数字信号处理实验作业分解

合集下载

数字信号处理实验作业完全版

数字信号处理实验作业完全版

实验1:理想采样信号的序列,幅度谱,相位谱,以及改变参数后的图像。

源程序: clc;n=0:50;A=444.128;a=50*sqrt(2.0*pi;T=0.001;w0=50*sqrt(2.0*pi;x=A*exp(-a*n*T.*sin(w0*n*T;close allsubplot(3,2,1;stem(x,’.’;title('理想采样信号序列';k=-25:25;W=(pi/12.5*k;X=x*(exp(-j*pi/12.5.^(n'*k;magX=abs(X;s ubplot(3,2,2;stem(magX,’.’;title('理想采样信号序列的幅度谱';angX=angle(X;subplot(3,2,3;stem(angX;title('理想采样信号序列的相位谱'n=0:50;A=1;a=0.4,w0=2.0734;T=1; x=A*exp(-a*n*T.*sin(w0*n*T;subplot(3,2,4;stem(x,’.’; title('理想采样信号序列'; k=-25:25; W=(pi/12.5*k;X=x*(exp(-j*pi/12.5.^(n'*k; magX=abs(X; subplot(3,2,5; stem(magX,’.’title('理想采样信号序列的幅度谱';0204060-2000200理想采样信号序列020406005001000理想采样信号序列的幅度谱0204060-505理想采样信号序列的相位谱0204060-11理想采样信号序列020406012理想采样信号序列的幅度谱上机实验答案:分析理想采样信号序列的特性产生在不同采样频率时的理想采样信号序列Xa(n,并记录各自的幅频特性,观察频谱‚混淆‛现象是否明显存在,说明原因。

源程序:A=444.128;a=50*pi*sqrt(2.0;W0=50*pi*sqrt(2.0;n=-50:1:50; T1=1/1000;Xa=A*(exp(a*n*T1.*(sin(W0*n*T1;subplot(3,3,1;plot(n,Xa;title('Xa序列';xlabel('n';ylabel('Xa';k=-25:25;X1=Xa*(exp(-j*pi/12.5.^(n'*k;subplot(3,3,2; stem(k,abs(X1,'.';title('Xa的幅度谱';xlabel('k';ylabel('〃幅度';subplot(3,3,3;stem(k,angle(X1,'.';title('Xa的相位谱';xlabel('k';ylabel('相位';T2=1/300;Xb=A*(exp(a*n*T2.*(sin(W0*n*T2;subplot(3,3,4;plot(n,Xb;title('Xb序列';xlabel('n';ylabel('相位';k=-25:25;X2=Xb*(exp(-j*pi/12.5.^(n'*k;subplot(3,3,5; stem(k,abs(X2,'.'; title('Xb 的幅度谱';xlabel('k';ylabel('〃幅度';subplot(3,3,6;stem(k,angle(X2,'.'; title(' Xb 的相位谱';xlabel('k';ylabel('相位';T3=1/200;Xc=A*(exp(a*n*T3.*(sin(W0*n*T3; subplot(3,3,7;plot(n,Xc;title('Xc 序列'; xlabel('n';ylabel('Xc';k=-25:25;X3=Xc*(exp(-j*pi/12.5.^(n'*k;subplot(3,3,8; stem(k,abs(X3,'.'; title('Xc 的幅度谱'; xlabel('k';ylabel('幅度';subplot(3,3,9;stem(k,angle(X3,'.'; title('Xc 的相位谱';xlabel('k';ylabel('相位';-50050-5057X a 序列n X a-500500128X a 的幅度谱k 幅度-50050-55X a 的相位谱k相位-50050-50518X b 序列n 相位-50050051018X b 的幅度谱k 幅度-50050-55X b 的相位谱k相位-50050-505x 1026X c 序列nX c-500500510x 1026X c 的幅度谱k幅度-50050-505X c 的相位谱k相位由图可以看出:当采样频率为1000Hz时,采样序列在折叠频率附近处,无明显混叠。

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告(⾃⼰的实验报告)数字信号处理实验报告西南交通⼤学信息科学与技术学院姓名:伍先春学号:20092487班级:⾃动化1班指导⽼师:张翠芳实验⼀序列的傅⽴叶变换实验⽬的进⼀步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅⽴叶变换(FFT )的应⽤。

实验步骤1. 复习DFS 和DFT 的定义,性质和应⽤;2. 熟悉MATLAB 语⾔的命令窗⼝、编程窗⼝和图形窗⼝的使⽤;利⽤提供的程序例⼦编写实验⽤程序;按实验内容上机实验,并进⾏实验结果分析;写出完整的实验报告,并将程序附在后⾯。

实验内容1. 周期⽅波序列的频谱试画出下⾯四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。

2. 有限长序列x(n)的DFT(1)取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2)将(1)中的x(n)以补零的⽅式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3)取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。

利⽤FFT进⾏谱分析已知:模拟信号以t=0.01n(n=0:N-1)进⾏采样,求N 点DFT 的幅值谱。

请分别画出N=45; N=50;N=55;N=60时的幅值曲线。

数字信号处理实验⼀1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=??-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验⼆⽤双线性变换法设计IIR 数字滤波器⼀、实验⽬的1.熟悉⽤双线性变换法设计IIR 数字滤波器的原理与⽅法; 2.掌握数字滤波器的计算机仿真⽅法;3.通过观察对实际⼼电图的滤波作⽤,获得数字滤波器的感性知识。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

实验一 数字信号处理 实验报告

实验一 数字信号处理 实验报告

1.已知系统的差分方程如下式:y1(n)=0.9y1(n-1)+x(n)程序编写如下:(1)输入信号x(n)=R10 (n),初始条件y1(-1)=1,试用递推法求解输出y1(n);a=0.9; ys=1; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10),定义其宽度为0~9n=1:35; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=sign(sign(10-n)+1);B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,1);stem(n,yn,'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1 ');xlabel('n');ylabel('y(n)')(2) 输入信号x(n)=R10 (n),初始条件y1(-1)=0,试用递推法求解输出y1(n)。

a=0.9; ys=0; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10)B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,2);stem(n,yn, 'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0 ');xlabel('n');ylabel('y(n)') 图形输出如下:-505101502468图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1ny (n )-55101502468图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0ny (n )2. 已知系统差分方程为: y 1(n )=0.9y 1(n -1)+x (n ) 用递推法求解系统的单位脉冲响应h (n ),要求写出h (n )的封闭公式,并打印h (n )~n 曲线。

数字信号处理实验报告

数字信号处理实验报告

长春理工大学电工电子实验教学中心学生实验报告2014 —— 2015 学年第一学期实验课程数字信号处理实验实验地点东1教学楼414实验室学院电子信息工程学院专业通信工程学号120421101姓名杨杰2、 同实验任务一一样,做出信号的时域波形,及fft 变换后的频谱图。

图二 任务二程序框图3、 这里要求引入100KHz 的正弦干扰信号,由于由1中已得到fs 为22050Hz ,根据奈奎斯特频率采样定理,采样频率必须大于等于原信号最高频率的2倍,所以必须将原信号的采样频率提高到200KHz 以上才能引入100KHz 的噪声,所以这里考虑用一阶线型插值interp1将原信号的采样频率提高到220500Hz ,这样就可以引入100KHz 噪声。

做出提高采样频率后的信号的时域波形和频谱图,确认信号并没有发生变化。

接着生成100KHz 的正弦信号,根据2中做出的信号的时域波形的幅度,这里取噪声的幅值为0.5。

将提高采样频率后的信号与噪声叠加。

对加噪后的信号做出时域波形和频谱图,观察波形的变化。

4、 这里要求设计数字滤波器,根据对加噪前的频谱以及加噪后的频谱的观察,可以采用低通滤波器,这里用巴特沃斯低通滤波器即可满足要求,所以考虑设计相对较为简单的巴特沃斯低通滤波器进行滤波。

滤波前首先要确定设计指标,观察频谱这里暂取。

然后开始设计巴特沃斯低通滤波器,这里我把设计的程序打包成一个函数方便调用,函数的框图如图三(巴特沃斯低通滤波器开始读入signal ,fs 截取音频信号为1s 做音频信号时域波形 对signal 做fft 做音频信号频谱 提高信号的采样频率 生成100KHz 噪声 将信号与噪声叠加对加噪后的信号做时域波形和频谱图根据原信号频谱图确定低通滤波器设计指标巴特沃斯低通滤波器设计 计算出滤波器系统函数分子分母系数 做滤波系统幅频特性曲线 对加噪后信号滤波 原信号及滤波后信号的时域及频谱比较结束图三巴特沃斯低通滤波器函数,,k = 1,Nk = 1,Nk = 1,NRSS=RS/FSk = 1,N开始NY结束Mod(N,2) = 1输出BZ,AZYk = length(B)+1,N+1NLength(B)< N+1参量输入函数)所示。

数字信号处理课后实验程序及结果图

数字信号处理课后实验程序及结果图

第 8 章
上 机 实 验
(4) 如果输入信号为无限长序列, 系统的单位脉冲
响应是有限长序列, 可用分段线性卷积法求系统的响应,
具体方法请参考DFT一章的内容。
如果信号经过低通滤波器, 则信号的高频分量被滤掉,
时域信号的变化减缓, 在有阶跃处附近产生过渡带。 因此,
当输入矩形序列时, 输出序列的开始和终了都产生了明显
的过渡带, 见第一个实验结果的波形。
第 8 章
上 机 实 验
8.2 实验二: 时域采样与频域采样
8.2.1
1. 时域采样理论与频域采样理论是数字信号处理中的重要
理论。 要求掌握模拟信号采样前后频谱的变化, 以及如何
选择采样频率才能使采样后的信号不丢失信息; 要求掌握频 域采样会引起时域周期化的概念, 以及频率域采样定理及 其对频域采样点数选择的指导作用。
1 X a ( j jn s ) T n


第 8 章
上 机 实 验
(2) 采样频率Ωs必须大于等于模拟信号最高频率的两倍
以上, 才能使采样信号的频谱不产生频谱混叠。
ˆ ( j ) 并不方便, 下面我们导出另 利用计算机计算 X
外一个公式, 以便在计算机上进行实验。 理想采样信号
%内容3:
un=ones(1, 256); n=0: 255; xsin=sin(0.014*n)+sin(0.4*n) ; %产生正弦信号 %产生信号un
第 8 章
上 机 实 验
A=[1, -1.8237, 0.9801];
B=[1/100.49, 0,-1/100.49]; %系统差分方程系数向量B和A y31n=filter(B, A, un); %谐振器对un的响应y31n y32n=filter(B, A, xsin); %谐振器对正弦信号的响应y32n figure(3) subplot(2, 1, 1); y=′y31(n)′; tstem(y31n, y) title(′(h) 谐振器对u(n)的响应y31(n)′) subplot(2, 1, 2); y=′y32(n)′; tstem(y32n, y); title(′(i) 谐振器对正弦信号的响应y32(n)′)

数字信号处理上机实验 作业结果与说明 实验三、四、五

数字信号处理上机实验 作业结果与说明 实验三、四、五

上机频谱分析过程及结果图 上机实验三:IIR 低通数字滤波器的设计姓名:赵晓磊 学号:赵晓磊 班级:02311301 科目:数字信号处理B一、实验目的1、熟悉冲激响应不变法、双线性变换法设计IIR 数字滤波器的方法。

2、观察对实际正弦组合信号的滤波作用。

二、实验内容及要求1、分别编制采用冲激响应不变法、双线性变换法设计巴特沃思、切贝雪夫I 型,切贝雪夫II 型低通IIR 数字滤波器的程序。

要求的指标如下:通带内幅度特性在低于πω3.0=的频率衰减在1dB 内,阻带在πω6.0=到π之间的频率上衰减至少为20dB 。

抽样频率为2KHz ,求出滤波器的单位取样响应,幅频和相频响应,绘出它们的图,并比较滤波性能。

(1)巴特沃斯,双线性变换法Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radians frequency in pi unitsa r g (H [e x p (j w )](2)巴特沃斯,冲激响应不变法(3)切贝雪夫I 型,双线性变换法(4)切贝雪夫Ⅱ型,双线性变换法综合以上实验结果,可以看出,使用不同的模拟滤波器数字化方法时,滤波器的性能可能产生如下差异:使用冲击响应不变法时,使得数字滤波器的冲激响应完全模仿模拟滤波器的冲激响应,也就是时域逼急良好,而且模拟频率和数字频率之间呈线性关系;但频率响应有混叠效应。

frequency in Hz|H [e x p (j w )]|Designed Lowpass Filter Magnitude Response in dBfrequency in pi units|H [e x p (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [e xp (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radiansfrequency in pi unitsa r g (H [e x p (j w )]使用双线性变换法时,克服了多值映射的关系,避免了频率响应的混叠现象;在零频率附近,频率关系接近于线性关系,高频处有较大的非线性失真。

课程大作业 数字信号处理实验报告

课程大作业   数字信号处理实验报告

课程大作业数字信号处理实验报告课程大作业-数字信号处理实验报告实验一信号、系统和系统响应一.实验目的1.熟悉理想采样的性质,了解信号采用前后的频谱变化,加深对采样定理的理解。

2.熟悉离散信号和系统的时域特性。

3.熟悉线性卷积的计算和编程方法:用卷积法观察和分析系统响应的时域特性。

4.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。

二、实验原理1.连续时间信号的采样这有助于理解信号从时域到频域的变化,也有助于理解信号从时域到时域的变化。

对一个连续时间信号进行理想采样的过程可以表示为该信号和个周期冲激脉冲的乘积,即a(t)?xa(t)m(t)(1-1)x?A(T)是连续信号Xa(T)的理想采样,m(T)是周期脉冲,其中XM(T)?N(t?nt)(1-2)它也可以用傅立叶级数表示为:1.吉咪?stm(t)??e(1-3)tn其中t为采样周期,?s?2?/t是采样角频率。

设xa(s)是连续时间信号xa(t)的双边拉氏变换,即有:xa(s)xa(t)e?stdt(1-4)a(t)的拉氏变换为此时理想采样信号x??1?(s)?x?a(t)edtxa(s?jm?s)(1-5)xa?tmst??作为拉普拉斯变换的特例,信号理想采样的傅里叶变换1xa(j?)??xa?j(??m?s)?(1-6)tm从方程(1-5)和(1-6)可以看出,信号理想采样后的频谱是原始信号频谱的周期扩展,其扩展周期等于采样频率。

根据香农采样定理,如果原始信号是带限信号,且采样频率高于原始信号最高频率分量的两倍,则采样后不会出现频率混淆。

在计算机处理时,不采用式(1-6)计算信号的频谱,而是利用序列的傅立a(t)?Xa(T)m(T),根据z变量叶变换计算信号的频谱,并定义序列x(n)?xa(新界)?根据X变换的定义,序列X(n)的Z变换可以得到:X(Z)?Nx(n)zn(1-7)以ej?代替上式中的z,就可以得到序列x(n)的傅立叶变换x(e)?j?nx(n)e???j?n(1-8)式(1-6)和式(1-8)具有以下关系:(j)x(ej)x(1-9)at由式(1-9)可知,在分析一个连续时间信号的频谱时,可以通过取样将有将相关性的计算转化为序贯傅里叶变换的计算。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

实验三-华北电力大学-数字信号处理实验

实验三-华北电力大学-数字信号处理实验

文档实验报告实验名称____________ ____课程名称____________ ____院系部:专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期:华北电力大学文档1.实验目的分析常用窗函数的时域和频域特性,灵活运用窗函数分析信号频谱和设计FIR数字滤波器。

2.实验原理在确定信号谱分析、随机信号功率谱估计以及FIR数字滤波器设计中,窗函数的选择起着重要的作用。

在信号的频谱分析中,截短无穷长的序列会造成频率泄漏,影响频谱分析的精度和质量。

合理选取窗函数的类型,可以改善泄漏现象。

在FIR数字滤波器设计中,截短无穷长的系统单位脉冲序列会造成FIR滤波器幅度特性的波动,且出现过渡带。

3.实验内容及步骤(1) 1. 分析并绘出常用窗函数的时域特性波形。

2. 利用fft函数分析常用窗函数的频域特性, 并从主瓣宽度和旁瓣相对幅度两个角度进行比较分析。

3. 研究凯塞窗(Kaiser)的参数选择对其时域和频域的影响。

N=20, 60, 110;固定beta=4,分别取 (1)N=60,分别取beta=1,5,11。

(2) 固定????π911πkkxk????cos5.cos?[]?0 4. 序列,分析其频谱。

????2020???? (1) 利用不同宽度N的矩形窗截短该序列, N 分别为20,40,160,观察不同长度N的窗对谱分析结果的影响;(2) 利用哈明窗重做 (1);(3) 利用凯塞窗重做 (1);(4) 比较和分析三种窗的结果;(5) 总结不同长度或类型的窗函数对谱分析结果的影响。

4.数据处理与总结1.分析并绘出常用窗函数的时域特性波形。

程序如下:clear;subplot(2,3,1);N=51;w=boxcar(N);stem(w)') 矩形窗title('subplot(2,3,2);w=hanning(N);stem(w)') title('Hanning窗subplot(2,3,3);w=hamming(N);stem(w)') title('Hamming窗subplot(2,3,4);w=blackman(N);stem(w)') title('blackman窗subplot(2,3,5);w=bartlett(N);stem(w)') 三角形窗title('subplot(2,3,6);w=kaiser(N);stem(w)') 窗title('kaiserfft函数分析常用窗函数的频域特性2,利用clear;N=51;w=boxcar(N);y=fft(w,200);subplot(3,3,1);'); 时域波形stem([0:N-1],w);title('subplot(3,3,2);y0= abs(fftshift(y));'); plot([-100:99],y0);title('矩形窗频域subplot(3,3,3);w=hanning(N);y=fft(w,200);y0= abs(fftshift(y));'); 窗频域plot([-100:99],y0);title('hanningsubplot(3,3,4); w=hamming(N);y=fft(w,200);文档y0= abs(fftshift(y));plot([-100:99],y0);titl'); e('哈明窗频域subplot(3,3,5);w=blackman(N);y=fft(w,200);y0= abs(fftshift(y));plot([-100:99],y0);titl'); 布莱克曼窗频域e('subplot(3,3,6);w=bartlett(N);y=fft(w,200);y0= abs(fftshift(y));plot([-100:99],y0);titl'); 三角形窗频域e('subplot(3,3,7);w=kaiser(N);y=fft(w,200);y0= abs(fftshift(y));');plot([-100:99],y0);title('kaiser窗频域的参数选择对其时域和频域的影响。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。

实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。

程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。

中南大学数字信号处理实验报告分解

中南大学数字信号处理实验报告分解

中南大学数字信号处理实验报告学生姓名学号指导教师学院专业班级完成时间目录实验一常见离散时间信号的产生和频谱分析 (3)实验结果与分析 (5)实验二数字滤波器的设计 (14)实验结果与分析 (17)实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法; (2) 加深对常用离散时间信号的理解; (3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。

二、 实验原理(1) 常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n kn b )单位阶跃序列⎩⎨⎧=01)(n u00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。

如果对此连续周期信号()x t ()()n x n a u n =进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nTx n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。

为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n), 有∑-=-=10)()(N n n jw jw k ke n x eX其中 1,,1,02-==M k k Mw k ,π通常M 应取得大一些,以便观察谱的细节变化。

数字信号处理实验报告11-12-10

数字信号处理实验报告11-12-10

《数字信号处理》实验报告专业学号姓名实验一 利用FFT 实现快速卷积一、实验目的1.加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。

2.掌握循环卷积和线性卷积两者之间的关系。

二、实验原理用FFT 来快速计算有限长度序列的线性卷积。

这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样值()x k ,然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)。

现以FFT 求有限长序列的卷积及求有限长度序列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。

序列x(n)和h(n)的长差不多。

设x(n)的长为N 1,h(n)的长为N 2,要求∑-=-=⊗=1)()()()()(N m m n x m h n y n x n y用FFT 完成这一卷积的具体步骤如下:①为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运算,要求m N 2=(m 为整数)。

②用补零方法使x(n)和h(n)变成列长为N 的序列。

1122()01()01()01()01x n n N x n N n N h n n N h n N n N ≤≤-⎧=⎨≤≤-⎩≤≤-⎧=⎨≤≤-⎩③用FFT 计算x(n)和h(n)的N 点离散傅里叶变换。

④完成X(k)和H(k)乘积,)()()(k H k x k Y = ⑤用FFT 计算 ()Y k 的离散傅里叶反变换得*10*10)(1)(1)(⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∑∑-=--=N k nk N nk N N k W k Y N W k Y N n y三、主要实验仪器及材料微型计算机、Matlab6.5教学版。

四、实验内容1.数字滤波器的脉冲响应为()22()1/2(),8nN h n R n N ==。

史上最全数字信号处理实验报告完美版

史上最全数字信号处理实验报告完美版

实验一、零极点分布对系统频率响应的影响Y(n)=x(n)+ay(n-1)1、调用MATLAB函数freqz计算并绘制的幅频特性和相频特性其中:1 代表a=0.7;2代表a=0.8;3代表a=0.9a=0.7时的零极点图A=0.8时的零极点图a=0.9时的零极点图观察零极点的分布与相应曲线易知:小结:系统极点z=a,零点z=0,当B点从w=0逆时针旋转时,在w=0点,由于极点向量长度最短,形成波峰,并且当a越大,极点越接近单位圆,峰值愈高愈尖锐;在w=pi点形成波谷;z=0处零点不影响幅频响应2、先求出系统传函的封闭表达式,通过直接计算法得出的幅频特性和相频特性曲线。

其中:1代表a=0.7;2代表a=0.8;3代表a=0.9附录程序如下:(对程序进行部分注释)>> a=0.7;w=0:0.01:2*pi;%设定w的范围由0到2π,间隔为0.01y=1./(1-a*exp(-j*w)); %生成函数subplot(211);plot(w/2/pi,10*log(abs(y)),'g');%生成图像其中通过调用abs函数计算幅值hold on;xlabel('Frequency(Hz)');%定义横坐标名称ylabel('magnitude(dB)');%定义纵坐标名称title('a=0.8,直接计算h(ejw)');grid on;%定义图片标题subplot(212);plot(w/2/pi,unwrap(angle(y)),'g');grid on;%生成图像其中通过调用angle计算相角,‘g’为规定线条颜色hold on;>> a=0.8;w=0:0.01:2*pi;y=1./(1-a*exp(-j*w));subplot(211);plot(w/2/pi,10*log(abs(y)),'r');hold on;xlabel('Frequency(Hz)');ylabel('magnitude(dB)');title('a=0.8,直接计算h(ejw)');grid on;subplot(212);plot(w/2/pi,unwrap(angle(y)),'r');grid on;hold on;>> a=0.9;w=0:0.01:2*pi;y=1./(1-a*exp(-j*w));subplot(211);plot(w/2/pi,10*log(abs(y)),'b');hold on;xlabel('Frequency(Hz)');ylabel('magnitude(dB)');title('a=0.9,直接计算h(ejw)');grid on;subplot(212);plot(w/2/pi,unwrap(angle(y)),'b');grid on;hold on;2、y(n)=x(n)=ax(n-1)通过调用freqz函数绘图,其中:1代表a=0.7,;2代表a=0.8;3代表a=0.9附录程序如下:(因为程序同实验一相同不再进行注释)a=0.7;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.7');hold on;a=0.8;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.8');hold on;a=0.9;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.9');以下为a为不同数值时的零极点图a=0.7A=0.8A=0.9小结:系统极点z=0,零点z=a,当B点从w=0逆时针旋转时,在w=0点,由于零点向量长度最长,形成波峰:在w=pi点形成波谷;z=a处极点不影响相频响应。

数字信号处理实验报告

数字信号处理实验报告

实验一 matlab 实现时域信号分解一、实验原理任何一个实数序列都可以分解成一个偶对称序列x e [n]和一个奇对称序列x o [n]之和,即 X[n]= x e [n]+ x o [n];其中x e [n]和x o [n]都可以从原序列通过以下运算得到:x e [n ]=(x [n ]+x [−n ])/2x o [n] = (x [n ]−x [−n ])/2x e [n ]和x o [n]分别称为x[n]的偶对称分量和奇对称分量。

二、实验目的熟悉matlab 在简单时域信号处理中的应用。

三、实验题目设单位阶跃序列U[n]={0, −10≤n <01, 0≤n ≤10将其分解为偶对称分量和奇分量。

四、程序代码%Matlab 编写自己的函数evenodd 函数用于将偶序列和奇序列两部分,代码如下:function [xe,xo,m]=evenodd(x,n)%将实序列信号分解成奇函数部分和偶函数部分%调用方式:[xe,xo,m]=evenodd(x,n)%if any(imag(x)~=0) %判断是否为实信号序列error('x is not a real sequence')endm=-fliplr(n); %将序号翻转m1=min([m,n]);m2=max([m,n]);m=m1:m2;%创建新信号序列nm=n(1)-m(1);n1=1:length(n);x1=zeros(1,length(m)); %创建空序列x1(n1+nm)=x;x=x1;xe=0.5*(x+fliplr(x)); %求得偶序列信号xo=0.5*(x -fliplr(x)); %求得奇序列信号%信号分解的具体实现n0=0;n1=-10;n2=10;n=[n1:n2]; %序号序列x=[(n-n0)>=0]; %阶跃信号值序列subplot(2,2,1)stem(n,x); %绘出阶跃信号xlabel('n');ylabel('x[n]');title('阶跃序列');grid on;[xeven,xodd,m]=evenodd(x,n);%进行奇偶分解得到偶序列xeven和奇序列xoddsubplot(2,2,2)stem(m,xeven); %绘制偶序列信号xlabel('m');ylabel('x even(n)');title('偶函数部分');grid on;subplot(2,2,3)stem(m,xodd); %绘制奇序列图xlabel('m');ylabel('x odd(n)');title('奇函数部分');grid on五、运行结果图1.1 阶跃序列图1.2 分解成的偶函数部分图1.3 分解成的奇函数部分六、实验结论运行结果如图1.1-1.3所示。

西电-数字信号处理大作业

西电-数字信号处理大作业

数字信号处理上机大作业实验一:信号、系统及系统响应(1) 简述实验目的及实验原理。

1.实验目的●熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

●熟悉时域离散系统的时域特性。

●利用卷积方法观察分析系统的时域特性。

●掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

2.实验原理与方法●时域采样。

● LTI系统的输入输出关系。

(2)按实验步骤附上实验过程中的信号序列、系统单位脉冲响应及系统响应序列的时域和幅频特性曲线,并对所得结果进行分析和解释。

Matlab源程序如下:A=1;T1=1/1000;T2=1/300;T3=1/200;a=25*pi;w0=30*pi;n=0:99;x1=A*exp(-a*n*T1).*sin(w0*n*T1);x2=A*exp(-a*n*T2).*sin(w0*n*T2);x3=A*exp(-a*n*T3).*sin(w0*n*T3);m=linspace(-pi,pi,10000);X1=x1*exp(-j*n'*m);%n'与m构造矩阵,xi向量与矩阵每一列相乘对应元素相加,构成DTFT后的矩阵X2=x2*exp(-j*n'*m);X3=x3*exp(-j*n'*m);figure(1);subplot(3,2,1)plot(m/pi,abs(X1));xlabel('\omega/π');ylabel('|H(e^j^\omega)|');title('采样频率为1000Hz时的幅度谱');subplot(3,2,3)plot(m/pi,abs(X2));xlabel('\omega/π');ylabel('|H(e^j^\omega)|');title('采样频率为300Hz时的幅度谱');subplot(3,2,5)plot(m/pi,abs(X3));xlabel('\omega/π');ylabel('|H(e^j^\omega)|');title('采样频率为200Hz时的幅度谱');subplot(3,2,2)plot(n,abs(x1));xlabel('n');ylabel('x1(t)');title('采样频率为1000Hz时的时域波形');subplot(3,2,4)plot(n,abs(x2));xlabel('n');ylabel('x2(t)');title('采样频率为300Hz时的时域波形');subplot(3,2,6)plot(n,abs(x3));xlabel('n');ylabel('x3(t)');title('采样频率为200Hz时的时域波形');波形图如下:-1-0.8-0.6-0.4-0.200.20.40.60.81ω/π|H (e j ω)|采样频率为1000Hz 时的幅度谱ω/π|H (e j ω)|采样频率为300Hz 时的幅度谱ω/π|H (e j ω)|采样频率为200Hz 时的幅度谱102030405060708090100nx 1(t )采样频率为1000Hz 时的时域波形nx 2(t )采样频率为300Hz 时的时域波形nx 3(t )采样频率为200Hz 时的时域波形② 时域离散信号、 系统和系统响应分析。

西电数字信号处理大作业

西电数字信号处理大作业

实验一、信号的采样clc,clear;dt=0.001;tf=6;t=0:dt:tf;xa=sqrt(t)+cos(t);T=0.5;n=0:tf/T;x=sqrt(n*T)+cos(n*T);figure(1)subplot(2,1,1)plot(t,xa),grid on ;title('original image')subplot(2,1,2)stem(n*T,x),grid on ,title('digital image')实验二、信号与系统的时域分析差分方程为)()2()1()(21n bx n y a n y a n y +----=,其中8.01-=a ,64.02=a ,866.0=b 。

系统单位脉冲响应)(n ha1=-0.8;a2=0.64;b=0.866;ys=0;xn=[1,zeros(1,49)];B=1;A=[1,a1,a2];xi=filtic(B,A,ys);yn=filter(B,A,xn,xi);n=0:length(yn)-1;subplot(1,1,1);stem(n,yn,'.')title('(a)');xlabel('n');ylabel('y(n)')输入x(n)=cos(n)T=0.1;z=cos(n*T);zn=conv(yn,z); figure(2);n1=1:99;stem(n1,zn,'.')实验三、系统的频域和Z域分析程序代码(画出dtft的幅度和频率谱)clc,clear;n=0:1:7;x=(0.9*exp(j*pi/3)).^n;w=0:pi/200:pi;X=x*exp(-j).^(n'*w);realX=real(X);imagX=imag(X);angX=angle(X);magX=abs(X);subplot(2,2,1);plot(w/pi,magX);grid xlabel('frequency in pi unit');title('magnitude part');subplot(2,2,2);plot(w/pi,realX);grid xlabel('frequency in pi unit');title('real part');subplot(2,2,3);plot(w/pi,imagX);grid xlabel('frequency in pi unit');title('imaginary part');subplot(2,2,4);plot(w/pi,angX);grid xlabel('frequency in pi unit');title('angel part');clc,clear;a=[1,-0.5,0.06];b=[1,1,0];m=0:length(b)-1;l=0:length(a)-1;w=0:pi/500:pi;num=b*exp(-j*m'*w);den=a*exp(-j*l'*w);H=num./den;magH=abs(H);angH=angle(H);H1=freqz(b,a,w);magH1=abs(H1);angH1=angle(H1);subplot(2,2,2);plot(w/pi,angH);grid;xlabel('w(frequency in pi units)');ylabel('Ïàλrad/w');subplot(2,2,1);plot(w/pi,magH);grid;xlabel('w(frequency in pi units)');ylabel('·ù¶È|H|');subplot(2,2,3);plot(w/pi,magH1);grid;xlabel('w(frequency in pi units)');ylabel('·ù¶È|H1|');subplot(2,2,4);plot(w/pi,angH);grid;xlabel('w(frequency in pi units)');ylabel('Ïàλrad/w');axis([0,1,-0.8,0]); figure(2);zplane(b,a);实验四、信号的频谱分析程序代码clc,clear;n=0:7;k=0:7;N=8;w=n*(2*pi)/8;x=(0.9*exp(j*pi/3)).^n;X1=[x zeros(1,8)];X2=[X1 zeros(1,16)];XK=x*exp(-j*k'*w);k1=0:15;n1=0:15;w1=n1*(2*pi)/16;XK1=X1*exp(-j*k1'*w1);k2=0:31;n2=0:31;w2=n2*(2*pi)/16;XK2=X2*exp(-j*k2'*w2);w3=0:pi/200:2*pi;X=x*exp(-j*n'*w3);magX=abs(X);angX=angle(X);magXK=abs(XK);angXK=angle(XK);magXK1=abs(XK1);angXK1=angle(XK1);magXK2=abs(XK2);angXK2=angle(XK2);subplot(4,2,1);plot(w3/pi,magX);xlabel('w/pi');ylabel('·ù¶È|X|');grid on;subplot(4,2,2);plot(w3/pi,angX);xlabel('w/pi');ylabel('Ïàλrad/pi'); subplot(4,2,3);stem(n,magXK);xlabel('K');ylabel('·ù¶È|XK|');subplot(4,2,4);stem(n,magXK);xlabel('K');ylabel('Ïàλrad/pi'); subplot(4,2,5);stem(n1,magXK1);xlabel('K1');ylabel('·ù¶È|XK1|'); subplot(4,2,6);stem(n1,magXK1);xlabel('K1');ylabel('Ïàλrad/pi'); subplot(4,2,7);stem(n2,magXK2);xlabel('K2');ylabel('·ù¶È|XK2|'); subplot(4,2,8);stem(n2,magXK2);xlabel('K2');ylabel('Ïàλrad/pi');实验五、IIR数字滤波器设计IIR汉宁窗低通高通低通巴特沃斯通带截止频率wp=0.2pi 通带最大衰减R=1dB阻带截止频率wp=0.35pi 阻带最大衰减R=10dBclc,clear;Wp=0.2;Ws=0.35;Rp=1;Rs=100;[N,Wc]=buttord(Wp,Ws,Rp,Rs);[Bz,Az]=butter(N,Wc)w=0:0.1:pi;[H,w1]=freqz(Bz,Az,w);;ang=angle(H);H=20*log10(abs(H))subplot(4,2,1); plot(w/pi,H) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('µÍͨÂ˲¨Æ÷')subplot(4,2,2);plot(w/pi,ang);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')[Bz1,Az1]=butter(N,Wc,'high')w=0:0.1:pi;[H1,w2]=freqz(Bz1,Az1,w);ang1=angle(H1);H1=20*log10(abs(H1))subplot(4,2,3); plot(w/pi,H1) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('¸ßͨÂ˲¨Æ÷')subplot(4,2,4);plot(w/pi,ang1);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')Wp1=[0.2 0.8];Ws1=[0.35 0.65];[N2,Wc1]=buttord(Wp1,Ws1,Rp,Rs);[Bz2,Az2]=butter(N2,Wc1,'stop')w=0:0.1:pi;[H2,w3]=freqz(Bz2,Az2,w);ang2=angle(H2);H2=20*log10(abs(H2))subplot(4,2,5); plot(w/pi,H2) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('´ø×èÂ˲¨Æ÷')subplot(4,2,6);plot(w/pi,ang2);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')Wp1=[0.2 0.8];Ws1=[0.35 0.65];[N2,Wc1]=buttord(Wp1,Ws1,Rp,Rs);[Bz3,Az3]=butter(N2,Wc1)w=0:0.1:pi;[H3,w4]=freqz(Bz3,Az3,w);ang3=angle(H3);H3=20*log10(abs(H3))subplot(4,2,7); plot(w/pi,H3) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('´øͨÂ˲¨Æ÷')subplot(4,2,8);plot(w/pi,ang3);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')切比雪夫1型通带截止频率wp=0.7pi 通带最大衰减R=1dB阻带截止频率wp=0.5pi 阻带最大衰减R=40dBclc,clear;Wp=0.7;Ws=0.5;Rp=1;Rs=40;[N,Wpo]=cheb1ord(Wp,Ws,Rp,Rs);[Bz,Az]=cheby1(N,Rp,Wpo)w=0:0.1:pi;[H,w1]=freqz(Bz,Az,w);ang=angle(H);H=20*log10(abs(H))subplot(4,2,1); plot(w/pi,H) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('µÍͨÂ˲¨Æ÷')subplot(4,2,2);plot(w/pi,ang);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')[Bz1,Az1]=cheby1(N,Rp,Wpo,'high');w=0:0.1:pi;[H1,w2]=freqz(Bz1,Az1,w);ang1=angle(H1);H1=20*log10(abs(H1))subplot(4,2,3); plot(w/pi,H1) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('¸ßͨÂ˲¨Æ÷')subplot(4,2,4);plot(w/pi,ang1);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')Wp1=[0.2 0.8];Ws1=[0.35 0.65];[N2,Wpo1]=cheb1ord(Wp1,Ws1,Rp,Rs);[Bz2,Az2]=cheby1(N2,Rp,Wpo1,'stop')w=0:0.1:pi;[H2,w3]=freqz(Bz2,Az2,w);ang2=angle(H2);H2=20*log10(abs(H2))subplot(4,2,5); plot(w/pi,H2) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('´ø×èÂ˲¨Æ÷')subplot(4,2,6);plot(w/pi,ang2);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')Wp1=[0.2 0.8];Ws1=[0.35 0.65];[N2,Wpo1]=cheb1ord(Wp1,Ws1,Rp,Rs);[Bz3,Az3]=cheby1(N2,Rp,Wpo1)w=0:0.1:pi;[H3,w4]=freqz(Bz3,Az3,w);ang3=angle(H3);H3=20*log10(abs(H3))subplot(4,2,7); plot(w/pi,H3) ;gridon ;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');title('´øͨÂ˲¨Æ÷')subplot(4,2,8);plot(w/pi,ang3);gridon ;xlabel('\omega/\pi');ylabel('Phase/dB')实验六、FIR数字滤波器设计FIR汉宁窗低通高通低通% 采用Hamming窗设计一个带阻FIR滤波器阻带:0~0.5pi,阻带最小衰减Rs=40dB;通带:0.5~pi,通带最大衰减:Rp=1dB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验5 抽样定理一、实验目的:1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。

2、进一步加深对时域、频域抽样定理的基本原理的理解。

3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。

二、实验原理:1、时域抽样与信号的重建 (1)对连续信号进行采样例5-1 已知一个连续时间信号sin sin(),1Hz 3ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。

程序清单如下:%分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2;f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2;f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end程序运行结果如图5-1所示:原连续信号和抽样信号-2-1.5-1-0.500.51 1.52-2-1.5-1-0.500.51 1.52图5-1(2)连续信号和抽样信号的频谱由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。

因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。

例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。

程序清单如下:dt=0.1;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm;t=-2:dt:2;N=length(t);f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t);wm=2*pi*fm;k=0:N-1;w1=k*wm/N;F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]);for i=1:3;if i<=2 c=0;else c=1;endfs=(i+c)*fm;Ts=1/fs;n=-2:Ts:2;N=length(n);f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n);wm=2*pi*fs;k=0:N-1;w=k*wm/N;F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]);end程序运行结果如图5-2所示。

由图可见,当满足F s≥2f m条件时,抽样信号的频谱没有混叠现象;当不满足F s≥2f m 条件时,抽样信号的频谱发生了混叠,即图5-2的第二行F s<2f m的频谱图,,在f m=5f0的范围内,频谱出现了镜像对称的部分。

0246810121416182002468101214161820024681012141618202468101214161820图5-2(3)由内插公式重建信号 信号重建一般采用两种方法:一是用时域信号与理想滤波器系统的单位冲激响应进行卷积积分;二是用低通滤波器对信号进行滤波。

本实验只讨论第一种方法。

由理论分析可知,理想低通滤波器的单位冲激响应为j Ωt πt sin()1T h(t)=H(j Ω)e d Ω=πt 2πT∞-∞⎰ 抽样信号a ˆx(t)通过滤波器输出,其结果应为a ˆx (t)与h(t)的卷积积分: sin[()/]ˆˆ()()()()()()()()/a a a a a n t nT T y t x t xt h t x h t d x nT t nT T πτττπ∞∞-∞=-∞-==*=-=-∑⎰该式称为内插公式。

由式可见,x a (t)信号可以由其抽样值x a (nT)及内插函数重构。

MATLAB 中提供了sinc 函数,可以很方便地使用内插公式。

例5-3 用上面推导出的内插公式重建例5-1给定的信号。

程序清单如下:dt=0.01;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm;t=0:dt:3*T0;x=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t);subplot(4,1,1);plot(t,x);axis([min(t),max(t),1.1*min(x),1.1*max(x)]); title('用时域卷积重建抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=0:(3*T0)/Ts; t1=0:Ts:3*T0;x1=sin(2*pi*f0*n/fs)+1/3*sin(6*pi*f0*n/fs);T_N=ones(length(n),1)*t1-n'*Ts*ones(1,length(t1)); xa=x1*sinc(fs*pi*T_N); subplot(4,1,i+1);plot(t1,xa);axis([min(t1),max(t1),1.1*min(xa),1.1*max(xa)]); end程序运行结果如图5-3所示:0.511.522.53用时域卷积重建抽样信号00.511.522.5300.511.522.530.511.522.53图5-32、频域抽样与信号恢复 (1)频域抽样定理从理论学习可知,在单位圆上对任意序列的Z 变换等间隔采样N 点得到:2πj k N2πjnk Nz=e n=-X(k)=X(z)=x(n)e∞∞∑ k=0,1,…,N-1该式实现了序列在频域的抽样。

那么由频域的抽样得到的频谱的序列能否不失真地恢复原时域信号呢? 由理论学习又知,频域抽样定理由下列公式表述:r=-x(n)=x(n+rN)∞∞∑表明对一个频谱采样后经IDFT 生成的周期序列x(n)是原非周期序列x(n)的周期延拓序列,其时域周期等于频域抽样点数N 。

假定有限长序列x(n)的长度为M ,频域抽样点数为N ,原时域信号不失真地由频域抽样恢复的条件如下:① 如果x(n)不是有限长序列,则必然造成混叠现象,产生误差;② 如果x(n)是有限长序列,且频域抽样点数N 小于序列长度M (即N<M ),则x(n)以N 为周期进行延拓也将造成混叠,从x(n)中不能无失真地恢复出原信号x(n)。

③ 如果x(n)是有限长序列,且频域抽样点数N 大于或等于序列长度M (即N ≥M ),则从x(n)中能无失真地恢复出原信号x(n),即 N N N N r=-x (n)=x(n)R (n)=x(n+rN)R (n)=x(n)∞∞∑ (2)从频谱抽样恢复离散时间序列 例5-4 已知一个时间序列的频谱为j ω-j ωn -j ω-j2ω-j3ω-j4ωn=-X(e )=x(n)e =3+2e +e +2e +3e ∞∞∑用IFFT 计算并求出其时间序列x(n),并绘图显示时间序列。

分析:该题使用了数字频率,没有给出采样周期,则默认Ts=1S,另外,从j ωX(e )的解析式可以直接看出时域序列xn=[3,2,1,2,3]。

但为说明问题,仍编写程序求解如下:程序清单如下: Ts=1;N0=[3,5,10]; for r=1:3; N=N0(r);D=2*pi/(Ts*N);kn=floor(-(N-1)/2:-1/2); kp=floor(0:(N-1)/2); w=[kp,kn]*D;X=3+2*exp(-j*w)+1*exp(-j*2*w)+2*exp(-j*3*w)+3*exp(-j*4*w); n=0:N-1; x=ifft(X,N)subplot(1,3,r);stem(n*Ts,abs(x)); box end程序运行结果如图5-4所示:012024图5-4注意:程序中数字频率的排序进行了处理,这是因为j ωX(e )的排列顺序是从0开始,而不是从-(N-1)/2开始。

程序运行后将显示数据:x=5.0000 5.0000 1.0000x=3.0000 2.0000 1.0000 2.0000 3.0000x=3.0000 - 0.0000i 2.0000 + 0.0000i 1.0000 - 0.0000i 2.0000 + 0.0000i 3.0000 - 0.0000 -0.0000 + 0.0000i 0 - 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i -0.0000 + 0.0000i由j ωX(e )的频谱表达式可知,有限长时间序列x(n)的长度M=5,现分别取频域抽样点数为N=3,5,10,由图5-4显示的结果可以验证:① 当N=5和N=10时,N ≥M ,能够不失真地恢复出原信号x(n); ② 当N=3时,N <M ,时间序列有泄漏,形成了混叠,不能无失真地恢复出原信号x(n)。

混叠的原因是上一周期的后2点与本周期的前两点发生重叠,如下所示:3 2 1 2 33 2 1 2 3例5-5 已知一个频率范围在[-62.8,62.8]rad/s 间的频谱sin0.275ΩX(j Ω)=sin0.025Ω,用IFFT 计算并求出时间序列x(n),用图形显示时间序列。

分析:本题给出了模拟频率Ω,其中Ωm=62.8,需将其归一化为数字频率。

根据奈奎斯特定理可知,(1/Ts )=Fs ≥(2Ωm/2π),可以推导出Ts ≤(π/Ωm ),取Ts=0.05s ,即采样频率Fs 为20Hz 或40π。

程序清单如下: wm=62.8;Ts=pi/wm; N0=[8,20]; for r=1:2N=N0(r);D=2*pi/(Ts*N); k=[0:N-1]+eps; omg=k*D;X=sin(0.275*omg)./sin(0.025*omg); n=0:N-1;x=abs(ifft(X,N));subplot(1,2,r);stem(n*Ts,abs(x)); box end程序运行结果如图5-5所示:00.10.20.30.4图5-5由N=20的结果可知,时间序列x(n)是一个矩形窗。

相关文档
最新文档