次函数压轴题最短路径问题

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最短路径问题——和最小

【方法说明】

“和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小.

l

B

A

l

【方法归纳】

①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求.

l

A

l

②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求.

l

B

A

③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点

C ,

D 即为所求.

O

B

O

B

④如图所示,在∠AOB 的边AO ,BO 上分别找一点E ,F 使得DE +EF +CF 最小.分别过点C ,D 作关于AO ,

BO 的对称点D ′,C ′,连接D ′C ′,并与AO ,BO 分别交于点E ,F ,此时DE +EF +CF 最小,则点E ,F 即

为所求.

B

O

B O

⑤如图所示,长度不变的线段CD 在直线l 上运动,在直线l 上找到使得AC +BD 最小的CD 的位置.分别过

点A ,D 作AA ′∥CD ,DA ′∥AC ,AA ′与DA ′交于点A ′,再作点B 关于直线l 的对称点B ′,连接A ′B ′与直线l 交于点D ′,此时点D ′即为所求.

l

l

⑥如图所示,在平面直角坐标系中,点P 为抛物线(y =14x 2

)上的一点,点A (0,1)在y 轴正半轴.点P

在什么位置时PA +PB 最小?过点B 作直线l :y =-1的垂线段BH ′,BH ′与抛物线交于点P ′,此时PA +PB 最小,则点P 即为所求.

1.(13广东)已知二次函数y =x 2

-2mx +m 2

-1.

(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式; (2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;

(3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.

【思路点拨】

(1)由二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;

(2)把m=2代入求出二次函数解析式,令x=0,求出y的值,得出点C的坐标;利用配方法或顶点坐标公式求出顶点坐标即可;

(3)根据当P、C、D共线时根据“两点之间,线段最短”得出PC+PD最短,求出CD的直线解析式,令y =0,求出x的值,即可得出P点的坐标.

【解题过程】

解:(1)∵二次函数的图象经过坐标原点O(0,0),

∴代入二次函数y=x2-2mx+m2-1,得出:m2-1=0,解得:m=±1,

∴二次函数的解析式为:y=x2-2x或y=x2+2x;

(2)∵m=2,∴二次函数y=x2-2mx+m2-1得:y=x2-4x+3=(x-2)2-1,

∴抛物线的顶点为:D(2,-1),

当x=0时,y=3,∴C点坐标为:(0,3),∴C(0,3)、D(2,-1);

(3)当P、C、D共线时PC+PD最短,

【方法一】

∵C(0,3)、D(2,-1),

设直线CD的解析式为y=kx+3,代入得:2k+3=-1,∴k=-2,∴y=-2x+3,

当y=0时,-2x+3=0,解得x=3

2

,∴PC+PD最短时,P点的坐标为:P(

3

2

,0).

【方法二】

过点D作DE⊥y轴于点E,

∵PO∥DE,∴PO

DE

CO

CE

,∴

PO

2

3

4

,解得:PO=

3

2

∴PC+PD最短时,P点的坐标为:P(3

2

,0).

2.(11菏泽)如图,抛物线y=1

2

x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;

(2)判断△ABC的形状,证明你的结论;

(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

【思路点拨】

(1)把点A 的坐标代入求出b 的值,即可得出抛物线的解析式,通过配方法即可求出顶点D 的坐标; (2)观察发现△ABC 是直角三角形,可以通过勾股定理的逆定理证明.由抛物线的解析式,分别求出点B ,C 的坐标,再得出AB ,AC ,BC 的长度,易得AC 2+BC 2=AB 2,得出△ABC 是直角三角形;

(3)作出点C 关于x 轴的对称点C ′,连接C 'D 交x 轴于点M ,根据“两点之间,线段最短”可知MC +MD 的值最小.求出直线C 'D 的解析式,即可得出点M 的坐标,进而求出m 的值. 【解题过程】

解:(1)∵点A (-1,0)在抛物线y =12x 2+bx -2上,∴12×(-1 )2

+b ×(-1)-2=0,解得b =-32,

∴抛物线的解析式为y =12x 2-32x -2=12(x -32)2-258,∴顶点D 的坐标为 (32,-25

8

).

(2)当x =0时y =-2,∴C (0,-2),OC =2.

当y =0时,12x 2-3

2

x -2=0,∴x 1=-1,x 2=4,∴B (4,0),∴OA =1,OB =4,AB =5.

∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC 2+BC 2=AB 2

. ∴△ABC 是直角三角形.

(3)作出点C 关于x 轴的对称点C ′,则C ′(0,2),OC ′=2,

连接C ′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC +MD 的值最小. 【方法一】

设直线C ′D 的解析式为y =kx +n ,则⎩⎨⎧n =23

2k +n =-258,解得:⎩

⎨⎧n =2k =-

4112.∴y =-41

12x +2. ∴当y =0时,-4112x +2=0,x =2441.∴m =24

41

【方法二】

设抛物线的对称轴交x 轴于点E .

∵ED ∥y 轴,∴∠OC ′M =∠EDM ,∠C ′OM =∠DEM ,∴△C ′OM ∽△DEM . ∴OM EM =OC ′ED ,∴m 32-m =2258

,∴m =2441

相关文档
最新文档