平行线的性质与判定证明题专项练习
平行线的判定与性质 专项强化练习 2022-2023学年人教版七年级数学下册
人教版七年级数学下册《平行线的判定与性质》专项强化练习一、选择题1.如图,AB∥CD,EF∥GH,且∠1=50°,下列结论错误的是( )A.∠2=130°B.∠3=50°C.∠4=130°D.∠5=50°2.如图,在下列条件中,不能判定直线a与b平行的是( )A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°3.如图,直线a,b被直线c所截,下列条件能判断a∥b的是( )A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°4.如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为( )A.135° B.125° C.115° D.105°5.一条公路两次转弯后又回到到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么∠C应是( )A.40°B.140°C.100°D.180°6.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A.4个B.3个C.2个D.1个7.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F;三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.38.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°9.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为( )A.20° B.30° C.40° D.50°10.如图,直线AE∥CD,∠EBF=135°,∠BFD=60°,则∠D等于( )A.75°B.45°C.30°D.15°11.如图,l1∥l2,则下列式子成立的是( )A.∠α+∠β+∠γ=180°B.∠α+∠β-∠γ=180°C.∠β+∠γ-∠α=180°D.∠α-∠β+∠γ=180°12.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°. 则下列结论:①∠BOE=12(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题13.如图,请你添加一个条件,使得AD∥BC,你添加的条件是__________.14.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=________.15.如图,a∥b,∠1=110°,∠3=40°,则∠2=.16.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有_____(填写所有正确的序号).17.已知一副三角板如图1摆放,其中两条斜边互相平行,则图2中∠1=________.18.如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是.三、解答题19.如图,已知∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.20.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并证明.21.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠2=∠DCB;(2)试证明DG∥BC;(3)求∠BCA的度数.22.如图,已知AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.23.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.24.如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试直接写出∠PAC,∠APB,∠PBD之间的关系,不必写理由.25.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D ∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM.求证:∠CAM=∠BAN.答案1.C2.C.3.B.4.D.5.B6.A.7.D8.C9.C10.D11.B12.C13.答案为:本题答案不唯一,如∠1=∠B.14.答案为:63°30′15.答案为:70°.16.答案为:①③④17.答案为:15°.18.答案为:α+β﹣γ=90°.19.证明:(1)∵∠A=∠ADE,∴AC∥DE.∴∠EDC+∠C=180°.又∵∠EDC=3∠C,∴4∠C=180°.即∠C=45°.(2)证明:∵AC∥DE,∴∠E=∠ABE.又∵∠C=∠E,∴∠C=∠ABE.∴BE∥CD.20.解:∠ACB与∠DEB相等,理由如下:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠BDE=∠DEF(两直线平行,内错角相等),∵∠DEF=∠A(已知),∴∠BDE=∠A(等量代换),∴DE∥AC(同位角相等两直线平行),∴∠ACB=∠DEB(两直线平行,同位角相等).21.(1)证明:∵CD⊥AB于D,FE⊥AB,∴CD∥EF,∴∠2=∠DCB(2)证明:∵∠2=∠DCB,∠1=∠2,∴DG∥BC(3)解:∵DG∥BC,∠3=80°,∴∠BCA=∠3=80°22.解:(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF.∴∠2=∠A.∵∠1=∠2,∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD,∴∠D+∠CBD+∠3=180°.∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°.∵AB∥CD,∴∠C=∠3=25°.23.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.24.解:(1)当P点在C,D之间运动时,∠APB=∠PAC+∠PBD. 理由:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1.∴∠PAC=∠APE,∠PBD=∠BPE.∴∠APB=∠APE+∠BPE=∠PAC+∠PBD.(2)当点P在C,D两点的外侧运动时,在l2下方时,则∠PAC=∠PBD+∠APB;在l1上方时,则∠PBD=∠PAC+∠APB.25.(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.。
(完整版)平行线及其判定与性质练习题
平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。
(______,________)(3)如果∠2+∠1=180°,那么_____。
(________,______)(4)如果∠5=∠3,那么_______。
(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。
(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。
(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。
平行线的判定与性质的综合应用 专题练习
平行线的判定与性质的综合应用专题练习平行线的判定与性质的综合运用专题一、推理填空题1.已知:如图,DE∥BC,∠ADE=∠XXX,将说明∠1=∠2成立的理由填写完整。
解:因为DE∥BC,所以∠ADE=∠XXX。
又因为DE∥BC,所以DB∥EF。
由平行线性质可知,∠1=∠ADE=∠XXX∠2.2.已知:如图所示,∠1=∠2,∠A=∠3.求证:XXX。
证明:因为∠1=∠2,所以XXX。
又因为∠A=∠3,所以AC∥BD。
由平行线性质可知,AC∥DE。
3.已知:如图,∠XXX∠ADC,BF、DE分别平分∠ABC 与∠ADC,且∠1=∠3.求证:AB∥DC。
证明:因为∠XXX∠ADC,所以∠XXX∠ADC。
又因为BF、DE分别平分∠ABC与∠ADC,所以∠1=∠ABC,∠3=∠ADC。
由∠1=∠3可得,∠2=∠ADC。
由平行线性质可知,AB∥DC。
二、证明题4.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数。
证明:因为AB∥CD,所以∠A+∠D=180º。
又因为DE⊥AE,所以∠ADE=90º。
由∠A=37º可得,∠ADE=53º。
由三角形内角和定理可得,∠D=80º。
5.如图,已知AB∥CD,∠1=100°,∠2=120°,求∠α的度数。
证明:因为AB∥CD,所以∠1+∠α+∠2=180º。
由∠1=100º,∠2=120º可得,∠α= -40º。
由于∠α是角度,所以∠α=320º。
6.如图,XXX,AE平分∠BAD,求证:XXX与AE相交于F,∠XXX∠EAF。
证明:因为XXX,所以∠BAD=∠ACD。
又因为AE平分∠BAD,所以∠XXX∠DAF。
由相邻角的性质可得,∠EAF+∠DAF=∠BAD=∠ACD。
又因为CD与AE相交于F,所以∠CFE+∠EAF+∠ACD=180º。
(完整版)平行线及其判定(证明应用题)
授课教案学员姓名:________________ 学员年级:________________ 授课教师:_________________ 所授科目:_________ 上课时间:______年____月____日(~);共_____课时(以上信息请老师用正楷字手写)平行线及其判定(证明应用题)一.解答题(共11小题)1.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.2.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.3.如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?2015年03月05日752444625的初中数学组卷参考答案与试题解析一.解答题(共11小题)1.(2014•槐荫区二模)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.考点:平行线的判定.专题:证明题.分析:由∠A=∠F,根据内错角相等,两直线平行,即可求得AC∥DF,即可得∠C=∠FEC,又由∠C=∠D,则可根据同位角相等,两直线平行,证得BD∥CE.解答:证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.点评:此题考查了平行线的判定与性质.注意内错角相等,两直线平行与同位角相等,两直线平行.2.(2013•邵阳)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.专题:证明题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.3.(2010•江宁区一模)如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.考点:平行线的判定.专题:证明题.分析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.要证明AM∥BC,只要转化为证明∠C=∠DAM即可.解答:证明:∵AB=AC,∴∠B=∠C,∵∠B=∠DAM,∴∠C=∠DAM,∴AM∥BC.点评:本题主要考查了平行线的判定,注意等量代换的应用.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.考点:平行线的判定.专题:探究型.分析:因为DF∥AC,由内错角相等证明∠C=∠FEC,又因为∠C=∠D,则∠D=∠FEC,故CE∥BD.解答:解:CE∥BD.理由:∵DF∥AC(已知),∴∠C=∠FEC(两直线平行,内错角相等),又∵∠C=∠D(已知),∴∠D=∠FEC(等量代换),∴CE∥BD(同位角相等,两直线平行).点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养“执果索图”的思维方式与能力.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.考点:平行线的判定.专题:探究型.分析:设AB与DE相交于H,若判断ED与FB的位置关系,首先要判断∠1和∠EHA的大小;由∠3=∠4可证得BD∥CF(内错角相等,两直线平行),可得到∠5=∠BAF;已知∠5=∠6,等量代换后发现AB∥CD,即∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断出BF、DE的位置关系.解答:解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.另解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∵△BFA、△DEC的内角和都是180°∴△BFA=∠1+∠BFA+BAF;△DEC=∠2+∠4+∠6∵∠1=∠2;∠BAF=∠6∴∠BFA=∠4,∴BF∥DE.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.考点:平行线的判定.专题:证明题.分析:先由已知证明AD∥EF,再证明1∠1=∠4,∠2=∠4,等量代换得出∠1=∠2.解答:证明:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(垂直于同一条直线的两直线平行),∴∠1=∠4(两直线平行,同位角相等),又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行),∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2(等量代换).点评:此题的关键是理解平行线的性质及判定.①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.考点:平行线的判定.专题:推理填空题.分析:由∠A=∠F,根据内错角相等,得两条直线平行,即AC∥DF;根据平行线的性质,得∠C=∠CEF,借助等量代换可以证明∠D=∠CEF,从而根据同位角相等,证明BD∥CE.解答:解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).点评:此题综合运用了平行线的判定及性质,比较简单.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.考点:平行线的判定.专题:证明题.分析:首先根据角平分线的性质可得∠BAC=2∠DAC,再根据三角形外角与内角的关系可得∠G+∠GFA=∠BAC,又∠AFG=∠G.进而得到∠BAC=2∠G,从而得到∠DAC=∠G,即可判定出GE∥AD.解答:证明:∵AD是△ABC的平分线,∴∠BAC=2∠DAC,∵∠G+∠GFA=∠BAC,∠AFG=∠G.∴∠BAC=2∠G,∴∠DAC=∠G,∴AD∥GE.点评:此题主要考查了平行线的判定,关键是掌握三角形内角与外角的关系,以及平行线的判定定理.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.考点:平行线的判定.专题:证明题.分析:利用直角三角形中两锐角互余得出∠D=40°,再利用内错角相等,两直线平行的判定证明即可.解答:证明:∵CA⊥AD,∴∠C+∠D=90°,∴∠C=50°,∴∠D=40°,∵∠BAD=40°,∴∠D=∠BAD,∴AB∥CD.点评:本题主要考查了平行线的判定和直角三角形中两锐角互余,比较简单.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.考点:平行线的判定;角平分线的定义.专题:证明题.分析:运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.解答:证明:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义).∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°.∴AB∥CD(同旁内角互补,两直线平行).点评:灵活运用角平分线的定义和角的和差的关系是解决本题的关键,注意正确识别“三线八角”中的同位角、内错角、同旁内角.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?考点:平行线的判定;平行公理及推论.专题:探究型.分析:根据内错角相等,两直线平行可知a∥b,由同旁内角互补,两直线平行可知b∥c,根据如果两条直线都与第三条直线平行那么这两条直线平行得出结论.解答:解:平行.理由如下:∵∠1=∠2,∴a∥b(内错角相等,两直线平行),∵∠3+∠4=180°,∴b∥c(同旁内角互补,两直线平行),∴a∥c(平行于同一直线的两直线平行).点评:本题很简单,考查的是平行线的判定定理和平行公理的推论.内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行那么这两条直线平行.。
平行线的性质与判定大题专练
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】专题1.8平行线的性质与判定大题专练(拔高篇,重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题1.(2022春·浙江温州·七年级校联考阶段练习)如图,已知BC平分∠ABD交AD于点E,∠1=∠3.(1)证明:AB∥CD;(2)若AD⊥BD于点D,∠CDA=38°,求∠3的度数.2.(2022春·浙江杭州·七年级统考期末)如图,直线MN分别与直线AB和CD交于点E,F,且满足∠1+∠2=180°.(1)试判断直线AB与CD的位置关系,并说明理由.(2)作∠AEF的平分线EG交CD于点G,过点G作GH⊥EG交MN于点H.若∠DGH=40°,求∠1的度数.3.(2022春·浙江绍兴·七年级统考期末)如图,CE平分∠BCF,∠DAC=126°,BC∥EF,∠ACF=∠FEC=18°.(1)求证:AD∥EF;(2)若∠AEC=72°,求∠DAE的度数.4.(2022春·浙江湖州·七年级校联考阶段练习)已知:如图,AD∥BE,∠1=∠2,∠3=∠4.(1)求证:AB∥CD;(2)若∠B=∠3=2∠2,求∠D的度数.5.(2022春·浙江绍兴·七年级校联考期中)如图,已知BC平分∠ABD交AD于点E,∠1=∠3.(1)说明AB∥CD的理由;(2)若AD⊥BD交于点D,∠CDA=34°,求∠2的度数.6.(2022春·浙江绍兴·七年级校联考期末)如图,点P在∠ABC内,点E,F分别在∠ABC的边BA,BC上,ED平分∠AEP,连结PE,PF.若∠B=∠PFC,∠PED=36°,求∠P的度数.7.(2022春·浙江·七年级统考期末)如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连结OF.(1)ED是否平行于AB,请说明理由;(2)若OD平分∠BOF,∠OFD=80°,求∠1的度数.8.(2021春·浙江·七年级期末)如图所示,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试猜想∠2与∠3的数量关系,并说明理由.9.(2021春·浙江·七年级期中)如图,∠1=∠BCE,∠2+∠3=180°.(1)判断AC与EF的位置关系,并说明理由;(2)若CA平分∠BCE,EF⊥AB于F,∠1=70°,求∠BAD的度数.10.(2021春·浙江金华·七年级浦江县实验中学校联考期末)如图,点E,F分别在直线AB,CD上,点P,Q在直线AB,CD之间,AB//CD.(1)如图,∠P=∠Q,①∠AEP与∠QFD的关系,并说明理由;②∠BEP和∠DFQ的角平分相交于点M,求∠EMF的度数.(2)若∠P-∠Q=30°,∠Q=α则∠BEP和∠DFQ的角平分相交于点M,则∠EMF的度数为.(用含α或具体数字表示)11.(2018秋·七年级单元测试)如图,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.12.(2020·浙江金华·七年级期中)如图,已知BC//GE,AF//DE,∠1=45°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=20°,求∠ACB的度数.13.(2020春·浙江温州·七年级统考开学考试)如图,∠ABD和∠BDC的角平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB//CD.(2)若∠2=28°,求∠3的度数.14.(2020春·浙江·七年级期中)如图所示,在ΔABC中,CE⊥AB于点E,DF⊥AB于点F,AC//FD,CE是ΔABC的角平分线.求证:∠EDF=∠BDF.15.(2021春·浙江·七年级期末)如图,AC∥EF,∠1+∠3=180°.(1)猜想AF与CD的位置关系,并说明理由.(2)若AC平分∠FAB,AC⊥EB于点C,∠4=78°,求∠BCD的度数.16.(2022春·浙江湖州·七年级校考阶段练习)已知:如图,∠1=∠C,∠E=∠B.(1)判断AB与DE的位置关系,并说明理由;(2)若AB⊥AC于点A,∠1=36°,求∠E的度数.17.(2022春·浙江杭州·七年级校考期中)如图,将一张上、下两边平行(即AB∥CD)的纸带沿直线MN折叠,EF为折痕.(1)试说明∠1=∠2;(2)已知∠2=54°,求∠BEF的度数.18.(吉林省延边朝鲜族自治州敦化市红石乡中心校2021-2022学年七年级下学期6月月考数学试题)如图,在四边形ABCD中,∠ADC+∠ABC=180°,∠ADF+∠AFD=90°,点E、F分别在DC、AB上,且BE、DF分别平分∠ABC、∠ADC,判断BE、DF是否平行,并说明理由.19.(广东省东莞市石龙第二中学2021-2022学年七年级下学期期中数学试卷)如图,点B,C在线段AD的异侧,点E,F分别是线段AB,CD上的点,已知∠1=∠2,∠3=∠C.(1)求证:AB∥CD;(2)若∠2+∠4=180°,求证:∠BFC+∠C=180°;(3)在(2)的条件下,若∠BFC−30°=2∠1,求∠B的度数.20.(辽宁省鞍山市第二中学2021-2022学年七年级下学期3月月考数学试题)如图,已知点E,F为四边形ABDC的边CA的延长线上的两点,连接DE,BF,作∠BDH的平分线DP交AB的延长线于点P.若∠1=∠2,∠3=∠4,∠5=∠C.(1)判断DE与BF是否平行?并说明理由;(2)试说明:∠C=2∠P.21.(河南省信阳市浉河区信阳文华寄宿学校2021-2022学年七年级下学期期末数学试题)如图,已知点O 在直线AB上,射线OE平分∠AOC,过点O作OD⊥OE,G是射线OB上一点,连接DG,使∠ODG+∠DOG=90°.(1)求证:∠AOE=∠ODG;(2)若∠ODG=∠C,试判断CD与OE的位置关系,并说明理由.22.(江苏省扬州市江都区华君外国语学校2021-2022学年七年级下学期第二次教学专项调研数学试题)如图,已知AB∥CD,∠C=∠B.(1)求证:CF∥BD;(2)如果AB是∠FAD的平分线,且∠ADB=96°,求∠B的度数.23.(江苏省徐州市丰县2021-2022学年七年级下学期期中数学试题)如图,已知在△ABC中,∠ACB=90°,CD是AB边上的高,点E在AC上,EF⊥AB,垂足为点F,若∠1+∠2=180°,则DG与BC有怎样的位置关系?请说明理由.24.(河北省保定市阜平县2021-2022学年七年级下学期期中数学试题)如图,点E在直线DC上,射线EF、EB分别平分∠AED、∠AEC.(1)试判断EF、EB的位置关系,并说明理由;(2)若∠A=∠5,且∠4+∠5=90°,求证:AB∥EF.25.(陕西省渭南市韩城市2021-2022学年七年级下学期期末数学试题)如图,直线BC∥OA,∠C=∠OAB=108°,E,F在线段BC上(不与点B,C重合),且满足∠FOB=∠AOB,OE平分∠COF.(1)求证:OC∥AB;(2)求∠EOB的度数.26.(广东省江门市第二中学2021-2022学年七年级下学期期中考试数学试题)已知,AB∥CD.(1)如图1,求证:∠A﹣∠C=∠E;(2)如图2,EF平分∠AEC,CF平分∠ECD,∠F=105°,求∠A的度数.27.(浙江省杭州市上城区建兰中学2021-2022学年七年级下学期期中数学试题)如图,已知C为两条相互平行的直线AB,ED之间一点,∠ABC和∠CDE的角平分线相交于F.(1)当∠FDC+∠ABC=180°时:①判断直线AD与BC的关系,并说明理由.②若∠ABC=130°求∠DFB的度数.(2)当∠C=α时,直接写出∠DFB的度数(用含α的代数式表示).28.(湖北省宜昌市第九中学2021-2022学年七年级下学期期中考试数学试题)如图,∠1=∠2,∠D=∠CMG.(1)求证:AD∥NG;(2)若∠A+∠DHG=180°,试探索:∠ANB,∠NBG,∠1的数量关系;(3)在(2)的条件下,若∠ANB:∠BNG=2:1,∠1=100°,∠NBG=130°,求∠A的度数.29.(陕西省汉中市略阳县2021-2022学年七年级上学期数学期末试题)解答下列问题(1)(问题情景)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.过点P作PM∥AB,求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,点E,F分别在AB,CD上,连接PE,PF,过P点作PN∥AB,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,过点G作GH∥AB,用含有α的式子表示∠EGF的度数.30.(浙江省杭州市采荷中学教育集团2021-2022学年七年级下学期期中数学试题)将一副三角板中的两块直角三角尺顶点C按照如图①方式叠放在一起(其中∠ABC=∠CDE=90°,∠ACB=60°,∠A=30°,∠E=∠ECD=45°)设∠ACE=α.(1)若α=30°,说明AB∥CE;(2)将三角形CDE绕点C顺时针转动,若DE∥BC,求α的度数.。
专题02 平行线的判定与性质(原卷版)
专题02 平行线的判定与性质1.(2022秋•项城市期末)如图,已知∠B=∠ADE,∠EDC=∠GFB,GF⊥AB,求证:CD⊥AB.把以下证明过程补充完整,并在括号内填写理由或数学式.证明:∵∠B=∠ADE(已知)∴ ∥ ( )∴∠EDC=∠DCB( )又∠EDC=∠GFB(已知)∴∠DCB= (等量代换)∴ ∥ ( )2.(2023秋•道里区校级期中)将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE( ①),因为EF平分∠CED(已知),所以∠DEF= ②(角平分线的定义),所以∠CFE=∠CEF( ③),因为∠A=∠CFE(已知),所以∠A= ④(等量代换),所以EF∥AB( ⑤).3.(2022秋•尤溪县期末)如图,∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.4.(2023秋•怀宁县期中)如图,已知EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小明添加的条件:∠B=∠ADG.请你帮小明将下面的证明过程补充完整.证明:∵EF∥CD( )∴∠BEF= ( )∵∠B=∠ADG(添加条件)∴BC∥ ( )∴∠CDG= ( )∴∠BEF=∠CDG( ).5.(2022秋•长春期末)请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3, ∴∠2= ,(等量代换)∴AE∥FD ∴∠A=∠BFD ∵∠A=∠D(已知)∴∠D= (等量代换)∴ ∥CD ∴∠B=∠C .6.(2022秋•闽清县期末)如图,AB∥CD,E是BC的延长线上的一点,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠B=∠D;(2)AD∥BE.7.(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.8.(2022秋•淇县期末)如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.9.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.30.(2023春•驿城区校级期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.11.(2023秋•香坊区校级期中)完成下面推理过程,并在括号里填写推理依据:如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD.证明:∵AB∥EF(已知),∴∠APE= ,∵EP⊥EQ(已知),∴∠PEQ=90°),即∠QEF+∠PEF=90°,∴∠QEF+∠APE=90°,∵∠EQC+∠APE=90°(已知),∴∠EQC= ( ),∴EF∥ ( ),又∵AB∥EF,∴AB∥CD( ).12.(2022秋•邓州市期末)如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°( ),∠AMC+∠AMD=180°( ),所以∠BAM=∠AMC( ).因为AE平分∠BAM,所以 ( ).因为MF平分∠AMC,所以 ,得 ( ),所以 ( ).13.(2022秋•桐柏县期末)完成下面推理过程.如图:已知,∠A=112°,∠ABC=68°,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2.证明:∵∠A=112°,∠ABC=68°(已知)∴∠A+∠ABC=180°∴AD∥BC( )∴∠1= ( )∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°( )∴∠BDF=∠EFC=90°∴BD∥EF( )∴∠2= ( )∴∠1=∠2( )14.(2023秋•天山区校级期中)已知,GP平分∠BGH,HP平分∠GHD,∠GPH=90°.(1)求证:AB∥CD;(2)若∠AGE=60°,求∠4的度数.15.(2023春•覃塘区期末)如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.16.(2023春•新化县期末)如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O.已知∠1=∠B,∠A+∠2=90°.(1)求证:AB∥CD;(2)若AF=12,BF=5,AB=13,求点F到直线AB的距离.17.(2023春•温州月考)如图,已知∠1=∠3,∠2=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠1=3∠B,求∠EFC的度数.18.(2023春•仙居县期末)如图是一个汉字“互”字,其中,AB∥CD,HF∥GE,∠HGE=∠HFE,M、H、G三点在同一直线上,N、E、F三点在同一直线上.求证:(1)GH∥EF;(2)∠CMH=∠BNE.19.(2022秋•东阳市期末)如图,长方形纸片ABCD中,G、H分别是AB、CD边上的动点,连GH,将长方形纸片ABCD沿着GH翻折,使得点B,C分别落在点E,F位置.(1)若∠BGH=110°,求∠AGE的度数.(2)若∠FHD=20°,求∠CHG的度数.(3)已知∠BGH和∠CHG始终互补,若∠BGH=α,请直接写出∠FHC的度数(含α的代数式).20.(2023春•金牛区校级期中)如图1,直线GH与直线l1,l2分别交于B,A两点,点C在直线l2上,射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE.(1)求证:直线l1∥l2;(2)如图2,点Q在直线l1上(B点左侧),AM平分∠BAQ交l1于点M,过点M作MN⊥AD交AD于点N,请猜想∠BQA与∠AMN的关系;并证明你的结论;(3)若点P是线段AB上一点,射线EP交直线l2于点F,∠GBE=130°.点N在射线AD上,且满足∠EBN=∠EFC连接BN,请补全图形,探究∠BNA与∠FEA满足的等量关系,并证明.21.(2023春•义乌市校级期中)今年除夕夜长江两岸的灯光秀璀璨夺目,照亮山城的山水桥梁城市楼阁,人民欢欣鼓舞.观看表演的小语同学发现两岸的灯光运动是有规律的,如图1所示,灯A射出的光线从AQ开始顺时针旋转至AP便立即回转,灯B射出的光线从BM开始顺时针旋转至BN便立即回转,两灯不停旋转.假设长江两岸是平行的,即PQ∥MN,点A在PQ上,B、C、D在MN上,连接AB、AC、AD,已知AC平分∠BAP,AD平分∠CAP.(1)如图1,若∠ABD=40°,则∠CAQ= ;(2)如图2,在PQ上另有一点E,连接CE交AD于点F,点G在MN上,连接AG,若∠CAG=∠CAE,∠EFD+∠DAG=180°,试证明:EC∥AB.(3)如图3,已知灯A射出的光线旋转的速度是每秒10°,灯B射出的光线旋转的速度是每秒30°,若灯B射出的光线从BM出发先转动2秒,灯A射出的光线才从AQ出发开始转动,设灯A转动的时间为t秒,在转动过程中,当0≤t≤12时,请直接写出灯A射出的光线与灯B射出的光线相交且互相垂直时的时间t的值.22.(2022秋•萍乡期末)已知点A在射线CE上,∠C=∠ADB.(1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.23.(2022秋•鲤城区校级期末)如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请求出当α为多少度时,QH与△EBF某一边平行?(4)在(3)的条件下,直接写出∠DFQ与∠GFH之间的关系.24.(2023秋•香坊区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,∠HPQ=45°,K是GH上一点,连接PK,作PQ平分∠EPK,若∠PHG=15°,求∠QPK的度数.25.(2023秋•吉林期中)如图①,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠ACB=∠E=90°,∠EDF=36°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,如图②,记∠ADF为α(0°<α<180°),在旋转的过程中:(1)当∠α= °时,DE∥BC,当∠α= °时,DE⊥BC;(2)如图③,当顶点C在△DEF的内部时,边DF、DE分别交BC、AC的延长线于点M、N.①求出此时∠α的度数范围;②∠1与∠2的度数和是否变化?若不变,请直接写出∠1与∠2的度数和;若变化,请说明理由.。
平行线的证明100道经典习题练习(含答案)
平行线的证明100道经典习题练习(含答案在卷尾)一、选择题(本大题共64小题,共192.0分)1.一个三角形三个内角的度数之比是1:2:3,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形2.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘3.如图,点F,E分别在线段AB和CD上,下列条件能判定AB//CD的是()A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠44.如图,直线a//b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A. 4个B. 3个C. 2个D. 1个5.如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A. 33°B. 23°C. 27°D. 37°6.命题“垂直于同一条直线的两条直线互相平行”的条件是().A. 垂直B. 两条直线C. 同一条直线D. 两条直线垂直于同一条直线7.如图,BC//DE,若∠A=35°,∠C=24°,则∠E等于()A. 24°B. 59°C. 60°D. 69°8.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A. 如图1,展开后测得∠1=∠2B. 如图2,展开后测得∠1=∠2且∠3=∠4C. 如图3,测得∠1=∠2D. 在图④中,展开后测得∠1+∠2=180°9.一次数学活动中,检验两条纸带 ①、 ②的边线是否平行,小明和小丽采用两种不同的方法:如图,小明对纸带 ①沿AB折叠,量得∠1=∠2=50∘;小丽对纸带 ②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A. 纸带 ①的边线平行,纸带 ②的边线不平行B. 纸带 ①的边线不平行,纸带 ②的边线平行C. 纸带 ① ②的边线都平行D. 纸带 ① ②的边线都不平行10.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=2B. a=−3,b=2C. a=3,b=−1D. a=−1,b=311.将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A. 40°B. 50°C. 60°D. 70°12.通过观察你能肯定的是()A. 图形中线段是否相等B. 图形中线段是否平行C. 图形中线段是否相交D. 图形中线段是否垂直13.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图:从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。
平行线的判定及性质 例题及练习
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线的性质专项练习60题有答案
平行线的性质专项练习60题(有答案)1.如图,AB∥CD,证明:∠A=∠C+∠P.2.如图,已知AB∥ED,∠1=35°,∠2=80°,求∠ACD的度数.3.已知:如图所示,直线AD∥BC,AD平分∠CAE,求证:∠B=∠C.4.已知∠E=∠F,AD∥EF,问:AD是∠BAC平分线吗?为什么?5.如图所示,AB∥CD,∠3:∠2=3:2,求∠1的度数.6.如图,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,求证:EG⊥FG.7.如图所示,AB∥DF,DE∥BC,∠1=65°,求∠2,∠3的度数,并说明理由.8.已知AB∥CD,FE⊥AB交AB于G点,∠GEH=138°,求∠EHD的度数.9.如图,AD∥BC,∠B=25°,∠C=30°,求∠EAC的度数.10.如图,AB∥CD,AC⊥BC,∠BAC=65°,求∠BCD度数.11.如图,AB∥CD,∠BAE=∠DCE=45°,说明AE⊥CE.12.如图,AB∥CD∥EF,∠ABC=55°,∠CEF=150°,求∠BCE的度数.13.如图,DE∥BC,∠D:∠DBC=2:1,∠1=∠2,求∠DEB的度数.14.已知:如图AB∥CD,EF⊥AB于E,FH交CD于H,∠CHG=130度.求∠EFH度数.15.已知:如图,AC∥BD,∠A=∠D,求证:∠E=∠F.16.已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.17.如图,已知AB⊥AC,垂足为A,AD∥BC,且∠1=30°,试求∠2与∠B的度数.18.如图所示,AB∥CD,若∠B=45°,∠D=20°,求∠1的度数.19.如图,△ABC中,角平分线BO与CO的相交点O,OE∥AB,OF∥AC,△OEF的周长=10,求BC的长.20.如图,若AB∥CD,∠C=60°,求∠A+∠E的度数.21.如图所示,已知AB∥CD,BC∥DE,若∠B=55°,求∠D的度数.22.如图所示,已知∠ACB=60°,∠ABC=50°,BO,CO分别平分∠ABC,∠ACB,EF经过点O且平行于BC,求∠BOC的度数.23.已知:如图所示,AB∥CD,∠B=120°,CA平分∠BCD.求证:∠1=30°.24.如图,AB∥CD,∠A=40°,∠C=65°,求∠E的度数.25.如图所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.26.如图,点A在直线MN上,且MN∥BC,求证:∠BAC+∠B+∠C=180°.27.已知:如图,OP平分∠AOB,MN∥OB.求证:∠1=∠3.28.如图所示,AB∥CD,∠1=55°,∠D=∠C,求出∠D,∠C,∠B的度数.29.已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.30.如图,已知直线AB∥CD,直线m与AB、CD相交于点E、F,EG平分∠FEB,∠EFG=50°,求∠FEG的度数.31.如图,已知CD∥AB,OE平分∠BOD,∠D=52°,求∠BOE的度数.32.如图所示,直线l1∥l2,∠A=90°,∠ABF=25°,求∠ACE的度数.33.如图,AB∥CD,∠1=45°,∠D=∠C,求∠D、∠C、∠B的度数.34.如图,CD∥AB,CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.35.如图:a∥b,∠1=122°,∠3=50°,求∠2和∠4的度数.36.如图,已知AB∥CD,∠1=50°,BD平分∠ADC,求∠A的度数.37.已知,如图所示,DE∥BC,BE平分∠ABC,且∠ABC=∠ACB,∠AED=72°,求∠CEB的度数.38.如图,若AB∥EF,∠C=90°,求x+y﹣z度数.39.如图,已知AB∥DE,∠B=70°,CM平分∠DCB,CM⊥CN,垂足为C,求∠NCE的度数.40.如图,DE∥AB,∠1=∠2,那么∠A=∠3吗?说明理由.41.如图,已知DB∥FG∥EC,∠ABD=84°,∠ACE=60°,AP是∠BAC的平分线.求∠PAG的度数.42.已知:如图AB∥CD,∠1=∠A,∠2=∠C,B、E、D在一条直线上.求∠AEC的度数.43.已知:如图,直线l1∥l2,AB⊥l1垂足为O,BC与l2相交于点D,∠1=43°,求∠2的度数.44.如图,直线AB∥MN,分别交直线EF于点C、D,∠BCD、∠CDN的角平分线交于点G,求∠CGD的度数.45.如图所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.46.如图AE∥BD,∠CBD=57°,∠AEF=125°,求∠C的度数,并说明理由.47.已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.求证:∠A=∠B.48.如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于F,∠1+∠2=90°,试问:直线AB、CD在位置上有什么关系?∠2与∠3在数量上有什么关系?49.如图,已知直线AB∥CD,直线GH分别与直线AB、CD交于点E、G,直线CF交直线GH于点F,已知∠CFG=30°,∠HEB=50°,求∠FCG的度数.50.如图,AB∥CD,BC∥ED,求:∠B+∠D的度数.51.如图,已知AB∥CD,∠B=∠DCE,求证:CD平分∠BCE.52.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.53.如图,在△ABC中,D是∠BAC的平分线上一点,BD⊥AD于D,DE∥AC交AB于E,请说明AE=BE.54.如图所示,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=55°,求∠BED的度数.55.如图,CD⊥AB,DE∥AC,EF⊥AB,EF平分∠BED,求证:CD平分∠ACB.56.如图,△ABC中,EB平分∠ABC,EC平分△ABC的外角∠ACG,过点E作DF∥BC交AB于D,交AC于F,求证:DB﹣CF=DF.57.已知:如图所示,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF的度数.58.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.59.如图,已知DE∥AB,DF∥AC,∠EDF=85°,∠BDF=63°.(1)∠A的度数;(2)∠A+∠B+∠C的度数.60.如图,已知AB∥CD,∠1=∠2,∠EFD=56°,求∠EGD的度数.11 / 17第11页共17 页平行线的性质60题参考答案:1.∵AB∥CD,∴∠A=∠PED,(两直线平行,同位角相等)又∠PED为△PCE的外角,∴∠P+∠C=∠PED,∴∠P+∠C=∠A.2.解法一:过C点作CF∥AB,则∠1=∠ACF=35°(两直线平行,内错角相等),∵AB∥ED,CF∥AB(已知),∴CF∥ED(平行于同一直线的两直线平行)∴∠FCD=180°﹣∠2=180°﹣80°=100°(两直线平行,同旁内角内角互补)∴∠ACD=∠ACF+∠FCD=35°+100°=135°;解法二:延长DC交AB于F∵AB∥ED(已知),∴∠BFC=∠2=80°(两直线平行,内错角相等),∵∠ACF=∠BFC﹣∠1=80°﹣35°=45°(三角形一个外角等于它不相邻的两个内角的和)∴∠ACD=180°﹣∠ACF=180°﹣45°=135°(1平角=180°).解法三:延长AC、ED交于F∵AB∥ED,∴∠DFC=∠1=35°∵∠CDF=180°﹣∠2=180°﹣80°=100°∴∠ACD=∠CDF+∠DFC=100°+35°=135°.3.∵AD∥BC,∴∠C=∠CAD,∠B=∠DAE,又∵AD平分∠CAE,∴∠CAD=∠DAE,即∠C=∠B.4.∵AD∥EF(已知)∴∠BAD=∠E(两直线平行,同位角相等)∠DAC=∠F(两直线平行,内错角相等)∵∠E=∠F(已知)∴∠BAD=∠DAC(等量代换)∴AD是∠BAC的平分线.5.设∠3=3x,∠2=2x,由∠3+∠2=180°,可得3x+2x=180°,∴x=36°,∴∠2=2x=72°;∵AB∥CD,∴∠1=∠2=72°6.∵AB∥CD,∴∠BEF+∠EFD=180°,∵EG平分∠BEF,FG平分∠DFE,∴∠1=∠BEF,∠2=∠EFD,∴∠1+∠2=(∠BEF+∠EFD)=×180°=90°,在△EFG中,∠G=180°﹣∠1﹣∠2=90°,∴EG⊥FG.7.∵DE∥BC,∴∠1+∠2=180°,又∵∠1=65°,∴∠2=115°;∵AB∥DF,∴∠3=∠2=115°.8.如图,过点E作EP∥AB,而AB∥CD,则EP∥CD,∴∠FEP=∠FGB,∵EF⊥AB,∴∠FGB=90°,∵∠GEH=138°,∴∠PEH=138°﹣90°=48°∵EP∥CD,∴∠EHD=180°﹣∠PEH=132°9.∵AD∥BC,∴∠EAD=∠B=25°,∠DAC=∠C=30°,∴∠EAC=∠EAD+∠DAC=25°+30°=55°.10.∵AB∥CD,∴∠ACD=180°﹣65°=115°,∵AC⊥BC,∴∠BCD=115°﹣90°=25°.11.过点E作EF∥AB,∴∠AEF=∠BAE=45°,∵AB∥CD,∴EF∥CD,∴∠FEC=∠DCE=45°,∴∠AEC=∠AEF+∠FEC=90°,∴AE⊥CE.12.∵AB∥CD,∠ABC=55°,∴∠BCD=∠ABC=55°,∵EF∥CD,∴∠ECD+∠CEF=180°,∵∠CEF=150°,∴∠ECD=180°﹣∠CEF=180°﹣150°=30°,∴∠BCE=∠BCD﹣∠ECD=55°﹣30°=25°,∴∠BCE的度数为25°.13.设∠1为x,∵∠1=∠2,∴∠2=x,∴∠DBC=∠1+∠2=2x,∵∠D:∠DBC=2:1,∴∠D=2×2x=4x,∵DE∥BC,∴∠D+∠DBC=180°,即2x+4x=180°,解得x=30°,∵DE∥BC,∴∠DEB=∠1=30°.14.∵EF⊥AB于E,MN∥AB∴EF⊥MN即∠EFM=90°.∵MN∥CD∴∠NFH=∠GHD=180°﹣130°=50°∴∠EFH=∠EFM+∠NFH=90°+50°=140°.15.∵AC∥BD,∴∠1=∠2.又∵∠A=∠D,∠A+∠1+∠E=180°,∠D+∠2+∠F=180°,∴∠E=∠F.16.∵HG∥AB(已知),∴∠1=∠3(两直线平行,内错角相等),又∵HG∥CD(已知),∴∠2=∠4(两直线平行,内错角相等),∵AB∥CD(已知),∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补),又∵EG平分∠BEF(已知),∴∠1=∠BEF(角平分线的定义),又∵FG平分∠EFD(已知),∴∠2=∠EFD(角平分线的定义),∴∠1+∠2=(∠BEF+∠EFD),∴∠1+∠2=90°,∴∠3+∠4=90°(等量代换)即∠EGF=90°17.∵AD∥BC,∴∠2=∠1=30°,∵AB⊥AC,∴∠B=90°﹣∠2=60°.18.过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF=45°,∠DEF=∠D=20°,∴∠1=∠BEF+∠DEF=45°+20°=65°.19.∵OB,OC分别是∠ABC,∠ACB的平分线,∴∠1=∠2,∠4=∠5,∵OE∥AB,OF∥AC,13 / 17第13页共17 页∴∠1=∠3,∠4=∠6,∴BE=OE,OF=FC,∴BC=BE+EF+FC=OF+OE+EF,∵△OEF的周长=10,∴BC=10.20.∵AB∥CD,∠C=60°,∴∠EFB=∠C=60°;∵∠EFB=∠A+∠E,∴∠A+∠E=60°.21.∵AB∥CD,∴∠C=∠B.∵∠B=55°,∴∠C=55°.∵BC∥DE,∴∠C+∠D=180°,即∠D=180°﹣∠C=180°﹣55°=125°.22.∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×60°=30°.∴∠EOB=25°,∠FOC=30°.又∵∠EOB+∠BOC+∠FOC=180°,∴∠BOC=180°﹣∠EOB﹣∠FOC=180°﹣25°﹣30°=125°23.∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=120°,∴∠BCD=60°;又∵CA平分∠BCD,∴∠2=30°,∵AB∥CD,∴∠1=∠2=30°24.∵AB∥CD,∴∠EFB=∠C=65°,∵∠EFB=∠A+∠E,∴∠E=∠EFB﹣∠A=65°﹣40°=25°.25.∵CD是∠ACB的平分线,∠ACB=40°,∴∠DCB=∠ACD=20°,又DE∥BC,∴∠EDC=∠DCB=20°,在△BCD中,∵∠B=70°,∴∠BDC=90°.∴∠EDC和∠BDC的度数分别为20°、90°26.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC,∵∠MAB+∠BAC+∠NAC=180°,∴∠BAC+∠B+∠C=180°27.∵OP平分∠AOB,(已知)∴∠1=∠2(角平分线定义)∵MN∥OB(已知)∴∠2=∠3(两直线平行,内错角相等)∴∠1=∠3(等量代换).28.∵AB∥CD,∴∠D=∠1=55°,∵∠C=∠D,∴∠C=55°;∵AB∥CD,∴∠B+∠C=180°,∴∠B=180°﹣∠C=180°﹣55°=125°.29.∵AD∥BC,∴∠ABC=180°﹣∠A=60°,∠ADB=∠2,∵∠1=∠2,∴∠1=∠ADB=∠2=30°,∵BD⊥CD,∴∠BDC=90°,∠C=180°﹣(30°+90°)=60°,故∠C的度数为60°.30.∵AB∥CD(已知)∴∠EFG+∠FEB=180°(两直线平行,同旁内角互补)∵∠EFG=50°(已知)∴∠FEB=130°(等式的性质)∵EG平分∠FEB(已知)∴∠FEG=∠FEB=65°(角平分线的定义).31.∵CD∥AB,∴∠BOD=∠D=52°;∵OE平分∠BOD,∴∠BOE=26°32.如答图所示,∵L1∥L2,∴∠ECB+∠CBF=180°.∴∠ECA+∠ACB+∠CBA+∠ABF=180°.∵∠A=90°,∴∠ACB+∠CBA=90°.又∠ABF=25°,∴∠ECA=180°﹣90°﹣25°=65°33.∠D=∠C=45°,∠B=135°.理由:∵AB∥CD,∴∠D=∠1=45°(两直线平行,同位角相等)∴∠B+∠C=180°(两直线平行,同旁内角互补)∵∠D=∠C=45°,∴∠B=180°﹣∠C=180°﹣45°=135°.34.∵CD∥AB,∴∠A+∠ACD=180°,又∵CD∥EF,∴∠E=∠ECD=∠ACD﹣∠ACE=75°﹣51°=24°.35.∵a∥b,∠1=122°,∴∠2=∠5=180°﹣∠1=180°﹣122°=58°;∵a∥b,∠3=50°,∴∠3=∠6=50°;又∵∠6=∠4,∴∠4=50°.36.∵BD平分∠ADC,∴∠CDB=∠1=50°,∠ADC=100°,又AB∥CD,∴∠ADC+∠A=180°,∴∠A=80°.37.∵DE∥BC,∴∠C=∠AED=72°,∵BE平分∠ABC,且∠ABC=∠ACB,∴∠EBC=∠ABC=×72°=36°,在△BEC中,∠CEB=180°﹣72°﹣36°=72°38.如图,过点C、D分别作CM、DN平行于AB、EF,则x=∠5,4=∠3,1=∠z,又∠1+∠3=y,∠4+5=90°,即x+∠4=90°,又∠4=∠3=y﹣∠1=y﹣z,∴x+y﹣z=90°39.∵AB∥DE,∠B=70°,∴∠DCB=180°﹣∠B=180°﹣70°=110°,∠BCE=∠B=70°,∵CM平分∠DCB,∴∠BCM=∠DCB=×110°=55°,∵CM⊥CN,垂足为C,∴∠BCN=90°﹣∠BCM=90°﹣55°=35°,∴∠NCE=∠BCE﹣∠BCN=70°﹣35°=35°.40.∠A=∠3.理由如下:∵DE∥AB,∴∠1=∠A,∠2=∠3,又∵∠1=∠2,∴∠A=∠341.∵DB∥FG∥EC,∴∠BAG=∠ABD=84°,∠GAC=∠ACE=60°;∴∠BAC=∠BAG+∠GAC=144°,∵AP是∠BAC的平分线,∴∠PAC=∠BAC=72°,∴∠PAG=∠PAC﹣∠GAC=72°﹣60°=12°42.过E作EF平行于AB,则EF∥CD,∵AB∥EF,∴∠A=∠AEF=∠1,∵CD∥EF,∴∠C=∠FEC=∠2,∵∠BED=180°,∴∠1+∠AEF+∠FEC+∠2=180°,即∠AEF+∠CEF=°=90°.43.解法一:延长AB交l2于点E.∵AB⊥l1,l1∥l2,∴AB⊥l2.∵∠2是△BED的外角,∴∠2=90°+∠1=90°+43°=133°.解法二:过点B作BF∥l1,利用平行线的性质求出∠2的度数.∵l1∥l2,∴BF∥l2,∴∠ABF=180°﹣90°=90°,∠FBC=∠1=43°,∴∠2=∠ABF+∠FBC=90°+43°=133°.15 / 17第15页共17 页44.∵AB∥MN(已知)∴∠BCD+∠CDN=180°(两直线平行,同旁内角互补)∵CG、DG是角平分线∴∠1=∠BCD,∠2=∠CDN(角平分线定义)∴∠1+∠2=90°∵∠1+∠2+∠CGD=180°(三角形内角和等于180°)∴∠CGD=90°45.由题意得:∠BEC=80°,∠BED=100°,∠BEF=∠BEC=40°,∴∠BEG=90°﹣∠BEF=50°,∠DEG=∠BED﹣50°=50°.∴∠BEG和∠DEG都为50°46.∵∠AEF=125,∴∠CEA=55°∵AE∥BD,∠CDB=∠CEA=55°,在△BCD中,∵∠CBD=57°,∴∠C=68°.47.∵CE是∠DCB的角平分线,∴∠1=∠2.∵CE∥AB,∴∠1=∠A,∠2=∠B,∴∠A=∠B.48.AB∥CD,∠2+∠3=90°.理由如下:∵BE、DE分别平分∠ABD、∠CDB,∴∠ABD=2∠1,∠BDC=2∠2.∵∠2+∠1=90°,∴∠ABD+∠CDB=180°,∴AB∥CD.∴∠3=∠ABF.∵∠1=∠ABF,∠2+∠1=90°.∴∠2+∠3=90°.49.由题意可知,AB∥CD,∠HEB=50°,∴∠FGD=50°,又∵∠CFG=30°,∴∠FCG=20°50.∵AB∥CD,BC∥ED,∴∠B=∠C,∠C+∠D=180°,∴∠B+∠D=180°.51.∵AB∥CD(已知),∴∠B=∠BCD(两直线平行,内错角相等)又∵∠B=∠DCE(已知),∴∠BCD=∠DCE(等量代换)即CD平分∠BCE.52.∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°53.∵DE∥AC,∴∠ADE=∠CAD,∵AD是∠BAC的平分线,∴∠EAD=∠CAD,∴∠ADE=∠EAD,∴AE=DE,∵BD⊥AD,∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,∴∠ABD=∠BDE,∴BE=DE,∴AE=BE.54.如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1;又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=55°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×55°=110°.55.∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠BCD=∠BEF,∠DEF=∠CDE;∵DE∥AC,∴∠ACD=∠CDE,∴∠ACD=∠DEF;∵EF平分∠BED,∴∠DEF=∠BEF,∴∠ACD=∠BCD,即CD平分∠ACB56.∵EB平分∠ABC,EC平分∠ACG,∴∠DBE=∠CBE,∠FCE=∠GCE,∵DF∥BC,∴∠DEB=∠CBE,∠FEC=∠GCE,∴∠DEB=∠DBE,∠FEC=∠FCE,∴DB=DE,FE=FC,∵DE﹣EF=DF,∴DB﹣CF=DF57.∵AB∥CD,(已知)∴∠GFC=∠GMA.(两直线平行,同位角相等)∵∠GMA=52°,(已知)∴∠GFC=52°.(等量代换)∵CD是直线,(已知)∴∠GFC+∠GFD=180°.(邻补角定义)∴∠GFD=180°﹣52°=128°.(等式性质)∵EF平分∠GFD,(已知)∴∠EFD=∠GFD=64°.(角平分线定义)∵AB∥CD,(已知)∴∠BEF+∠EFD=180°.(两直线平行,同旁内角互补)∴∠BEF=180°﹣64°=116°.(等式性质)答:∠BEF=116°58.∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FPA=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).59.(1)∵DF∥AC,∴∠EDF=∠DEC=85°.∵DE∥AB,∴∠A=∠DEC=85°.(2)∵DF∥AC,DE∥AB,∴∠EDC=∠B,∠BDF=∠C,又∠A=∠EDF,∴∠A+∠B+∠C=∠EDF+∠EDC+∠BDF=180°.60.∵AB∥CD,∠EFD=56°,∴∠BEF=180°﹣∠EFD=124°;∵∠1=∠2,∴∠1=∠BEF=62°;∵∠EGD=∠1+∠EFD,∴∠EGD=118°17 / 17第17页共17 页。
平行线的性质与判定测试习题
迎平行线的判定和性质检测题姓名: _________________班: __________________一.〔共8 小,每小 3 分,分 24 分〕1.以下正确的选项是〔〕A .不相交的两条直叫做平行B.两条直被第三条直所截,同位角相等C.垂直于同一直的两条直互相平行D.平行于同一直的两条直互相平行2.如所示,点P 到直 l 的距离是〔〕A .段 PA 的度 B.段 PB 的度C.段 PC 的度D.段 PD 的度第 2第3第43.如所示,以下中正确的选项是〔〕A .∠ 1 和∠ 2 是同位角B.∠ 2 和∠ 3 是同旁内角C.∠ 1 和∠ 4 是内角D.∠ 3 和∠ 4 是角4.如,假设∠ A+∠ ABC=180°,以下正确的选项是〔〕A .∠ 1=∠2B.∠ 2=∠3C.∠ 1=∠ 3D.∠ 2=∠ 45.如,直 AB ,CD 被直 EF 所截,∠ 1=55°,以下条件中能判定AB ∥CD 的是〔〕A .∠ 2=35°B.∠ 2=45°C.∠ 2=55°D.∠ 2=125°第 5第6第76.如,将一含有 30°角的直角三角板的两个点放在方形直尺的一上,如果∠ 1=30°,那么∠ 2 的度数〔〕A .30°B.40°C.50°D.60°7.如: AB ∥DE,∠ B=30°,∠ C=110°,∠ D 的度数〔〕A.115 °B.120 °C.100 °D.80 °8. 平面内三条直的交点个数可能有〔〕A .1 个或 3 个B.2 个或 3 个C.1 个或 2 个或 3 个D.0 个或 1 个或 2 个或 3 个二.填空〔共8 小,每小 3 分,分 24 分〕9.把命“ 角相等〞改写成“如果⋯那么⋯〞的形式:.10.直 L 同有 A ,B,C 三点,假设 A ,B 的直 L1和 B,C 的直 L 2都与 L 平行, A ,-B, C 三点 ________,理论根据是.11. 如图,当剪子口∠ AOB 增大 15°时,∠ COD 增大 ________度,其根据是 ______________.12. 如图,直线 AB 、CD、EF 交于点 O,那么∠ 1+∠2+∠ 3=.13.如图, AB ∥ CD,点 E 在 AB 上,点 F 在 CD 上,如果∠ CFE:∠ EFB=3:4,∠ ABF=40°,那么∠ BEF 的度数为.第 11 题第12题第13题第14题14.如图, a∥ b,PA⊥PB,∠ 1=35°,那么∠ 2 的度数是.15.以下四个命题:①过一点有且只有一条直线与直线平行;②在同一平面内,两条不相交的线段是平行线段;③相等的角是对顶角;④在同一平面内,假设直线AB ∥CD,直线 AB 与 EF 相交,那么 CD 与 EF 相交.其中,假命题的是〔填序号〕.16.观察图形,并阅读下面的相关文字.像这样的十条直线相交最多的交点个数有.三.解答题〔共8 小题,总分值 72 分〕17.〔 6 分〕如图,∠ 1=∠ 2,∠ 3+∠ 4= 180°.求证: AB ∥ EF.18.〔 6 分〕如图,直线 AB,CD 相交于 O,OE 是∠ AOD 的平分线,∠ AOC= 28°,求∠ AOE 的度数.19.〔 8 分〕如图,现有以下 3 个论断:① AB∥CD;②∠ B=∠ C;③∠ E=∠ F.请以其中 2 个论断为条件,另一个论断为结论,构造一个真命题,并加以证明.(1〕条件: __________,结论: ________.(2〕证明:20.〔 8 分〕如图, EF∥AD ,∠ 1=∠2,∠ BAC=68°.求∠ AGD 的度数.解:因为 EF∥ AD ,所以∠ 1=.〔〕又因为∠ 1=∠2,所以∠ 2=.〔等量代换〕所以 AB ∥.〔〕所以∠ BAC+=180°.〔〕因为∠ BAC=68°,所以∠ AGD=.〔等式的性质〕21.〔 10 分〕如图,∠ AGF= ∠ABC ,∠ 1+∠2=180°.〔 1〕判断 BF 与 DE 的位置关系,并说明理由;〔2〕假设 BF⊥ AC ,∠ 2=150°,求∠ AFG 的度数.22.〔 10 分〕如图,∠ BAP+∠ APD=180°,∠ 1 =∠2.求证 :∠ E =∠ F.23.〔 12 分〕如图,直线 AB ,CD 相交于点 O,OA 平分∠ EOC.〔 1〕假设∠ EOC=70°,求∠ BOD 的度数;(2〕假设∠ EOC:∠ EOD=2:3,求∠ BOD 的度数.24.〔 12 分〕如图, AB ∥CD,C 在 D 的右侧, BE 平分∠ ABC ,DE 平分∠ ADC ,BE 、 DE 所在直线交于点 E.∠ADC =70°.(1〕求∠ EDC 的度数;(2〕假设∠ ABC =n°,求∠ BED 的度数〔用含 n 的代数式表示〕;。
平行线的判定与性质(重点题专项讲练)(人教版)(解析版)
专题5.4 平行线的判定与性质【典例1】如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∠BC;(2)若FP∠AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.【思路点拨】E=∠EMA,∠BQM=∠BMQ,结合对顶角相等可得∠E=∠BQM,利用内错角相等两直线平行可证明结论;(2)根据垂直的定义可得∠PGC=90°,由两直线平行同旁内角互补可得∠EAC+∠C=180°,结合∠2+∠C=90°,可求得∠BAC=90°,利用同位角相等两直线平行可得AB∠FP,进而可证明结论;(3)根据同旁内角互补可判定AB∠FP,结合∠BAF=3∠F﹣20°可求解∠F的度数,根据平行线的性质可得∠B=∠F,即可求解.【解题过程】E=∠EMA,∠BQM=∠BMQ,∠EMA=∠BMQ,∠∠E=∠BQM,∠EF∠BC;(2)证明:∠FP∠AC,∠∠PGC=90°,∠EF∠BC,∠∠EAC+∠C=180°,∠∠2+∠C=90°,∠∠BAC=∠PGC=90°,∠AB∠FP,∠∠1=∠B;(3)解:∠∠3+∠4=180°,∠4=∠MNF,∠∠3+∠MNF=180°,∠AB∠FP,∠∠F+∠BAF=180°,∠∠BAF=3∠F﹣20°,∠∠F+3∠F﹣20°=180°,解得∠F=50°,∠AB∠FP,EF∠BC,∠∠B=∠1,∠1=∠F,∠∠B=∠F=50°.1.(2021•鞍山一模)如图,∠1=∠2=∠3=56°,则∠4的度数是()A.56°B.114°C.124°D.146°【思路点拨】根据对顶角相等得到∠2=∠5,结合∠1=∠2,得到∠1=∠5,即可判定l1∠l2,根据平行线的性质得出∠6=56°,再根据邻补角的定义求解即可.【解题过程】解:如图,∠∠1=∠2,∠2=∠5,∠∠1=∠5,∠l1∠l2,∠∠3=∠6,∠∠3=56°,∠∠6=56°,∠∠4+∠6=180°,∠∠4=180°﹣56°=124°,故选:C.2.(2021•雁塔区校级模拟)如图,在三角形ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=()A.36°B.52°C.72°D.80°【思路点拨】由平行线的判定定理可得AC∠DE,由平行线的性质可得∠ACB=∠3,由平分线的定义可得∠ACB=2∠1=72°,即得∠3的度数.【解题过程】解:∠∠1=∠2=36°,∠AC∠DE,∠∠ACB=∠3,∠CD平分∠ACB,∠∠ACB=2∠1=72°,∠∠3=72°.故选:C.3.(2021春•单县期末)如图,AB∠BC于点B,DC∠BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF,则下列结论正确的有()∠∠BAD+∠ADC=180°;∠AF∠DE;∠∠DAF=∠F.A.3个B.2个C.1个D.0个【思路点拨】∠证明AB∠CD,可做判断;∠根据平行线的判定和性质可做判断;∠根据AF∠ED得内错角相等和同位角相等,再由角平分线的定义得∠ADE=∠CDE,从而可做判断.【解题过程】解:∠∠AB∠BC,DC∠BC,∠AB∠CD,∠∠BAD+∠ADC=180°,故∠正确;∠∠AB∠CD,∠∠AFD+∠BAF=180°,∠∠BAF=∠EDF,∠∠AFD+∠EDF=180°,∠AF∠DE,故∠正确;∠∠AF∠ED,∠∠DAF=∠ADE,∠F=∠CDE,∠DE平分∠ADC,∠∠ADE=∠CDE,∠∠DAF=∠F,故∠正确;故选:A.4.(2021春•德宏州期末)如图所示,AC∠BC,DC∠EC,则下列结论:∠∠1=∠3;∠∠ACE+∠2=180°;∠若∠A=∠2,则有AB∠CE;∠若∠2=∠E,则有∠4=∠A.其中正确的有()A.∠∠∠B.∠∠∠C.∠∠D.∠∠∠∠【思路点拨】由已知可得∠1+∠2=90°,∠3+∠2=90°,等量代换即可得出∠结论;延长EC,如图1,由已知条件可得∠1+∠5=90°,∠1+∠2=90°,可得∠2=∠5,根据平角的性质可得∠ACE+∠5=180°,等量代换即可得出∠结论;由已知条件可得∠A=∠2,∠ACE+∠2=180°,等量代换可得∠A+∠ACE=180°,根据平行线的判定即可得出∠结论;由平行线的性质可得∠E=∠4,由已知条件∠2=∠E,∠2=∠A,等量代换可得∠4=∠A.即可得出∠结论.【解题过程】证明:∠AC∠BC,DC∠EC,∠∠1+∠2=90°,∠3+∠2=90°,∠∠1=∠3.故结论∠正确;延长EC,如图1,∠DC∠CE,AC∠BC,∠∠1+∠5=90°,∠1+∠2=90°,∠∠2=∠5,∠∠ACE+∠5=180°,∠∠ACE+∠2=180°.故结论∠正确;∠∠A=∠2,∠ACE+∠2=180°,∠∠A+∠ACE=180°,∠AB∠CE.故结论∠正确;∠AB∠CE,∠∠E=∠4,∠∠2=∠E,∠2=∠A,∠∠4=∠A.故结论∠正确.所以结论正确的有∠∠∠∠.故选:D.5.(2021春•汉川市期末)如图,AD∠BC,∠B=∠D,延长BA至点E,连接CE,∠EAD∠EAD+∠ECD;∠若和∠ECD的角平分线交于点P.下列三个结论:∠AB∠CD;∠∠AOC=12∠E=60°,∠APC=70°,则∠D=80°.其中结论正确的个数有()A.0B.1C.2D.3【思路点拨】∠EAD,∠E=∠根据平行线的性质与判定即可判断;∠∠AOC=∠EAP+∠E,而∠EAP==12∠ECD,即可判断;∠利用平行线的性质和角平分线定义即可判断.【解题过程】解:∠AD∠BC,∠∠BAD+∠B=180o,∠∠B=∠D,∠∠BAD+∠D=180o,∠AB∠CD,故∠正确;∠AB∠CD,∠∠ECD=∠E,∠AP平分∠EAD,∠EAD∠∠EAP=12∠∠AOC=∠EAP+∠E,∠∠AOC=1∠EAD+∠ECD,故∠正确;2∠∠ECD=∠E=60o,∠CP平分∠ECD,∠ECD=30°,∠∠ECP=12∠∠APC=70°,∠AOE=∠COP,∠∠EAP=40°,∠AP平分∠EAD,∠∠EAD=2∠EAP=80°,∠AB∠CD,∠∠D=∠EAD=80°,故∠正确;故选:D.6.(2021春•夏津县期末)如图,CB平分∠ACD,∠2=∠3,若∠4=60°,则∠5的度数是.【思路点拨】由∠2与∠3间关系,可得到AB与CD的位置关系,利用角平分线的性质和平行线的性质可求得∠5度数.【解题过程】解:∠CB平分∠ACD,∠ACD..∠∠1=∠2=12∠∠2=∠3,∠AB∠CD.∠∠5=∠2,∠4=∠ACD=60°.∠∠5=∠2=30°.故答案为:30°.7.(2021秋•嵩县期末)如图,AE∠CF,∠ACF的平分线交AE于点B,G是CF上的一点,∠GBE的平分线交CF于点D,且BD∠BC,下列结论:∠BC平分∠ABG;∠AC∠BG;∠与∠DBE互余的角有2个;∠若∠A=α,则∠BDF=180°−α.其中正确的是.(请把正确结论的序号都填上)8【思路点拨】根据平行线的性质得出∠A和∠ACB的关系,再根据角平分线的性质找出图中相等的角,由等角的余角相等即可得出结论.【解题过程】解:∠CBD=90°,∠∠ABC+∠EBD=90°,又∠∠DBG=∠EBD,∠∠ABC=∠CBG,∠BC平分∠ABG,∠∠正确,∠∠GBC=∠ABC=∠ACB,∠AC∠BG,∠∠正确,∠∠DBE=∠DBG,∠与∠DBE互余的角有∠ABC,∠GBC,∠ACB,∠GCB,有4个,∠∠错误,∠∠BDF=180°﹣∠BDG,∠BDG=90°﹣∠CBG=90°﹣∠ACB,又∠∠ACB=12×(180°﹣α)=90°−α2,∠∠BDF=180°﹣[90°﹣(90°−α2)]=180°−α2,∠∠错误,故答案为:∠∠.8.(2021春•凤山县期末)如图,已知∠1=∠2,∠C=∠F.请指出∠A与∠D的数量关系,并说明理由.【思路点拨】根据∠1=∠2,∠3=∠2,可得∠1=∠3,得BF∠CE,根据平行线的性质得∠ABF=∠C,由∠C =∠F,得∠ABF=∠F,即可得出AC∠DF,得∠A和∠D的数量关系是相等.【解题过程】解:∠A和∠D的数量关系是相等.理由是:如图,∠∠1=∠2,∠3=∠2,∠∠1=∠3,∠BF∠CE,∠∠ABF=∠C,∠∠C=∠F,∠∠ABF=∠F,∠AC∠DF,∠∠A=∠D.9.(2021春•陇县期末)如图,∠AEM+∠CDN=180°,EC平分∠AEF.若∠EFC=62°,求∠C的度数.【思路点拨】根据同角的补角相等可得出∠AEM=∠CDM,利用“同位角相等,两直线平行”可得出AB∠CD,由“两直线平行,同旁内角互补”及∠EFC=62°可求出∠AEF=118°,结合角平分线的定义可求出∠AEC的度数,再利用“两直线平行,内错角相等”即可求出∠C的度数.【解题过程】解:∠∠CDM+∠CDN=180°,又∠∠AEM+∠CDN=180°,∠∠AEM=∠CDM,∠AB∠CD,∠∠AEF+∠EFC=180°,∠∠EFC=62°,∠∠AEF=118°,∠EC平分∠AEF,∠∠AEC=59°,∠AB∠CD,∠∠C=∠AEC=59°.10.(2021春•江都区校级期中)已知:如图,CD∠AB,FG∠AB,垂足分别为D、G,点E 在AC上,且∠1=∠2.(1)那么DE与BC平行吗?为什么?(2)如果∠B=40°,且∠A比∠ACB小10°,求∠DEC的度数.【思路点拨】(1)根据CD∠AB,FG∠AB,可判定CD∠FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,故可证DE与BC平行;(2)根据三角形内角和求出∠ACB=75°,再根据平行线的性质即可求解.【解题过程】解:(1)DE∠BC,理由如下:∠CD∠AB,FG∠AB,∠CD∠FG.∠∠2=∠BCD,又∠∠1=∠2,∠∠1=∠BCD,∠DE∠BC;(2)∠∠B=40°,∠ACB﹣10°=∠A,∠∠ACB+(∠ACB﹣10°)+40°=180°,∠∠ACB=75°,由(1)知,DE∠BC,∠∠DEC+∠ACB=180°,∠∠DEC=105°.11.(2021春•老河口市期末)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∠CE;(2)若DA平分∠BDC,CE∠AE于E,∠F AB=55°,求∠1的度数.【思路点拨】(1)根据同位角相等,两直线平行可判定AB∠CD,得到∠2=∠ADC,等量代换得出∠ADC+∠3=180°,即可根据同旁内角互补,两直线平行得解;(2)由CE∠AE,AD∠CE得出∠DAF=∠CEF=90°,再根据平行线的性质即可求出∠ADC =∠2=35°,再根据角平分线的定义即可得解.【解题过程】(1)证明:∠∠1=∠BDC,∠AB∠CD,∠∠2=∠ADC,∠∠2+∠3=180°,∠∠ADC+∠3=180°,∠AD∠CE;(2)解:∠CE∠AE于E,∠∠CEF=90°,由(1)知AD∠CE,∠∠DAF=∠CEF=90°,∠∠ADC=∠2=∠DAF﹣∠F AB,∠∠F AB=55°,∠∠ADC=35°,∠DA平分∠BDC,∠1=∠BDC,∠∠1=∠BDC=2∠ADC=70°.12.(2021春•镇江期中)已知:如图所示,∠BAC和∠ACD的平分线交于E,AE交CD于点F,∠1+∠2=90°.(1)求证:AB∠CD;(2)试探究∠2与∠3的数量关系,并说明理由.【思路点拨】(1)根据角平分线定义得出∠BAC=2∠1,∠ACD=2∠2,根据∠1+∠2=90°得出∠BAC+∠ACD =180°,根据平行线的判定得出即可;(2)根据平行线的性质和角平分线定义得出∠1=∠3,即可求出答案.【解题过程】(1)证明:∠∠BAC和∠ACD的平分线交于E,∠∠BAC=2∠1,∠ACD=2∠2,∠∠1+∠2=90°,∠∠BAC+∠ACD=180°,∠AB∠CD;(2)解:∠2+∠3=90°,理由如下:∠AF平分∠BAC,∠∠BAF=∠1,∠AB∠CD,∠∠BAF=∠3,∠∠1=∠3,∠∠1+∠2=90°,∠∠2+∠3=90°.13.(2021秋•禅城区期末)已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.(1)求证:AB∠CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.【思路点拨】(1)由对顶角相等可得∠AGE=∠DGC,从而可得∠AEG=∠C,则可判定AB∠CD;(2)由平角的定义可得∠AGE+∠EGH=180°,从而可求得∠EGH=∠AHF,则可判定EC∠BF,则有∠B=∠AEG,从而可求证;(3)由(2)得BF∠EC,则有∠C+∠BFC=180°,从而可求∠C的度数,利用三角形的内角和即可求∠D的度数.【解题过程】(1)证明:∠∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC,∠∠AEG=∠C,∠AB∠CD;(2)证明:∠∠AGE+∠EGH=180°,∠AGE+∠AHF=180°,∠∠EGH=∠AHF,∠EC∠BF,∠∠B=∠AEG,∠AB∠CD,∠∠C=∠AEG,∠∠B=∠C;(3)解:∠BF∠EC,∠∠C+∠BFC=180°,∠∠BFC=4∠C,∠∠C+4∠C=180°,解得∠C=36°,∠∠C=∠DGC,∠∠DGC=36°,∠∠D=180°﹣∠C﹣∠DGC=108°.14.(2021秋•南岗区期末)已知:在四边形ABCD中,∠B=∠D,点E在边BC的延长线上,连接AE交CD于点F,若∠BAF+∠AFC=180°.(1)如图1,求证:AD∠BC;(2)如图2,过点D作DG∠AE交BE的延长线于点C,若∠G=∠B,在不添加任何辅助线的情况下,请直接写出图2中除∠B以外的四个与∠G相等的角.【思路点拨】(1)由已知条件可得AB∠CD,从而有∠B=∠ECD,则可求得∠D=∠ECD,即可得AD∠BC;(2)利用平行线的性质进行求解即可.【解题过程】(1)证明:∠∠BAF+∠AFC=180°,∠AB∠CD,∠∠B=∠ECD,∠∠D=∠ECD,∠AD∠BC;(2)∠DG∠AE,∠∠G=∠AEB,由(1)得AD∠BC,∠∠AEB=∠DAE,∠ADC=∠DCG,∠∠G=∠DAE,∠∠B=∠ADC,∠G=∠B,∠∠G=∠ADC=∠DCG,综上所述,所∠G相等的角有:∠AEB,∠DAE,∠ADC,∠DCG.15.(2021秋•安居区期末)如图,∠ADE+∠BCF=180°,AF平分∠BAD,∠BAD=2∠F.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?为什么?(3)若BE平分∠ABC.试说明:∠∠ABC=2∠E;∠∠E+∠F=90°.【思路点拨】(1)由∠ADE+∠BCF=180°结合邻补角互补,可得出∠BCF=∠ADC,再利用“同位角相等,两直线平行”可得出AD∠BC;(2)根据角平分线的定义及∠BAD=2∠F,可得出∠BAF=∠F,再利用“内错角相等,两直线平行”可得出AB∠EF;(3)∠由AB∠EF,利用“两直线平行,内错角相等”可得出∠ABE=∠E,结合角平分线的定义可得出∠ABC=2∠E;∠由AD∠BC,利用“两直线平行,同旁内角互补”可得出∠BAD+∠ABC=180°,再结合∠BAD =2∠F,∠ABC=2∠E可得出∠E+∠F=90°.【解题过程】解:(1)AD∠BC,理由如下:∠∠ADE+∠BCF=180°,∠ADE+∠ADC=180°,∠∠BCF=∠ADC,(2)AB∠EF,理由如下:∠AF平分∠BAD,∠BAD=2∠F,∠BAD=∠F,∠∠BAF=12∠AB∠EF.(3)∠∠ABC=2∠E,理由如下:∠AB∠EF,∠∠ABE=∠E.∠BE平分∠ABC,∠∠ABC=2∠ABE=2∠E.∠∠E+∠F=90°,理由如下:∠AD∠BC,∠∠BAD+∠ABC=180°.∠∠BAD=2∠F,∠ABC=2∠E,∠2∠E+2∠F=180°,∠∠E+∠F=90°.16.(2021春•铁西区期末)如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF 的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)请直接写出直线AC与DG的位置关系;(2)求证:BE∠CF;(3)若∠C=35°,求∠BED的度数.【思路点拨】(1)由对顶角相等可得∠ABF=∠1,从而有∠ABF=∠2,即可得AC∠DG;(2)求出∠1=∠BFG,根据平行线的判定得出AC∠DG,求出∠EBF=∠BFC,根据平行线的判定得出即可;(3)根据平行线的性质得出∠C=∠CFG=∠BEF=35°,再求出答案即可.【解题过程】解:(1)AC∠DG,理由如下:∠∠ABF=∠1,∠1=∠2,∠∠ABF=∠2,∠AC∠DG;(2)由(1)知AC∠DG,∠∠ABF=∠BFG,∠∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∠∠EBF=12∠ABF,∠CFB=12∠BFG,∠∠EBF=∠CFB,∠BE∠CF.(3)∠AC∠DG,∠C=35°,∠∠C=∠CFG=35°,∠BE∠CF,∠∠CFG=∠BEG=35°,∠∠BED=180°﹣∠BEG=145°.17.(2021春•广陵区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠AEF与∠EFC的角平分线交于点P,EP延长线与CD交于点G,点H是MN 上一点,且PF∠GH,试判断直GH与EG的位置关系,并说明理由.【思路点拨】(1)利用邻补角的定义及已知得出∠1=∠CFE,即可判定AB∠CD;(2)利用(1)中平行线的性质推知∠AEF+∠EFC=180°,然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG∠PF,故结合已知条件PF∠GH,易证GH∠EG;【解题过程】解:(1)AB∠CD,理由如下:∠∠1与∠2互补,∠∠1+∠2=180°,又∠∠2+∠CFE=180°,∠∠1=∠CFE,∠AB∠CD;(2)GH∠EG,理由如下:由(1)知,AB∠CD,∠∠AEF+∠EFC=180°.又∠∠AEF与∠EFC的角平分线交于点P,∠∠FEP+∠EFP=1(∠BEF+∠EFD)=90°,2∠∠EPF=90°,即EG∠PF,∠PF∠GH,∠GH∠EG.18.(2021秋•嵩县期末)图1展示了光线反射定律:EF是镜面AB的垂线,一束光线m射到平面镜AB上,被AB反射后的光线为n,则入射光线m,反射光线n与垂线EF所夹的锐角θ1=θ2.(1)在图1中,证明:∠1=∠2.(2)图2中,AB,BC是平面镜,入射光线m经过两次反射后得到反射光线n,已知∠1=30°,∠4=60°,判断直线m与直线n的位置关系,并说明理由.(3)图3是潜望镜工作原理示意图,AB,CD是平行放置的两面平面镜.请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?【思路点拨】(1)根据角的关系解答即可;(2)求出∠5+∠6=180°,根据平行线的判定得出即可;(3)根据平行线的性质和平均的定义得到∠5=∠6,根据平行线的判定得出即可.【解题过程】(1)证明:∠∠AFE=∠BFE=90°,∠θ1=θ2.(2)解:直线m∠直线n,理由:如图2,∠∠1=∠2=30°,∠3=∠4=60°,∠∠5=180°﹣∠1﹣∠2=120°,∠6=180°﹣∠3﹣∠4=60°,∠∠5+∠6=180°,∠直线m∠直线n;(3)解:∠AB∠CD,∠∠2=∠3,∠∠1=∠2,∠3=∠4,∠∠1=∠2=∠3=∠4,∠180°﹣∠1﹣∠2=180°﹣∠3﹣∠4,即:∠5=∠6,∠m∠n.19.(2021秋•上蔡县期末)已知:如图,AB∠CD∠GH,GH过点P.(1)如图1,若∠BAP=40°,∠DCP=30°,则∠APC=(直接写出结果);(2)如图2,直线MN分别交AB于点E,交CD于点F,点P在线段EF上,点Q在射线FC上.若∠MEB=110°,∠PQF=50°,求∠EPQ的度数;(3)如图3,点P在射线FN上,点Q在射线FD上,∠AEF的平分线交CD于点O.若∠PQF= 1∠MEB,试判断OE与PQ是否平行?并说明理由.2(1)依据平行线的性质,即可得到∠APG =∠BAP =40°,∠CPG =∠DCP =30,再根据∠APC =∠APG +∠CPG 进行计算即可;(2)利用邻补角的定义可得∠BEP =180°﹣110°=70°,利用(1)的结论即可得∠EPQ 的度数; (3)根据对顶角相等以及角平分线的定义可得∠PQF =12∠MEB =12∠AEF =∠AEO ,再根据平行线的性质∠AEO =∠EOF ,可得∠PQF =∠EOF ,根据内错角相等两直线平行即可得OE ∠PQ .【解题过程】解:(1)∠AB ∠CD ∠GH ,∠∠APG =∠BAP =40°,∠CPG =∠DCP =30,∠∠APC =∠APG +∠CPG =40°+30°=70°,故答案为:70°;(2)∠∠MEB =110°,∠∠BEP =180°﹣110°=70°,由(1)可得:∠EPQ =∠EPG +∠QPG =∠BEP +∠PQF =70°+50°=120°;(3)OE ∠PQ .理由:∠∠PQF =12∠MEB ,∠MEB =∠AEF ,∠∠PQF =12∠MEB =12∠AEF ,∠EO 平分∠AEF .∠∠PQF =12∠AEF =∠AEO , ∠AB ∠CD ,∠∠AEO =∠EOF ,∠∠PQF =∠EOF ,∠OE ∠PQ .20.(2021春•汉阳区期中)如图1,已知两条直线AB ,CD 被直线EF 所截,分别交于点E ,F ,EM 平分∠AEF 交CD 于点M ,且∠FEM =∠FME .(1)直线AB 与直线CD 的位置关系是 ;(2)如图2,点G 是射线FD 上一动点(不与点F 重合),EH 平分∠FEG 交CD 于点H ,过点H 作HN ∠EM 于点N ,设∠EHN =α,∠EGF =β.∠当点G 在运动过程中,若β=56°,求α的度数;∠当点G 在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.【思路点拨】(1)根据角平分线的性质可得∠AEM=∠FEM,由已知条件∠FEM=∠FME,等量代换可得∠AEM=∠FME,由平行线的判定即可得出答案;(2)由平行线的性质可得β=∠GEB,由平角的性质可得∠AED=180°﹣∠GEB,根据角平分线的性质可得∠CEF=12∠AEF,∠FEH=12∠FEG,由∠CEH=∠CEF+∠FEH可计算出度数,根据垂线的性质可得α+∠CEH=90°,代入计算即可得出答案;(3)证明方法同(2).【解题过程】证明:(1)∠EM平分∠AEF,∠∠AEM=∠FEM,∠∠FEM=∠FME,∠∠AEM=∠FME,∠AB∠CD.故答案为:AB∠CD;(2)∠∠AB∠CD,∠β=∠GEB=56°,∠∠AEG=180°﹣∠GEB=180°﹣56°=124°,∠EH平分∠FEG,EM平分∠AEF,∠∠CEF=12∠AEF,∠FEH=12∠FEG,∠∠CEH=∠CEF+∠FEH=12∠AEF+12∠FEG=12(∠AEF+∠FEG)=12∠AED=12×124°=62°,∠HN∠EM,∠α+∠CEH=90°,∠α=90°﹣∠CEH=90°﹣62°=28°;∠a=12β.理由如下:∠AB∠CD,∠β=∠GEB,∠∠AED=180°﹣∠GEB=180°﹣β,∠EH平分∠FEG,EM平分∠AEF,∠∠CEF=12∠AEF,∠FEH=12∠FEG,∠∠CEH=∠CEF+∠FEH=12∠AEF+12∠FEG=12(∠AEF+∠FEG)=12∠AEG=12(180°−β),∠HN∠EM,∠α+∠CEH=90°,∠α+12(180°−β)=90°,即a=12β.21.(2021秋•南岗区校级期中)已知,直线EF分别与直线AB、CD相交于点G、H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∠CD.(2)如图2,点M在直线AB、CD之间,连接MG、HM,当∠AGM=32°,∠MHC=68°时,求∠GMH的度数.(3)只保持(2)中所求∠GMH的度数不变,如图3,GP是∠AGM的平分线,HQ是∠MHD 的平分线,作HN∠PG,则∠QHN的度数是否改变?若不发生改变,请求出它的度数.若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角)【思路点拨】(1)先由邻补角得到∠AGE+∠BGE=180°,然后结合∠AGE+∠DHE=180°得到∠BGE=∠DHE,最后得证AB∠CD;(2)先由AB∠CD得到∠AGH+∠CHG=180°,即∠AGM+∠MGH+∠MHG+∠MHC=180°,再结合∠MGH+∠MHG+∠GMH=180°得到∠GMH=∠AGM+∠MHC,最后结合已知条件得到∠GMH的大小;(3)先由(2)得到∠AGM+∠MHC=∠GMH=100°,∠MGH+∠MHG=80°,然后结合角平分线的定义得到∠MGP和∠MHQ,再结合HN∠PG得到∠GHN=∠PGH,最后由∠QHN=∠GHN﹣∠GHQ求得∠QHN的大小.【解题过程】(1)证明:∠∠AGE +∠BGE =180°,∠AGE +∠DHE =180°,∠∠BGE =∠DHE ,∠AB ∠CD .(2)解:∠AB ∠CD ,∠∠AGH +∠CHG =180°,即∠AGM +∠MGH +∠MHG +∠MHC =180°,∠∠MGH +∠MHG +∠GMH =180°,∠∠GMH =∠AGM +∠MHC ,∠∠AGM =32°,∠MHC =68°,∠∠GMH =100°.(3)解:∠QHN 的度数不发生改变,理由如下,由(2)得,∠AGM +∠MHC =∠GMH =100°,∠∠MGH +∠MHG =80°,∠GP 、HQ 分别平分∠MGA 和∠MHD ,∠∠MGP =12∠MGA ,∠MHQ =12∠MHD =12(180°﹣∠MHC )=90°−12∠MHC , ∠∠PGH =∠MGP +∠MGH =12∠MGA +∠MGH , ∠HN ∠PG , ∠∠GHN =∠PGH =12∠MGA +∠MGH ,∠∠QHN =∠GHN ﹣∠GHQ =(12∠MGA +∠MGH )﹣(∠MHQ ﹣∠MHG )=12∠MGA +∠MGH ﹣∠MHQ +∠MHG =12∠MGA +80°﹣∠MHQ ,∠∠QHN =12∠MGA +80°﹣(90°−12∠MHC )=﹣10°+12(∠MGA +∠MHC )=﹣10°+12×100°=40°.22.(2021秋•香坊区校级期中)点E 在射线DA 上,点F 、G 为射线BC 上两个动点,满足∠DBF =∠DEF ,∠BDG =∠BGD ,DG 平分∠BDE .(1)如图1,当点G 在F 右侧时,求证:BD ∠EF ;(2)如图2,当点G 在BF 左侧时,求证:∠DGE =∠BDG +∠FEG ;(3)如图3,在(2)的条件下,P 为BD 延长线上一点,DM 平分∠BDG ,交BC 于点M ,DN 平分∠PDM ,交EF 于点N ,连接NG ,若DG ∠NG ,∠B ﹣∠DNG =∠EDN ,求∠B 的度数.【思路点拨】(1)通过证明∠DBF=∠EFG,利用同位角相等,两直线平行即可得出结论;(2)过点E作GH∠BD,交AD于点H,利用(1)的结论和平行线的性质即可得出结论;(3)设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180°﹣4α,∠PDM =180°﹣α;利用已知条件用含α的式子表示∠PDN,∠EDN,∠GDN,∠DNG,再利用∠B ﹣∠DNG=∠EDN,得到关于α的方程,解方程求得α的值,则∠B=180°﹣4α,结论可求.【解题过程】证明:(1)∠DG平分∠BDE,∠∠BDG=∠ADG.又∠∠BDG=∠BGD,∠∠ADG=∠DGB.∠AD∠BC.∠∠DEF=∠EFG.∠∠DBF=∠DEF,∠∠DBF=∠EFG.∠BD∠EF.(2)过点G作GH∠BD,交AD于点H,如图,∠BD∠EF,∠GH∠EF.∠∠BDG=∠DGH,∠GEF=∠HGE,∠∠DGE=∠DGH+∠HGE,∠∠DGE=∠BDG+∠FEG.(3)设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180°﹣4α.∠∠PDM=180°﹣α.∠DN平分∠PDM∠∠PDN=∠MDN=90°−α2.∠∠EDN=∠PDN−∠PDE=90°−α2−(180°−4α)=72α−90°.∠∠GDN=∠MDN﹣∠MDG=90°−α2−α=90°−32α.∠DG∠ON,∠∠DNG=90°.∠∠DNG=90°−(90°−32α)=32α.∠DE∠BF,∠∠B=∠PDE=180°﹣4α.∠∠B﹣∠DNG=∠EDN,∠180°−4α−32α=72α−90°,解得:α=30°.∠∠B=180°﹣4α=60°.。
(完整)七年级数学平行线的性质与判定的证明练习题及答案
平行线的性质与判定的证明温故而知新:1.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.2.平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行互补.例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;(2)探求∠DNQ与∠AMN,∠EPN的数量关系.解析:根据两直线平行,内错角相等及角平分线定义求解.(标注∠MND=∠AMN,∠DNP=∠EPN)答案:(标注∠MND=∠AMN=60°,∠DNP=∠EPN=80°)解:(1)∵AB∥CD∥EF,∴∠MND=∠AMN=60°,∠DNP=∠EPN=80°,∴∠MNP=∠MND+∠DNP=60°+80°=140°,又NQ平分∠MNP,∴∠MNQ=12∠MNP=12×140°=70°,∴∠DNQ=∠MNQ-∠MND=70°-60°=10°,∴∠MNP,∠DNQ的度数分别为140°,10°.(下一步) (2)(标注∠MND=∠AMN,∠DNP=∠EPN)由(1)得∠MNP=∠MND+∠DNP=∠AMN+∠EPN,∴∠MNQ=12∠MNP=12(∠AMN+∠EPN),∴∠DNQ=∠MNQ-∠MND=12(∠AMN+∠EPN)-∠AMN=12(∠EPN-∠AMN),即2∠DNQ=∠EPN-∠AMN.小结:在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补.例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2.解析:(标注:∠1=∠2=∠DCB,DG∥BC,CD∥EF)答案:(标注:∠1=∠2=∠DCB)证明:因为∠AGD=∠ACB,所以DG∥BC,所以∠1=∠DCB,又因为CD⊥AB,EF⊥AB,所以CD∥EF,所以∠2=∠DCB,所以∠1=∠2.小结:在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系.例3 (1)已知:如图2-4①,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD;(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?并证明.(1)解析:动画过点C作CF∥AB由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE)答案:证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠1=∠ABC,∠2=∠CDE.∵∠BCD=∠1+∠2,∴∠ABC+∠CDE=∠BCD;(2)解析:动画过点C作CF∥AB,由平行线性质找到角的关系.(标注∠ABC+∠1=180°,∠2+∠CDE=180°)答案:∠ABC+∠BCD+∠CDE=360°.证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠ABC+∠1=180°,∠2+∠CDE=180°.∵∠BCD=∠1+∠2,∴∠ABC+∠BCD+∠CDE=360°.小结:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化.例4 如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?解析:动画过点B作BD∥AE,答案:解:过点B作BD∥AE,∵AE∥CF,∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°∵∠A=120°,∠1+∠2=∠ABC=150°,∴∠2=30°,∴∠C=180°-30°=150°.小结:把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答.举一反三:1.如图2-9,FG∥HI,则∠x的度数为()A.60°B. 72°C. 90°D. 100°解析:∠AEG=180°-120°=60°,由外凸角和等于内凹角和有60°+30°+30°=x+48°,解得x=72°.答案:B.2.已知如图所示,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.解析:解:∵AB∥EF∥CD,∴∠B=∠BEF,∠DEF=∠D.∵∠B+∠BED+∠D=192°,即∠B+∠BEF+∠DEF+∠D=192°,∴2(∠B+∠D)=192°,即∠B+∠D=96°.∵∠B-∠D=24°,∴∠B=60°,即∠BEF=60°. ∵EG平分∠BEF,∴∠GEF=12∠BEF=30°.3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.解析:标注AB∥EF,BC∥ED答案:证明:∵AB∥EF,∴∠E=∠AGD.∵BC∥ED,∴∠B=∠AGD,∴∠B=∠E.例5如图2-6,已知AB∥CD,试再添上一个条件,使∠1=∠2成立,并说明理由.解析:标注AB∥CD,∠1=∠2答案:方法一:(标注CF∥BE)解:需添加的条件为CF∥BE ,理由:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠EBC,∴∠1=∠2;方法二:(标注CF ,BE ,∠1=∠2=∠DCF=∠ABE )解:添加的条件为CF ,BE 分别为∠BCD ,∠CBA 的平分线.理由:∵AB ∥CD ,∴∠DCB=∠ABC.∵CF ,BE 分别为∠BCD ,∠CBA 的平分线,∴∠1=∠2.小结:解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因.例6 如图1-7,已知直线1l 2l ,且3l 和1l 、2l 分别交于A 、两点,点P 在AB 上,4l 和1l 、2l 分别交于C 、D 两点,连接PC 、PD 。
《平行线的性质》证明题练习
《平行线的性质》证明题练习第一篇:《平行线的性质》证明题练习《平行线的性质》证明题练习一、基础过关:1.如图1,a∥b,a、b被c所截,得到∠1=∠2的依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行(1)(2)(3)2.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直B.互相平行C.相交D.无法确定3.如图2,AB∥CD,那么()A.∠1=∠4B.∠1=∠3C.∠2=∠3D.∠1=∠54.如图3,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°5.如图4,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°图5 C D(4)(5)6.如图5,AB∥EF,BC∥DE,则∠E+∠B的度数为________.7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB得∥();(2)由∠CAD =∠ACB得∥();(3)由∠CBA +∠BAD = 180°得∥()10.如图8,推理填空:(1)∵∠A =∠(已知),AC∥ED();(2)∵∠2 =∠(已知),∴AC∥ED();B D图8C(3)∵∠A +∠= 180°(已知),∴AB∥FD();(4)∵∠2 +∠= 180°(已知),∴AC∥ED();二、综合创新: 8.(综合题)如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.10.(创新题)(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.11.(1)如图6,已知AB∥CD,直线L分别交AB、CD•于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是()A.60°B.70°C.80°D.90°(6)(7)(2)已知:如图7,AB∥DE,∠E=65°,则∠B+∠C•的度数是()A.135°B.115°C.65°D.35°三、培优: 12.(探究题)如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=•∠5,•延长AB、GF交于点M.试探索∠AMG与∠3的关系,并说明理由.13.(开放题)已知如图,四边形ABCD中,AB∥CD,BC∥AD,那么∠A与∠C,∠B与∠D的大小关系如何?请说明你的理由.一、探索平移的性质1.(1)在图1中,画图:把线段AB向左平移4格,得到线段A’B’.(2)线段AB与A’B’叫做对应线段,平移后对应线段之间的位置和数量有什么关系?,(3)点A通过平移得到点A’,点A与点A’是一组对应点.同样的,点B与B’ 是另一组图1AB对应点.用红线画出连结各组对应点的线段AA’与BB’,线段AA’与BB’之间的位置和数量有什么关系?,2.(1)在图2中,画图:把△ABC向右平移4格,得到△A’B’C’.(2)对应线段AB与A’B’、BC与B’C’、AC与A’C’ 之间的数量与位置有什么关系?,(3)点A与A’是一组对应点,点B与B’、点C与C’是对应点.用红线画出连结各组对应点的线段AA’与BB’,线段AA’与BB’之间的位置和数量有什么关系?,;再用红线画出连结各组对应点的线段CC’,线段AA’与CC’之间的位置和数量有什么关系?,;线段AA’、BB’、CC’之间的位置和数量有什么关系?结论:如果两条直线平行,那么其中一条直线上的任意两点到的距离相等,这个距离称为.图2ABC如果两条直线平行,那么其中一条直线上的任意一点到另一条直线的垂线段的长就是平行线间的距离.平行线间的距离处处相等.三、应用平移解决实际问题1.在长40m、宽30m的长方形地块上,修建如下的宽1m的道路,余下部分种菜,求菜地的面积.(1)如图6,有3条道路.(2)如图7,一条道路是平行四边形.(3)如图8,道路弯曲.图6图图解:2.如图9,由两个边长为6的正方形拼成一个长方形.求图中阴影部分的面积.图9第二篇:平行线性质证明题1、如图EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。
平行线判定与性质习题经典
∠D=
D
图2
180(已知)
C
∴___A_B__∥__C__D__( 同旁内角互补,两直线平行)
∴∠B+∠C=___1_8_0(0 两直线平行,同旁内角互)补
1.如图已知a∥b找出其中相等的角和互补的 角。
∠1=∠3(两直线平行,内
5
错角相等);
12
∠5=∠4(两直线平行,同
位角相等);
4
3
∠2+∠4=180°(两直线
则∠ DGO=———
B
O
A
C
G
D
B’ C’
如图:AD∥BC, ∠A=∠C.试 说明AB∥DC
证明:∵AD∥BC(已知)
AD
E
∴∠C=∠CDE(两直线平行,内错角相等) 又∵ ∠A=∠C(已知)
∴ ∠A=∠CDE(等量代换) F
B
C
∴AB∥DC(同位角相等,两直线平行)
4.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
即 ∠1+∠2=90°.
变式思考一: 已知AB∥CD,GM,HM平分
∠FGB, ∠EHD,试判断GM与HM是否垂
直?
E
A
G
B
CH
M D
F
变式思考:若已知GM,HM平分 ∠FGB,∠EHD,GM⊥HM,试判断AB与CD 是否平行?
E
A
G
B
CH
M D
F
拓展1:已知AB∥CD,GP,HQ平分 ∠EGB, ∠EHD,判断GP与HQ是否平行?
平行线判定定理
定理1 同位角相等 定理2 内错角相等
两直线平行 两直线平行
平行线的性质与判定典型例题
1.如图,CD平分∠ECF,∠B=∠ACB,求证:AB∥CE.证明:∵CD平分∠ECF,∴∠ECD=∠DCF,∵∠ACB=∠DCF,∴∠ECD=∠ACB,又∵∠B=∠ACB,∴∠B=∠ECD,∴AB∥CE.2.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗为什么解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF(已知),所以∠EAC=∠FBD=90°(垂直的定义).因为∠1=∠2(已知),所以∠EAC+∠1=∠FBD+∠2(等式的性质),即∠EAB=∠FBG,所以AE∥BF(同位角相等,两直线平行).3.如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC=∠F,求证:EC∥DF.证明:∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.4.如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.证明:∵DE、BF分别是∠ABC,∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC,∵∠ABC=∠ADC,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴DC∥AB.5.如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.解:AB∥ED,理由:如图,过C作CF∥AB,∵∠B=25°,∴∠BCF=∠B=25°,∴∠DCF=∠BCD﹣∠BCF=42°,又∵∠D=42°,∴∠DCF=∠D,∴CF∥ED,∴AB∥ED.6.如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.解:BC∥AD.理由如下:∵DE平分∠ADC,CE平分∠BCD,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=2(∠1+∠2)=180°,∴AD∥BC.7.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).8.将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.(1)①若∠DCB=45°,则∠ACB的度数为135°.②若∠ACB=140°,则∠DCE的度数为40°.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).解:(1)①∵∠DCE=45°,∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°;②∵∠ACB=140°,∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°故答案为:40°;(2)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°;(3)30°、45°.理由:当CB∥AD时,∠ACE=30°;当EB∥AC时,∠ACE=45°.9.已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,证明:CF∥DO.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO(同位角相等,两条直线平行),∴∠EDO=∠BOD(两直线平行,内错角相等),∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO(同位角相等,两条直线平行).10.如图,已知∠A=∠C,∠E=∠F,试说明:AD∥BC.证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ADF,∵∠A=∠C,∴∠ADF=∠C,∴AD∥BC.11.已知:如图,EG∥FH,∠1=∠2.求证:∠BEF+∠DFE=180°.解:∵EG∥HF∴∠OEG=∠OFH,∵∠1=∠2∴∠AEF=∠DFE∴AB∥CD,∴∠BEF+∠DFE=180°.12.如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)13.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.证明:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠BCF=∠ACB﹣∠ACF=40°,又∵∠EFC=140°,∴∠BCF+∠EFC=180°,∴EF∥BC,∵AD∥BC,∴EF∥AD.14.完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)15.已知:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.阅读下面的解答过程,并填空(理由或数学式)解:∵BE∥GF(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠3(已知)∴∠1=(∠2 )(等量代换)∴DE∥(BC)(内错角相等两直线平行)∴∠EDB+∠DBC=180°(两直线平行同旁内角互补)∴∠EDB=180°﹣∠DBC(等式性质)∵∠DBC=(70°)(已知)∴∠EDB=180°﹣70°=110°16.如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于点G、H,AB∥CD,∠A=∠D,试说明:(1)AF∥ED;(2)∠BED=∠A;(3)∠1=∠2(1)证明:∵AB∥CD,∴∠A=∠AFC,∵∠A=∠D,∴∠AFC=∠D,∴AF∥ED;(2)证明:∵AF∥ED,∴∠BED=∠A;(3)证明:∵AF∥ED,∴∠1=∠CGD,又∵∠2=∠CGD,∴∠1=∠2.17.阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等)18.如图,∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.(1)求∠α和∠β的度数.(2)求∠C的度数.解:(1)解方程组,得.(2)∵∠α+∠β=55°+125°=180°,∴AB∥CD,∴∠C+∠CAB=180°,∵AC⊥AE,∴∠CAE=90°,∴∠C=180°﹣90°﹣55°=35°.19.如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,20.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.21.如图,已知∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗为什么解:∠BAC=∠DCA,理由:∵∠CFE=∠2,∠2+∠1=180°,∴∠CFE+∠1=180°,∴DE∥BC,∴∠AED=∠B,∵∠B=∠3,∴∠3=∠AEF,∴AB∥CD,∴∠BAC=∠DCA.22.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+ ∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.23.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)并说明理由.解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.24.已知:如图,FE∥OC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:AB∥DC;(2)若∠B=30°,∠1=65°,求∠OFE的度数.(1)证明:∵FE∥OC,∴∠1=∠C,∵∠1=∠A,∴∠A=∠C,∴AB∥DC;(2)解:∵AB∥DC,∴∠D=∠B,∵∠B=30°∴∠D=30°,∵∠OFE是△DEF的外角,∴∠OFE=∠D+∠1,∵∠1=65°,∴∠OFE=30°+65°=95°.25.(2018秋?牡丹区期末)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.证明:(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠2+∠BAD=180°,∴AD∥EF;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG是∠ADC的平分线,∴∠GDC=∠1=30°,∵AB∥DG,∴∠B=∠GDC=30°.26.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗若平分,请说明理由.平分.证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直的定义)∴AD∥EG,(同位角相等,两直线平行)∴∠2=∠3,(两直线平行,内错角相等)∠E=∠1,(两直线平行,同位角相等)又∵∠E=∠3(已知)∴∠1=∠2(等量代换)∴AD平分∠BAC(角平分线的定义).27.如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.(1)问直线CD与AB有怎样的位置关系并说明理由;(2)若∠CEF=70°,求∠ACB的度数.解:(1)CD和AB的关系为平行关系.理由如下:∵EF∥AB,∠EFB=130°,∴∠ABF=180°﹣130°=50°,又∵∠CBF=20°,∴∠ABC=70°,∵∠DCB=70°,∴∠DCB=∠ABC,∴CD∥AB;(2)∵EF∥AB,CD∥AB,∴EF∥CD,∵∠CEF=70°,∴∠ECD=110°,∵∠DCB=70°,∴∠ACB=∠ECD﹣∠DCB,∴∠ACB=40°.28.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,内错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(内错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)。
朱强奥数平行线的性质与判定专题
朱强奥数《平行线的性质与判定》专题姓名:一、知识的回顾与整理判断题:1、在同一平面内的两条直线被第三条直线所截,那么同位角相等-—-—---—-()2、如图1:如果∠A+∠B=180°,那么∠C+∠D=180°---——-——--—-—-—()3、两直线平行,同旁内角相等——-———-————-—--—-—-—-—-------—-—---—--—( )4、如果两条平行线被第三条直线所截,则一对同旁内角的平分线互相垂直()5、两条直线被第三条直线所截,那么这两条直线平行--—-—---——---——---—()选择题:6、如图2:AB∥CD,则()A.∠1=∠5B.∠2=∠6 C.∠3=∠7D.∠5=∠87、下列说法,其中是平行线特征的是 ( )①、两直线平行,同旁内角互补②、同位角相等,两直线平行③、内错角相等,两直线平行④、垂直于同一条直线的两直线平行A.①B.②③C.④D.①④8、如图3:已知∠1=100°,∠2=100°,∠3=125°,那么∠4的度数为 ( )A.45°B.55°C.65°D.75°9、如图4:已知AB∥D E,∠A=150°,∠D=140°,则∠C的度数是( )A.60° B.75°C.70°D.50°10、若两条平行线被第三条直线所截,则同一对同位角的角平分线互相 ( )A.垂直 B.平行C.重合D.相交填空题11、如果两条平行直线被第三条直线所截,那么一组同位角的平分线的位置关系是。
12、如图5:直线a、b被直线c所截(即直线c与直线a、b都相交),且a∥b,若∠1=118°,则∠2的度数=。
13、从A看B的方向是北偏东47°,则从B看A的方向是 .14、如图6:直线a∥b,若∠1+2∠2=336°,则∠2=_________.15、如图7:已知AB∥CD,BC∥DE,那么∠B+∠D=_________。
平行线的判定和性质专项练习题
[一]、平行线的性质一、填空1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3= ,∠4 = .2所截,若∠1 =∠2,则∠AEF 3(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°( ).(2)若∠2 =∠ ,则AE∥BF.(3)若∠A +∠ = 180°,则AE∥BF.4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E= .6.如图6,直线l 1∥l 2,AB⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB∥CD ,AC⊥BC ,图中与∠CAB 互余的角有 .8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不图 B 图1 2 3 4 5 A B C D F E 图1 2 A B C D E F 图图1 A B C D E F G H 图1 2 D A C B l l 图1 A B F C D E G 图C D F E B A包括∠1)共有 个.二、解答下列各题9.已知:如图,BC ∥DE .BE 平分∠ABC ,.求证:∠1=∠210、如图:已知,AB ∥ON ∠BOA=∠BAO ,求证:OP 平分∠MON 。
11、已知,如图B 、D 、A 在一直线上,DE ∥BC ,BC 是∠ABE 的平分线,求证:∠D=∠E .12、如图,已知AB ∥CD ,试说明:.∠AEC=∠A+∠C.13、如图,已知,DB ∥EC .AC ∥DF ,那么∠C=∠D 吗?试说明你的理由.14.如图,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.11.如图,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明) 12.如图12,∠ABD 与∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°. 求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.[二]、平行线的判定 图2 1 B C ED 图1 2 A BEF D C 1 AB一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ;若∠ +∠ = 180°,则 ∥ .2.若a⊥c,b⊥c,则. 3.如图2个能判定直线l 1∥l 2的条件: .4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ).5.如图3,若∠1 +∠2 = 180°,则 ∥ 。
2022年人教版平行线的判定性质练习知识点考点典型例题
5.2平行线及其鉴定【知识要点】平行线旳鉴定(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行(4)在同一平面内,垂直于同一条直线旳两条直线互相平行(5)平行公理旳推论:假如两条直线都与第三条直线互相平行,那么这两条直线也互相平行。
【配套练习】一.判断题:1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。
()2.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()二.填空题:1.∵a∥b,b∥c(已知)∴______ ∥______()2.如图:1234ab c(1)∵______=∠3,∴a∥b ()。
(2)∵∠2=∠4,∴______∥________()(3)∵∠2+∠3=180°,∴______∥________()3.如图③∵∠1=∠2,∴______∥________()∵∠2=∠3,∴______∥_______()4.如图④∵∠1=∠2,∴______∥________()∵∠3=∠4,∴______∥________()5.如图⑤∠B=∠D=∠E,那么图形中旳平行线有________________________________。
6.如图⑥∵AB⊥BD,CD⊥BD(已知)∴∠B=∠D=90°()∴∠B+∠D=180°∴AB∥CD ( )又∵∠1+∠2 =180°(已知)∴AB∥EF ( )∴CD∥EF ( )三.选择题:1.如图⑦,∠D=∠EFC,那么()A.AD∥BC B.AB∥CDC.EF∥BC D.AD∥EF2.如图⑧,鉴定AB∥CE旳理由是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE3.如图⑨,下列推理错误旳是()A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥d D.∵∠1=∠2,∴c∥d4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b旳是()A.①③B.②④C.①③④D.①②③④四.完毕推理,填写推理根据:1.如图⑩∵∠B=∠______,∴AB∥CD()∵∠BGC=∠____,∴CD∥EF()∵AB∥CD ,CD∥EF,∴AB∥_______()2.如图⑾填空:(1)∵∠2=∠3(已知)∴AB__________()(2)∵∠1=∠A(已知)∴__________()(3)∵∠1=∠D(已知)∴__________()(4)∵_______=∠F(已知)∴AC∥DF()3.填空。