六年级奥数—牛吃草问题

合集下载

牛吃草问题解法公式

牛吃草问题解法公式

牛吃草问题解法公式牛吃草问题有这么几个公式哦。

一、基本公式(假设草匀速生长的情况)1. 草的生长速度 = (对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 你可以这么想哈,比如说有一群牛,多吃几天的话,那吃到的草就多。

这里面多出来的草量呢,其实就是多吃的这几天里草长出来的量。

那用多吃的草量除以多吃的天数,不就得到草每天生长的速度了嘛。

就像你种树,过了几天发现树多了一些,那多出来的树的数量除以过的天数就是树每天长的数量呀。

2. 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数- 这个呢,就是说原来草地上有的草量。

你想啊,牛吃的草量是牛头数乘以吃的天数,但是这里面有一部分是草自己长出来的呀,把草长出来的那部分(草的生长速度乘以吃的天数)减掉,剩下的就是原来草地上就有的草量啦。

就好比你存钱,你存进去的钱(牛吃的草量)有一部分是利息(草生长的量),把利息减掉,就是你最开始存的本金(原有草量)。

3. 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 这个公式就是说,当我们知道原来有多少草,也知道牛的数量和草生长的速度的时候,就可以算出这些牛能吃多少天。

你可以想象成有一堆食物(原有草量),有一些人(牛)在吃,同时食物还在慢慢增加(草生长),那用食物总量除以每天实际减少的量(牛头数减去草生长速度,因为草在长就相当于吃的量减少了),就得到能吃的天数啦。

4. 牛头数 = 原有草量÷吃的天数+草的生长速度- 这个就好比你知道有一堆活(原有草量)要干多少天(吃的天数),而且这个活还在慢慢增加(草生长速度),那你就能算出需要多少人(牛头数)来干这个活啦。

小学六年级奥数牛吃草问题公式及练习题

小学六年级奥数牛吃草问题公式及练习题

【导语】奥数是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。

以下是⽆忧考整理的《⼩学六年级奥数⽜吃草问题公式及练习题》相关资料,希望帮助到您。

1.⼩学六年级奥数⽜吃草问题公式 (1)草的⽣长速度=(对应的⽜头数×吃的较多天数-相应的⽜头数×吃的较少天数)÷(吃的较多天数-吃的较少天数) (2)原有草量=⽜头数×吃的天数-草的⽣长速度×吃的天数 (3)吃的天数=原有草量÷(⽜头数-草的⽣长速度) (4)⽜头数=原有草量÷吃的天数+草的⽣长速度 2.⼩学六年级奥数⽜吃草问题练习题 天⽓渐渐变冷,牧场上的草不仅不增长反⽽以固定的速度减少。

已知牧场上有⼀⽚草地,草地上的草可供给20头⽜吃5天,15头⽜吃6天,照这样计算可供给多少头⽜吃10天? 分析:设⼀头⽜⼀天吃的草为1份。

原有草量是固定的。

在⽜吃草的过程中,由于天⽓变冷,草每天都均匀的减少。

草每天减少的量是固定的。

那么原有草量-5天草的减少的量=20头⽜吃5天的草量=20×5=100份。

原有草量-6天草的减少量=15头⽜吃6天的草量=15×6=90份。

那么(100-90)÷(6天草的减少量-5天草的减少的量)就是草每天的减少量。

每天草的减少量:(100-90)÷(6-5)=10份。

原有草量:20×5+10×5=150(份)或者15×6+10×6=150(份) 牧场10天实际消耗的原有草量:10×10=100(份) 10天可供多少头⽜吃:(150-100)÷10=5(头)3.⼩学六年级奥数⽜吃草问题练习题 有⼀个蓄⽔池装有9根⽔管,其中⼀根为进⽔管,其余8根为相同的出⽔管。

(完整版)小学奥数之牛吃草问题(含答案)

(完整版)小学奥数之牛吃草问题(含答案)

“牛吃草问题就是追及问题,牛吃草问题就是工程问题。

”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。

解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。

----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

六年级牛吃草问题一

六年级牛吃草问题一

六年级奥数——牛吃草问题四个基本公式①草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)②原有草量=牛头数×吃的天数-草的生长速度×吃的天数③吃的天数=原有草量÷(牛头数-草的生长速度)④牛头数=原有草量÷吃的天数+草的生长速度典型例题例1 牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天?【分析】这片牧场上的牧草的数量每天在变化。

解题的关键应找到不变量——即原来的牧草数量。

因为总草量可以分成两部分:原有的草与新长出的草。

新长出的草虽然在变,但应注意到它是匀速生长的,因而这片牧场每天新长出飞草的数量也是不变的。

设1头牛1天吃的草为1份。

则每天新生的草量是(23×9-27×6)÷(9-6)=15份,原来的草量是(27-15)×6=72份。

可供21头牛吃72÷(21-15)=12天【思考1】一片草地,每天都匀速长出青草,如果可供24头牛吃6天,或20头牛吃10天,那么可供18头牛吃几天?例 2 因天气寒冷,牧场上的草不仅不生长,反而每天以均匀的速度在减少。

已知牧场上的草可供33头牛吃5天,可供24头牛吃6天,照此计算,这个牧场可供多少头牛吃10天?【分析】与例1不同的是,不但没有新长出的草,而且原有的草还在匀速减少,但是,我们同样可以用类似的方法求出每天减少的草量和原来的草的总量设一头牛一天吃的草量为一份。

牧场每天减少的草量:(33×5-24×6)÷(6-5)=21份,原来的草量:(33+21)× 5=270份,10天减少的草=10×21=210份【思考2】由于天气逐渐变冷,牧场上的草每天以固定的速度在减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。

小学六年级奥数系列讲座:牛吃草问题(含答案解析)

小学六年级奥数系列讲座:牛吃草问题(含答案解析)

牛吃草问题牛吃草问题在普通工程问题的基础上,工作总量随工作时间均匀的变化,这样就增加了难度.牛吃草问题的关键是求出工作总量的变化率.下面给出几例牛吃草及其相关问题.1. 草场有一片均匀生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?(这类问题由牛顿最先提出,所以又叫“牛顿问题”.)【分析与解】27头牛吃6周相当于27×6=162头牛吃1周时间,吃了原有的草加上6周新长的草;23头牛吃9周相当于23×9=207头牛吃1周时间,吃了原有的草加上9周新长的草;于是,多出了207-162=45头牛,多吃了9-6=3周新长的草.所以45÷3=15头牛1周可以吃1周新长出的草.即相当于给出15头牛专门吃新长出的草.于是27-15=12头牛6周吃完原有的草,现在有21头牛,减去15头吃长出的草,于是21-15=6头牛来吃原来的草;所以需要12×6÷6=12(周),于是2l头牛需吃12周.评注:我们求出单位“1”面积的草需要多少头年来吃,这样就把问题化归为一般工程问题了.一般方法:先求出变化的草相当于多少头牛来吃:(甲牛头数×时间甲-乙牛头数×时间乙)÷(时间甲-时间乙);再进行如下运算:(甲牛头数-变化草相当头数)×时问甲÷(丙牛头数-变化草相当头数)=时间丙.或者:(甲牛头数-变化草相当头数)×时间甲÷时间丙+变化草相当头数丙所需的头数.2.有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【分析与解】我们知道24×6=144头牛吃一周吃2个(2公顷+2公顷周长的草).36×12=432头牛吃一周吃4个(2公顷+2公顷12周长的草).于是144÷2=72头牛吃一周吃2公顷+2公顷6周长的草.432÷4=108头牛吃一周吃2公顷+2公顷12周长的草.所以108-72=36头牛一周吃2公顷12—6=6周长的草.即36÷6=d头牛1周吃2公顷1周长的草.对每2公顷配6头牛专吃新长的草,则正好.于是4公顷,配4÷2×6=12头牛专吃新长的草,即24-12=12头牛吃6周吃完4公顷,所以1头牛吃6×1÷(4÷2)=36周吃完2公顷.所以10公顷,需要10÷2×6=30头牛专吃新长的草,剩下50-30=20头牛来吃10公顷草,要36 ×(10÷2)÷20=9周.于是50头牛需要9周吃10公顷的草.3.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光.(在这2天内其他草地的草正常生长)之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外号的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?【分析与解】一群牛,2天,吃了1块+1块2天新长的;一群牛,6天,吃了2块+2块2+6=8天新长的;即3天,吃了1块+1块8天新长的.即16群牛,1天,吃了1块1天新长的.又因为,13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,它们同时吃完.所以,③=2⨯阴影部分面积.于是,整个为19422+=块地.那么需要193624⨯=群牛吃新长的草,于是19 1262 -⨯⨯()=现在314⨯-().所以需要吃:19312130624-⨯⨯÷-()()=天.所以,一开始将一群牛放到整个草地,则需吃30天.4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【分析与解】我们注意到:牛、马45天吃了原有+45天新长的草① →牛、马90天吃了2原有+90天新长的草⑤马、羊60天吃了原有+60天新长的草②牛、羊90天吃了原有+90天新长的草③↓↓↓马 90天吃了原有+90天新长的草④所以,由④、⑤知,牛吃了90天,吃了原有的草;再结合③知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的草.所以,②知马60天吃完原有的草,③知牛90天吃完原有的草.现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草.所需时间为l÷11()9060+=36天.所以,牛、羊、马一起吃,需36天.5. 有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?【分析与解】由于三片牧场的公顷数不一致,给计算带来困难,如果将其均转化为1公顷时的情形.所以表1中,3.6-0.9=2.7头牛吃4星期吃完l公顷原有的草,那么18星期吃完1公顷原有的草需要2.7÷(18÷4)=0.6头牛,加上专门吃新长草的O.9头牛,共需0.6+0.9=1.5头牛,18星期才能吃完1公顷牧场的草.所以需1.5×24=36头牛18星期才能吃完第三片牧场的草.。

六年级奥数牛吃草问题应用题专项练习

六年级奥数牛吃草问题应用题专项练习

牛吃草问题专项练习(1)11头牛10天可吃完5公顷草,12头牛14天可吃完6公顷全部牧草,问8公顷草地可供19头牛吃多少天?(假设每块草地每公顷每天牧草长得一样快)(2)12头牛28天可吃完10公亩牧场上全部牧草,21头牛63天可吃完30公亩牧场上全部牧草.多少头牛126天可吃完72公亩牧场上全部牧草?(每公亩牧场上原有的草量相等,且每公亩牧场上每天草的生长量相同)(3)22头牛,吃33公亩牧场的草54夭可吃尽,17头牛吃同样牧场28公亩的草,‘84天可吃尽.请问几头牛吃同样牧场40公亩的草,24天可吃尽?(4)仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。

用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。

仓库里原有的存货若用1辆汽车运则需要多少天运完?(5)超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。

某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了?(6)春节期间,某火车站已有不少的旅客在候车室等候验票,并且前来验票上车的旅客按照一定的速度在增加,如果只开放一个窗口验票,需要半小时全部旅客才能进站上车;如果开放两个窗口,则需要10分钟全部旅客就可进站上车了。

然而,现在等候上车的时一列加班车,必须在5分钟内全部上车,准点上车。

那么这个火车站至少要同时开放多少个窗口?(7)村民组织抗旱,从一个地下泉水挑水浇地。

如果50人挑,20小时就把水挑完;如果70人挑水,10小时也可挑完。

现在有130人挑,几小时可把水挑完?(8)哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了100级。

在相同的时间内,妹妹沿着自动扶梯从底向上走到顶,共走了50级。

如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有多少级?(9)画展9点开门,但早就有人排队等候入场了。

六年级奥数-“牛吃草”问题

六年级奥数-“牛吃草”问题

“牛吃草”问题专题简析:牛吃草问题是牛顿问题,因牛顿提出而得名的。

“一堆草可供10头牛吃3天,供6头牛吃几天?”这题很简单,用3×10÷6=5(天),如果把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了。

因为草每天走在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题。

解答这类题的关键是要想办法从变化中找到不变的量。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以每天新长出的草是不变的。

正确计算草地上原有的草及每天长出的草,问题就容易解决了。

例1:一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?这片草地上的草的数量每天都在变化,解题的关键应找到不变量——即原来的草的数量。

因为总草量可以分成两部分:原有的草与新长出的草。

新长出的草虽然在变,但应注意到是匀速生长,因而这片草地每天新长出的草的数量也是不变的。

假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份),此时新草与原有的草均被吃完;23头牛9周需吃23×9=207(份),此时新草与原有的草也均被吃完。

而162份是原有的草的数量与6周新长出的草的数量的总和;207份是原有的草的数量与9周新长出的草的数量的总和,因此每周新长出的草的份数为:(207-162)÷(9-6)=15(份),所以,原有草的数量为:162-15×6=72(份)。

这片草地每周新长草15份相当于可安排15头牛专吃新长出来的草,于是这片草地可供21 头牛吃72÷(21-15)=12(周)练习11、一片草地,每天都匀速长出青草,如果可供24头牛吃6天,20头牛吃10天,那么可供19头牛吃几天?2、牧场上一片草地,每天牧草都匀速生长,这片牧草可供10头牛吃20天,或者可供15头牛吃10天,问可供25头牛吃几天?3、牧场上的青草每天都在匀速生长,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?例2:由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

小学奥数六年级牛吃草的问题(含答案)

小学奥数六年级牛吃草的问题(含答案)

小学奥数六年级牛吃草的问题(含答案)1、一块草原长满草,每天牧草都均匀生长.这片草原可供10头牛吃20天,可供15头牛吃10天。

问:可供25头牛吃多少天?1.解析:设1头牛1天吃1份牧草,则牧草每天的生长量:(10×20-15×10)÷(20-10)=5(份),原有草量:10×20-5×20=100(份),则可供25头牛吃100÷(25-5)=5天。

2、12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草。

多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?2.解析:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份),每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份),则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份),可供养4536÷126=36头牛。

3、现欲将一池塘水全部抽干,但同时有水匀速流入池塘。

若用8台抽水机10天可以抽干;用6台抽水机20天能抽干。

问:若要5天抽干水,需多少台同样的抽水机来抽水?3.解析:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位,池塘中原有水量:6×20-4×20=40单位。

若要5天内抽干水,需要抽水机40÷5+4=12台。

4、一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?4.解析:设每人每小时的淘水量为“1个单位”,则船内原有水量与3小时内漏水总量之和为:1×3×10=30单位,船内原有水量与8小时漏水量之和为1×5×8=40单位,说明8-3=5小时进水40-30=10单位,即进水速度为每小时10÷5=2单位,而发现漏水时,船内已有30-2×3=24单位的水了。

六年级数学下册《牛吃草问题》例题+答案

六年级数学下册《牛吃草问题》例题+答案
注水的速度:(15×3-6×6)÷(15-6)=1(份/分钟)
原有水量:15×3-15×1=30(份)
需要的时间:30÷(4-1)=10(分钟)
答:10分钟后可以将水排光。
解析∶设1头牛1天吃草1份
每天固定减少的草量:(20×5-15×6)÷(6-5)=10(份/天)
原有草总量=牛吃草量+固定减少草量
原有草量:20×5+10×5=150(份)
牛的头数:150÷10-10=5(头)
答:这块草地可供5头牛吃10天。
4.牧场上有一片青草,每天匀速生长,已知 15 头牛 10 天可以吃完这片青草,25 头牛 5 天可吃完这片青草,如果有 30 头牛,那么几天可吃完这片青草?
六年级数学下册
《牛吃草问题》例题+答案,练习掌握
牛吃草问题的重要公式
前提条件∶每头牛单位时间内吃的草量是相同的四个公式∶
①草长速度=总草量差÷总时间差
②原草量数=总草量数-草长速度×吃草时间
③吃草时间=原草量数÷(牛的总数-吃新草牛数)
④牛的总数=原草量数÷吃草时间+吃新草牛数
1.若这片草地,草匀速生长。该草地可供14头牛吃30天或供20头牛吃20天。那么该片草地每天新长的草可供2头牛吃多少天?
5.小诗博士的实验室内有一个水槽,水槽有1根注水管和6根排水管。打开注水管后,水不停地匀速流入水槽。若干分钟后,小诗博士想把水排出。如果将排水管全部打开,6分钟可以将水排光如果只打开3根排水管,15分钟可以将水排光。如果小诗博士同时打开4根排水管,多少分钟后可以将水排光?
解析∶假设一根排水管一分钟排出1份水
解析∶假设1头牛1天吃1份草;
那么,14头牛30天吃14×1×30=420(份)
20头牛20天吃20×1×20=400(份)

六年级奥数牛吃草问题练习题及答案

六年级奥数牛吃草问题练习题及答案

六年级奥数牛吃草问题练习题及答案〔1〕牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃9周。

假如牧草每周匀速生长,可供21头牛吃几周?27×6=162 23×9=207 207-162=45 45/(9-6)=15每周生长数162-15×6=72(原有量) 72/(21-15)=12周〔2〕有一口水井,假如水位降低,水就不断地匀速涌出,且到了一定的水位就不再上升。

如今用水桶吊水,假如每分吊4桶,那么15分钟能吊干,假如每分钟吊8桶,那么7分吊干。

如今需要5分钟吊干,每分钟应吊多少桶水?4×15=60 8×7=56 60-56=44/(15-7)=0.5(每分钟涌量)60-15×0、5=52、5〔原有水量〕52、5+/(5×0.5)/5=11桶〔3〕有一片牧草,每天以均匀的速度生长,如今派17人去割草,30天才能把草割完,假如派19人去割草,那么24天就能割完。

假如需要6天割完,需要派多少人去割草?17×30=510 19×24=456 510-456=5454/(30-24)=9每天生长量510-30×9=240原有草量240+6×9=294294/6=49人〔4〕有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,如今这桶酒假如给6人喝,4天可喝完;假如由4人喝,5天可喝完。

这桶酒每天漏掉的酒可供几人喝一天?6×4=24 4×5=20 24-20=44/(5-4)=4每天漏掉数24+4×4=40原有数这桶酒每天漏掉的酒可供4人喝一天?〔5〕一水库存水量一定,河水均匀入库。

5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。

假设要6天抽干,需要多少台同样的抽水机?5×20=100 6×15=90 100-90=10 10/〔20-15〕=2每天入库数100-20×2=60原有库存数60+2×6=7272/6=12台〔6〕自动扶梯以均匀速度由下往上行驶,小明和小红要从扶梯上楼,小明每分钟走20梯级,小红每分钟走14梯级,结果小明4分钟到达楼上,小红用5分钟到达楼上,求扶梯共有多少级?20×4=80 14×5=70 80-70=10 10/〔5-4〕=10每分钟减少数80+4×10=120原有数70+5×10=120〔7〕:两只蜗牛由于耐不住阳光照射,从井顶走向井底,白天往下走,一只蜗牛一个白天能走20分米,另一只只能走15分米;黑夜里往下滑,两只蜗牛下滑速度一样,结果一只蜗牛5昼夜到达井底,另一只却恰好用了6昼夜。

六年级奥数—牛吃草问题

六年级奥数—牛吃草问题

六年级奥数——牛吃草问题牛吃草问题常用到四个基本公式;分别是:①草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数②原有草量=牛头数×吃的天数-草的生长速度×吃的天数③吃的天数=原有草量÷牛头数-草的生长速度④牛头数=原有草量÷吃的天数+草的生长速度这四个公式是解决牛吃草问题的基础..一般设每头牛每天吃草量不变;设为"1";解题关键是弄清楚已知条件;进行对比分析;从而求出每日新长草的数量;再求出草地里原有草的数量;进而解答题总所求的问题..练习1.牧场上长满牧草;草平均匀速生长;这片牧场可供10头牛吃20天;可供15头牛吃10天..问可供25头牛吃几天2.一块草地长满了草;草每天还在匀速生长..已知3头牛36天可把草吃光;5头牛20天可把草吃光..现在要求12天把草吃光;需要几头年牛去吃3.一块草地长满了草;草每天匀速生长..如果17头牛去吃;30天可把草吃光;如果19头牛去吃;24天可把草吃光..现在有若干头牛去吃草;吃了6天后;4头牛死亡;余下的牛继续吃了2天才将草吃光..问原来有多少头牛4.一个水池装有1根进水管和8根相同的排水管..先打开进水管给水池注入一定数量的水;然后同时打开排水管排水;当然进水管还在继续进水..如果打开全部排水管;则3个小时可将水池中的水排光;如果只打开3根排水管;则要18小时才能将水池中的水排光..问:想要8小时排光池中的水;至少需打开几根排水管5.三块草地长满草;草每天匀速生长..第一块草地33亩;可供22头牛吃54天;第二块草地28亩;可供17头牛吃84天;第三块草地40亩;可供多少头牛吃24天6.牧场上的青草每天都在匀生长..这片牧场可供27头牛吃6天;或者可供23头牛吃9天..那么可供21头牛吃几天7.有一片牧场;草每天都匀速生长草每天增长量相等;如果放牧24头牛;则6天吃完牧草;如果放牧21头牛;则8天可吃完牧草;假设每头牛吃草的量是相等的..1如果放牧16头牛;几天可以吃完牧草 2要使牧草永远吃不完;最多可放多少头牛8.有一水池;池底不断有泉水匀速涌出..用10台抽水机20小时可将水抽干;用15台相同的抽水机10小时可将水抽干..问用25台抽水机多少小时可将水抽干9.一块草地;草每天匀速生长..10头牛3天可吃光;5头牛8天可吃光..如果2天要吃光;需要多少头牛来吃10.一湖存有一定量的水;流入均匀入湖..5台抽水机20天可抽干..6台同样的抽水机15天可抽干..若要求6天抽干;需几台这样的抽水机11.一个水池有10根进水管和10根相同的排水管..先打开进水管给水池注入一定的水;然后同时打开排水管进水管不关闭..如果打开10根排水管;则3个小时可将水池里的水排光;如果打6根排水管;则6个小时可将水池里的水排光..问想要10个小时排空水池;则至少要开几根排水管12.一片牧场;可供18头牛吃4天;可供23头牛吃3天..现在有13头牛;放牧了3天后;又购进5头牛..问还吃几天;正好吃完全部的草13.由于天气逐渐冷起来;牧场上的草不仅不增加;反而以固定的速度在减少..已知某牧场的草可供20头牛吃5天或可供15头牛吃6天;照此计算可供多少头牛吃10天14.某车站在检票前若干分钟就开始排队;每分钟来的旅客人数一样多;从开始检票到等候检票的队伍消失;同时开4个检票口需30分钟;同时开5个检票口需20分钟;如果同时开7个检票口;那么需要多少分钟15.仓库里原有一批存货;后又陆续运货进仓;且每天运进的货一样多..用同样的汽车运货出仓;如果每天用4辆汽车;则9天恰好运完;如果每天用5辆汽车;则6天恰好运完..仓库原有的存货若用1辆汽车运;则需要多少天才能运完16.有快;中;慢三辆车同时从同一地点出发;沿同一公路追赶前面的一个骑车人;这三辆车分别有6他钟;10分钟和12分钟追上了骑车人..现在已知快车速度为24千米/小时;中速车速度为20千米/小时;那么慢速车每小时走多少千米。

六年级奥数牛吃草问题

六年级奥数牛吃草问题

牛吃草问题(一)1、一个牧场长满青草,牛在吃草而草又不断生长。

27头牛6天可以把牧场的草全部吃完;23头牛吃完全部牧场的草则要9天,若是让21头牛来吃,多少天可吃完?2、牧场上长满牧草,每天牧草都匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天,那么供25头牛吃几天?3、一片草地,每天都匀速长出青草。

如果可供24只羊吃6周,20只羊吃10周吃完。

那么可供19只羊吃多少周?4、牧场上的青草每天都在匀速生长。

这片牧草可供27头牛吃6周或供23头牛吃9周。

那么可供21头牛吃几周?5、有一片牧场上的草均匀地生长。

如果4只羊吃草,15天可以把草吃完;如果8只羊吃草,7天可以把草吃完;若想5天把草吃完,需要多少只羊?6、某化肥厂除原有的一堆化肥外,每天都生产出相同数量的化肥。

这个化肥厂的化肥用汽车来运,用16辆汽车32天恰好运完,用24辆汽车16天恰好运完,如果要8天恰好运完,那么需要多少辆汽车来运?7、有一片牧草,每天匀速生长,它可供17只羊吃30天,或可供19只羊吃24天。

现在若干只羊,6天后卖了4只。

余下的羊2天将草吃完,那么,原来有多少只羊?8、有一片牧场上的草每天生长的速度相同。

草可以供10头牛吃10个星期,或供24只羊吃20个星期。

已知1头牛和3只羊吃的草量相同。

那么10头牛和12只羊一起吃草,可以吃多少个星期?9、自动扶梯匀速由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级台阶,女孩每分钟走15级台阶,结果男孩用5分钟到达楼上,女孩用了6分钟到达楼上。

该扶梯共有多少级台阶?10自动扶梯以均匀速度行驶着,小明和小红要从扶梯上楼。

已知小明每分钟走25级台阶,小红每分钟走20级台阶,结果小明用5分钟,小红用了6分钟分别到达楼上。

该扶梯共多少级台阶?11、两个顽皮的孩子逆着自动扶梯的方向行走。

在20秒钟里,男孩可走27级台阶,女孩可走24级台阶,男孩走了2分钟到达另一端,女孩走了3分钟到达另一端,该扶梯共多少级台阶?12、两个顽皮的兄弟俩逆着自动扶梯行驶的方向行走,哥哥每秒走3级梯级,弟弟每秒走2级梯级,结果从一端到另一端,哥哥用了100秒,弟弟用了300秒。

六年级奥数第39周牛吃草问题

六年级奥数第39周牛吃草问题

第三十九周“牛吃草”问题专题简析:牛吃草问题是牛顿问题,因牛顿提出而得名的.“一堆草可供10头牛吃3天,供6头牛吃几天?”这题很简单,用3×10÷6=5(天),如果把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了.因为草每天走在生长,草的数量在不断变化.这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题.解答这类题的关键是要想办法从变化中找到不变的量.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以每天新长出的草是不变的.正确计算草地上原有的草及每天长出的草,问题就容易解决了.例1:一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?这片草地上的草的数量每天都在变化,解题的关键应找到不变量——即原来的草的数量.因为总草量可以分成两部分:原有的草与新长出的草.新长出的草虽然在变,但应注意到是匀速生长,因而这片草地每天新长出的草的数量也是不变的.假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份),此时新草与原有的草均被吃完;23头牛9周需吃23×9=207(份),此时新草与原有的草也均被吃完.而162份是原有的草的数量与6周新长出的草的数量的总和;207份是原有的草的数量与9周新长出的草的数量的总和,因此每周新长出的草的份数为:(207-162)÷(9-6)=15(份),所以,原有草的数量为:162-15×6=72(份).这片草地每周新长草15份相当于可安排15头牛专吃新长出来的草,于是这片草地可供21 头牛吃72÷(21-15)=12(周)练习11、一片草地,每天都匀速长出青草,如果可供24头牛吃6天,20头牛吃10天,那么可供19头牛吃几天?2、牧场上一片草地,每天牧草都匀速生长,这片牧草可供10头牛吃20天,或者可供15头牛吃10天,问可供25头牛吃几天?3、牧场上的青草每天都在匀速生长,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?例2:由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少.已知某块草地上的草可供20头牛吃5天或可供15头牛吃6天.照此计算,可供多少头牛吃10天?与例1不同的是,不仅没有新长出的草,而且原有的草还在减少,但是,我们同样可以利用与例1类似的方法求出每天减少的草和原来的草的总量.设1头牛1天吃的草为1份,20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷的天气使牧场1天减少青草10份,也就是寒冷导致的每天减少的草量相当于10头牛在吃草.由“草地上的草可供20头牛吃5天”,再加上寒冷导致的每天减少的草量相当于10头牛同时在吃草,所以原有草两有(20+10)×5=150(份),由150÷10=15知道,牧场原有的草可供15头牛吃10天.由寒冷导致的原因占去10头牛吃的草,所以可供5头牛吃10天.练习2:1、由于天气逐渐冷起来,牧场上的草每天以均匀的速度在减少.经计算,牧场上的草可供20头牛吃5天或可供16头牛吃6天.那么,可供11头牛吃几天?2、由于天气逐渐冷起来,牧场上的草以固定速度在减少.已知牧场上的草可供33头牛吃5天或可供24头牛吃6天.照此计算,这个牧场可供多少头牛吃10天?3、经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球新生成的资源增长速度是一样的,那么,为满足人类不断发展的需要,地球最多能养活多少亿人?例3:自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级台阶,女孩每分钟走15级台阶,结果男孩用5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级台阶?与前两个题比较,“总的草量”变成了“扶梯的台阶总数”,“草”变成了“台阶”,“牛”变成了“速度”,也可以看成是牛吃草问题.上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度.男孩5分钟走了20×5=100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100—90=10(级),多用了6—5=1(分钟),说明电梯1分钟走10级.因男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和.所以,扶梯共有(20+10)×5=150(级)练习3:1、自动扶梯以均匀速度行驶着,渺小明和小红从扶梯上楼.已知小明每分钟走25级台阶,小红每分钟走20级台阶,结果小明用5分钟,小红用了6分钟分别到达楼上.该扶梯共有多少级台阶?2、两个顽皮的孩子逆着自动扶梯的方向行走.在20秒钟里,男孩可走27级台阶,女孩可走24级台阶,男孩走了2分钟到达另一端,女孩走了3分钟到达另一端,该扶梯共有多少级台阶?3、两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的.一只每天白天爬20分米,另一只爬15分米.黑夜里往下滑,两只蜗牛滑行的速度却是相同的.结果一只蜗牛恰好用了5个昼夜到达井底,另一只蜗牛恰好用了6个昼夜到达井底.那么,井深多少米?例题4:一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进了一些水.如果用12人舀水,3小时舀完.如果只有5个人舀水,要10小时才能舀完.现在要想2小时舀完,需要多少人?已漏进的水,加上3小时漏进的水,每小时需要(12×3)人舀完,也就是36人用1小时才能舀完.已漏进的水,加上10小时漏进的水,每小时需要(5×10)人舀完,也就是50人用1小时才能舀完.通过比较,我们可以得出1小时内漏进的水及船中已漏进的水.1小时漏进的水,2个人用1小时能舀完:(5×10—12×3)÷(10—3)=2已漏进的水:(12—2)×3=30已漏进的水加上2小时漏进的水,需34人1小时完成:30+2×2=34用2小时来舀完这些水需要17人:34÷2=17(人)练习4:1、有一水池,池底有泉水不断涌出.用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可以把水抽干.那么用25部这样的抽水机多少小时可以把水抽干?2、有一个长方形的水箱,上面有一个注水孔,底面有一个出水孔,两孔同时打开后,如果每小时注水30立方分米,7小时可以注满水箱;如果每小时注水45立方分米,注满水箱可少用2.5小时.那么每小时由底面小孔排出多少立方分米的水(设每小时排水量相同)?3、有一水井,连续不段涌出泉水,每分钟涌出的水量相等.如果用3台抽水机来抽水,36分钟可以抽完;如果使用5台抽水机,20分钟抽完.现在12分钟内要抽完井水,需要抽水机多少台?例题5:有三块草地,面积分别为5,6,和8公顷.草地上的草一样厚,而且长得一样快.第一块草荐地可供11头牛吃10天,第二块草地可供12头牛吃14天.问第三块草地可供19头牛吃多少天?前几天我们接触的是在同一块草地上,同一个水池中,现在是三块面积不同的草地.为了解决这个问题,只需将三块草地的面积统一起来.即[5,6,8]=120这样,第一块5公顷可供11头牛吃10天,120÷5=24,变为120公顷草地可供11×24=264(头)牛吃10天第二块6公顷可供12头牛吃14天,120÷6=20,变为120公顷草地可供12×20=240(头)牛吃14天.120÷8=15.问题变成:120公顷草地可供19×15=285(头)牛吃几天?因为草地面积相同,可忽略具体公顷数,原题可变为:一块草地匀速生长,可供264头牛吃10天或供240头牛吃14天, 那么可供285头牛齿及天?即每天新长出的草:(240×14—264×10)÷(14—10)=180(份)草地原有草:(264—180)×10=840(份)可供285头牛吃的时间:840÷(285—180)=8(天)答:第三块草地可供19头牛吃8天.练习5:1、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?2、快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车,三车的速度分别是嵋小时24千米、20千米、19千米.快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用多少小时?3、一个牧场上的青草每天都匀速生长.这片青草可供17头牛吃30天,或供19头牛吃24天.现有一群牛吃了6天后卖掉4头,余下的牛又吃了2天将草吃完.这群牛原来有多少头?。

牛吃草问题 奥数 六年级

牛吃草问题 奥数 六年级

【经典例题】例题1:有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?习题1:有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?例题2:有一牧场长满草,每天牧草匀速生长。

这个牧场可供17头牛吃30天,可供19头牛吃24天。

现有牛若干头在吃草,6天后,杀了4头牛,余下的牛吃了2天将草吃完。

问原来有牛多少头?习题2:牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?例题3:一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。

如果有10个人淘水,6小时可以淘完;如果只有6人淘水,要18小时才能淘完。

求22人几小时可以淘完?习题3:一只船发现漏水时,已经进了一些水,水匀速进入船内,如果10个人舀水,3小时可以舀完;如果5个人舀水,8小时可以舀水,如果要求2小时舀完,那么要安排多少人舀水?例题4:有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?习题4:有一眼泉水,用功率一样的3台抽水机去抽井水,同时开机,40分钟可以抽干;用同样的6台抽水机去抽,则只需要16分钟就可以抽干,那么用同样的抽水机9台,几分钟可以抽干?例题5:一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用10台抽水机排水,则用30分钟能排完;如果用15台同样的抽水机排水,则用15分钟排完。

问如果计划用10分钟将水排完,需要多少台抽水机?习题5:一个水池安装有排水量相等的排水管若干根,一根入水管不断地往池里防水,平均每分钟入水量相等,如果同时开放3根排水管,45分钟可以把池中水排完;同时,开放5根排水管25分钟把池中水排完,那么,同时开放8根排水管,几分钟排完池中的水?【基础训练】1. 某牧场上的草,若用17人去割,30天可以割尽,若用19人去割,则只要24天便可割尽,问用多少人割,6天可以割尽?2、牧场上长满牧草,每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

小学奥数牛吃草问题的4个基本公式及经典题型

小学奥数牛吃草问题的4个基本公式及经典题型

小学奥数牛吃草问题的4个基本公式及经典题型牛吃草问题,又称波动问题或牛顿牧场问题,是17世纪英国大科学家牛顿提出的。

放牛问题是小学奥数中经典的奥数题之一,也是小学奥数考试中经常涉及的考点。

在小学这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题所求的问题。

小学奥数牛吃草问题:例1一片牧场南面一块15公顷的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供12头牛吃25天,或者供24头牛吃10天。

在牧场的西侧有一块60公顷的牧场,20天中可供多少头牛吃草?【解析】设1头牛1天的吃草量为"1",摘录条件,将它们转化为如下形式方便分析12头牛 25天12×25=300 :原有草量+25天自然减少的草量24头牛 10天24×10=240 :原有草量+10天自然减少的草量从上易发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;那么15公顷的牧场上原有草量:300-25×4=200;则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800.20天里,草场共提供草800+16×20=1120,可以让1120÷20=56(头)牛吃20天。

小学六年级小升初培优奥数- 牛吃草问题

小学六年级小升初培优奥数- 牛吃草问题

牛吃草问题把研究一片草地上的草,可以让多少头牛在一定时间把草吃完的这类问题称为“牛吃草”问题。

在“牛吃草”问题中,草地原有草量、每天新增草量(或者减少量)、每头牛每天吃草量,这三者都是固定不变的量他们之间存在一定的关系。

☜知识要点解答这类问题的关键,就是要抓住草地总草量的变化来推算:一般首先假设每天每头牛吃草量为1份,在根据其中的相互关系求出每天新长的草的份数、原有草量的份数。

在这三个不变量知道后,就可解决其他问题了。

1、每日新增草量=(牛头数×吃的较多天数-牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);2、原有草量=牛头数×吃的天数-每日新增草量×吃的天数;`3、吃的天数=原有草量÷(牛头数-草的生长速度);4、牛头数=原有草量÷吃的天数+每日新增草量☜精选例题【例1】:一个牧场长满青草,青草每日的生长速度都相同,如果让27头去牧场吃草,6天可以把草全部吃完;如果让23头去牧场吃草,9天可以把草全部吃完,要是让21头牛去吃草,多少天可以吃完? 思路点拨:假设1头牛1天吃1份草,27头牛6天吃的草量和23头牛9天吃的草量就相差23×9-27×6=45(份),为什么会相差45份草?因为23头牛要比27头牛多吃3天,这45份草,就是这三天草的增长量,那么草每天增长量为45÷(9-6)=15(份)。

27头牛6天吃完牧场上全部的草,草每天有增加15份,那这个牧场原有的草量:(27-15)×6=72(份)。

现在让21头牛来吃草,先让15头去出每天长出来的,就可以看做草不再生长,那么就看剩下的牛多少天可以把72份草吃完,就可以求出吃草的时间。

☝标准答案:解:每头牛每天吃1份草;草每日新增量:(23×9-27×6)÷(9-6)=15(份)原有草量:(27-15)×6=72(份)21头牛吃的天数:72÷(21-15)=12(天)✌活学巧用1. 一片草地,青草每天都在均匀的生长,可供24头牛吃6天,或者让20头牛吃10天,那么可供19头牛吃多少天?2. 龙里大草原上的一片放牧区的草每天以固定的速度生长,牧场上的草可供25只羊吃24天,或者让20只羊吃36天,这片放牧区的草如过要在18天吃完,要放多少只羊来吃草?3. 一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天。

六年级奥数牛吃草问题精讲

六年级奥数牛吃草问题精讲

牛吃草问题精讲加油站解“牛吃草”问题的主要依据:1.草的每天生长量不变;2.每头牛每天的食草量不变;3.草的总量=草场原有的草量+再生的草量,4.再生的草量=每天生长量×天数。

【例 2】(★★)【例 1】(★★)有一片牧场,草每天都在均匀地生长.若是在牧场上放养 24 头牛,那么 6 天就把草吃完了;若是只放养 21 头牛,那么 8 天才把草吃完。

请问:⑴要使得草永远吃不完,最多可以放养多少头牛?⑵若是放养 36 头牛,多少天可以把草吃完?【例 3】(★★★)进入冬季后,有一片牧场上的草开始枯败,因此草会均匀地减少,现在开始在这片牧场上放羊,若是有 38 只羊,把草吃完需要 25 天;若是有 30 只羊,把草吃完需要 30 天,若是有 20 只羊,这片牧场可以吃多少天?一个农民有面积为 2 公顷、 4 公顷和 6 公顷的三块牧场.三块牧场上的草长得同样密,而且长得同样快.农民将8 头牛赶到 2 公顷的牧场,牛 5天吃完了草;若是农民将 8 头牛赶到 4 公顷的牧场,牛 15 天可吃完草.问:若农民将这 8 头牛赶到 6 公顷的牧场,这块牧场可供这些牛吃几天?1【例 4 】(★★★★)第一、二、三号牧场的面积依次为 3 公顷、 5 公顷、 7 公顷,三个牧场上的草长得同样密,且生长得同样快 .有两群牛,第一群牛 2 天将一号牧场的草吃完,又用 5 天将二号牧场的草吃完 .在这 7 天里,第二群牛恰好将三号牧场的草吃完 .若是第一群牛有 15 头,那么第二群牛有多少头?【例 6】(★★★★)如图,一块正方形的草地被分成完好相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天此后把①号草地的草吃光 (在这 2 天内其他草地的草正常生长 ).此后他让一半牛在②号草地吃草,一半牛在③号草地吃草, 6 天后又将两个草地的草吃光.尔后牧民把的牛放在阴影部分的草地中吃草,别的的牛放在④ 号草地吃草,结果发现它们同时把草场上的草吃完.那么若是一开始23就让这群牛在整块草地上吃草,吃完这些草需要多少时间?3①④②③【例 5】(★★★★★)一片匀速生长的牧草,若是让马和牛去吃,15 天将草吃尽;若是让马和羊去吃, 20 天将草吃尽;若是让牛和羊去吃,30 天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?【例 7 】(★★★★)小方用一个有洞的杯子从水缸里往三个同样的容积的空桶中舀水。

小学六年级奥数第39讲 “牛吃草”问题(含答案分析)

小学六年级奥数第39讲 “牛吃草”问题(含答案分析)

第39讲“牛吃草”问题一、知识要点牛吃草问题是牛顿问题,因牛顿提出而得名的。

“一堆草可供10头牛吃3天,供6头牛吃几天?”这题很简单,用3×10÷6=5(天),如果把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了。

因为草每天走在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题。

解答这类题的关键是要想办法从变化中找到不变的量。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以每天新长出的草是不变的。

正确计算草地上原有的草及每天长出的草,问题就容易解决了。

二、精讲精练【例题1】一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?这片草地上的草的数量每天都在变化,解题的关键应找到不变量——即原来的草的数量。

因为总草量可以分成两部分:原有的草与新长出的草。

新长出的草虽然在变,但应注意到是匀速生长,因而这片草地每天新长出的草的数量也是不变的。

假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份),此时新草与原有的草均被吃完;23头牛9周需吃23×9=207(份),此时新草与原有的草也均被吃完。

而162份是原有的草的数量与6周新长出的草的数量的总和;207份是原有的草的数量与9周新长出的草的数量的总和,因此每周新长出的草的份数为:(207-162)÷(9-6)=15(份),所以,原有草的数量为:162-15×6=72(份)。

这片草地每周新长草15份相当于可安排15头牛专吃新长出来的草,于是这片草地可供21 头牛吃72÷(21-15)=12(周)练习11、一片草地,每天都匀速长出青草,如果可供24头牛吃6天,20头牛吃10天,那么可供19头牛吃几天?2、牧场上一片草地,每天牧草都匀速生长,这片牧草可供10头牛吃20天,或者可供15头牛吃10天,问可供25头牛吃几天?3、牧场上的青草每天都在匀速生长,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?【例题2】由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

六年级牛吃草问题一

六年级牛吃草问题一

六年级奥数——牛吃草问题四个基本公式①草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数②原有草量=牛头数×吃的天数-草的生长速度×吃的天数③吃的天数=原有草量÷牛头数-草的生长速度④牛头数=原有草量÷吃的天数+草的生长速度典型例题例1 牧场上长满牧草,每天都匀速生长;这片牧场可供27头牛吃6天或23头牛吃9天;问可供21头牛吃几天分析这片牧场上的牧草的数量每天在变化;解题的关键应找到不变量——即原来的牧草数量;因为总草量可以分成两部分:原有的草与新长出的草;新长出的草虽然在变,但应注意到它是匀速生长的,因而这片牧场每天新长出飞草的数量也是不变的;设1头牛1天吃的草为1份;则每天新生的草量是23×9-27×6÷9-6=15份,原来的草量是27-15×6=72份;可供21头牛吃72÷21-15=12天思考1一片草地,每天都匀速长出青草,如果可供24头牛吃6天,或20头牛吃10天,那么可供18头牛吃几天例2 因天气寒冷,牧场上的草不仅不生长,反而每天以均匀的速度在减少;已知牧场上的草可供33头牛吃5天,可供24头牛吃6天,照此计算,这个牧场可供多少头牛吃10天分析与例1不同的是,不但没有新长出的草,而且原有的草还在匀速减少,但是,我们同样可以用类似的方法求出每天减少的草量和原来的草的总量设一头牛一天吃的草量为一份;牧场每天减少的草量:33×5-24×6÷6-5=21份,原来的草量:33+21× 5=270份,10天减少的草=10×21=210份思考2由于天气逐渐变冷,牧场上的草每天以固定的速度在减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天;那么,可供11头牛吃几天知识衍变牛吃草基本问题就先介绍到这,希望大家掌握这种方法,以后出现样吃草问题,驴吃草问题也知道怎么做,甚至,以下这些问题都可以应用牛吃草问题解决方法例3 自动扶梯以均匀速度由下往上行驶,小明和小丽从扶梯上楼,已知小明每分钟走25级台阶,小丽每分钟走20级台阶,结果小明用了5分钟,小丽用了6分钟分别到达楼上;该扶梯共有多少级台阶分析在这道题中,“总的草量”变成了“扶梯的台阶总级数”,“草”变成了“台阶”,“牛”变成了“速度”,所以也可以看成是“牛吃草”问题来解答;该自动扶梯每分钟上升A级台阶.该扶梯共有B级台阶.25+A×5=20+A×6. 25×5+5A=20×6+6A. 125+5A=120+6A.125-120=6A-5A.5=a.B=25+A×5=25+5×5=30×5=150.该扶梯共有150级台阶.思考3两只蜗牛同时从一口井的井顶爬向井底;白天往下爬,两只蜗牛的爬行速度是不同的,一只每天爬行20分米,另一只每天爬行15分米;黑夜往下滑,两只蜗牛滑行的速度却是相同的,结果一只蜗牛恰好用了5个昼夜到达井底,另一只恰好用了6个昼夜到达井底;那么,井深多少米例4 一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水;如果用12人舀水,3小时舀完;如果只有5个人舀水,要10小时才能舀完;现在要想在2小时舀完,需要多少人分析典型的“牛吃草”问题,找出“牛”和“草”是解题的关键假设每人每小时可以舀1份水,则船每小时漏水:5×10-12×3÷10-3=14÷7=2份;船舱里原有的水有:5×10-2×10=50-20=30份;现在要求2小时把水舀完,需要:30+2×2÷2=17人;答:现在要求2小时把水舀完,需要17人来舀.思考4一个水池,池底有泉水不断涌出,用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可把水抽干;那么用25部这样的抽水机多少小时可以把水抽干5小时;设一台抽水机一小时抽水一份;则每小时涌出的水量是:20×10-15×10÷20-10=5份,池内原有的水是:10-5×20=100份.所以,用25部抽水机需要:100÷25-5=5小时思维拓展例5 有一牧场长满牧草,牧草每天匀速生长,这个牧场可供17头牛吃30天,可供19头牛吃24天,现在有若干头牛在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,问原来有牛多少头分析“牛吃草”问题的特点是随时间的增长,所研究的量也等量地增加;解答时,要抓住这个关键问题,也就是要求出原来的量和每天增加的量各是多少;设每天每头牛吃草1份,草的生长速度:17×30-19×24÷30-24=54÷6=9份;牧场原有草的份数:17×30-9×30=510-270=240份;原来有牛:240-6×4÷6+2+4+9=216÷8+13=27+13=40头;答:原来有牛40头.思考5一个牧场上的青草每天都匀速生长;这片青草可供27头牛吃6天,或供23头牛吃9天,现有一群牛吃了4天后卖掉2头,余下的牛又吃了4天将草吃完;这群牛原来有多少头例6 有三块草地,面积分别为5公顷,6公顷和8公顷;每块地每公顷的草量相同而且长的一样快,第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天;第三块草地可供19头牛吃多少天分析由题目可知,这是三块面积不同的草地,为了解决这个问题,首先要将这三块草地的面积统一起来;设每头牛每天的吃草量为1,则每公顷10天的总草量为:11×10÷5=22;每公顷14天的总草量为:12×14÷6=28;那么每公顷每天的新生长草量为28-22÷14-10=1.5;每公顷原有草量为:22-1.5×10=7;那么8公顷原有草量为:7×8=56;8公顷每天新长草量为:8×1.5=12;设第三块草地可供19头牛吃x天,则19头牛x天共吃了19x的草,8公顷x天共有草量为:12x+56,所以12x+56=19x,19x-12x=56,7x=56,x=8,答:第三块草地可供19头牛吃8天巩固练习1.一块牧场长满了草,每天均匀生长;这块牧场的草可供10头牛吃40天,供15头牛吃20天;可供25头牛吃__天;A. 10B. 5C. 20A 假设1头牛1天吃草的量为1份;每天新生的草量为:10×40-15×20÷40-20=5份;那么愿草量为:10×40-40×5=200份,安排5头牛专门吃每天新长出来的草,这块牧场可供25头牛吃:200÷25-5=10天;2.一块草地上的草以均匀的速度生长,如果20只羊5天可以将草地上的草和新长出的草全部吃光,而14只羊则要10天吃光;那么想用4天的时间,把这块草地的草吃光,需要__只羊;A. 22B. 23C. 24B假设1只羊1天吃草的量为1份;每天新生草量是:14×10-20×5÷10-5=8份原草量是:20×5-8×5=60份安排8只羊专门吃每天新长出来的草,4天时间吃光这块草地共需羊:60÷4+8=23只3.画展9时开门,但早有人来排队等候入场;从第一个观众来到时起,每分钟来的观众人数一样多;如果开3个入场口,9点9分就不再有人排队了,那么第一个观众到达的时间是8点__分;A. 10B. 12C. 15C假设每个人口每分钟进入的观众量是1份;每分钟来的观众人数为3×9-5×5÷9-5=0.5份到9时止,已来的观众人数为:3×9-0.5×9=22.5份第一个观众来到时比9时提前了:22.5÷0.5=45分所以第一个观众到达的时间是9时-45分=8时15分;4. 经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年;假设地球新生成的资源增长速度是一样的;那么,为了满足人类不断发展的要求,地球最多只能养活亿人;70 设1亿人1年所消耗的资源为1份那么地球上每年新生成的资源量为:80×300-100×100÷300-100=70份只有当地球每年新生资源不少于消耗点的资源时,地球上的资源才不至于逐渐减少,才能满足人类不断发展的需要;所以地球最多只能养活:70÷1=70亿人5. 快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车;三车的速度分别是每小时24千米、20千米、19千米;快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用小时;12 自行车的速度是:20×10-24×6÷10-6=14千米/小时三车出发时自行车距A地:24-14×6==60千米慢车追上自行车所用的时间为:60÷19-14=12小时6. 一水池中原有一些水,装有一根进水管,若干根抽水管;进水管不断进水,若用24根抽水管抽水,6小时可以把池中的水抽干,那么用16根抽水管, 小时可将可将水池中的水抽干;18 设1根抽水管每小时抽水量为1份;1进水管每小时卸货量是:21×8-24×6÷8-6=12份2水池中原有的水量为:21×8-12×8=72份316根抽水管,要将水池中的水全部抽干需:72÷16-12=18小时7. 某码头剖不断有货轮卸下货物,又不断用汽车把货物运走,如用9辆汽车,12小时可以把它们运完,如果用8辆汽车,16小时可以把它们运完;如果开始只用3辆汽车,10小时后增加若干辆,再过4小时也能运完,那么后来增加的汽车是辆;19 设每两汽车每小时运的货物为1份;1进水管每小时的进水量为:8×16-9×12÷16-12=5份2码头原有货物量是:9×12-12×5=48份33辆汽车运10小时后还有货物量是:48+5-3×10=68份4后来增加的汽车辆数是:68+4×5÷4-3=19辆8.有一片草地,每天都在匀速生长,这片草可供16头牛吃20天,可供80只羊吃12天;如果一头牛的吃草量等于4只羊的吃草量,那么10头牛与60只羊一起吃可以吃多少天8天1按牛的吃草量来计算,80只羊相当于80÷4=20头牛;2设1头牛1天的吃草量为1份;3先求出这片草地每天新生长的草量:16×20-20×12÷20-12=10份4再求出草地上原有的草量:16×20-10×20=120份5最后求出10头牛与60只羊一起吃的天数:120÷10+60÷4-10=8天9. 某水库建有10个泄洪闸,现在水库的水位已经超过安全警戒线,上游的河水还在按一不变的速度增加;为了防洪,需开闸泄洪;假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30小时水位降到安全线,若打开两个泄洪闸,10小时水位降到安全线;现在抗洪指挥部要求在5.5小时内使水位降到安全线,问:至少要同时打开几个闸门4个设1个泄洪闸1小时的泄水量为1份;1水库中每小时增加的上游河水量:1×30-2×10÷30-10=0.5份2水库中原有的超过安全线的水量为:1×30-0.5×30=15份3在5.5小时内共要泄出的水量是:15+0.5×5.5=17.75份4至少要开的闸门个数为:17.75÷5.5≈4个采用“进1”法取值10. 现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在的速度去追乙车,3小时后能追上;那么甲车以现在的速度去追,几小时后能追上乙车15小时设甲车现在的速度为每小时行单位“1”,那么乙车的速度为:2×5-3×3÷5-3=0.5乙车原来与甲车的距离为:2×5-0.5×5=7.5所以甲车以现在的速度去追,追及的时间为:7.5÷1-0.5=15小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数——牛吃草问题
牛吃草问题常用到四个基本公式,分别是:
①草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)
②原有草量=牛头数×吃的天数-草的生长速度×吃的天数
③吃的天数=原有草量÷(牛头数-草的生长速度)
④牛头数=原有草量÷吃的天数+草的生长速度
这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

练习
1.牧场上长满牧草,草平均匀速生长,这片牧场可供10头牛吃20天,可供15头牛吃10天。

问可供25头牛吃几天?
2.一块草地长满了草,草每天还在匀速生长。

已知3头牛36天可把草吃光,5头牛20天可把草吃光。

现在要求12天把草吃光,需要几头年牛去吃?
3.一块草地长满了草,草每天匀速生长。

如果17头牛去吃,30天可把草吃光,如果19头牛去吃,24天可把草吃光。

现在有若干头牛去吃草,吃了6天后,4头牛死亡,余下的牛继续吃了2天才将草吃光。

问原来有多少头牛?
池注入一定数量的水,然后同时打开排水管排水,当然进水管还在继续进水。

如果打开全部排水管,则3个小时可将水池中的水排光,如果只打开3根排水管,则要18小时才能将水池中的水排光。

问:想要8小时排光池中的水,至少需打开几根排水管?
5.三块草地长满草,草每天匀速生长。

第一块草地33亩,可供22头牛吃54天,第二块草地28亩,可供17头牛吃84天,第三块草地40亩,可供多少头牛吃24天?
6.牧场上的青草每天都在匀生长。

这片牧场可供27头牛吃6天,或者可供23头牛吃9天。

那么可供21头牛吃几天?
7.有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天可吃完牧草,假设每头牛吃草的量是相等的。

(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛?
8.有一水池,池底不断有泉水匀速涌出。

用10台抽水机20小时可将水抽干,用15台相同的抽水机10小时可将水抽干。

问用25台抽水机多少小时可将水抽干?
9.一块草地,草每天匀速生长。

10头牛3天可吃光,5头牛8天可吃光。

如果2天要吃光,需要多少头牛来吃?
10.一湖存有一定量的水,流入均匀入湖。

5台抽水机20天可抽干。

6台同样的抽水机15天可抽干。

若要求6天抽干,需几台这样的抽水机?
水池注入一定的水,然后同时打开排水管(进水管不关闭)。

如果打开10根排水管,则3个小时可将水池里的水排光,如果打6根排水管,则6个小时可将水池里的水排光。

问想要10个小时排空水池,则至少要开几根排水管?
12.一片牧场,可供18头牛吃4天,可供23头牛吃3天。

现在有13头牛,放牧了3天后,又购进5头牛。

问还吃几天,正好吃完全部的草?
13.由于天气逐渐冷起来,牧场上的草不仅不增加,反而以固定的速度在减少。

已知某牧场的草可供20头牛吃5天或可供15头牛吃6天,照此计算可供多少头牛吃10天?
14.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多,从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟,如果同时开7个检票口,那么需要多少分钟?
15.仓库里原有一批存货,后又陆续运货进仓,且每天运进的货一样多。

用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完,如果每天用5辆汽车,则6天恰好运完。

仓库原有的存货若用1辆汽车运,则需要多少天才能运完?
16.有快,中,慢三辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人,这三辆车分别有6他钟,10分钟和12分钟追上了骑车人。

现在已知快车速度为24千米/小时,中速车速度为20千米/
小时,那么慢速车每小时走多少千米?。

相关文档
最新文档