AC=8,O 为BC 的中点,以O 为圆心作半圆,使它与AB ,AC 都相切,切点分别为D ,E ,则⊙O 的半径为( D )A .8B .6C .5D .4 【考点】切线的性质;等腰直角三角形.【专题】【分析】第一连接OA ,OD ,由AB ,AC 都与⊙O 相切,依照切线长定理与切线的性质,即可得∠BAO=∠CAO ,OD ⊥AB ,又由在等腰直角三角形ABC 中,AB=AC=8,易得∠B=45°,OA ⊥BC ,继而利用三角函数,即可求得⊙O 的半径.【解答】解:连接OA ,OD ,∵AB ,AC 都与⊙O 相切, ∴∠BAO=∠CAO ,OD ⊥AB ,∵在等腰直角三角形ABC 中,AB=AC=8, ∴AO ⊥BC ,∴∠B=∠BAO=45°,∴OB=AB •cos ∠B=8×2422=,∴在Rt △OBD 中,OD=OB •sin ∠B=24242⨯=. 故选D .【点评】此题考查了切线的性质、切线长定理以及等腰直角三角形性质.此题难度适中,注意把握辅助线的作法,注意数形结合思想的应用.12.已知二次函数y=ax2+bx+1,一次函数y=k (x-1)-k2 4 ,若它们的图象关于任意的非零实数k 都只有一个公共点,则a ,b 的值分别为( B )A .a=1,b=2B .a=1,b=-2C .a=-1,b=2D .a=-1,b=-2 【考点】二次函数的性质;根的判别式. 【专题】【分析】依照题意由y=ax 2+bx+c ①,y=k (x-1)-24k ②,组成的方程组只有一组解,消去y ,整理得,ax 2+(b-k )x+1+24k =0,则△=(b-k )2-4a (1+k+24k )=0,整理得到(1-a )k 2-2(2a+b )k+b 2-4a=0,由于关于任意的实数k 都成立,因此有1-a=0,2a+b=0,b 2-4a=0,求出a ,b 即可.【解答】解:依照题意得,y=ax 2+bx+1①,y=k (x-1)-24k ②,解由①②组成的方程组,消去y ,整理得,ax 2+(b-k )x+1+k+24k =0,∵它们的图象关于任意的实数k 都只有一个公共点,则方程组只有一组解, ∴x 有两相等的值,即△=(b-k)2-4a(1+k+2k)=0,4∴(1-a)k2-2(2a+b)k+b2-4a=0,由于关于任意的实数k都成立,因此有1-a=0,2a+b=0,b2-4a=0,∴a=1,b=-2,故选B.【点评】本题考查了用待定系数法求抛物线的解析式.二次函数的一样式:y=ax2+bx+c(a ≠0);也考查了利用方程组的解的情形确定函数图象交点的问题,而方程组的解的情形转化为一元二次方程根的情形.二、填空题(共6小题,每小题3分,满分18分)13.如图所示,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为AB∥CD.【考点】平行线的判定.【专题】【分析】依照同位角相等,两直线平行判定.【解答】解:依照题意,∠1与∠2是三角尺的同一个角,因此∠1=∠2,因此,AB∥CD(同位角相等,两直线平行).故答案为:AB∥CD.【点评】本题考查了平行线的判定熟练把握同位角相等,两直线平行,并准确识图是解题的关键.14.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差分别是S甲2=1.5,S乙2=2.5,那么身高更整齐的是甲队(填“甲”或“乙”).【考点】方差.【专题】【分析】方差是用来衡量一组数据波动大小的量,故由甲乙的方差可作出判定.【解答】解:由于S甲2<S乙2,则甲队中身高更整齐.∴两队中身高更整齐的是甲队.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,说明这组数据偏离平均数越大,即波动越大,数据越不稳固;反之,方差越小,说明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳固15.分解因式:ax2-4ax+4a= a(x-2)2.【考点】提公因式法与公式法的综合运用.【专题】【分析】先提取公因式a,再利用完全平方公式进行二次分解.【解答】解:ax2-4ax+4a,=a(x2-4x+4),=a(x-2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解完全.16.如图,点B ,A ,C ,D 在⊙O 上,OA ⊥BC ,∠AOB=50°,则∠ADC= 25° .【考点】圆周角定理;垂径定理. 【专题】【分析】由OA ⊥BC ,利用垂径定理,即可求得 =AB AC ,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.【解答】解:∵OA ⊥BC ,∴ =AB AC ,∴∠ADC=12∠AOB= 12×50°=25°.故答案为:25.【点评】此题考查了圆周角定理与垂径定理.此题难度不大,注意把握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半与平分弦的直径平分这条弦,同时平分弦所对的两条弧定理的应用.17.如图,已知函数y=x-2和y=-2x+1的图象交于点P ,依照图象可得方程组221x y x y -=⎧⎨+=⎩的解是11x y =⎧⎨=-⎩.【考点】一次函数与二元一次方程(组). 【专题】推理填空题.【分析】先由图象得出两函数的交点坐标,依照交点坐标即可得出方程组的解.【解答】解:∵由图象可知:函数y=x-2和y=-2x+1的图象的交点P 的坐标是(1,-1),又∵由y=x-2,移项后得出x-y=2, 由y=-2x+1,移项后得出2x+y=1,∴方程组221x y x y -=⎧⎨+=⎩的解是11x y =⎧⎨=-⎩,故答案为:11x y =⎧⎨=-⎩.【点评】本题考查了一次函数与二元一次方程组的应用,要紧考查学生的观看图形的能力和明白得能力,题目具有一定的代表性,是一道比较好但又比较容易出错的题目.18.有若干张边长差不多上2的四边形纸片和三角形纸片,从中取一些纸片按如图所示的顺序拼接起来(排在第一位的是四边形),能够组成一个大的平行四边形或一个大的梯形.假如所取的四边形与三角形纸片数的和是5时,那么组成的大平行四边形或梯形的周长是20;假如所取的四边形与三角形纸片数的和是n ,那么组成的大平行四边形或梯形的周长是3n+5或3n+4.【考点】规律型:图形的变化类. 【专题】【分析】第1张纸片的周长为8,由2张纸片所组成的图形的周长比第1张纸片的周长增加了2.由3张纸片所组成的图形的周长比前2张纸片所组成的图形的周长增加了4,按此规律可知: ①纸张张数为1,图片周长为8=3×1+5;纸张张数为3,图片周长为8+2+4=3×3+5;纸张张数为5,图片周长为8+2+4+2+4=3×5+5;…;当n 为奇数时,组成的大平行四边形或梯形的周长为3n+5;②纸张张数为1,图片周长为8+2=3×2+4;纸张张数为4,图片周长为8+2+4+2=3×4+4;纸张张数为6,图片周长为8+2+4+2+4+2=3×6+4;…;当n 为偶数时,组成的大平行四边形或梯形的周长为3n+4.【解答】解:从图形可推断:纸张张数为5,图片周长为8+2+4+2+4=3×5+5=20;当n 为奇数时,组成的大平行四边形或梯形的周长为:8+2+4+…+2+4=3n+5; 当n 为偶数时,组成的大平行四边形或梯形的周长为:8+2+…+4+2=3n+4. 综上,组成的大平行四边形或梯形的周长为3n+5或3n+4. 故答案为:20,3n+5或3n+4.【点评】本题考查了规律型:图形的变化,解题的关键是将纸片的张数分奇偶两种情形进行讨论,得出组成的大平行四边形或梯形的周长.三、解答题(共8小题,满分66分)19.运算:02012684sin 45(1)-+-.【考点】实数的运算;专门角的三角函数值. 【专题】运算题.【分析】分别运算绝对值、二次根式的化简,然后代入sin45°的值,继而合并运算即可. 【解答】解:原式26224172=+⨯+=.【点评】此题考查了实数的运算及专门角的三角函数值,属于基础题,专门角的三角函数值是需要我们熟练经历的内容.20.解不等式组2132(1)4x x x x <+⎧⎨--≤⎩,并把解集在数轴上表示出来.【考点】解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式.【专题】运算题.【分析】求出每个不等式的解集,依照找不等式组解集的规律找出即可. 【解答】解:2132(1)4x x x x <+⎧⎨--≤⎩①②, ∵解不等式①得:x >-1, 解不等式②得:x ≤2,∴不等式组的解集为:-1<x ≤2, 在数轴上表示不等式组的解集为:.【点评】本题考查了不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集的应用,关键是能依照不等式的解集找出不等式组的解集,题型较好,难度适中.21.2012年6月5日是“世界环境日”,南宁市某校举行了“绿色家园”演讲竞赛,赛后整理参赛同学的成绩,制作成直方图(如图). (1)分数段在85~90范畴的人数最多; (2)全校共有多少人参加竞赛? (3)学校决定选派本次竞赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手预备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用“列表法”或“树形图法”表示上衣和裤子搭配的所有可能显现的结果,并求出上衣和能搭配成同一种颜色的概率.【考点】频数(率)分布直方图;列表法与树状图法.【专题】 【分析】(1)由条形图可直截了当得出人数最多的分数段;(2)把各小组人数相加,得出全校参加竞赛的人数; (3)利用“树形图法”,画出搭配方案,由此可求上衣和裤子能搭配成同一种颜色的概率.【解答】解:(1)由条形图可知,分数段在85~90范畴的人数最多为10人,故答案为:85~90;(2)全校参加竞赛的人数=5+10+6+3=24人;(3)上衣和裤子搭配的所有可能显现的结果如图所示,共有9总搭配方案,其中,上衣和裤子能搭配成同一种颜色的有3种, 上衣和裤子能搭配成同一种颜色的概率为:3193=. 【点评】本题考查读频数分布直方图的能力和利用统计图猎取信息的能力;利用统计图猎取信息时,必须认真观看、分析、研究统计图,才能作出正确的判定和解决问题22.如图所示,∠BAC=∠ABD=90°,AC=BD ,点O 是AD ,BC 的交点,点E 是AB 的中点.(1)图中有哪几对全等三角形?请写出来;(2)试判定OE 和AB 的位置关系,并给予证明. 【考点】全等三角形的判定与性质. 【专题】 【分析】(1)依照全等三角形的定义能够得到:△ABC ≌△BAD ,△AOE ≌△BOE ,△AOC≌△BOD ;(2)第一证得:△ABC ≌△BAD ,则OA=OB ,利用等腰三角形中:等边对等角即可证得OE ⊥AB .【解答】解:(1)△ABC ≌△BAD ,△AOE ≌△BOE ,△AOC ≌△BOD ; (2)OE ⊥AB .理由如下:∵在Rt △ABC 和Rt △BAD 中,AC=BD ,∠BAC=∠ABD ,AB=BA , ∴△ABC ≌△BAD , ∴∠DAB=∠CBA , ∴OA=OB ,∵点E 是AB 的中点, ∴OE ⊥AB .【点评】本题考查了全等三角形的判定与性质,以及三线合一定理,正确证明△ABC ≌△BAD是关键.23.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题. 【专题】【分析】第一在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高.【解答】解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°.∴DC=BC •cos30°=36392=⨯=米, ∵CF=1米,∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米,在直角三角形BGF 中,BG=GF •tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米.【点评】本题考查了解直角三角形的应用,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.24.南宁市某生态示范村种植基地打算用90亩~120亩的土地种植一批葡萄,原打算总产量要达到36万斤.(1)列出原打算种植亩数y (亩)与平均每亩产量x (万斤)之间的函数关系式,并写出自变量x 的取值范畴;(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原打算的1.5倍,总产量比原打算增加了9万斤,种植亩数减少了20亩,原打算和改良后的平均每亩产量各是多少万斤?【考点】反比例函数的应用.【专题】【分析】(1)直截了当依照亩产量、亩数及总产量之间的关系得到函数关系式即可;(2)依照题意列出36369201.5x x+-=后求解即可. 【解答】解:(1)由题意知:xy=36, 故36y x =(310≤x ≤25)(2)依照题意得:36369201.5x x +-= 解得:x=0.3经检验:0.3x =是原方程的根1.5x=0.45答:改良前亩产0.3万斤,改良后亩产0.45万斤.【点评】本题考查了反比例函数的应用,解题的关键是从复杂的实际问题中整理出反比例函数模型,并利用其解决实际问题.25.如图,已知矩形纸片ABCD ,AD=2,AB=4.将纸片折叠,使顶点A 与边CD 上的点E 重合,折痕FG 分别与AB ,CD 交于点G ,F ,AE 与FG 交于点O .(1)如图1,求证:A ,G ,E ,F 四点围成的四边形是菱形;(2)如图2,当△AED 的外接圆与BC 相切于点N 时,求证:点N 是线段BC 的中点; (3)如图2,在(2)的条件下,求折痕FG 的长.【考点】翻折变换(折叠问题);菱形的判定.【专题】综合题。

2020年广西南宁市中考数学试卷(附答案解析)

2020年广西南宁市中考数学试卷(附答案解析)

2020年广西南宁市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)下列实数是无理数的是()A.B.1C.0D.-52.(3分)下列图形是中心对称图形的是()A.B.C.D.3.(3分)2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×1064.(3分)下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2 5.(3分)以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量6.(3分)一元二次方程x2-2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°8.(3分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.9.(3分)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15B.20C.25D.3010.(3分)甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.-=B.=-C.-20=D.=-2011.(3分)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸12.(3分)如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x>0)于点C,D.若AC=BD,则3OD2-OC2的值为()A.5B.3C.4D.2二、填空题(本大题共6小题,每小题3分,共18分.)13.(3分)如图,在数轴上表示的x的取值范围是______.14.(3分)计算:-=______.15.(3分)某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158231801“射中9环以上”的频率0.750.830.780.790.800.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).16.(3分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是______.17.(3分)以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.18.(3分)如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为______.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:-(-1)+32÷(1-4)×2.20.(6分)先化简,再求值:÷(x-),其中x=3.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.22.(8分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<8585≤x<9090≤x<9595≤x<10034a8分析数据:平均分中位数众数92b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23.(8分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A 处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.(10分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.25.(10分)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△F AD∽△DAE;(3)若tan∠OAF=,求的值.26.(10分)如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=-2相交于点D,点A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)s关于t的函数解析式为s=,其图象如图2所示,结合图1、2的信息,求出a与b的值;(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.【试题答案】一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.A【解答】解:无理数是无限不循环小数,而1,0,-5是有理数,因此是无理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年广西南宁市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的相反数是()A.﹣2 B.0 C.2 D.42.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A. B. C. D.3.据《南国早报》报道:2020年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×1044.已知正比例函数y=3x的图象经过点(1,m),则m的值为()A. B.3 C.﹣ D.﹣35.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分 B.82分 C.84分 D.86分6.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米7.下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y58.下列各曲线中表示y是x的函数的是()A. B. C. D.9.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°10.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=9011.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1: B.1:2 C.2:3 D.4:912.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.若二次根式有意义,则x的取值范围是.14.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=.15.分解因式:a2﹣9= .16.如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(2020•南宁)如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为.18.观察下列等式:在上述数字宝塔中,从上往下数,2020在第层.三、解答题(本大题共8小题,共66分)19.计算:|﹣2|+4cos30°﹣()﹣3+.20.解不等式组,并把解集在数轴上表示出来.21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B (4,0),C(4,﹣4)(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2,并求出∠A2C2B2的正弦值.22.在图“书香八桂,阅读圆梦”读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目(2020•南宁)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.24.在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?25.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC 相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.26.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C 两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.2020年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A. B. C. D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.据《南国早报》报道:2020年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.已知正比例函数y=3x的图象经过点(1,m),则m的值为()A. B.3 C.﹣ D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分 B.82分 C.84分 D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△AB D中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.下列各曲线中表示y是x的函数的是()A. B. C. D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1: B.1:2 C.2:3 D.4:9 【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2: x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x 的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.分解因式:a2﹣9= (a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(2020•南宁)如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为 2 .【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.观察下列等式:在上述数字宝塔中,从上往下数,2020在第44 层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2020介于哪两个数的平方即可,通过计算可知:442<2020<452,则2020在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2020<2025,∴在上述数字宝塔中,从上往下数,2020在第44层,故答案为:44【点评】本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.三、解答题(本大题共8小题,共66分)19.计算:|﹣2|+4cos30°﹣()﹣3+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质化简,进而求出答案.【解答】解:原式=2+4×﹣8+2=4﹣6.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.20.解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,,不等式组的解集是:﹣3<x≤1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B (4,0),C(4,﹣4)(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2,并求出∠A2C2B2的正弦值.【考点】作图-位似变换;作图-平移变换.【分析】(1)将A、B、C三点分别向左平移6个单位即可得到的△A1B1C1;(2)连接OA、OC,分别取OA、OB、OC的中点即可画出△A2B2C2,求出直线AC与OB的交点,求出∠ACB的正弦值即可解决问题.【解答】解:(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1,如图1所示,(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2,如图2所示,∵A(2,2),C(4,﹣4),B(4,0),∴直线AC解析式为y=﹣3x+8,与x轴交于点D(,0),∵∠CBD=90°,∴CD==,∴sin∠DCB===.∵∠A2C2B2=∠ACB,∴sin∠A2C2B2=sin∠DCB=.【点评】本题考查位似变换、平移变换等知识,锐角三角函数等知识,解题的关键是理解位似变换、平移变换的概念,记住锐角三角函数的定义,属于中考常考题型.22.在图“书香八桂,阅读圆梦”读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目(2020•南宁)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【考点】切线的判定.【专题】计算题;与圆有关的位置关系.【分析】(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA为直径,即可得证;(2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.【解答】(1)证明:连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)解:过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∵OD∥BC,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.【点评】此题考查了切线的判定,相似三角形的判定与性质,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解本题的关键.24.在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?【考点】一次函数的应用;分式方程的应用.【分析】(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.【解答】解:(1)设乙队单独完成这项工程需要x天,根据题意得×(30+15)+×15=,解得:x=450,经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=7.5倍,答:乙队的最大工作效率是原来的7.5倍【点评】此题考查了一次函数的实际应用.分式方程的应用,解题的关键是理解题意,能根据题意求得函数解析式,注意数形结合与方程思想的应用.25.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC 相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【考点】四边形综合题.【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.【解答】(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°,在RT△EFH中,∠CEF=15°,∴∠EFH=75°,∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°,∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,在RT△CHF中,∵∠CFH=30°,CF=2﹣2,∴FH=CF•cos30°=(2﹣2)•=3﹣.∴点F到BC的距离为3﹣.【点评】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.26.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C 两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON 和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.。

相关文档
最新文档