不等式与线性规划

合集下载

线性规划、不等式

线性规划、不等式

3.简单分式不等式的解法 (1)gfxx>0(<0)⇔f(x)g(x)>0(<0); (2)gfxx≥0(≤0)⇔fgxxg≠x0≥. 0≤0,
【题型分析】
1.若 a<b<0,则下列不等式不能成立的是( )
A.a-1 b>1a C.|a|>b
B.1a>1b D.a2>b2
解析 解法一:∵a<b<0,-b>0,∴a<a-b<0, ∴a-1 b<1a,故 A 错误. 解法二:(特殊值法)令 a=-3,b=-2,则 a-b=-1, a-1 b=-1,1a=-13,∴a-1 b<1a,A 错误;1a=-13>1b=-12, B 正确;|a|=3>b=-2,C 正确;a2=9>b2=4,D 正确.故 选 A.
3.设 x>-1,则函数 y=x+x5+x1+2的最小值为 ____9____.
解析 ∵x>-1,∴x+1>0,∴y=x+x5+x1+2

x2+7x+10 x+1

x+12+5x+1+4 x+1

x

1

4 x+1

5≥2 x+1·x+4 1+5=9,当且仅当 x+1=x+4 1,即 x=1
时取“=”(由于 x>-1,故 x=-3 舍去),∴y=x+x5+x1+2
2.利用基本不等式解决条件最值问题的关键是构造和 为定值或乘积为定值,主要有两种思路:
(1)通过变形直接利用基本不等式解决. (2)对条件变形,根据已知条件和基本不等式的“需求” 寻找“结合点”,通过“1”的代换、添项、分离常数等手段使 之能运用基本不等式.常见的转化方法有:

33. 不等式与线性规划的关系是什么?

33. 不等式与线性规划的关系是什么?

33. 不等式与线性规划的关系是什么?33、不等式与线性规划的关系是什么?在数学的广袤领域中,不等式和线性规划是两个重要的概念,它们之间存在着紧密而又独特的关系。

首先,让我们来理解一下不等式。

不等式是用不等号(大于“>”、小于“<”、大于等于“≥”、小于等于“≤”)来表示两个数或者表达式之间的大小关系的数学式子。

比如说,“x >5”,“y ≤ 2x +3”等等。

不等式反映了现实生活中数量之间的各种大小限制和范围。

那么线性规划又是什么呢?简单来说,线性规划是一种数学方法,用于在一定的约束条件下,找到一个目标函数的最优解。

这些约束条件通常就是由一系列的线性不等式组成的。

不等式为线性规划提供了约束的框架。

在线性规划问题中,我们需要在满足一系列不等式所限定的条件下,来优化某个目标。

例如,一个工厂生产两种产品 A 和 B,生产 A 产品每个需要 2 小时的加工时间和 3 单位的原材料,生产 B 产品每个需要 3 小时的加工时间和 2 单位的原材料。

总加工时间不能超过20 小时,原材料总量不超过15 单位。

我们可以用不等式来表示这些限制条件:2x +3y ≤ 20(加工时间限制),3x +2y ≤ 15(原材料限制),这里的 x 代表产品 A 的数量,y代表产品 B 的数量。

这些不等式就构成了线性规划问题的约束条件。

反过来,线性规划也可以帮助我们解决不等式的相关问题。

通过建立线性规划模型,我们可以找到在给定不等式约束下的最优解或者可行解的范围。

比如,给定一组不等式,我们想知道在这些条件下,某个变量的最大值或者最小值是多少,就可以将其转化为线性规划问题来求解。

从几何角度来看,不等式所表示的区域通常是在平面直角坐标系中的一个半平面或者区域。

例如,不等式 x + y < 5 表示的就是直线 x + y = 5 下方的区域。

而线性规划问题中的可行域,就是由多个这样的不等式所确定的区域的交集。

目标函数在这个可行域内进行优化,找到最优解所在的点。

线性不等式与线性规划的解法

线性不等式与线性规划的解法

线性不等式与线性规划的解法线性不等式和线性规划是数学中常见的问题类型,它们在日常生活和各个领域都有广泛的应用。

本文将介绍线性不等式与线性规划的定义、解法和一些应用示例。

一、线性不等式的定义和解法线性不等式是指一个或多个变量的线性函数与一个常数之间的不等关系。

其表达形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b其中,a₁, a₂, ..., aₙ是系数,x₁, x₂, ..., xₙ是变量,b是常数。

要解决线性不等式,我们需要确定变量的取值范围,使得不等式成立。

常用的解法有以下几种:1. 图形法:将线性不等式转化为几何图形,通过观察图形与坐标轴的交点来确定解集。

2. 代入法:将线性不等式转化为等式,找到其中一个变量的解,代入到不等式中求解其他变量。

重复此过程直至得到所有解。

3. 增减法:通过增减变量值来确定解集的上下界,进而找到满足不等式的解集。

二、线性规划的定义和解法线性规划是指在一定约束条件下,通过线性函数的优化求解最大值或最小值的问题。

其表达形式为:Maximize (or Minimize) f(x₁, x₂, ..., xₙ) = c₁x₁ + c₂x₂ + ... +cₙxₙsubject to:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b₁d₁x₁ + d₂x₂ + ... + dₙxₙ ≤ b₂e₁x₁ + e₂x₂ + ... + eₙxₙ ≥ b₃...x₁, x₂, ..., xₙ ≥ 0其中,f(x₁, x₂, ..., xₙ)是目标函数,表示需要最大化或最小化的线性函数;约束条件由不等式给出,b₁, b₂, b₃是常数。

线性规划的解法主要有以下两种:1. 几何法:将约束条件转化为几何图形,通过观察图形与目标函数的相对位置关系,找到最优解。

2. 单纯形法:通过转化为标准形式,并利用单纯形表来进行迭代计算,逐步逼近最优解。

三、线性不等式和线性规划的应用示例线性不等式和线性规划广泛应用于经济学、管理学、工程学等领域。

高一 二元一次不等式(组)与简单的线性规划问题知识点+例题+练习 含答案

高一 二元一次不等式(组)与简单的线性规划问题知识点+例题+练习 含答案

1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)线性目标函数的最优解可能是不唯一的.( √ )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) (4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22, 其面积为12×AB ×AC =2.4.(2015·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是____________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________. (2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求.题型二 求目标函数的最值问题命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6. 命题点2 求非线性目标函数的最值 例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴OA 2=(02+12)2=1,OB 2=(12+22)2=5,∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2, (PQ 2)min =(|1-1+1|12+(-1)2)2=12,∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·无锡一模)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2)(2014·安徽改编)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1 解析 (1)不等式组⎩⎨⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.甲 乙 原料限额 A (吨) 3 2 12 B (吨)128答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.A 组 专项基础训练(时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________. 答案 m >1解析 由2m +3-5>0,得m >1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________. 答案 (0,1]∪⎣⎡⎭⎫43,+∞ 解析 不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.7.(2015·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x 的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15. 10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升(时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________. 答案 π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则a 2+b 2的最大值为________.答案 37解析 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1. 显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.16.给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.答案 6解析 作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.。

二元一次不等式及简单的线性规划问题

二元一次不等式及简单的线性规划问题

线性目标函数 关于x,y的_一__次__解析式
可行解 满足线性约束条件的解_(x_,__y_)_
可行域 所有可行解组成的_集__合_
最优解 使目标函数取得_最__大__值_或最__小__值__的可行解
线性规划问题
在线性约束条件下求线性目标函数的_最_大__ 值__或最__小__值__问题
课前·双基落实 课堂·考点突破
部分所示,平移直线y=-2x,当直
线平移到过点A时,目标函数取得最
大值,由
2x-y=0, x+y=3,
可得A(1,2),
此时2x+y取最大值为2×1+2=4.
答案:4
课前·双基落实
课堂·考点突破
课后·三维演练
二元一次不等式(组)及简单的线性规划问题 结 束
1.画出平面区域.避免失误的重要方法就是首先使二元一
课前·双基落实 课堂·考点突破
课后·三维演练
二元一次不等式(组)及简单的线性规划问题 结 束
2.常见的3类目标函数
(1)截距型:形如z=ax+by.
求这类目标函数的最值常将函数z=ax+by转化为
直线的斜截式:y=-
a b
x+
z b
,通过求直线的截距
z b
的最
值间接求出z的最值.
(2)距离型:形如z=(x-a)2+(y-b)2.
课后·三维演练
二元一次不等式(组)及简单的线性规划问题 结 束
[小题体验]
1.下列各点中,不在x+y-1≤0表示的平面区域内的是
()
A.(0,0)
B.(-1,1)
C.(-1,3)
D.(2,-3)
答案:C
课前·双基落实 课堂·考点突破
课后·三维演练

第3讲 不等式及线性规划

第3讲 不等式及线性规划

第3讲不等式及线性规划本资料分享自千人教师QQ 群323031380 期待你的加入与分享「考情研析」 1.对不等式的性质及不等式解法的考查一般不单独命题,常与集合、函数图象与性质等相结合命题,也常渗透在三角函数、数列、解析几何、导数等题目中. 2.基本不等式主要渗透在其他知识点中求最值. 3.简单的线性规划常以选填题形式呈现,一般难度不大.核心知识回顾1.不等式的一些常用性质(1)a>b,c>0⇒;a>b,c<0⇒.(2)a>b,c>d⇒a++d.(3)a>b>0,c>d>0⇒.(4)a>b>0,n∈N*⇒a n.(5)a>b>0n∈N,n≥2).(6)a>b,ab>0a<0<b a>b>0,d>c>02.不等式的解法(1)一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.(2)简单分式不等式的解法f(x) g(x)>0(<0)⇔f(x)g(x)>0(<0);f(x)g(x)≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.3.基本不等式ab≤a+b 2(1)(2) 4.几个重要的不等式(1)a 2+b 2a ,b ∈R );(2)b a +ab ≥a ,b 同号); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 5.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值P ,x +y 2P .(简记:积定和最小)(2)如果和x +y 是定值P ,xy 大值是P 24.(简记:和定积最大)6.二元一次不等式表示的平面区域一般地,在平面直角坐标系中,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax +By +C ≥0所表示的平面区域时,此区域包括边界直线,则把边界直线画成实线.对于直线Ax +By +C =0同一侧的所有点,把坐标(x ,y )代入Ax +By +C 中,所得实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),由Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.说明:直线同侧同号,异侧异号.热点考向探究考向1 不等式的性质及解法例1 (1)(多选)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是( )A .若ab ≠0且a <b ,则1a >1b B .若0<a <1,则a 3<a C .若a >b >0,则b +1a +1>baD .若c <b <a 且ac <0,则cb 2<ab 2 答案 BC解析 A 项,取a =-2,b =1,则1a >1b 不成立;B 项,若0<a <1,则a 3-a =a (a 2-1)<0,∴a 3<a ,因此正确;C 项,若a >b >0,则a (b +1)-b (a +1)=a -b >0,∴a (b +1)>b (a +1),∴b +1a +1>ba ,正确;D 项,若c <b <a 且ac <0,则a >0,c <0,而b 可能为0,因此cb 2<ab 2不正确.故选BC .(2)已知平面向量a ,b 满足|a |=1,|b |=2,|a -b |=7,若对于任意实数k ,不等式|k a +t b |>1恒成立,则实数t 的取值范围是( )A .(-∞,-3)∪(3,+∞)B .⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞C .(3,+∞)D .⎝ ⎛⎭⎪⎫33,+∞答案 B解析 ∵|a |=1,|b |=2,|a -b |=7,∴(a -b )2=a 2+b 2-2a ·b =7,∴a ·b =-1,又|k a +t b |>1,∴(k a +t b )2>1,即k 2a 2+t 2b 2+2kt a ·b =k 2+4t 2-2kt >1对于任意实数k 恒成立,∴k 2-2kt +4t 2-1>0对于任意实数k 恒成立,∴Δ=(-2t )2-4(4t 2-1)<0,∴t <-33或t >33,故选B .(3)(2020·四川省成都模拟)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.答案 (-3,0)∪(3,+∞)解析 设x <0,则-x >0,由题意可得f (-x )=-f (x )=(-x )2-2(-x )=x 2+2x , ∴f (x )=-x 2-2x ,故当x <0时,f (x )=-x 2-2x . 由不等式f (x )>x ,可得⎩⎨⎧ x >0,x 2-2x >x 或⎩⎨⎧x <0,-x 2-2x >x ,求得x >3或-3<x <0.即不等式f (x )>x 的解集为(-3,0)∪(3,+∞).(1)利用不等式的性质解决问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.(2)一元二次不等式的常见解法是利用“三个二次”之间的关系,借助二次函数图象得到其解集.1.(多选)(2020·海南省高三三模)设a ,b ,c 为实数且a >b ,则下列不等式一定成立的是( )A .1a >1b B .2020a -b >1 C .ln a >ln b D .a (c 2+1)>b (c 2+1)答案 BD解析 对于A ,若a >b >0,则1a <1b ,所以A 错误;对于B ,因为a -b >0,所以2020a -b >1,故B 正确;对于C ,函数y =ln x 的定义域为(0,+∞),而a ,b 不一定是正数,所以C 错误;对于D ,因为c 2+1>0,所以a (c 2+1)>b (c 2+1),所以D正确.故选BD.2.(多选)(2020·山东省淄博模拟)设[x]表示不小于实数x的最小整数,则满足关于x的不等式[x]2+[x]-12≤0的解可以为()A.10 B.3C.-4.5 D.-5答案BC解析不等式[x]2+[x]-12≤0可化为([x]+4)·([x]-3)≤0,解得-4≤[x]≤3,又[x]表示不小于实数x的最小整数,且[10]=4,[3]=3,[-4.5]=-4,[-5]=-5,所以满足不等式[x]2+[x]-12≤0的解可以为B,C.故选BC.3.定义:区间[a,b],(a,b],(a,b),[a,b)的长度均为b-a,若不等式1x-1+2x-2≥m(m≠0)的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为l,则()A.当m>0时,l=m2+2m+9mB.当m>0时,l=3 mC.当m<0时,l=-m2+2m+9mD.当m<0时,l=-3 m答案 B解析①当m>0时,∵1x-1+2x-2≥m⇔mx2-(3+3m)x+2m+4(x-1)(x-2)≤0,令f(x)=mx2-(3+3m)x+2m+4=0的两根为x1,x2,且x1<x2,则m(x-x1)(x-x2) (x-1)(x-2)≤0,且x1+x2=3+3mm=3+3m.∵f(1)=m-3-3m+2m+4=1>0,f(2)=4m-6-6m+2m+4=-2<0,∴1<x1<2<x2,∴不等式的解集为(1,x 1]∪(2,x 2], ∴l =x 1-1+x 2-2=x 1+x 2-3=3+3m -3=3m . ②当m <0时,由(1)知f (1)>0,f (2)<0, 可得x 1<1<x 2<2.∴不等式的解集为(-∞,x 1]∪(1,x 2]∪(2,+∞). ∴解集中所有区间的长度之和无穷大. 综上,故选B .考向2 基本不等式的应用例2 (1)(2020·四川省内江市、广安市等九市二诊)在△ABC 中,点P 为BC的中点,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM →=λAB →,AN →=μAC→(λ>0,μ>0),则λ+μ的最小值为( ) A .54 B .2 C .3 D .72答案 B解析 如图,连接AP ,∵P 为BC 的中点,AM→=λAB →,AN →=μAC →,且λ>0,μ>0,∴AP→=12AB →+12AC →=12λAM →+12μAN →,且M ,P ,N 三点共线,∴12λ+12μ=1,∴λ+μ=(λ+μ)⎝ ⎛⎭⎪⎫12λ+12μ=12+λ2μ+μ2λ+12≥1+2λ2μ·μ2λ=2,当且仅当λ2μ=μ2λ,即λ=μ=1时取等号,∴λ+μ的最小值为2.故选B .(2)若曲线y =x 3-2x 2+2在点A 处的切线方程为y =4x -6,且点A 在直线mx +ny -1=0(其中m >0,n >0)上,则1m +2n 的最小值为( )A .4 2B .3+2 2C .6+4 2D .8 2答案 C解析 设A (x 0,y 0),则y ′=3x 2-4x ⇒3x 20-4x 0=4,∴x 0=2或x 0=-23,分别将x 0的值代入方程y =x 3-2x 2+2,得⎩⎨⎧x 0=2,y 0=2或⎩⎪⎨⎪⎧x 0=-23,y 0=2227.因为A (x 0,y 0)在y =4x -6上,所以⎩⎨⎧x 0=2,y 0=2,即2m +2n -1=0,m +n =12,从而1m +2n =2⎝ ⎛⎭⎪⎫1m +2n (m +n )=2⎝ ⎛⎭⎪⎫3+n m +2m n ≥2⎝⎛⎭⎪⎫3+2n m ·2m n =6+42,当且仅当n =2m ,即m =2-12,n =2-22时取等号,即1m +2n 的最小值为6+42,故选C .(3)(2020·江苏省七市高三第三次调研)已知x >1,y >1,xy =10,则1lg x +4lg y 的最小值是________.答案 9解析 因为x >1,y >1,xy =10,所以lg x +lg y =1,则1lg x +4lg y =⎝ ⎛⎭⎪⎫1lg x +4lg y (lg x +lg y )=5+lg y lg x +4lg xlg y ≥5+2lg y lg x ·4lg x lg y =9,当且仅当lg y lg x =4lg xlg y ,即lg y=2lg x 且xy =10,即x =310,y =3100时取等号.利用基本不等式求最值的方法(1)利用基本不等式求最值的关键是构造和为定值或积为定值.(2)有些题目并不满足直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式,常用方法还有:拆项法、变系数法、凑因子法、换元法、整体代换法等.1.设x >0,y >0,且2x +y =6,则9x +3y 有( )A .最大值27B .最小值27C .最大值54D .最小值54答案 D解析 因为x >0,y >0,且2x +y =6,所以9x +3y ≥29x ·3y =232x +y =236=54,当且仅当x =32,y =3时,9x +3y 有最小值54.2.(2020·湖南省郴州市高三一模)已知函数f (x )=x +sin x ,若正实数a ,b 满足f ⎝ ⎛⎭⎪⎫1a +f ⎝ ⎛⎭⎪⎫2b -1=0,则3a a -1+4b b -2的最小值为( )A .7B .7+4 3C .5+4 3D .7+2 3答案 B解析 ∵f (x )=x +sin x ,∴f (-x )=-x -sin x =-f (x ),即f (x )+f (-x )=0,∵正实数a ,b 满足f ⎝ ⎛⎭⎪⎫1a +f ⎝ ⎛⎭⎪⎫2b -1=0,∴1a +2b =1,∴b =2a a -1>0,∴a >1,则3a a -1+4b b -2=7+3a -1+8b -2=7+3a -1+82a a -1-2=7+3a -1+4(a -1)≥7+43,当且仅当4(a -1)=3a -1,即a =1+32时取等号,所以3a a -1+4bb -2的最小值为7+4 3.故选B .3.(2020·山东威海模拟)若∀x ∈(0,+∞),4x 2+1x ≥m ,则实数m 的取值范围为__________.答案 (-∞,4]解析 因为x >0,则4x 2+1x =4x +1x ≥24x ·1x =4,当且仅当4x =1x ,即x =12时取等号,因为4x 2+1x ≥m ,所以4≥m ,即实数m 的取值范围为(-∞,4].考向3 线性规划问题例3 (1)(2020·安徽六安一中3月模拟)已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y +2x的取值范围为( )A .⎣⎢⎡⎦⎥⎤0,103B .(-∞,2]∪⎣⎢⎡⎭⎪⎫103,+∞C .⎣⎢⎡⎦⎥⎤2,103D .(-∞,0]∪⎣⎢⎡⎭⎪⎫103,+∞答案 D解析原不等式组可以等价转化为⎩⎪⎨⎪⎧x -2y +1≥0,x ≥0,x -y -1≤0或⎩⎪⎨⎪⎧x -2y +1≥0,x <0,x +y +1≥0.画出不等式组所表示的平面区域,如图中阴影部分所示,其中点A (-1,0),点B (3,2),而z =2x +y +2x =2+y +2x 的几何意义为区域内的点(x ,y )与点M (0,-2)连线的斜率k 加上2,结合图形可知k ≥43或k ≤-2,因此z ≥43+2=103或z ≤-2+2=0.即z 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫103,+∞,故选D .(2)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.答案 -5解析 解法一:(图解法)由约束条件作出可行域,如图中阴影部分所示.平移直线3x -2y =0可知,目标函数z =3x -2y 在A 点处取最小值, 由⎩⎨⎧ x +2y =1,2x +y =-1,解得⎩⎨⎧x =-1,y =1,即A (-1,1),所以z min =3×(-1)-2×1=-5. 解法二:(界点定值法)由题意知,约束条件 ⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0所表示的平面区域为三角形及其内部,三角形的顶点分别为(-1,1),⎝ ⎛⎭⎪⎫-13,-13,⎝ ⎛⎭⎪⎫13,13.将三点的坐标分别代入z =3x -2y ,得z min =-5.(3)(2020·广州市综合检测)已知关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +m ≤0,y +2≥0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤-∞,43解析作出不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +m ≤0,y +2≥0表示的平面区域如图中阴影部分所示,由⎩⎨⎧2x -y +1=0,y =-2,可得⎩⎪⎨⎪⎧x =-32,y =-2.故A ⎝ ⎛⎭⎪⎫-32,-2,所以-m ≥-32,解得m ≤32.作出直线x -2y =2,由⎩⎨⎧2x -y +1=0,x -2y -2=0,可得⎩⎪⎨⎪⎧x =-43,y =-53,即B ⎝ ⎛⎭⎪⎫-43,-53,因为存在点P (x 0,y 0),使得x 0-2y 0-2=0,即直线x -2y -2=0与平面区域有交点,则需满足-m ≥-43,所以m ≤43,所以m 的取值范围是⎝ ⎛⎦⎥⎤-∞,43.二元一次不等式表示的平面区域的判断方法方法一:特殊点法只需在直线的某一侧任取一点(x 0,y 0),根据Ax 0+By 0+C 的正负即可判断Ax +By +C >0(或<0)表示直线的哪一侧区域.若直线不过原点(即C ≠0),常把原点(0,0)作为特殊点.若直线经过原点(即C =0),常选(1,0),(-1,0),(0,1),(0,-1)等特殊点代入判断.方法二:一般式(A >0),大为右,小为左当A >0时,Ax +By +C >0表示直线右方区域;Ax +By +C <0表示直线左方区域.方法三:一般式,“同”为上,“异”为下观察B 的符号与不等式的符号,若B 的符号与不等式的符号“相同”,则表示直线上方的区域;若B 的符号与不等式的符号“相异”,则表示直线下方的区域.1.(2020·湖南长郡中学第二次适应性考试)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤6,x +y ≥2,则点(x ,y )构成平面区域的面积是( )A .3B .52 C .2D .32答案 A解析 根据题意作出不等式组所表示的平面区域,分别求得A (2,2),B (4,-2),C (1,1),求出点B 到直线y =x 的距离d =|4-(-2)|12+(-1)2=32,AC =(2-1)2+(2-1)2=2,∴S △ABC =12AC ·d =12×2×32=3.故选A .2.若变量x ,y 满足⎩⎪⎨⎪⎧3x -y -1≥0,3x +y -11≤0,y ≥2,且z =ax -y 的最小值为-1,则实数a 的值为________.答案 2解析 画出不等式组表示的平面区域,如图中阴影部分所示,由图知,若a ≥3,则直线z =ax -y 经过点B (1,2)时,z 取得最小值,由a -2=-1,得a =1,与a ≥3矛盾;若0<a <3,则直线z =ax -y 经过点A (2,5)时,z 取得最小值,由2a -5=-1,解得a =2;若a ≤0,则直线z =ax -y 经过点A (2,5)或C (3,2)时,z 取得最小值,此时2a -5=-1或3a -2=-1,解得a =2或a =13,与a ≤0矛盾.综上可知,实数a 的值为2.3.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时,生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________元.答案216000解析设生产产品A x件,产品B y件,依题意,得⎩⎪⎨⎪⎧x≥0,y≥0,x∈N,y∈N,1.5x+0.5y≤150,x+0.3y≤90,5x+3y≤600,设生产产品A、产品B的利润之和为E元,则E=2100x+900y.画出可行域(如图中阴影区域内的整点),易知最优解为⎩⎨⎧x=60,y=100(满足x∈N,y∈N),则E max =216000.真题押题『真题检验』1.(多选)(2020·新高考卷Ⅰ)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12 B .2a -b >12 C .log 2a +log 2b ≥-2 D .a +b ≤ 2答案 ABD解析 对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=2⎝ ⎛⎭⎪⎫a -122+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2⎝⎛⎭⎪⎫a +b 22=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤ 2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD .2.(2020·全国卷Ⅲ)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b答案 A解析 ∵a ,b ,c ∈(0,1),a b =log 53log 85=lg 3lg 5·lg 8lg 5<1(lg 5)2·⎝ ⎛⎭⎪⎫lg 3+lg 822=⎝ ⎛⎭⎪⎫lg 3+lg 82lg 52=⎝ ⎛⎭⎪⎫lg 24lg 252<1,∴a <b .由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45.由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c>45.综上所述,a <b <c .故选A .3.(2020·浙江高考)已知a ,b ∈R 且ab ≠0,若(x -a )·(x -b )(x -2a -b )≥0在x ≥0上恒成立,则( )A .a <0B .a >0C .b <0D .b >0答案 C解析 因为ab ≠0,所以a ≠0且b ≠0,设f (x )=(x -a )·(x -b )(x -2a -b ),则f (x )的零点为x 1=a ,x 2=b ,x 3=2a +b .当a >0时,x 2<x 3,x 1>0,要使f (x )≥0,必有2a +b =a ,且b <0,即b =-a ,且b <0,所以b <0;当a <0时,x 2>x 3,x 1<0,要使f (x )≥0,必有b <0.综上可得b <0.故选C .4.(2020·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为________.答案 1解析 画出不等式组表示的平面区域如图阴影部分所示,由z =x +7y ,得y =-17x +17z ,平移直线y =-17x ,由图可得当直线y =-17x +17z 过点A 时,目标函数z =x +7y 取得最大值.联立直线方程,得⎩⎨⎧2x +y -2=0,x -y -1=0,得A (1,0),所以z max=1+7×0=1.5.(2020·江苏高考)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________.答案 45解析 ∵5x 2y 2+y 4=1,∴y ≠0且x 2=1-y 45y 2.∴x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25≥215y 2·4y 25=45,当且仅当15y 2=4y 25,即x 2=310,y 2=12时取等号.∴x 2+y 2的最小值为45.6.(2020·天津高考)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为________.答案 4解析 ∵a >0,b >0,∴a +b >0,又ab =1,∴12a +12b +8a +b =ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2×8a +b=4,当且仅当a +b =4,即a =2-3,b =2+3,或a =2+3,b =2-3时,等号成立.故12a +12b +8a +b的最小值为4.『金版押题』7.已知函数f (x )=|lg (x -1)|,若1<a <b 且f (a )=f (b ),则实数2a +b 的取值范围是( )A .[3+22,+∞)B .(3+22,+∞)C .[6,+∞)D .(6,+∞)答案 A解析 作出函数f (x )=|lg (x -1)|的图象如图所示.∵1<a <b 且f (a )=f (b ),则b >2,1<a <2,∴-lg (a -1)=lg (b -1),即1a -1=b -1, 可得ab -a -b =0,则a =b b -1. 2a +b =2b b -1+b =(2b -2)+2b -1+b -1+1=(b -1)+2b -1+3≥22+3,当且仅当b =2+1时取等号.满足b >2,故选A .8.定义域为[a ,b ]的函数y =f (x )图象的两个端点为A ,B ,向量ON →=λOA →+(1-λ)OB →,M (x ,y )是f (x )图象上任意一点,其中x =λa +(1-λ)b ,若不等式|MN |≤k 恒成立,则称函数f (x )在[a ,b ]上满足“k 范围线性近似”,其中最小正实数k 称为该函数的线性近似阈值.若函数y =2x 定义在[1,2]上,则该函数的线性近似阈值是( )A .2- 2B .3-2 2C .3+2 2D .2+ 2答案 B解析 作出函数y =2x 的图象,它的图象在[1,2]上的两个端点分别为A (1,2),B (2,1).所以直线AB 的方程为x +y -3=0, 设M (x ,y )是曲线y =2x 上的一点,x ∈[1,2], 其中x =λ×1+(1-λ)×2=2-λ, 故M 点的坐标为⎝ ⎛⎭⎪⎫2-λ,22-λ.由ON →=λOA →+(1-λ)OB →,可知A ,B ,N 三点共线, 所以N 点的坐标满足直线AB 的方程x +y -3=0,又OA→=(1,2),OB →=(2,1),则ON →=(λ+2(1-λ),2λ+(1-λ)), 故N 点的坐标为(2-λ,λ+1). M ,N 两点的横坐标相等, 故|MN |=|22-λ-(λ+1)|,结合图象, 知|MN |=λ+1-22-λ. 因为1≤2-λ≤2,所以0≤λ≤1. 故|MN |=λ+1-22-λ=-(2-λ)-22-λ+3 =-⎣⎢⎡⎦⎥⎤(2-λ)+22-λ+3≤-22+3. 故当且仅当2-λ=22-λ,即λ=2-2时等号成立. 故|MN |≤3-22恒成立.所以该函数的线性近似阈值是3-2 2.故选B .专题作业一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3答案 A解析 由题意,得A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由根与系数的关系可知a =-1,b =-2,则a +b =-3.2.(2020·四川省凉山州高三第三次诊断检测)若a ,b ∈R ,则“a -b >0”是“⎝⎛⎭⎪⎫a +b 22>ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A解析 若a -b >0,则⎝ ⎛⎭⎪⎫a +b 22-ab =a 2+b 2-2ab 4=(a -b )24>0,即⎝⎛⎭⎪⎫a +b 22>ab ;若⎝ ⎛⎭⎪⎫a +b 22>ab ,即⎝ ⎛⎭⎪⎫a +b 22-ab =a 2+b 2-2ab 4=(a -b )24>0,则a -b >0或a -b <0,所以若a ,b ∈R ,则“a -b >0”是“⎝⎛⎭⎪⎫a +b 22>ab ”的充分不必要条件.故选A . 3.若正实数x ,y 满足x +2y +2xy -8=0,则x +2y 的最小值为( ) A .4 B .92 C .5 D .112答案 A解析 ∵正实数x ,y 满足x +2y +2xy -8=0,∴x +2y +⎝⎛⎭⎪⎫x +2y 22-8≥0,当且仅当x =2y 时取等号.设x +2y =t >0,∴t +14t 2-8≥0,∴t 2+4t -32≥0,即(t +8)·(t -4)≥0,∴t ≥4,故x +2y 的最小值为4.故选A .4.(2020·陕西省汉中二模)已知直线2ax -by +2=0(a >0,b >0)平分圆C :x 2+y 2+2x -4y +1=0的圆周长,则1a +2b 的最小值为( )A .4 2B .3+2 2C .4D .6 答案 B解析 由题意,得圆的圆心(-1,2)在直线2ax -by +2=0(a >0,b >0)上,∴-2a -2b +2=0(a >0,b >0),∴a +b =1,∴1a +2b =(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b ≥3+2b a ·2ab =3+22,当且仅当b a =2a b ,即a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.故选B .5.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)答案 C解析 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点,又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0,∴(6a +5)(2a +3)<0,解得-32<a <-56.又a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0,解得-1<x <0.6.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -y +1≥0,x ≤a ,且目标函数z =ax -2y 的最大值为1,则实数a 的值是( )A .2-1B .1C .2+1D .3答案 B解析 作出不等式组表示的平面区域,如图中阴影部分所示,其中A (0,1),B (a,1-a ),C (a,1+a ).对z =ax -2y 变形,得y =a 2x -z2,由图知a >0,当直线y =a 2x -z 2经过点B 时,z 取得最大值,所以a 2-2(1-a )=1,解得a =-3(舍去)或a =1,故选B .7.(2020·山东济南模拟)一个圆锥的轴截面是边长为4的等边三角形,在该圆锥中有一个内接圆柱(下底面在圆锥底面上,上底面的圆周在圆锥侧面上),则当该圆柱侧面积取最大值时,该圆柱的高为( )A .1B .2C .3D . 3答案 D解析 由题意,可得P A =PB =AB =4,故圆锥的高PO =23,∠APO =30°,设圆柱的高为h ,底面半径为r ,则PD =23-h ,故r 23-h =13,所以h =23-3r ,圆柱侧面积S =2πrh =2πr ·(23-3r )=23πr ·(2-r )≤23π·⎝ ⎛⎭⎪⎫r +2-r 22=23π,当且仅当r =2-r ,即r =1时取得最大值,此时h = 3.故选D .8.(2020·杭州期末)已知不等式2ax 2+ax -3>0对任意的a ∈[1,3]恒成立的x 的取值集合为A ,不等式mx 2+(m -1)x -m >0对任意的x ∈[1,3]恒成立的m 的取值集合为B ,则有( )A .A ⊆∁R BB .A ⊆BC .B ⊆∁R AD .B ⊆A 答案 D解析 令f (a )=(2x 2+x )a -3,则关于a 的一次函数必单调,则⎩⎨⎧f (3)>0,f (1)>0,解得x <-32或x >1,即A =⎝⎛⎭⎪⎫-∞,-32∪(1,+∞).m (x 2+x -1)>x 对任意的x ∈[1,3]恒成立⇒m >x x 2+x -1对任意的x ∈[1,3]恒成立,又y =x x 2+x -1=1x -1x +1(1≤x ≤3)单调递减,故y max =1,故m >1,即B =(1,+∞).综上B ⊆A ,故选D .二、选择题:在每小题给出的选项中,有多项符合题目要求.9.若1a <1b <0,则下列不等式正确的是( )A .1a +b<1ab B .|a |+b >0 C .a -1a >b -1bD .ln a 2>ln b 2答案 AC解析 由1a <1b <0,可知b <a <0.A 中,因为a +b <0,ab >0,所以1a +b<1ab ,故A 正确;B 中,因为b <a <0,所以-b >-a >0,故-b >|a |,即|a |+b <0,故B 错误;C 中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b ,故C 正确;D 中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故D 错误.故选AC .10.《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a +b ,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论,如图3.设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AF ⊥BC 于点F ,则下列推理正确的是( )A.由图1和图2面积相等可得d=a+b abB.由AE≥AF可得a2+b22≥a+b2C.由AD≥AE可得a2+b22≥21a+1bD.由AD≥AF可得a2+b2≥2ab答案BCD解析由题图1和题图2面积相等,得ab=(a+b)d,则d=aba+b,A错误;由题意知题图3面积为12ab=12a2+b2·AF,AF=aba2+b2,AD=12BC=12a2+b2,设题图3中正方形的边长为x,由三角形相似,得a-xx=xb-x,解得x=ab a+b ,则AE=2aba+b,可以化简判断B,C,D正确.故选BCD.11.(2020·武汉部分学校联考)若0<a<b<c,且abc=1,则()A.2a+2b>4 B.lg a+lg b<0C.a+c2>2 D.a2+c>2答案BC解析解法一:因为0<a<b<c,abc=1,所以0<a<1,c>1,a+b>0,0<ab<1,对于A,2a+2b≥22a+b>2×1=2,所以A错误;对于B,lg a+lg b=lg ab<0,所以B正确;对于C,a+c2≥2ac2>2abc=2,所以C正确;对于D,因为0<a<b<c,abc =1,所以0<a b <1,c =1ab ,所以a 2+c ≥2a 2c =2a b ,因为2a b <2,所以D错误.故选BC . 解法二:(特殊值法)因为0<a <b <c ,abc =1,令a =12,b =1,c =2,则212+21=2+2<4,A 错误;令a =23,b =1,c =32,则⎝ ⎛⎭⎪⎫232+32=3518<2,D 错误.故选BC .12.(2020·山东部分重点中学联考)若a <b <-1,c >0,则下列不等式一定成立的是( )A .a -1a >b -1bB .a -1b <b -1aC .ln (b -a )>0D .⎝ ⎛⎭⎪⎫a b c >⎝ ⎛⎭⎪⎫b a c 答案 BD解析 解法一:对于A ,设函数g (x )=x -1x ,x ∈(-∞,-1),则g ′(x )=1+1x 2>0,所以函数g (x )在(-∞,-1)上为增函数,所以当a <b <-1时,a -1a <b -1b ,故A 错误;对于B ,设函数f (x )=x +1x ,x ∈(-∞,-1),则f ′(x )=1-1x 2,因为x ∈(-∞,-1),所以f ′(x )>0,所以函数f (x )在(-∞,-1)上为增函数,所以当a <b <-1时,a +1a <b +1b ,即a -1b <b -1a ,故B 正确;对于C ,因为a <b ,所以b -a >0,但不能确定b -a 与1的大小关系,故ln (b -a )与0的大小关系不能确定,故C 错误;对于D ,由a <b <-1可知a b >1,0<b a <1,而c >0,所以⎝ ⎛⎭⎪⎫a b c >1>⎝ ⎛⎭⎪⎫b a c >0,故D 正确.故选BD .解法二:(利用取特殊值法)令a =-3,b =-2,代入各选项,验证可得正确的选项为B ,D .三、填空题13.若1<α<3,-4<β<2,则α-|β|的取值范围是________.答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4,∴-4<-|β|≤0,∴-3<α-|β|<3.14.函数y =x 2+2x -1(x >1)的最小值是________. 答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2-1+3x -1=(x -1)(x +1)+3x -1=x +1+3x -1=x -1+3x -1+2≥23+2(当且仅当x =1+3时取“=”),即函数y =x 2+2x -1(x >1)的最小值是23+2.15.设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.答案 a ≤-2解析 令t =cos x ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎨⎧ f (-1)≤0,f (1)≤0⇒⎩⎨⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2. 16.已知A (-2,1),B (2,2),C (1,4).若点P (x ,y )在△ABC 区域(包含边界)内运动,则x 2+y 2+2x 的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤817,19 解析 点P 所在平面区域如图中阴影部分所示.x 2+y 2+2x =(x +1)2+y 2-1,其中(x +1)2+y 2=[x -(-1)]2+(y -0)2,表示点P (x ,y )到点Q (-1,0)的距离的平方.令t =x 2+y 2+2x ,则t =|PQ |2-1.由图可知|PQ |max =|QC |=(1+1)2+42=2 5.由A (-2,1),B (2,2)知直线AB 的方程为x -4y+6=0,所以|PQ |min =d =517,其中d 表示点Q 到直线AB 的距离,所以t max =(25)2-1=19,t min =⎝ ⎛⎭⎪⎫5172-1=817,所以x 2+y 2+2x 的取值范围为⎣⎢⎡⎦⎥⎤817,19.。

不等式解法及线性规划

不等式解法及线性规划

不等式的解法一元二次不等式解法步骤:1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正);2) 首先考虑分解因式;不易分解则判断∆,当0∆≥时解方程(利用求根公式) 3) 画图写解集(能取的根打实心点,不能去的打空心) 含绝对值不等式的解法(关键是去掉绝对值) 利用绝对值的定义:(零点分段法)利用绝对值的几何意义:||x 表示x 到原点的距离||(0){|}x a a x x a =>=±的解集为 }|{)0(||a x a x a a x <<-><的解集为 }|{)0(||a x a x x a a x -<>>>或的解集为公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. 分式不等式的解法1)标准化:移项通分化为()0()f x g x >(或()0()f x g x <);()0()f x g x ≥(或()0()f xg x ≤)的形式, 2)转化为整式不等式(组)()()0()()0()()00()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩;考向一 一元二次不等式的解法【例1】►已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组.解 由题意知⎩⎪⎨⎪⎧ x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得:x >1. 故原不等式的解集为{x |x >1}.解一元二次不等式的一般步骤是:(1)化为标准形式;(2)确定判别式Δ的符号;(3)若Δ≥0,则求出该不等式对应的二次方程的根,若Δ<0,则对应的二次方程无根;(4)结合二次函数的图象得出不等式的解集.特别地,若一元二次不等式的左边的二次三项式能分解因式,则可立即写出不等式的解集.【训练1】 函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________.解析 依题意知⎩⎪⎨⎪⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎪⎨⎪⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3 答案 [1,3)考向二 含参数的一元二次不等式的解法【例2】►求不等式12x 2-ax >a 2(a ∈R )的解集.[审题视点] 先求方程12x 2-ax =a 2的根,讨论根的大小,确定不等式的解集.解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0,得:x 1=-a 4,x 2=a 3.①a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.x =0x x ≥0x x -<综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x∈R 且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.解含参数的一元二次不等式的一般步骤:(1)二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.【训练2】 解关于x 的不等式(1-ax )2<1.解 由(1-ax )2<1,得a 2x 2-2ax <0,即ax (ax -2)<0,当a =0时,x ∈∅.当a >0时,由ax (ax -2)<0,得a 2x ⎝ ⎛⎭⎪⎫x -2a <0,即0<x <2a.当a <0时,2a<x <0.综上所述:当a =0时,不等式解集为空集;当a >0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <2a ;当a <0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a<x <0.考向三 不等式恒成立问题【例3】►已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围.[审题视点] 化为标准形式ax 2+bx +c >0后分a =0与a ≠0讨论.当a ≠0时,有⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0. 解 原不等式等价于(a +2)x 2+4x +a -1>0对一切实数恒成立,显然a =-2时,解集不是R ,因此a ≠-2,从而有⎩⎪⎨⎪⎧a +2>0,Δ=42-4a +2a -1<0,整理,得⎩⎪⎨⎪⎧a >-2,a -2a +3>0,所以⎩⎪⎨⎪⎧a >-2,a <-3或a >2,所以a >2. 故a 的取值范围是(2,+∞).不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c>0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.【训练3】 已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a的取值范围.解 法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1;②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2,由2-a 2≥a ,解得-1≤a ≤1. 综上所述,所求a 的取值范围为[-3,1]. 练习1.(人教A 版教材习题改编)不等式x 2-3x +2<0的解集为( ). A .(-∞,-2)∪(-1,+∞) B .(-2,-1) C .(-∞,1)∪(2,+∞) D .(1,2)解析 ∵(x -1)(x -2)<0,∴1<x <2.故原不等式的解集为(1,2).答案 D2.(2011·广东)不等式2x 2-x -1>0的解集是( ).A.⎝ ⎛⎭⎪⎫-12,1 B .(1,+∞)C .(-∞,1)∪(2,+∞)D.⎝⎛⎭⎪⎫-∞,-12∪(1,+∞) 解析 ∵2x 2-x -1=(x -1)(2x +1)>0,∴x >1或x <-12.故原不等式的解集为⎝⎛⎭⎪⎫-∞,-12∪(1,+∞).答案 D 3.不等式9x 2+6x +1≤0的解集是( ). A.⎩⎨⎧⎭⎬⎫x |x ≠-13 B.⎩⎨⎧⎭⎬⎫-13C.⎩⎨⎧⎭⎬⎫x |-13≤x ≤13 D .R解析 ∵9x 2+6x +1=(3x +1)2≥0,∴9x 2+6x +1≤0的解集为⎩⎨⎧⎭⎬⎫x |x =-13.答案 B4.(2012·许昌模拟)若不等式ax 2+bx -2<0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <14,则ab =( ).A .-28B .-26C .28D .26解析 ∵x =-2,14是方程ax 2+bx -2=0的两根,∴⎩⎪⎨⎪⎧-2a =-2×14=-12,-b a =-74,∴a =4,b =7.∴ab =28.答案 C5.不等式ax 2+2ax +1≥0对一切x ∈R 恒成立,则实数a 的取值范围为________. 解析 当a =0时,不等式为1≥0恒成立;当a ≠0时,须⎩⎪⎨⎪⎧ a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,4a 2-4a ≤0.∴0<a ≤1,综上0≤a ≤1.答案 [0,1]考向二 绝对值不等式1.对任意x ∈R ,|2-x |+|3+x |≥a 2-4a 恒成立,则a 的取值范围是( ) A .-1≤a ≤5 B .-1<a ≤5 C .-1≤a <5D .-1<a <5[答案] A11.(2010·南京调研)设函数f (x )=|x -1|+|x -2|,则不等式f (x )>3的解集为________.[答案] (-∞,0)∪(3,+∞)[解析] 当x <1时,有f (x )=1-x +2-x =3-2x .由f (x )>3得3-2x >3,解得x <0; 当1≤x ≤2时,有f (x )=x -1+2-x =1.此时,不等式f (x )>3无解; 当x >2时,有f (x )=x -1+x -2=2x -3.由f (x )>3得2x -3>3,解得x >3. 故不等式f (x )>3的解集为(-∞,0)∪(3,+∞).[点评] 可画出数轴如图,∵|AB |=1,∴|PB |>1,|QA |>1,故由图可得x >3或x <0.13.(2010·福建南平一中)若函数f (x )=2|x +7|-|3x -4|的最小值为2,则自变量x 的取值范围是________.[答案] [-12,5][解析] 依题意知,2|x +7|-|3x -4|≥2,∴|x +7|-|3x -4|≥1,当x >43时,不等式化为x +7-(3x -4)≥1.解得x ≤5,即43<x ≤5;当-7≤x ≤43时,不等式化为x +7+(3x -4)≥1,解得x ≥-12,即-12≤x ≤43;当x <-7时,不等式化为-x -7+(3x -4)≥1,解得x ≥6,与x <-7矛盾.∴自变量x 的取值范围为-12≤x ≤5.15.(2010·福建理)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值; (2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. [解析] 解法一:(1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3;5,-3≤x ≤2;2x +1,x >2.所以当x <-3时,g (x )>5;当-3≤x≤2时,g (x )=5;当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5]. 考向三 分式不等式例1 解不等式 <0.分析:这是一个分式不等式,其左边是两个关于x 的二次三项式的商,根据商的符号法则,它可以化成两个不等式组:因此,原不等式的解集就是上面两个不等式组的解集的并集,此种解法从课本可以看到.另解:根据积的符号法则,可以将原不等式等价变形为(x 2-3x +2)(x 2-2x -3)<0 即(x +1)(x -1)(x -2)(x -3)<0 令(x +1)(x -1)(x -2)(x -3)=0 可得零点x =-1或1,或2或3,将数轴分成五部分(如图).由数轴标根法可得所求不等式解集为:{x |-1<x <1或2<x <3}说明:(1)让学生注意数轴标根法适用条件;(2)让学生思考≤0的等价变形.例2 解不等式>1分析:首先转化成右端为0的分式不等式,然后再等价变形为整式不等式求解.解:原不等式等价变形为:-1>0通分整理得:>0等价变形为:(x2-2x+3)(x2-3x+2)>0即:(x+1)(x-1)(x-2)(x-3)>0由数轴标根法可得所求不等式解集为:{x|x<-1或1<x<2或x>3}说明:此题要求学生掌握较为一般的分式不等式的转化与求解.练习:1. 不等式22231372x xx x++>-+的解集是 2. 不等式3113xx+>--的解集是3. 不等式2223712x xx x+-≥--的解集是 4. 不等式1111x xx x-+<+-的解集是5. 不等式229152x xx--<+的解集是 6. 不等式2232712x xx x-+>-+的解集是7. 不等式2121x xx+≤+的解集是 8. 不等式2112xx->-+的解集是9. 不等式23234xx-≤-的解集是 10. 不等式2212(1)(1)xx x-<+-的解集是答案1. 2. (-2,3) 3.4.5. 6.7.8. (1,2)9. 10.线性规划求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解.生产实际中有许多问题都可以归结为线性规划问题.线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量x 、y ; (2)找出线性约束条件;(3)确定线性目标函数z =f (x ,y );(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系f (x ,y )=t (t 为参数);(6)观察图形,找到直线f (x ,y )=t 在可行域上使t 取得欲求最值的位置,以确定最优解,给出答案.1.(2008全国高考卷Ⅰ,13)若x,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+≥+3,x 00,3y -x 0,y x 则z =2x-y 的最大值为_____________.2.(文)(2010·西安中学)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x x +y ≥2y ≥3x -6,则目标函数z =2x +y 的最小值为( )A .2B .3C .5D .73.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0x +y ≤1x +2y ≥1,则目标函数z =2x +y 的最大值为________.4.(文)(09·安徽)不等式组⎩⎪⎨⎪⎧x ≥0x +3y ≥43x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43D.345(2010·重庆市南开中学)不等式组⎩⎪⎨⎪⎧x +y ≥22x -y ≤4x -y ≥0所围成的平面区域的面积为( )A .3 2B .6 2C .6D .36.(文)(2010·山东省实验中学)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +6≥0x +y ≥0x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( )A .a ≥1B .a ≤-1C .-1≤a ≤1D .a ≥1或a ≤-17.(文)(2010·厦门一中)已知x 、y 满足不等式组⎩⎪⎨⎪⎧ y ≥x x +y ≤2x ≥a,且z =2x +y 的最大值是最小值的3倍,则a =( )A .0 B.13 C.23D .18.(文)(2010·厦门一中)已知x 、y 满足不等式组⎩⎪⎨⎪⎧y ≥x x +y ≤2x ≥a,且z =2x +y 的最大值是最小值的3倍,则a =( )A .0 B.13 C.23D .1。

不等式简单的线性规划问题利用简单的线性规划求最值

不等式简单的线性规划问题利用简单的线性规划求最值

线性规划问题的应用
生产计划
如何安排各种资源(如人力、原材 料、设备等)以生产出最大利润或 最小成本的产品。
货物运输
如何安排车辆或船只运输货物,使 得运输成本最低或运输时间最短。
资源分配
如何将有限的资源分配给不同的项 目或任务,以获得最大的效益。
配料问题
如何在满足一定质量要求的条件下 ,使用最少的原料或以最小的成本 配制出所需的产品。
引入人工变量
对于不等式约束条件,可以引入人工变量来扩展变量的维度,将不等式约束条件 转换为等式约束条件。
不等式约束条件下线性规划问题的求解方法
将不等式约束条件加入目标函数中
将不等式约束条件加入目标函数中,并求解目标函数的最小值或最大值。
利用线性规划求解
对于不等式约束条件下线性规划问题,可以利用线性规划的求解方法,如单 纯形法、椭球法等来求解目标函数的最小值或最大值。
数据科学
1. 研究大数据分析中的优化问题;2. 探索高效的数据处理和特征提取方法;3. 提高数据 分析和处理的精度和效率。
THANKS
谢谢您的观看
迭代法
通过不断迭代,逼近最优解。
优化问题的实际应用
资源分配问题
如何分配有限资源,使得产出最大化或成本最小 化。
运输问题
如何制定最优运输计划,使得运输成本最低且满 足需求。
选址问题
如何在多个候选地点中选择最优地点,使得某项 业务运营成本最低或收益最大。
06
总结与展望
不等式简单的线性规问题求解方法的优缺点
05
利用简单的线性规划解决优化问题
优化问题的定义与分类
定义
优化问题是在一定约束条件下,寻求一个或多个自变量取何值时,使得目标 函数取得极值(极大值或极小值)。

高考热点剖析——不等式及线性规划问题热点问题

高考热点剖析——不等式及线性规划问题热点问题

高考热点剖析——不等式及线性规划问题热点问题高考对本内容的考查主要有:(1)一元二次不等式是C 级要求,要求在初中所学二次函数的基础上,掌握二次函数、二次不等式、二次方程之间的联系和区别,可以单独考查,也可以与函数、方程等构成综合题;(2)线性规划的要求是A 级,理解二元一次不等式对应的平面区域,能够求线性目标函数在给定区域上的最值,同时对一次分式型函数、二次型函数的最值也要有所了解;(3)不等式作为一种重要工具,要理解不等式的性质、简单不等式的解法及含参数不等式的分类讨论等.1.一元二次不等式的求解步骤: 一变、二求、三画、四结论. 2.一元二次不等式恒成立的条件设f (x )=ax 2+bx +c (a ≠0),则ax 2+bx +c >0恒成立(解集为R )⇔y =f (x )图象恒在x轴上方⇔f (x )min >0⇔⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0.ax 2+bx +c <0恒成立(解集为R )⇔y =f (x )图象恒在x 轴下方⇔f (x )max <0⇔⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac <0.3.二元一次不等式表示的平面区域直线定界,特殊点定域.注意:边界的虚实线. 【应对策略】对不等式的学习要立足基础,重在理解,加强训练,学会建模,培养能力,提高素质,具体要注意以下几点:(1)学习不等式性质时,要弄清条件与结论,要克服“想当然”和“显然成立”的思维定势,要以比较准则和实数运算法则为依据解决问题;(2)解决某些不等式时,要与函数定义域、值域、单调性联系起来,注重数形结合思想,解含参数不等式时要注意分类讨论思想;(3)要强化不等式的应用意识,同时要注意到不等式与函数和方程的对比与联系,充分利用函数与方程思想、数形结合处理不等式问题;(4)利用线性规划解决实际问题时,充分利用数形结合思想,会达到事半功倍的效果,因此要力求画图准确.【必备方法】1.三个“二次”的关系一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x 轴交点的横坐标,即二次函数的零点.2.对于给定集合M 和给定含参数的不等式f (x )>0,求不等式中的参数的取值范围问题,要看清楚题目的要求,再相应求解,不妨“对号入座”:(1)若M 是f (x )>0的解集,则由M ={x |f (x )>0}来求; (2)若f (x )>0在M 上有解,则由M ∩{x |f (x )>0}≠∅来求; (3)若f (x )>0在M 上恒成立,则由M ⊆{x |f (x )>0}来求.3.简单的线性规划问题解题步骤:一画二移三算四答,充分挖掘目标对象的几何意义!通常与直线的纵截距、斜率,圆的半径或半径的平方有关.命题角度一 一元二次不等式[命题要点] ①简单一元二次不等式的解法;②含参数的一元二次不等式的解法. 【例1】► 解关于x 的不等式ax 2-(2a +1)x +2<0.[思路分析] 不等式的左端可以先分解因式,然后根据a >0,a =0,a <0的情况和方程ax 2-(2a +1)x +2=0两个根的大小进行分类求解.解 不等式ax 2-(2a +1)x +2<0, 即(ax -1)(x -2)<0.(1)当a >0时,不等式可以化为⎝⎛⎭⎪⎫x -1a (x -2)<0.①若0<a <12,则1a>2,此时不等式的解集为⎝⎛⎭⎪⎫2,1a ;②若a =12,则不等式为(x -2)2<0,不等式的解集为∅;③若a >12,则1a <2,此时不等式的解集为⎝ ⎛⎭⎪⎫1a ,2. (2)当a =0时,不等式即-x +2<0, 此时不等式的解集为(2,+∞).(3)当a <0时,不等式可以化为⎝⎛⎭⎪⎫x -1a (x -2)>0.由于1a<2,故不等式的解集为⎝ ⎛⎭⎪⎫-∞,1a ∪(2,+∞).综上所述,当a <0时,不等式的解集为⎝ ⎛⎭⎪⎫-∞,1a ∪(2,+∞);当a =0时,不等式的解集为(2,+∞);当0<a <12时,不等式的解集为⎝ ⎛⎭⎪⎫2,1a ; 当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎝ ⎛⎭⎪⎫1a ,2. 【方法支招】含有参数的一元二次不等式在能通过因式分解求出对应方程根的情况下,按照本题的方法求解,但如果不能根据因式分解的方法求出其根,则需要按照不等式对应方程根的判别式的情况进行分类.【突破训练1】 已知关于x 的不等式ax -1x +1>0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞,则a =________.解析 由题意,可得a ≠0,且不等式等价于a (x +1)·⎝⎛⎭⎪⎫x -1a >0.由不等式解集的特点可得a >0且1a =12,故a =2.答案 2命题角度二 含参不等式恒成立问题[命题要点] 一元二次不等式有解、恒成立,求参数的取值范围.【例2】► (2012·镇江质量检测)不等式a 2+8b 2≥λb (a +b )对任意a ,b ∈R 恒成立,则实数λ的取值范围为________.[思路分析] 不等式中有两个变量,可以先看成关于其中一个变量的一元二次不等式恒成立,再考虑另一个变量.解析 先将不等式整理为关于a 的一元二次不等式为a 2-λba +8b 2-λb 2≥0,对任意a ∈R 恒成立,所以λ2b 2-4(8b 2-λb 2)≤0,即(λ2+4λ-32)b 2≤0,对任意b ∈R 恒成立,则λ2+4λ-32≤0,解得-8≤λ≤4.答案 -8≤λ≤4【方法支招】 含有多变量的不等式是近年来考查热点,要将不等式逐个看成关于某一变量的不等式,其它变量先看作常数,这样可以逐步减少变量个数,同时要看清是恒成立还是有解.【突破训练2】(2012年高考(辽宁理))若[0,)x ∈+∞,则下列不等式恒成立的是( )A .21xe x x ++…B 211124x x <-+C .21cos 12x x -… D .21ln(1)8x x x +-…【答案】C【解析】设2211()cos (1)cos 122f x x x x x =--=-+,则()()sin ,g x f x x x '==-+ 所以()cg x x '=-+≥,所以当[0x ∈+∞时,()()()(0)0,g x g x f x g '==为增函数,所以≥ 同理21()(0)0cos (1)02f x f x x =∴--≥,≥,即21cos 12x x -…,故选C【方法支招】本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、以及运算能力,难度较大. 命题角度三 线性规划问题[命题要点] 线性规划考题的新变化为:问题中的目标函数形式已不再局限为单一的、线性的,甚至有的问题隐含有线性规划知识,以上这些变化都可以通过适当的方法转化为较为基本的问题来解决.【例3】► (2012·苏锡常镇调研)设实数n ≤6,若不等式2xm +(2-x )n -8≥0对任意x ∈[-4,2]都成立,则m 4-n 4m 3n的最小值为________.[审题视点] 先对题干中恒成立问题进行转化,得到关于m ,n 的关系式,再利用线性规划知识解决.解析 因为不等式2xm +(2-x )n -8≥0即为(2m -n )x ≥8-2n ,对任意x ∈[-4,2]都成立,所以⎩⎪⎨⎪⎧22m -n ≥8-2n-42m -n ≥8-2n,所以m ,n 满足的不等式为⎩⎪⎨⎪⎧m ≥24m -3n +4≤0n ≤6,所以点(m ,n )对应的平面区域如图,nm 的几何意义是可行域上的点与原点的连线的斜率,所以n m∈⎣⎢⎡⎦⎥⎤127,3,而目标函数m 4-n 4m 3n =m n -⎝ ⎛⎭⎪⎫n m 3,令n m =t ∈⎣⎢⎡⎦⎥⎤127,3,则目标函数即为y =1t -t 3,其导数y ′=-1t 2-3t 2<0,所以函数y =1t -t 3在t ∈⎣⎢⎡⎦⎥⎤127,3上递减,故t =3时取得最小值-803. 答案 -803【方法支招】 线性规划是不等式的重要内容,与函数的综合是常见题型,一般方法是利用线性规划求出某个中间变量的取值范围,再利用换元法、导数等方法求最值.【突破训练3】(2012年高考(山东理))已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是 ( )A .3[,6]2-B .3[,1]2-- C .[1,6]-D .3[6,]2-【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A.解不等式要留意等号,画可行域要注意边界的虚实 一、注意解不等式不能漏解【例1】► 不等式(x -4)x 2-3x -4≥0的解集是________.解析 当x 2-3x -4>0时,x -4≥0,解得x ≥4;当x 2-3x -4=0,即x =-1或4时,原不等式也成立,所以解集是{x |x ≥4或x =-1}.答案 {x |x ≥4或x =-1}【小提示】:要考虑二次根式有意义的条件,当二次根式等于0时,则对x -4没有条件限制,所以要对根式是否为零进行讨论.否则,本题会出现下面的错误:因为\r(x2-3x -4)≥0,所以x -4≥0,解得x ≥4,造成遗漏解的情况.二、注意可行域边界的虚实【例2】► 已知函数f (x )=ax 2+bx -1(a >0)的一个零点在区间(1,2)内,则a -b 的取值范围是________.解析 因为二次函数f (x )=ax 2+bx -1(a >0)开口向上,纵截距是-1,一个零点在区间(1,2)内,所以a ,b 满足不等式组⎩⎪⎨⎪⎧a >0f 1=a +b -1<0f 2=4a +2b -1>0,作出点(a ,b )对应的平面区域如图,由图可知,当目标函数过点(0,1)(不在区域内)时取得最小值-1(取不到),即a -b ∈(-1,+∞).答案 (-1,+∞)【小提示】:画可行域要特别注意边界能否取到,当区域不包含边界时,取值范围中等号取不到,如果忽视这一点,容易在等号上出错.三、注意目标函数的几何意义,尤其是平方、开方之类的问题【例3】► 在平面直角坐标系xOy 中,设A 、B 、C 是圆x 2+y 2=1上相异三点,若存在正实数λ,μ,使得OC →=λOA →+μOB →,则λ2+(μ-3)2的取值范围是________.解析 由OC →=λOA →+μOB →两边平方得OC →2=(λOA →)2+(μOB →)2+2λμOA →·OB →,即为1=λ2+μ2+2λμcos 〈OA →,OB →〉,所以cos 〈OA →,OB →〉=1-λ2-μ22λμ∈(-1,1),又λ,μ∈(0,+∞),所以化简即得⎩⎪⎨⎪⎧λ+μ>1-1<λ-μ<1,作出可行域如图目标函数λ2+(μ-3)2的几何意义是区域上的点(λ,μ)到定点(0,3)的距离的平方,由点到直线的距离公式求得点(0,3)到λ-μ+1=0的距离为2,且取不到,故λ2+(μ-3)2的取值范围是(2,+∞).答案 (2,+∞)【小提示】对目标函数λ2+μ-32的几何意义要理解正确,表示点0,3到λ-μ+1=0的距离的平方,如果忘记平方,就会出现2,+∞的错误,所以考虑问题要细心.1.(2011·南京模拟)已知A ={x |1≤x ≤2},B ={x |x 2+2x +a ≥0},A 、B 的交集不是空集,则实数a 的取值范围是________.解析 若A ,B 的交集是空集时,即x 2+2x +a <0在1≤x ≤2上恒成立.令f (x )=x 2+2x +a ,因为对称轴为x =-1,所以y =f (x )在集合A 上递增,所以f (2)<0即可,所以a <-8,所以A ,B 的交集不是空集时,实数a 的取值范围是a ≥-8.答案 [-8,+∞)2.(2012·江苏,13)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.解析 由题意知f (x )=x 2+ax +b =⎝ ⎛⎭⎪⎫x +a 22+b -a 24.∵f (x )的值域为[0,+∞),∴b -a 24=0,即b =a 24.∴f (x )=⎝ ⎛⎭⎪⎫x +a 22.又∵f (x )<c ,∴⎝ ⎛⎭⎪⎫x +a 22<c ,即-a 2-c <x <-a2+c .∴⎩⎪⎨⎪⎧-a2-c =m , ①-a2+c =m +6. ②由②-①得2c =6,∴c =9.答案 93.(2012·江苏,14)已知正数a ,b ,c 满足:5c -3a ≤b ≤4c -a ,c ln b ≥a +c ln c ,则b a的取值范围是________.解析 由题意知⎩⎪⎨⎪⎧a +b ≤4c ,3a +b ≥5c ,c ln b -a ≥c ln c ⇒b ≥c e ac.作出可行域(如图所示).由⎩⎪⎨⎪⎧a +b =4c ,3a +b =5c ,得a =c 2,b =72c .此时⎝ ⎛⎭⎪⎫b a max =7.由⎩⎪⎨⎪⎧a +b =4c ,b =c e a c ,得a =4c e +1,b =4c e e +1.此时⎝ ⎛⎭⎪⎫b a min =4c ee +14c e +1=e.所以b a ∈[e,7].答案 [e,7]4.(2010·江苏,12)设实数x ,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是________.解析 根据不等式的基本性质求解.⎝ ⎛⎭⎪⎫x 2y 2∈[16,81],1xy 2∈⎣⎢⎡⎦⎥⎤18,13,x 3y =⎝ ⎛⎭⎪⎫x 2y 2·1xy ∈[2,27],x 3y的最大值是27. 答案275.(2012·南京模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥2,x -y ≤1,y ≤2.则目标函数z =-2x +y 的取值范围是________.解析约束条件对应的可行域如图,由图可知,当目标函数经过图中点(3,2)时取得最小值-4,经过点(0,2)时,取得最大值2,所以取值范围是[-4,2].答案[-4,2]。

【高中数学】不等式与 线性规划

【高中数学】不等式与       线性规划

回扣5 不等式与线性规划1.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0、Δ=0、Δ<0三种情况;③在有根的条件下,要比较两根的大小. 2.一元二次不等式的恒成立问题 (1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.3.分式不等式f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0. 4.基本不等式(1)①a 2+b 2≥2ab (a ,b ∈R )当且仅当a =b 时取等号. ②a +b 2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号.(2)几个重要的不等式:①ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );②a 2+b 22≥a +b 2≥ab ≥2aba +b(a >0,b >0,当a =b 时等号成立). ③a +1a≥2(a >0,当a =1时等号成立);④2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立). 5.可行域的确定“线定界,点定域”,即先画出与不等式对应的方程所表示的直线,然后代入特殊点的坐标,根据其符号确定不等式所表示的平面区域. 6.线性规划(1)线性目标函数的最大值、最小值一般在可行域的顶点处取得;(2)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f (x )g (x )≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.4.容易忽视使用基本不等式求最值的条件,即“一正、 二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值;求解函数y =x +3x (x <0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.1.下列命题中正确的个数是( )①a >b ,c >d ⇔a +c >b +d ;②a >b ,c >d ⇒a d >b c ;③a 2>b 2⇔|a |>|b |;④a >b ⇔1a <1b .A.4B.3C.2D.12.设M =2a (a -2)+4,N =(a -1)(a -3),则M ,N 的大小关系为( ) A.M >N B.M <N C.M =N D.不能确定3.若不等式2kx 2+kx -38≥0的解集为空集,则实数k 的取值范围是( )A.(-3,0)B.(-∞,-3)C.(-3,0]D.(-∞,-3)∪(0,+∞)4.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p是q 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件D.既不充分也不必要条件5.不等式1x -1≥-1的解集为( )A.(-∞,0]∪[1,+∞)B.[0,+∞)C.(-∞,0]∪(1,+∞)D.[0,1)∪(1,+∞)6.设第一象限内的点(x ,y )满足约束条件⎩⎪⎨⎪⎧2x -y -6≤0,x -y +2≥0,目标函数z =ax +by (a >0,b >0)的最大值为40,则5a +1b 的最小值为( )A.256B.94C.1D.47.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m 等于( )A.6B.5C.4D.38.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( ) A.(-∞,-1) B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)9.已知实数x ∈[-1,1],y ∈[0,2],则点P (x ,y )落在区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内的概率为( )A.34B.14C.18D.3810.函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为________.11.已知ab =14,a ,b ∈(0,1),则11-a +21-b 的最小值为________.12.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,mx -y ≤0,若z =2x -y 的最大值为2,则实数m =______.13.(2016·上海)若x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y ≥0,y ≥x +1,则x -2y 的最大值为________.14.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则y -6x -5的取值范围是________. 回扣5 不等式与线性规划1.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0、Δ=0、Δ<0三种情况;③在有根的条件下,要比较两根的大小. 2.一元二次不等式的恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0. 3.分式不等式f xg x >0(<0)⇔f (x )g (x )>0(<0);f xg x ≥0(≤0)⇔⎩⎪⎨⎪⎧f xg x ≥0≤0,g x ≠0.4.基本不等式(1)①a 2+b 2≥2ab (a ,b ∈R )当且仅当a =b 时取等号. ②a +b2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号.(2)几个重要的不等式:①ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); ②a 2+b 22≥a +b2≥ab ≥2aba +b(a >0,b >0,当a =b 时等号成立).③a +1a≥2(a >0,当a =1时等号成立);④2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立). 5.可行域的确定“线定界,点定域”,即先画出与不等式对应的方程所表示的直线,然后代入特殊点的坐标,根据其符号确定不等式所表示的平面区域. 6.线性规划(1)线性目标函数的最大值、最小值一般在可行域的顶点处取得;(2)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f xg x≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.4.容易忽视使用基本不等式求最值的条件,即“一正、 二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值;求解函数y =x +3x(x <0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.1.下列命题中正确的个数是( )①a >b ,c >d ⇔a +c >b +d ;②a >b ,c >d ⇒a d >bc;③a 2>b 2⇔|a |>|b |;④a >b ⇔1a <1b.A.4B.3C.2D.1 答案 C解析 ①a >b ,c >d ⇔a +c >b +d 正确,不等式的同向可加性;②a >b ,c >d ⇒a d >bc错误,反例:若a =3,b =2,c =1,d =-1,则a d >bc不成立;③a 2>b 2⇔|a |>|b |正确;④a >b ⇔1a <1b 错误,反例:若a =2,b =-2,则1a <1b不成立.故选C.2.设M =2a (a -2)+4,N =(a -1)(a -3),则M ,N 的大小关系为( ) A.M >N B.M <N C.M =N D.不能确定 答案 A解析 M -N =2a (a -2)+4-(a -1)(a -3)=a 2+1>0.故选A. 3.若不等式2kx 2+kx -38≥0的解集为空集,则实数k 的取值范围是( ) A.(-3,0) B.(-∞,-3) C.(-3,0] D.(-∞,-3)∪(0,+∞) 答案 C解析 由题意可知2kx 2+kx -38<0恒成立,当k =0时成立,当k ≠0时需满足⎩⎪⎨⎪⎧k <0,Δ<0,代入求得-3<k <0,所以实数k 的取值范围是(-3,0].4.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案 A解析 如图,(x -1)2+(y -1)2≤2,①表示圆心为(1,1),半径为2的圆内区域的所有点(包括边界);⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,②表示△ABC 内部区域的所有点(包括边界).实数x ,y 满足②则必然满足①,反之不成立.则p 是q 的必要不充分条件.故选A.5.不等式1x -1≥-1的解集为( )A.(-∞,0]∪[1,+∞)B.[0,+∞)C.(-∞,0]∪(1,+∞)D.[0,1)∪(1,+∞)答案 C解析 由题意得,1x -1≥-1⇒1x -1+1=xx -1≥0,解得x ≤0或x >1,所以不等式的解集为(-∞,0]∪(1,+∞),故选C.6.设第一象限内的点(x ,y )满足约束条件⎩⎪⎨⎪⎧2x -y -6≤0,x -y +2≥0,目标函数z =ax +by (a >0,b >0)的最大值为40,则5a +1b的最小值为( )A.256B.94 C.1 D.4 答案 B解析 不等式表示的平面区域如图中阴影部分,直线z =ax +by 过点(8,10)时取最大值,即8a +10b =40,4a +5b =20,从而5a +1b =(5a +1b )4a +5b 20=120(25+4a b +25b a )≥120(25+24a b ×25b a )=94,当且仅当2a =5b 时取等号,因此5a +1b 的最小值为94,故选B.7.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m 等于( )A.6B.5C.4D.3 答案 B解析 作出不等式组对应的平面区域,如图所示,由目标函数z =x -y 的最小值为-1,得y =x -z ,及当z =-1时,函数y =x +1,此时对应的平面区域在直线y =x +1的下方,由⎩⎪⎨⎪⎧ y =x +1y =2x -1⇒⎩⎪⎨⎪⎧x =2,y =3,即A (2,3),同时A 也在直线x +y =m 上,所以m = 5.8.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k x -1-1表示一个三角形区域,则实数k的取值范围是( ) A.(-∞,-1) B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)答案 A解析 易知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示.当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域,所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).9.已知实数x ∈[-1,1],y ∈[0,2],则点P (x ,y )落在区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内的概率为( )A.34B.14C.18D.38 答案 D解析 不等式组表示的区域如图所示,阴影部分的面积为12×(2-12)×(1+1)=32,则所求的概率为38,故选D.10.函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为________.答案 8解析 由已知可得定点A (-2,-1),代入直线方程可得2m +n =1,从而1m +2n =(1m+2n)(2m +n )=n m+4mn+4≥2n m ·4m n+4=8.当且仅当n =2m 时取等号.11.已知ab =14,a ,b ∈(0,1),则11-a +21-b 的最小值为________.答案 4+423解析 因为ab =14,所以b =14a , 则11-a +21-b =11-a +21-14a=11-a +8a 4a -1=11-a +24a -1+24a -1 =11-a +24a -1+2 =2(14a -1+24-4a)+2 =23(14a -1+24-4a)[(4a -1)+(4-4a )]+2 =23[3+4-4a 4a -1+24a -14-4a]+2 ≥23(3+22)+2=4+423(当且仅当4-4a 4a -1=24a -14-4a ,即a =32-24时,取等号). 12.变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≥0,x -2y +2≥0,mx -y ≤0,若z =2x -y 的最大值为2,则实数m =______.答案 1 解析 由可行域知,直线2x -y =2必过直线x -2y +2=0与mx -y =0的交点,即直线mx -y =0必过直线x -2y +2=0与2x -y =2的交点(2,2),所以m =1.13.(2016·上海)若x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y ≥0,y ≥x +1,则x -2y 的最大值为________.答案 -2 解析 令z =x -2y ,则y =12x -z 2.当在y 轴上截距最小时,z 最大.即过点(0,1)时,z 取最大值,z =0-2×1=-2.14.已知实数x ,y 满足⎩⎪⎨⎪⎧ x -y +5≥0,x ≤3,x +y ≥0,则y -6x -5的取值范围是________.答案 [-1,92] 解析 作出可行域,如图△ABC 内部(含边界),y -6x -5表示可行域内点(x ,y )与P (5,6)连线斜率,k PA =8-63-5=-1,k PC =-3-63-5=92,所以-1≤y -6x -5≤92.。

不等式及线性规划问题(讲义)

不等式及线性规划问题(讲义)

不等式及线性规划问题(讲义)知识点睛一、 不等式的基本性质 性质1:a b b a >⇔< 性质2:a b b c a c >>⇒>, 性质3:a b a c b c >⇒+>+性质4:a b >,0c >ac bc ⇒>;a b >,0c <ac bc ⇒< 性质5:a b c d a c b d >>⇒+>+, 性质6:00a b c d ac bd >>>>⇒>,性质7:0(2)n n a b a b n n >>⇒>∈≥,N 性质8:0(2)a b n n >>⇒>∈≥,N 二、 一元二次不等式及其解法一般地,对于解一元二次不等式20(0)ax bx c a ++>≠,通常步骤如下: (1)解方程20(0)ax bx c a ++=≠常用方法:直接开平方法、配方法、公式法、分解因式法. (2)解不等式 考虑两种解法:函数法:借助函数图象求解①画出对应函数2y ax bx c =++的图象; ②依据图象得出不等式的解集.代数法:借助实数乘法法则,解不等式组. 三、 绝对值不等式的解法1. 解绝对值不等式的核心:去绝对值去绝对值方法:以||x a -为例 (1)绝对值的几何意义:①||x a -表示数轴上x a -,0对应两点之间的距离②||x a -表示数轴上 x a ,对应两点之间的距离 (2)绝对值法则: ||0x a x a x a x a x a x a ->⎧⎪-==⎨⎪-+<⎩,,,(3)偶次方:221||() ( )n n x a x a n n -=-∈≥,N2. 解绝对值不等式常见题型(1)单个绝对值型不等式:如||ax b c +≤或||ax b c +≥ 思路一:依据绝对值的几何意义①||ax b c +≤转化为c ax b c -+≤≤ ②||ax b c +≥转化为c c ax b ax b ++-≥或≤思路二:依据绝对值的“零点”,由绝对值法则去绝对值,再解不等式 思路三:由相应函数()||f x ax b c =+-,利用数形结合思想,依据图象处理. (2)多个绝对值型不等式:如||||x a x b c -+-≥ 思路一:依据绝对值的几何意义数轴上到a 、b 对应两点的距离之和不小于c 的点的集合; 思路二:依据绝对值的“零点”依据绝对值的“零点”分段,由绝对值法则去绝对值,再解不等式; 思路三:依据函数图象由相应函数()||||f x x a x b c =-+--,利用数形结合思想,依据图象处理. (3)常见函数图象 ①()|1|f x x =-②()|1|f x x =+结论推广:①||||||x a x b a b -+--≥;②||||||||a b x a x b a b ------≤≤.四、 二元一次不等式(组)及线性规划 1. 二元一次不等式与平面区域若方程0Ax By C ++=表示直线l ,则 不等式0Ax By C ++>表示直线l 某一侧所有点组成的平面区域,将该侧任一点坐标00()x y ,代入Ax By C ++,000Ax By C ++> 恒成立.同理,不等式0Ax By C ++<表示直线l 的另一侧. 2. 由二元一次不等式组判断平面区域(1)直线定界(注意虚线与实线);(2)特殊点定域(如:原点,(0 1),,(1 0),等); (3)不等式组找公共区域. 3. 线性规划相关概念 约束条件: 关于x ,y 的不等式(或方程) 线性约束条件:关于x ,y 的一次不等式(或方程) 目标函数: 要求的关于变量x ,y 的函数 线性目标函数:目标函数为关于变量x ,y 的一次函数可行解: 满足约束条件的解(x ,y ) 可行域: 所有可行解组成的集合最优解:使目标函数取得最大值或最小值的可行解线性规划问题:在线性约束条件下求线性目标函数的最大值或最小值问题 4. 求目标函数z =ax +by 的最值利用线性规划求最值,一般用图解法求解,其步骤是: (1)根据约束条件画出可行域;(2)考虑目标函数的几何意义,令z =0,画出直线l 0; (3)在可行域内平行移动直线l 0,从而确定最优解; (4)将最优解代入目标函数即可求出最大值或最小值.精讲精练1. 下列命题中正确的是( ) A . a b c d a c b d >>⇒->-,B .a ba b c c>⇒>C .ac bc a b <⇒<D .22ac bc a b >⇒>2. 若01a b <<<,则( )A .11b a> B .11()()22a b <C .n n a b >D .11lg lg a b>3. 当0a b >>,0c d <<时,给出以下结论:①ad bc <;②22a c b d +>+;③b c a d ->-; ④3330c d a <<<. 其中正确结论的序号是______________.4. 设方程20(0)ax bx c a ++=≠的两根为12 x x ,,且12x x <. (1)若0a <,则20ax bx c ++<的解集为____________; (2)若0a >,则20ax bx c ++≥的解集为____________.5. 已知不等式230x x t -+<的解集为{}|1 x x m x <<∈,R .(1)t =_________,m =_________;(2)若函数2()4f x x ax =-++在区间( 1]-∞,上递增,求关于x 的不等式2log (32)0a mx x t -++-<的解集.6.解下列不等式.(1)|21||21|6++-≤x x(2)|21||4|2x x+-->7.已知函数()|4||3|=-+-.f x x x(1)若()<有解,则实数a的取值范围为_________.f x a(2)若()<无解,则实数a的取值范围为___________.f x a(3)若()f x a>对一切实数x均成立,则实数a的取值范围为_______________.(4)若()2|3|af x x--≥有解,则实数a的取值范围为_______________.8.写出下列平面区域表示的二元一次不等式组.(1)____________________;(2)___________________.(1)9.(21)(4)0x y x y++-+≤表示的平面区域为下图中的()A.B.C.D.10.不等式组3434xx yx y⎧⎪+⎨⎪+⎩≥≥≤所表示的平面区域的面积等于()A.32B.23C.43D.3411.设变量x,y满足约束条件53151053x yx yx y+⎧⎪-+⎨⎪-⎩≤≥≤,则目标函数z=3x+5y的最大值为__________,最小值为_________.12.设变量x,y满足约束条件3602030x yx yy+-⎧⎪--⎨⎪-⎩≥≤≤,则目标函数z=2x-y的最小值为()A.7 B.-4 C.-1 D.413. 设变量x ,y 满足3010350x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤,设y k x =,则k 的取值范围是( )A .14[]23,B .4[2]3,C .1[2]2,D .1[)2+∞,14. 给出平面区域如图中的阴影部分所示,若使目标函数z =ax +y(a >0)取得最大值时的最优解有无穷多个,则a 的值为 __________________.15. 某厂拟生产甲、乙两种适销产品,每件产品销售收入分别为3 000元、2 000元.甲、乙产品都需要在A 、B 两种设备上进行加工.在每台A 、B 设备上加工1件甲,设备所需工时分别为1 h 、2 h ;加工1件乙,设备所需工时分别为2 h 、1 h ,A 、B 两种设备每月有效使用台时数分别为400 h 和500 h . 问:如何安排生产可使收入最高?回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________【参考答案】1. D2. D3. ①②④4. (1)12( )( )x x -∞+∞,,; (2)12( ][ )x x -∞+∞,, 5. (1)22t m ==;;(2)13(0 )(1 )22,, 6. (1)33[ ]22-,;(2)5( 7)( )3-∞-+∞,, 7. (1)(1 )+∞,;(2)( 1]-∞,;(3)( 1)-∞,;(4)( 1]-∞,8.(1)4150220x yx yx y->⎧⎪+-<⎨⎪+-⎩≥;(2)36020yx yx y⎧⎪-+⎨⎪-+<⎩≥≥9. B10.C11.17-1112.C13.C14.3 515.每月生产甲产品200件,乙产品100件,可使收入最高.。

不等式与线性规划含答案说课材料

不等式与线性规划含答案说课材料

不等式与线性规划【考情解读:(1)在高考中主要考查利用不等式的性质进行两数的大小比较、 解法、基本不等式及线性规划问题•基本不等式主要考查求最值问题,线性规划主要考查直 接求最优解和已知最优解求参数的值或取值范围问题. (2 )多与集合、函数等知识交汇命题,以填空题的形式呈现,属中档题.1 •四类不等式的解法 (1) 一元二次不等式的解法先化为一般形式 ax 2 + bx + c>O(a 丰0),再求相应一元二次方程ax 2 + bx + c = 0(a ^ 0)的根,最后根据相应二次函数图象与 x 轴的位置关系,确定一元二次不等式的解集. (2) 简单分式不等式的解法f x① 变形? gT>0(<0)? f(x)g(x)>0(<0);y xf x② 变形? >0( W 0)? f(x)g(x)> 0(w 0)且 g(x)M 0. (3) 简单指数不等式的解法 ① 当 a>1 时,a f(x)>a g(x)? f(x)>g(x); ② 当 0<a<1 时,a f(x)>a g(x)? f(x)<g(x). (4) 简单对数不等式的解法① 当 a>1 时,log a f(x)>log a g(x)? f(x)>g(x)且 f(x)>0 , g(x)>0; ② 当 0<a<1 时,log a f(x)>log a g(x)? f(x)<g(x)且 f(x)>0, g(x)>0. 2. 五个重要不等式 (1) |a|>0, a 2> 0(a € R). (2) a 2 + b 2>2ab(a 、b € R). a + bf —⑶—> ,ab(a>0 , b>0).a +b 2(4)ab w (~2 )2(a , b € R).3. 二元一次不等式(组)和简单的线性规划(1) 线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.(2) 解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何 意义确定元二次不等式的 (a>0, b>0).最优解;③求出目标函数的最大值或者最小值.4•两个常用结论(2)aX + bx + c<0(a 丰0)恒成立的条件是 热点一 一元二次不等式的解法1[例 1] (1)(2013安徽)已知一元二次不等式 f(x)<0的解集为x|x< — 1或x>2 ,则f(10x )>0的解集为 ________ •⑵已知函数f(x) = (x — 2)(ax + b)为偶函数,且在(0,+^ )单调递增,则f(2 — x)>0的解集为思维启迪⑴利用换元思想,设10x = t ,先解f(t)>0.(2)利用f(x)是偶函数求b ,再解f(2 — x)>0.答案 (1){ x|x< — lg 2}(2){ x|x<0 或 x>4}1解析 ⑴由已知条件0<10x <2, 1解得x<lg^ =—lg 2.⑵由题意可知f( — x)= f(x) •即(—x — 2)( — ax + b) = (x — 2)(ax + b), 化简得(2a — b)x = 0恒成立,故 2a — b = 0,即 b = 2a ,则 f(x)= a(x — 2)(x + 2). 又函数在(0,+R )单调递增,所以a>0.f(2 — x)>0 即 ax(x — 4)>0,解得 x<0 或 x>4.思维升华 二次函数、二次不等式是高中数学的基础知识,也是高考的热点, “三个二次”的相互转化体现了转化与化归的数学思想方法. 变式训塚(1)不等式上二丄< 0的解集为2x + 1-------------⑵已知 p : ? x °€ R , mx 2 + K 0, q : ? x € R , x 2 + mx + 1>0.若 p A q 为真命题,则实数 m 的 取值范围是 ________________________________________________________________________ .1答案(1)( — 2,1](2)( — 2,0)1解析(1)原不等式等价于(x — 1)(2x + 1)<0或x — 1 = 0,即—2<x<1或x = 1,所以不等式的解集为(—2, 1] •(l)ax 1 2+ bx + c>O(a 丰0)恒成立的条件是a>0, △<0.a<0,△<0.(2)p A q 为真命题,等价于 p , q 均为真命题.命题 p 为真时,m<0;命题q 为真时,△= m 3- 4<0,解得—2<m<2.故 p A q 为真时,—2<m<0. 热点二基本不等式的应用[例 2] (1)(2014湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆 /时)与车流速度v (假设车辆以相同速度 v 行驶,单位:米/秒)、 平均车长1(单位:米)的值有关,其公式为 F = 2J6 000V on.V 十 18V 十 20l ①如果不限定车型,I = 6.05,则最大车流量为 __________ 辆/时;②如果限定车型,1 = 5,则最大车流量比①中的最大车流量增加 _____________ 辆/时.⑵(2013山•东改编)设正实数x , y , z 满足x 4— 3xy + 4y 5 — z = 0,则当乎取得最大值时,| + |的最大值为 _________ .寻找&取得最大值时的条件.z 答案 ⑴①1 900 ②100 (2)1当且仅当v = 10米/秒时等号成立,此时车流量最大为 2 000辆/时,比①中的最大车流量增加 100辆/时. ⑵由已知得 z = x 2— 3xy + 4y 2, (*)2 111 =_十_—z y y y所以当且仅当y = 1时,x + y -2的最大值为1.思维升华 在利用基本不等式求最值时,要特别注意 “拆、拼、凑”等技巧,使其满足基本 不等式中“正”(即条件要求中字母为正数 卜“定”(不等式的另一边必须为定值 )、“等”(等号 取得的条件)的条件才能应用,否则会出现错误.3 1 所以2十丄—x y则xyz xy — 3xy + 4y v 1,当且仅当 x + 釵-3 y x x = 2y 时取等号,把x = 2y 代入(*)式,得z = 2y 2,思维启迪(1)把所给I 值代入, 分子分母同除以v ,构造基本不等式的形式求最值; (2)关键是解析 (1)①当 1 = 6.05 时,76 000v v 2+ 18v 十121 76 000 一 121 , v +丁 十 18276 000 76 00022 + 18=1 900.当且仅当v = 11米/秒时等号成立,此时车流量最大为1 900辆/时.②当1 = 5时,76 000vv 2+ 18v 十10076 000 v 76 000v + 罟十 18V2 ’ ;v 10°+ 1876 00020+ 18=2 000.1 -12十1V 1, v 121 十 18v燮式心(1)若点A(m ,n)在第一象限,且在直线争4=1上,则mn 的最大值为22x +—— >7在x € (a , +^)上恒成立,贝U 实数a 的最小值为 x — a 3 答案(1)3(2)3n)在第一象限,且在直线 £+ 4y = 1上,所以m , n>0,且£+4= 1.所以mn 的最大值为3.22(2)2x + = 2(x — a) +x — a3由题意可知4+ 2a >乙得a >2, 即实数a 的最小值为|. 热点三 简单的线性规划问题思维启迪 通过设变量将实际问题转化为线性规划问题. 答案 36 800解析设租A 型车x 辆,B 型车y 辆时,租金为z 元,x + y w 21y — x < 7 36x + 60y > 900, x , y >0, x , y € N画出可行域如图,A(5,12)时纵截距最小,(2)已知关于x 的不等式 解析⑴因为点A(m ,m n +所以m4w(冷4).当且仅当£= 4= J 即卩 m = I , n = 2 时, 取等号).所以£1,即mn w 3,卜2a x — a【例3 (2013湖北)某旅行社租用 A 、 B 两种型号的客车安排 900名客人旅行,A 、B 两种车辆 的载客量分别为36人和60人, 租金分别为1 600元/辆和 2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为元.则 z = 1 600x + 2 400y ,且 x ,y 满足2 z 直线 y = —2x +2^过点> 2x — a •红+ 2a = 4+ 2a ,x — a所以 Z min = 5 X 1 600 + 2 400 X 12= 36 800, 故租金最少为 36 800元.思维升华 ⑴线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标 函数中的字母系数的取值范围.(2)解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,利用数形结合找到目标函数的最优解. (3)对于应用问题,要准确地设出变量,确定可行域和目标函数.x>0,曼式调域H ⑴已知实数x , y 满足约束条件 4x + 3y w 4,则w = 也的最小值是 ____________xy > 0 2x - y + 1>0,⑵(2013北京)设关于x , y 的不等式组 x + m<0,表示的平面区域内存在点P(x °, y °),y — m>0满足X 0— 2y 0= 2,求得m 的取值范围是 __________2答案(1)1(2)―汽一3解析(1)画出可行域,如图所示.⑵当m 》0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点 P (X 0, y 0)满足 X 0— 2y 0= 2,因此 m<0. 如图所示的阴影部分为不等式组表示的平面区域.1要使可行域内包含 y = ^x — 1上的点,只需可行域边界点1 1 2(—m , m)在直线y = 2x — 1的下方即可,即 m< — §m — 1,解得 m<— 3.宁表示可行域内的点(x , y)与定点P(0, — 1)连线的斜率,观察图形可知 PA 的斜率最小为—1 —I本讲规律总结I ---------------------------1 •几类不等式的解法一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x轴交点的横坐标,即二次函数的零点;分式不等式可转化为整式不等式(组)来解;以函数为背景的不等式可利用函数的单调性进行转化.2 •基本不等式的作用二元基本不等式具有将“积式”转化为“和式”或将“和式”转化为“积式”的放缩功能,常常用于比较数(式)的大小或证明不等式或求函数的最值或解决不等式恒成立问题. 解决问题的关键是弄清分式代数式、函数解析式、不等式的结构特点,选择好利用基本不等式的切入点,并创造基本不等式的应用背景,如通过“代换”、“拆项”、“凑项”等技巧,改变原式的结构使其具备基本不等式的应用条件•利用基本不等式求最值时要注意“一正、二定、三相等”的条件,三个条件缺一不可.3•线性规划问题的基本步骤(1)定域一一画出不等式(组)所表示的平面区域,注意平面区域的边界与不等式中的不等号的对应;(2)平移一一画出目标函数等于0时所表示的直线I,平行移动直线,让其与平面区域有公共点,根据目标函数的几何意义确定最优解,注意要熟练把握最常见的几类目标函数的几何意义;(3)求值一一利用直线方程构成的方程组求解最优解的坐标,代入目标函数,求出最值【真题感悟11. ___________________________________________________________________________ (2014山东改编)已知实数x, y满足a x<a y(0<a<1),则下列关系式恒成立的是___________ •1 1①x^>y21n;②In(x5+ 1)>l n(y2+ 1);③sin x>s in y;④ x6>y3.5— X x+ 1 = 13(当且仅当—=x+ 1,即x= 1时取等号),所以促销费用投入1万元时,\j x + 1 x+ 1厂家的利润最大.3x- y < 0,2.若点P(x, y)满足线性约束条件x- .'3y+ 2> 0, 点A(3,丿3), O为坐标原点,则OA OPy> 0,的最大值为 ________ .答案6解析由题意,知OA= (3, ,'3), (x, y),则O A OP = 3x+、;3y.答案④1解析因为0<a<1, a x<a y,所以x>y.米用赋值法判断,①中,当x= 1, y= 0时,?<1,①不成立.②中,当x= 0, y=—1时,In 1<ln 2,②不成立.③中,当x= 0, y=—n时,sin x= sin y =0,③不成立•④中,因为函数y= x3在R上是增函数,故④恒成立.x + 2y—4< 0,2. (2014浙江)当实数x, y满足x —y —K 0,时,1 < ax+ y< 4恒成立,则实数a的取值x > 1范围是 ________ •答案[1, %解析画可行域如图所示,设目标函数z= ax+ y,即y=—ax+ z,要使1 <z w4恒成立,则令z= 3x+ 3y,3 3即可,解得K a< 2.所以a的取值范围是K a<q.【押题精练11 •为了迎接2015年3月8日的到来,某商场举行了促销活动,经测算某产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足P= 3-——,已知生产该产品还需投入成本(10x+ 1+ 2P)万元(不含促销费用),产品的销售价格定为(4 + —)万元/万件,则促销费用投入______________ 万元时,厂家的利润最大?答案1(10+ 2P)% p - 10 - 2P - x = 16 - —^ - x(x>0),所以y = 17 - (―2 * 7+ x + 1) < 17 -P x+ 1 x + 1可知当直线y一3x+33 z经过点B时,z取得最大值.如图画出不等式组所表示的可行域,1 < 2a+ 1 < 4,a>0,数形结合知,满足i三玄三4解析设该产品的利润为y万元,由题意知,该产品售价为2X(10+ 2P__P )万元,所以y= 2X寸3x—y= 0, x= 1,由’解得即B(1 , 3),故z的最大值为3X 1+・3X 3= 6.x- ,3y+ 2 = 0, y= . 3,即(5A6P的最大值为6.i i3•如果关于x的不等式f(x)<0和g(x)<0的解集分别为(a, b),辂,?,那么称这两个不等式为“对偶不等式”,如果不等式x2- 4 3xcos 2 0+ 2<0与不等式2x2+ 4xsin 2 0+ 1<0为“对偶不等式”,且0€ (n, n ,贝廿0= ______________________________________________ .答案5n6解析由题意可知ab= 2, a + b = 4 3cos 2 0,1 1+ -=- 2sin 2 0,b a即a^b=- 2sin 2 0 ,ab••• 2 3cos 2 0=- 2sin 2 0, tan 2 0=- 3.T 0€(2, n)5 n 5 n• 2 0€ ( n 2 n) 2 0= —. 0=—.3 6(推荐时间:50分钟)一、填空题—x+ 1, x<0 ,1.函数f(x)= 则不等式x + (x + 1)f(x+ 1) < 1的解集是 ________x- 1 , x> 0 ,答案{x|x w 2 —1}解析当x< —1时,原不等式可化为x+ (x+ 1) (-- x) w 1 ,解得x2>- 1恒成立,所以x< — 1.当x> -1时,原不等式可化为x + (x+ 1) x w 1 ,解得—2 —1w x W 2 —1,所以一1 w x W 2 — 1.综上,原不等式的解集为{x|x w 2 - 1}.2•下列不等式一定成立的是 _________ .1① lg x2+ 4 >lg x(x>0);1②sin x ------- >2(X M k n k€ Z);sin x③x2+ 1 >2X|(x€ R);④冷>1(x€ R).答案③解析应用基本不等式:x, y>0, x^y》xy(当且仅当x = y时取等号)逐个分析,注意基本不等式的应用条件及取等号的条件.1 1当x>0 时,x2+ 2 x • = x,4 21所以lg x2+ > lg x(x>0),故①不正确;4运用基本不等式时需保证“一正、二定、三相等”,而当X M k n, k€ Z时,sin x的正负不定,故②不正确;由基本不等式可知,③正确;当x = 0时,有二丄=1,故④不正确.x + 13. (2013重庆改编)关于x的不等式x2- 2ax—8a2<0(a>0)的解集为(X1, x2),且沁一X1 = 15,则a= ________ .答案|解析由x2—2ax—8a2<0 ,得(x+ 2a)(x—4a)<0,因a>0,所以不等式的解集为(一2a,4a),即5x2= 4a, X1= —2a,由X2 —X1= 15,得4a —(—2a)= 15,解得a = ~.4. (2014重庆改编)若Iog4(3a+ 4b)= log^/ab,则a+ b的最小值是_______ .答案7+43.ab>0,a>0,解析由题意得ab > 0, 所以b>0.3a+ 4b>0,又Iog4(3a + 4b)= Iog2 ab,所以log«3a+ 4b)= log4ab, 所以3a+ 4b = ab,故-+ 3= 1.a b所以 a + b = (a + b)(4 + 3)= 7 + 曽+ 譽当且仅当3a=4b时取等号.b ax+ y—5 w 0,5 .已知变量x , y满足约束条件x—2y + 1 w 0 ,贝V z = x + 2y —1的最大值为x—1> 0答案8x+ y—5w 0,解析约束条件x —2y+ 1 w 0, 所表示的区域如图,x—1> 0由图可知,当目标函数过A(1,4)时取得最大值,故z= x+ 2y—1的最大值为1 + 2 X 4— 1 = 8. 6.已知f(x)是R上的减函数,A(3,—1), B(0,1)是其图象上两点,则不等式|f(1 + In x)|<1的解隹阜集是________ .答案(2, e2)e解析•/ |f(1 + ln x)|<1 ,•••— 1<f(1 + ln x)<1 ,••• f(3)<f(1+ ln x)<f(0),又••• f(x)在R上为减函数,• 0<1 + ln x<3, •—1<ln x<2,.1•-e<x<ex—y w 0,7.若x, y满足条件x+ y>0, 且z= 2x+ 3y的最大值是5,则实数a的值为______________ .y w a,答案1解析画出满足条件的可行域如图阴影部分所示,则当直线z= 2x+ 3y过点A(a, a)时,z = 2x + 3y取得最大值5,所以5= 2a+ 3a,解得a= 1.& 若点A(1,1)在直线2mx+ ny—2 = 0上,其中mn>0,则席1的最小值为3答案2+ .2解析 •••点A(1,1)在直线2mx + ny — 2= 0上,/• 2m + n = 2,又T mn>0,二 m>0 且 n>0.11 3••• — + -的最小值为;+ ‘J 2. m n 2二、解答题19•设集合 A 为函数y = ln( — x 2— 2x + 8)的定义域,集合 B 为函数y = x +=的值域,集合 C I I1为不等式(ax —-)(x + 4)< 0的解集.a(1)求 A n B ;⑵若C? ?R A ,求a 的取值范围. 解 (1)由一x 2— 2x + 8>0 ,得一4<x<2, 即 A = (— 4,2).1 1y = x +苗=(x +1)+苗-1, 当 x + 1>0,即 x>— 1 时,y 》2— 1 = 1,此时x = 0,符合要求;当 x + 1<0,即 x<— 1 时,y w — 2 — 1 = — 3,此时x = — 2,符合要求.所以 B = (— a, — 3] U [1 ,+s ),所以 A n B = (— 4,— 3] U [1,2).1丄 ⑵(ax — T)(x + 4) = 0 有两根 x =— 4 或 x= 2.aa 由(1)知?RA = ( — a, 4] U [2 ,+a )当 a>0 时,C = {x|— 4w x < a^},不可能 C? ?R A ;1当 a<0 时,C = {x|x w — 4 或 x > -2},若 C? ?R A ,则 2,「. a 2w 1, •丄+丄 J , 1 2m + n 1 =(m +才丁=2(2+ 2m +耳 +1)n mm n 当且仅当2m =m ,即n =,2m 时取等号,a 2•••—-22< a<0.故a的取值范围为[―卡,0).110.已知函数f(x)= §ax3—bx8+ (2 —b)x+ 1在x=x i处取得极大值,在x= X2处取得极小值,且0<x i<1<x2<2.(1)证明:a>0;⑵若z= a + 2b,求z的取值范围.(1)证明求函数f(x)的导数f' (x)= ax2—2bx+ 2 — b.由函数f(x)在x= X1处取得极大值,在x = x2处取得极小值,知x1, X2是f' (x)= 0的两个根,所以f' (x)= a(x—X1)(x—X2).当X<X1时,f(x)为增函数,f' (x)>0 , 由x —X1<0, x —x2<0 得a>0.f' 0 >0,⑵解在题设下,0<X1<1<X2<2等价于f' 1 <0,f' 2 >0,2 —b>0,化简得a —3b+ 2<0, 4a—5b + 2>0.此不等式组表示的区域为平面aOb上的三条直线: 2— b = 0, a—3b+ 2 = 0,4a—5b + 2 = 0所围成的厶ABC的内部,其三个顶点分别为4 6A 4,7,B(2,2), C(4,2).16z在这三点的值依次为—,6,8.所以z的取值范围为(号,8).11.某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系式C8b>0, 即a—2b+ 2—b<0,4a —4b + 2 —b>0 ,k3x + ——+ 5, 0<x<6,=3+ x ,每日的销售额S(单位:万元)与日产量x 的函数关系式S = x — 814, x >6.已知每日的利润 L = S — C ,且当x = 2时,L = 3.(1) 求k 的值;(2) 当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.k c C C2x +——+ 2, 0<x<6,解(1)由题意可得L = x — 811 — x , x >6.k因为当x = 2时,L = 3,所以3 = 2X 2+—— + 2,2 — 8解得k = 18.18⑵当0<x<6时,L = 2x + + 2,所以x — 818L = 2(x - 8)+ x ——8+ 18一 [2(8 — x )+ < —2 - 2 8 — x • 1— + 18= 6,\ 8 — x 当且仅当2(8 — x)= 鱼,即x = 5时取得等号.8 — x当 x > 6 时,L = 11— x w 5.所以当x = 5时,L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大,最大值为6万元.18—] + 18。

线性规划与线性不等式

线性规划与线性不等式

线性规划与线性不等式线性规划和线性不等式是运筹学中的重要概念和工具。

线性规划是一种数学方法,用于在一组线性约束条件下,寻找使目标函数最大或最小化的最佳解决方案。

而线性不等式则是用于描述一个或多个变量之间的约束关系,其形式为线性不等式表达式。

一、线性规划线性规划的基本形式可以表示为:$max\{c^Tx|Ax≤b, x≥0\}$其中,$c$是一个n维列向量,$A$是一个m×n矩阵,$b$是一个m维列向量。

这个问题的目标是找到一个n维向量$x$,使得目标函数$c^Tx$最大化,同时满足$Ax≤b$和$x≥0$。

线性规划的解可以通过各种算法获得,例如单纯形法和内点法等。

这些算法通过迭代的方式逐步逼近最优解,并且可以应用于许多实际问题,如资源分配、生产优化和投资组合等。

二、线性不等式线性不等式是一种形式为$Ax≤b$的约束条件,其中$A$是一个m×n矩阵,$b$是一个m维列向量。

线性不等式描述了变量$x$的取值范围,满足不等式条件的解集称为不等式的可行域。

线性不等式在很多领域都有广泛的应用,例如经济学中的供需关系、运输领域中的货物流动以及生产过程中的资源分配等。

通过分析线性不等式的解集,可以得到问题的可行解范围,为实际问题的决策提供参考。

三、线性规划与线性不等式的关系线性规划问题可以通过引入线性不等式约束来求解。

在线性规划中,约束条件$Ax≤b$可以包含各种不等式,如大于等于(≥)、小于等于(≤)和等于(=)等。

线性规划的最优解可以通过与约束条件$Ax≤b$的可行域相交,找到目标函数$c^Tx$最大化或最小化的解。

这意味着线性规划的最优解必须满足线性不等式约束条件。

例如,考虑一个线性规划问题:求解最大化目标函数$4x_1+3x_2$的最优解,同时满足以下约束条件:$2x_1+x_2≤8$$x_1+2x_2≤6$$x_1,x_2≥0$可以通过绘制不等式约束的可行域,并找到与目标函数相交的最优解。

不等式线性规划知识点梳理及经典例题及解析

不等式线性规划知识点梳理及经典例题及解析

线性规划讲义【考纲说明】(1) 了解线性规划的意义、了解可行域的意义;(2 )掌握简单的二元线性规划问题的解法.(3) 巩固图解法求线性目标函数的最大、最小值的方法;(4) 会用画网格的方法求解整数线性规划问题.(5) 培养学生的数学应用意识和解决问题的能力.【知识梳理】简单的线性规划问题一、知识点1. 目标函数:P二2 x + y是一个含有两个变量x和y的函数,称为目标函数•2. 可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4. 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决•5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.蚩知识导析线性规划是一门硏究如何使用最少的人力、物力和财力去最优地完成科学硏究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:—是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安扫桥口规划,能以最少的人力、物力、资金等资源来完成该项任务. 1•对于不含边界的区域,要将边界画成虚线•2•确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法":任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域•若直线不过原点,通常选择原点代入检验.M平移直线y二-kx + P时,直线必须经过可行域•4•对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点•5•简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出”其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:—.1.点P(x°,yo)在直线Ax+By+C二0上,则点P坐标适合方程,即Axo+By°+C二02. 点P(xo“o)在直线Ax+By+C二0 上方(左上或右上)则当B>0 时Ax o+By o+C>O;^ B<0 时Ax o+By o+C<O3. 点P(x0,y0)在直线Ax+By+C二0 下方(左下或右下),当B>0 时,Ax o+By o+C<O;当B<0 时,Axo+By°+C>O 注意:(1)在直线Ax+By+C二0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C所得实数的符号都相同,(2 )在直线Ax+By+C二0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x lryi)和点Q(X2$2)在直线Ax+By+C二0 的同侧,则有(Ax1+By1+C ^2+By2+C)>02.点P(xi,yi)和点Q(X2$2)在直线Ax+By+C二0 的两侧,则有(Axi+Byi+C IAx2+By2+C)<0二二次不等式表示平面IKfS :①二元一次不等式Ax+By+C>0 (或<0 )在平面直角坐标系中表示直线Ax+By+C二0某一侧所有点组成的平面区域.不包括边界;■②二元一次不等式Ax+By+C>0 (或SO )在平面直角坐标系中表示直线Ax+By+C二0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪TM平面区域的方法:方法一:取特殊点检验;"直线定界、特殊点定域原因:由于对在直线Ax+By+C二0的同一«的所有点(x,y),把它的坐标(x“)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(xo,yo),从Axo+Byo+C的正负即可判断Ax+By+C >0表示直线哪一侧的平面区域特殊地,当CHO时,常把原点作为特殊点,当C二0时,可用(0,1)或(1,0 )当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

不等式简单的线性规划

不等式简单的线性规划

05
特殊情况的线性规划问题
无限制条件的线性规划问题
总结词
无限制条件的线性规划问题是一类经典的线性规划问题,其约束条件仅为等式约 束。
详细描述
在无限制条件的线性规划问题中,决策变量没有任何约束条件,决策变量的取值 范围是整个实数集。求解这类问题的关键是通过有限的资源安排,实现目标函数 的最大化或最小化。
设置求解器参数:根据问题的具体情况设置相 应的参数,例如容差、迭代次数等。
运行求解器:点击“求解”按钮,LP求解器将 输出最优解和
线性规划的应用还包括组合优化问题,例如 旅行商问题和车辆路径问题。
02
不等式的简单线性规划问题
不等式的简单线性规划问题的定义
1
不等式的简单线性规划问题是指在满足一系列 不等式约束条件下,求解线性规划问题。
2
不等式约束可以包括不等式约束和等式约束, 描述了对于决策变量的限制条件。
3
不等式约束条件下,目标函数是最小化或最大 化的线性规划问题,目标是求解最优解。
分支定界法
总结词
精确、高效、复杂
详细描述
分支定界法是一种较为复杂的线性规划求解方法,它是将可行域逐步缩小,并通过对可行域的划分和 边界的确定来寻找最优解。该方法通常适用于较为复杂的问题,如含有整数变量或多个目标函数的线 性规划问题。由于该方法的计算量和复杂度较高,需要借助计算机程序来实现。
04
不等式约束条件下的线性规 划问题
图解法
总结词
直观、简单、易懂
详细描述
图解法是一种常用的线性规划求解方法,它是通过绘制图形来直观地求解问题。在平面直角坐标系上,将目标 函数和约束条件用图线表示出来,然后通过观察图形的交点或边界来确定最优解。该方法适用于小规模问题, 但对于大规模问题,由于计算量较大,不太适用。

不等式组的解法与线性规划

不等式组的解法与线性规划

不等式组的解法与线性规划不等式组是数学中常常出现的问题,在各个领域都有广泛应用。

解决不等式组的关键是找到满足所有不等式的解集。

本文将介绍不等式组的解法以及与之相关的线性规划问题。

一、不等式组的解法不等式组由多个不等式组成,解不等式组的目标是找到满足所有不等式的解集。

以下介绍几种常见的解法。

1. 图像法图像法是一种直观的方法,通过将不等式表示的区域绘制在坐标系中,观察交集部分即可得到解集。

以二元不等式组为例,将每个不等式表示的区域绘制在平面直角坐标系中,然后观察交集部分即为解集。

2. 代入法代入法是一种常见的解不等式组的方法。

通过将某个或几个不等式中的变量表示为其他变量的函数形式,然后代入到其他不等式中,可以简化不等式组,使得解集更容易得到。

3. 消元法消元法是应用代数运算,通过不等式的运算性质来简化不等式组,从而得到解集。

常见的消元法包括加法消元法和乘法消元法。

加法消元法通过将不等式相加来得到新的不等式,进而简化不等式组。

乘法消元法则通过将不等式相乘来得到新的不等式,从而简化不等式组。

二、线性规划与不等式组线性规划是一种常见的优化问题,其数学模型中常包含不等式组。

线性规划的目标是在一系列线性约束条件下,找到使目标函数取得最大值或最小值的变量取值。

线性规划中的约束条件通常由不等式组表示,这些不等式描述了变量的取值范围。

通过将目标函数与约束条件构建成一个线性规划模型,可以使用各种数学方法求解最优解。

例如,一个简单的线性规划问题可以表示为:```Maximize C = 3x + 2ySubject to2x + y ≤ 10x + 3y ≤ 15x, y ≥ 0```其中,C为目标函数,x和y为变量,不等式组为约束条件。

通过解这个线性规划问题,可以得到使目标函数C取得最大值的x和y的取值。

三、实例分析为了更好地理解不等式组的解法与线性规划的关系,我们来看一个简单的实例。

假设某公司生产两种产品,A和B。

二元一次不等式(组)与简单线性规划问题

二元一次不等式(组)与简单线性规划问题
03
实际问题转化为数学问题
识别问题中的决策变量
在简单线性规划问题中,首先需要识别出问题的决策变量,这些变量通常是问题中需要优化的量,如成本、时间、资源等。
明确问题的目标
确定问题的优化目标,即是求最大值还是最小值,以及对应的数学表达式。
列出约束条件
根据问题的实际情况,列出所有对决策变量的约束条件,这些条件通常以不等式或等式形式给出。
深入研究二元一次不等式(组)的性质和解法
将线性规划方法应用于更多领域,如经济、管理、工程等,解决实际问题。
拓展简单线性规划问题的应用领域
感谢您的观看
WATCHING
THANKS FOR
汇报日期
01
二元一次不等式(组)的基本概念和解法
包括不等式(组)的定义、性质、解法等。
02
简单线性规划问题的建模与求解
包括线性规划问题的定义、建模方法、求解算法等。
学生自我评价报告分享
通过作业、测试和课堂表现等多种方式,展示了学生对本课程内容的掌握情况。
学习成果展示
部分学生分享了他们在学习过程中的有效方法和经验,如定期复习、多做练习、寻求帮助等。
选择一个初始基,并求出对应的基本可行解。
1.确定初始基本可行解
单纯形法计算步骤演示
单纯形法应用举例
1. 生产问题
某工厂生产A、B两种产品,每种产品都需要消耗一定的资源。通过单纯形法可以求解在资源有限的情况下,如何安排生产使得利润最大。
2. 运输问题
有若干个供应点和需求点,每个供应点有一定数量的货物,每个需求点有一定数量的需求。通过单纯形法可以求解如何安排运输方案使得总运费最小。
若原问题有最优解,则对偶问题也有最优解,且两者最优值相等。

高中 二元一次不等式(组)与简单的线性规划 知识点+例题 全面

高中 二元一次不等式(组)与简单的线性规划 知识点+例题 全面

辅导讲义――二元一次不等式(组)与简单的线性规划[例4] 若点A (1,1),B (2,-1)位于直线0=-+a y x 的两侧,则a 的取值范围是___________.)2,1([巩固] 若点A (1,a )与原点在直线l :01=-+y x 的同侧,则实数a 的取值范围是_________.)0,(-∞[例5] 如图所示的平面区域(阴影部分)用不等式表示为_________________.033<--x y[巩固] 能表示图中阴影区域的二元一次不等式组是__________________.⎪⎩⎪⎨⎧-≥≤+≤11y y x x y[例6] 画出不等式组⎪⎩⎪⎨⎧≥>≤-+02042y y x y x 所表示的平面区域.[巩固] 画出不等式0)4)(12(<--++yxyx表示的平面区域.1.基本概念名称意义约束条件由变量x,y组成的不等式组线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的解析式,如:22yxz+=线性目标函数关于x,y的一次解析式,如yxz+=2可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最值问题注意:(1)对于实际背景的线性规划问题,可行域通常位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的定点;(2)对于线性规划问题,结果可能有唯一最优解,或是有无穷最优解,或是无最优解.2.应用利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.[例1] 设yxz-=2,其中x,y满足⎪⎩⎪⎨⎧≤≥-+≥+-221xyxyx,则z的取值范围是_________________.]4,21[-知识模块2简单的线性规划精典例题透析[例4] 不等式组⎪⎩⎪⎨⎧≤--≥++≤020220x y y x x 表示的平面区域的面积为__________.3[巩固1] 若不等式组⎪⎩⎪⎨⎧<++>>a y x x y x 11所确定的平面区域的面积为0,则实数a 的取值范围是____________.]3,(-∞[巩固2] 在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥+a x y x y x 040(a 为常数)表示的平面区域的面积是9,则实数._____=a 1[巩固3] 在平面直角坐标系中,若不等式组⎪⎪⎨⎧≤-≥-+0101x y x (a 为常数)所表示的平面区域内的面积等于2,则.___=a[例5] 已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥-+≥-18360202y x y x y x ,且y ax z +=取得最大值的最优解恰为)3,23(,则a 的取值范围是______.(-2,2)[巩固] 若直线4=+by ax 与不等式组⎪⎩⎪⎨⎧≥++≤-+≥+-0420420852y x y x y x 表示的平面区域无公共点,则b a +的取值范围是________.(-3,3)[例6] 某公司计划招聘男职工x 名,女职工y 名,要求女职工人数不能多于男职工,女职工的人数不得少于男职工的31,最少10名男职工,则该公司最少能招聘多少名职工.CO的排放量b及每万吨铁矿石的价格c如下表:[巩固] 铁矿石A和B的含铁率a,冶铁每万吨铁矿石的2a b(万吨)c(万吨)A50% 1 3B70% 5.0 6CO的排放量不超过2(万吨),求购买铁矿石的最少费用. 某冶铁厂至少要生产9.1(万吨)铁,若要求2知识模块3经典题型[例](1)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是________.(2)如图阴影部分表示的区域可用二元一次不等式组表示为_____________.答案 (1) 73 (2)⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 (1)不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域. 因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52.当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43,所以k =73. (2)两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. [巩固](1)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于4,则a=______.(2)如图所示的平面区域(阴影部分)满足不等式_______________.答案 (1) 7 (2)x +y -1>0解析 (1)直线ax -y +1=0过点(0,1),作出可行域如图知可行域由点A (1,0),B (1,a +1),C (0,1)组成的三角形的内部(包括边界), 且a >-1,则其面积等于12×(a +1)×1=4,解得a =7.(2)边界对应直线方程为x +y -1=0,且为虚线,区域中不含(0,0),由以上可知平面区域(阴影部分)满足x +y -1>0.题型二:求线性目标函数的最值(2)(2013·课标全国Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 (1) 6 (2)12解析 (1)画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1, ∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6.(2)作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1, 解得a =12.[巩固](1)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为________.(2)(2014·北京)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为_______.答案 (1) 4 (2) -12解析 (1)由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y 得z 的最大值为4.(2)作出可行域,如图中阴影部分所示,直线kx -y +2=0与x 轴的交点为A (-2k,0).∵z =y -x 的最小值为-4,∴2k =-4,解得k =-12,故选D.题型三:线性规划的实际应用[例] 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z 2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. [巩固] 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是________万元.答案 27解析 设生产甲产品x 吨、乙产品y 吨, 则获得的利润为z =5x +3y .由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4=27(万元).1.在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为_______.答案 1夯实基础训练解析 不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去),故选C. 2.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为____________.答案 2或-1解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距, 故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 3.(2014·课标全国Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为_______.答案 8解析 画出可行域如图所示.由z =2x -y ,得y =2x -z ,欲求z 的最大值,可将直线y =2x 向下平移, 当经过区域内的点,且满足在y 轴上的截距-z 最小时, 即得z 的最大值,如图,可知当过点A 时z 最大,由⎩⎪⎨⎪⎧ x +y -7=0,x -3y +1=0,得⎩⎪⎨⎪⎧x =5,y =2,即A (5,2),则z max =2×5-2=8. 4.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y -2≥0,x -y +2≥0,x ≤2表示的平面区域的面积为________.答案 4解析 作出可行域为△ABC (如图),则S △ABC =4.5.设z =2x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则k 的值为________,z 的最小值为________.答案 2 -2解析 在坐标平面内画出题中的不等式组表示的平面区域及直线2x +y =z ,结合图形分析可知,要使z =2x +y 的最大值是6,直线y =k 必过直线2x +y =6与x -y =0的交点,即必过点(2,2),于是有k =2;平移直线2x +y =6,当平移到经过该平面区域内的点(-2,2)时,相应直线在y 轴上的截距达到最小,此时z =2x +y 取得最小值,最小值是z =2×(-2)+2=-2.6.在平面直角坐标系中画出不等式组⎩⎪⎨⎪⎧|x |≤|y |,|x |<1所表示的平面区域.解析 |x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域; |x |<1表示x =±1所夹含y 轴的带状区域.7.若直线x +my +m =0与以P (-1,-1)、Q (2,3)为端点的线段不相交,求m 的取值范围.解 直线x +my +m =0将坐标平面划分成两块区域,线段PQ 与直线x +my +m =0不相交,则点P 、Q 在同一区域内,于是,⎩⎪⎨⎪⎧ -1-m +m >0,2+3m +m >0,或⎩⎪⎨⎪⎧-1-m +m <0,2+3m +m <0,所以,m 的取值范围是m <-12.8.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润ω(元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少? 解 (1)依题意每天生产的伞兵个数为100-x -y , 所以利润ω=5x +6y +3(100-x -y )=2x +3y +300. (2)约束条件为⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,100-x -y ≥0,x ≥0,y ≥0,x 、y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x 、y ∈N .目标函数为ω=2x +3y +300,作出可行域,如图所示,作初始直线l 0:2x +3y =0,平移l 0,当l 0经过点A 时,ω有最大值,由⎩⎪⎨⎪⎧ x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.∴最优解为A (50,50),此时ωmax =550元.故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元.9.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≤a ,x +y ≥8,x ≥6,且不等式x +2y ≤14恒成立,则实数a 的取值范围是__________.答案 [8,10]解析 不等式组表示的平面区域如图中阴影部分所示,显然a ≥8,否则可行域无意义. 由图可知x +2y 在点(6,a -6)处取得最大值2a -6,由2a -6≤14得,a ≤10.10.(2014·课标全国Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=________.答案 3解析 当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2), 则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项. 当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分). 由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值. z min =1+3×2=7,满足题意.11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞ 解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.12.若函数y =log 2x 的图象上存在点(x ,y ),满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,2x -y +2≥0,y ≥m ,则实数m 的最大值为________.答案 1解析 如图,作出函数的可行域,当函数y =log 2x 过点(2,1)时,实数m 有最大值1.能力提升训练13.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.如果生产1车皮甲种肥料产生的利润为10 000元,生产1车皮乙种肥料产生的利润为5 000元,那么适当安排生产,可产生的最大利润是________元.答案 30 000解析 设生产甲种肥料x 车皮,生产乙种肥料y 车皮, 则z =10 000x +5 000y , ⎩⎪⎨⎪⎧4x +y ≤10,18x +15y ≤66,x ≥0,y ≥0,画出图形可知,目标函数在D (2,2)处有最大值, 且z max =10 000×2+5 000×2=30 000(元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.不等式的性质: 性质1:(对称性)如果a b >,那么b a <;如果b a <,那么a b >. 性质2:(传递性)如果a b >,且b c >,则a c >. 性质3:如果a b >,则a c b c +>+. 推论1:(移项法则)不等式中的任意一项都可以把它的符号变成相反的符号后,从不等式的一边移到另一边.推论2:(同向可加性)如果a b c d >>,,则a c b d +>+.性质4:如果a b >,0c >,则ac bc >;如果a b >,0c <,则ac bc <. 推论1:如果00a b c d >>>>,,则ac bd >.推论2:如果0a b >>,则*(1)n n a b n n >∈>N ,. 推论3:如果0a b >>*(1)n n a b n n >∈>N , 2.均值不等式:如果a ,b +∈R (+R 表示正实数),那么2a bab +,当且仅当a b =时,等号成立.对于任意两个正实数a ,b ,数2a b+叫做a ,b ab a ,b 的几何平均值. 均值不等式可以表述为:两个正实数的算术平均值大于或等于它的几何平均值.<教师备案>在利用均值不等式求某些函数的最值时,要注意以下几个条件:⑴函数式中的各项必须都是正数,在异号时不能运用均值不等式,在同负时可以先进行转化,再运用均值不等式;⑵函数式中含变量的各项的和或积必须是定值;⑶只有具备了不等式中等号成立的条件,才能使函数式取到最大或最小值.否则不能由均值不等式求最值,只能用函数的单调性求最值.⑷如果多次使用均值不等式,则等号成立的条件必须同时成立.3.简单的线性规划用图解法解决简单的线性规划问题的基本步骤:⑴ 首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). ⑵ 设0z =,画出直线0l . ⑶ 观察、分析,平移直线0l ,从而找到最优解. ⑷ 最后求得目标函数的最大值及最小值.知识点睛第10讲不等式与 线性规划考点:不等式性质 【例1】 ⑴ 若a b c d >>,,则下列不等式中恒成立的是( )A .a d b c +>+B .ac bd >C .a bc d> D .d a c b -<-⑵ 若a b >且c ∈R ,则下列不等式中一定成立的是( )A .a c b c ->-B .ac bc >C .22ac bc >D .22a b > ⑶ 已知a b c ,,满足c b a <<,且0ac <,那么下列选项中一定成立的是( )A .ab ac >B .()0c b a -<C .22ac ab <D .()0ac a c -> ⑷ 下列命题中正确的命题是_________. ①若a b ∈R ,且22ac bc >,则a b >;②若a b ∈R ,且a b >,则11a b<;③若a b ∈R ,且a b >,则44a b >; ④若00a b c d >>>>,,则ac bd >.【解析】 ⑴ D⑵ A ⑶ A ⑷ ①③④【备选】试写出同时满足0a cb d>>,ad bc <的一组():a b c d ,,, . 【解析】 (2111)--,,,考点:不等式恒成立【例2】 ⑴ 不等式04)2(2)2(2<--+-x a x a 对一切x ∈R 恒成立, 则实数a 的取值范围是______⑵ 不等式2(2)2(2)40a x a x -+-->对一切[)1,x ∈+∞恒成立,则实数a 的取值范围是_____ ⑶ 不等式2|3||1|3x x a a +---≤对任意实数x 都成立, 则实数a 的取值范围是_________.【解析】 ⑴ (]2,2-⑵ 8,3⎛⎫+∞ ⎪⎝⎭⑶ ()(),14,-∞-+∞考点:均值不等式 【例3】 ⑴ 已知a b ,是两个正数,则下列不等式中错误的是( )A .232a a +>B .222a b ab +≥C .2a bb a+≥ D.2a b +⑵ 已知a b +∈R ,且21a b +=,则ab 的最大值是( ) A .12 B .14 C .18 D .19经典精讲⑶ 已知正数a b ,满足1ab =,则2a b +的最小值是_______; ⑷ 设实数a b ,满足0a b <<,且1a b +=,则下列四个数中最大的是( )A .22a b +B .2abC .aD .12【解析】 ⑴ D⑵ C ⑶⑷ A尖子班学案1 【拓1】 ⑴ 函数221xy x =+在0x >的最大值为________. ⑵ 已知1(2)2m a a a =+>-,212n x x -⎛⎫= ⎪⎝⎭≥,则m n ,之间的大小关系为________. 【解析】 ⑴ 1⑵ m n ≥目标班学案1【拓2】 已知正数a ,b ,且2244a b +=,则y =的最大值是 ;【解析】 54【例4】 ⑴ 已知0a >,0b >,a b ,的等差中项为12,且1a a α=+,1b bβ=+,则αβ+的最小值是________;⑵ 已知a b ,是正常数,x y +ÎR ,,且10a b +=,1a bx y+=,x y +的最小值为18,求a b ,的值. 【解析】 ⑴ 5⑵ 2a =,8b =或8a =,2b =.【例5】 已知0a >,0b >,1a b +=,证明下列不等式..⑴ 11122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤;⑵ 12133a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤;⑶2【解析】 ⑴ 法一:()1111322244a b ab a b ab ⎛⎫⎛⎫++=+++=+ ⎪⎪⎝⎭⎝⎭,122a b +=,所以111312244a b ⎛⎫⎛⎫+++= ⎪⎪⎝⎭⎝⎭≤.法二:∵111222a b a b ⎛⎫⎛⎫+++=++= ⎪ ⎪⎝⎭⎝⎭112212a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=,即11122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤.⑵ ∵121233a b a b ⎛⎫⎛⎫+++=++= ⎪ ⎪⎝⎭⎝⎭123312a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=,即12133a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭≤.⑶∵2212a b +=++=,1=2.2a b +的理解与运用:2a b +中要求,a b +∈R,而2a b +对任意x ∈R 均成立; 在需要使用均值不等式时,一般的处理方式是先观察待求式与已知条件,找到什么时候为定值,之后再使用具体的不等式,化简的到最终结果.本题的⑴和⑵2a b+; ⑶中观察得到平方和为定值,求两数和的最大,从而用2a b +【备选】 已知2x y xy ++=,且0x >,0y >,求x y +的最小值.【解析】 x y +的最小值为2.考点:线性规划 尖子班学案2【铺1】 已知二次函数2()f x ax bx =+,1(1)1f --≤≤,3(1)5f ≤≤.⑴ 求a b ,的取值范围; ⑵ 求(2)f 的取值范围. 【解析】 ⑴ [13]a ∈,,[13]b ∈,,⑵ 8(2)16f ≤≤.【例6】 ⑴ 不等式组20210x y x y -⎧⎪+⎨⎪-+⎩,,≤≥0≥表示的区域为D ,z x y =+是定义在D 上的目标函数,则区域D 的面积为 ;z 的最大值为 .⑵ 已知1324a b <<<<,,则2a b -的取值范围是____,ab的取值范围是_____. ⑶ 在直角坐标系中,若不等式组0(1)y y y k x ìïïïïíïï?ïî≥≤,则实数k 的值为________ 【解析】 ⑴ 252,5⑵ (24)-,;1342⎛⎫⎪⎝⎭,⑶-目标班学案2【拓2】 定义max{}a a b a b b a b ìïï=íï<ïî,≥,,,设实数x y ,满足约束条件2244x y ìïïíïïî≤≤,则m a x {43}z x y x y=+-,的取值范围为________【解析】 []710-,定义在R 上的函数()y f x =是增函数,且为奇函数,若实数s t ,满足不等式22(2)(2)f s s f t t ---≥,则当14s ≤≤时,求3t s +的取值范围.【解析】 ∵函数()f x 为奇函数,则2222(2)(2)(2)(2)f s s f t t f s s f t t ---?-≥≥,又函数()f x 为增函数,则2222s s t t --≥,即()(2)0s t s t -+-≥ ∵14s ≤≤,则若s t <,则有20s t +->,与()(2)0s t s t -+-≥∴s t ≥,即s t ,满足的约束条件为02014s t s t s ì-ïïïï+-íïïïïî≥≥≤≤,画出可行域如图,则点(42)A -,,(44)B ,,(11)C ,,当目标函数3z t s =+过点A B ,时,取到最值,即min 2z =-,max 16z =,即3t s +的取值范围为[]216-,.已知,,a b c 是不完全相等的任意实数.若2x a bc =-,2y b ac =-,2z c ab =-,则,,x y z 的值( )A .都大于0B .至少有一个大于0C .至少有一个小于0D .都不小于0【解析】 B大千世界222x y z a b c ab ac bc ++=++---222222222222a b ab a c ac c b bc+-+-+-=++()()()222111222a b a c c b =-+-+-, 因为a b c ≠≠,则0x y z ++>, 所以x y z ,,中至少有一个大于0.。

相关文档
最新文档