§5.3.1平行线的性质教案

合集下载

教学设计6:5.3.1 平行线的性质

教学设计6:5.3.1 平行线的性质

5.3.1平行线的性质一、教学目标知识与能力:1、了解并掌握平行线的性质,并能利用平行线的性质进行相关的数学计算。

2、能够区分平行线的性质和判定,能够利用平行线的性质进行简单的逻辑推理。

方法与过程:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。

情感态度与价值观:经历自己探索平行线性质的过程,进一步培养学生的逻辑思维能力,提高学生对简单几何图形的感知能力。

二、教学重难点教学重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。

教学难点:能区分平行线的性质和判定,平行线的性质应用。

三.教具准备多媒体课件,直尺,三角板,粉笔四、教学设计活动2:二、探索发现,讲授新知问题1、作业本有平行线吗?请你找出两条平行线来?问题2、同学们你们将用什么方法在两平行线上来寻找同位角之间的关系?(1) 在我们刚才的一组平行线a∥b的基础上,再画一条截线c,使之与直线a、b相交,并标出所形成的八个角.(2) 测量上面一组同位角的大小,记录下来.同桌互相讨论一下从中你能发现什么结论?说出你的猜想:两条平行线被第三条直线所截,同位角相等教师活动:幻灯片展示问题,指导学生自己动手参与平行线的西瓜汁探索过程,教师巡视加以指导。

引导学生大胆的猜想。

学生活动:在教师的引导下,积极地动手参与活动,探索发现结论,经历平行线性质的探索过程。

学生活动:根据探索过程,总结相关结论,举手回答问题教师活动:根据学生的猜想,请学生回答得到的结论,并根据学生的结论给出平行线的性质1,(幻灯片出示性质一)。

10分钟活动3:讨论:如果直线a与b不平行,你的猜想还成立吗?再任意画一条直线d,同样度量并计算各个角的度数,你的猜想还成立吗?同桌互相讨论一下从中你能发现什么结论?平行线的性质1(公理):两条平行线被第三条直线所截,同位角相等。

简单说成:两直线平行,同位角相等。

教师活动:将学生分成若干小组,讨论两直线不平行的时候结论是否成立,并在教室巡视,针对个别情况进行指导学生活动:小组讨论交流。

5.3.1 平行线的性质 教案

5.3.1 平行线的性质 教案

课题§ 5.3.1 平行线的性质课时第1课时课型新授教学目标知识与技能1、探究直线平行的性质,掌握平行线的三条性质;2、能灵活运用平行线的性质进行简单的推理和计算。

过程与方法经历平行线性质的探究过程,从中体会研究几何图形的方法。

情感、态度与价值观通过观察、交流等活动,进一步发展空间思维能力,推理能力和有条理的表达能力;教学重点探究平行线性质,理解平行线的性质并能进行简单推理和计算。

教学难点能区分平行线的性质和判定,平行线的性质与判定的混合应用。

教学方法探究、归纳教学准备教案教学过程一、问题引入:引导学生逆向思维:同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行。

反过来,如果两直线平行,同位角、内错角、同旁内角又有什么样的关系呢?在这一节课里,同学们把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达呢?这就是接下来我们要研究的问题。

二、探究:1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P18图5.3-1)。

2、现在请同学们用量角器把自己画的图中各个角测出度数,把结果填入表内。

角∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8度数3、请同学们根据上表测量所得数据作出猜想:(1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系?(3)图中哪些角是同旁内角?它们具有怎样的数量关系?4、验证猜想:学生活动:再任意画一条截线d,同样度量并比较各对同位角的度数,你的猜想还成立吗?2、实践操作、得出结论:线段B 1C 1,B 2C 2……B 5C 5同时垂直于两条平行直线A 1B 5和A 2C 5,并且它们的长度相等。

3、两条平行线间距离的定义:线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段;第二点线段B 1C 1同时垂直这两条平行线。

教学设计4:5.3.1 平行线的性质

教学设计4:5.3.1 平行线的性质

5.3.1 平行线的性质教学目标1、知识与技能:经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的和计算。

2、过程与方法目标:经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步分析、概括、表达能力。

3、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。

教学过程设计本节课的流程分五部分:创设情境激发兴趣;数形结合探究性质;归纳性质说理证明;应用新知巩固练习;课堂小结布置作业.(一)创设情境激发兴趣出示问题:已知公路c分别与两条互相平行的公路a,b相交,两辆汽车在公路a,b上同向行驶,拐弯后上公路c又同向行驶。

(1) 如果公路c与公路a的交角为70O,那么公路c与公路b的交角是多少度呢?(2) 如果两条直线平行,同位角,内错角,同旁内角各有什么关系呢?【设计意图】设计意图:利用情景导入,引出新问题,为学生将新知识纳入自己的认知体系做好铺垫,使学生认识到数学知识来源与生活,应用与生活,激发他们的求知欲望。

(二)探究新知实验猜想问题1:作出两条平行直线a、b被第三条直线c所截,标出所得的8个角,你能借助你所画的图想办法解决如果已知两条直线平行,同位角有怎样的数量关系这个问题吗?如果两直线平行,内错角、同旁内角又各有怎样的数量关系呢?【设计意图】通过动手画图,度量角度等简单易行的操作,调动所有学生参加到课堂教学的活动中来,再通过自己的独立思考,小组交流验证自己的结论是否正确,使学生体验到成功的喜悦,使学生乐学爱学。

问题2:大家解决问题的方法一样吗?得到的结论相同吗?学生以四人合作小组为单位进行交流讨论.学生可能想到的方法:(1)用量角器进行度量;(2)通过剪纸拼图进行比较.。

鼓励学生在独立思考的基础上与他人合作交流,每个学生的独立思考为合作交流奠定了基础,同伴间的合作交流又能弥补个人的思考有时难以全面和深入的情况,从而帮助学生获得较强的感性认识,充分体现认知过程.。

人教版数学七年级下册教案5.3.1《 平行线的性质》

人教版数学七年级下册教案5.3.1《 平行线的性质》

人教版数学七年级下册教案5.3.1《平行线的性质》一. 教材分析《平行线的性质》是人教版数学七年级下册第5章第3节的内容,本节课主要让学生掌握平行线的性质。

教材通过实例引入平行线的性质,然后引导学生通过观察、猜想、证明等过程,掌握平行线的性质。

教材内容紧密联系学生的生活实际,激发学生的学习兴趣,培养学生观察、思考、动手操作的能力。

二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的概念,掌握了直线和射线的性质,能熟练画直线和射线。

但学生对平行线的性质认识不足,需要通过实例来引导他们观察、思考、总结平行线的性质。

三. 教学目标1.知识与技能:让学生掌握平行线的性质,能运用平行线的性质解决实际问题。

2.过程与方法:培养学生观察、思考、动手操作的能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:平行线的性质。

2.难点:如何引导学生观察、思考、总结平行线的性质。

五. 教学方法1.采用问题驱动法,引导学生观察、思考、总结平行线的性质。

2.利用小组合作学习,培养学生团队协作精神,提高学生解决问题的能力。

3.通过实例讲解,使学生能将所学知识应用于实际问题中。

六. 教学准备1.准备相关课件,展示平行线的性质。

2.准备实例,让学生观察、思考、总结平行线的性质。

3.准备练习题,巩固所学知识。

七. 教学过程导入(5分钟)教师通过展示实际生活中的平行线例子,如教室里的黑板、书桌、地板等,引导学生观察并提问:“你们能发现这些平行线有什么特点吗?”学生通过观察,激发学习兴趣,发现问题。

呈现(10分钟)教师展示课件,呈现平行线的性质,引导学生猜想并提问:“你们认为平行线有哪些性质呢?”学生通过观察、思考,提出猜想。

操练(15分钟)教师引导学生进行小组合作学习,让学生通过实际操作,证明平行线的性质。

教师巡回指导,解答学生疑问。

巩固(10分钟)教师呈现练习题,让学生运用所学知识解决问题。

数学人教版七年级下册5.3.1 平行线的性质教学设计

数学人教版七年级下册5.3.1  平行线的性质教学设计

一、指导思想与理论依据布卢姆“掌握学习”就是在“所有学生都能学好”的思想指导下,以集体教学为基础,辅之以经常、及时的反馈,为学生提供所需的个别化帮助以及所需的额外学习时间,从而使大多数学生达到课程目标所规定的掌握标准。

本节课是一节性质定理的教学课,对于学生而言比较抽象,设计本节课时首先通过复习平行线的判定后引发学生思考,再通过学生的观察、实验、猜测、验证等活动,概括出平行线的一个性质,再运用逻辑推理得出平行线的另外两个性质,学生通过概括和说理,并将文字语言转化为符号语言,得到亲身体验和感知,在后续学习中以此为经验进行新的活动.二、教学背景分析1.教学内容:本节课是义务教育课程标准实验教科书七年级下册第五章《相交线与平行线》的第三节5.3平行线的性质第一课时.本章分为四节,第一节主要学习相交线、同位角、内错角、同旁内角等概念,第二节主要研究平行线的判定,第三节主要研究平行线的性质,第四节主要学习平移的有关知识.第一、二节的内容是第三节的基础,本节内容也是后面研究平移等内容的基础,是“图形与几何”的重要组成部分。

本节课是在研究了同位角、内错角、同旁内角和平行线的判定基础上,对平行线性质的探究,它是本章的一个重点,也是研究三角形、四边形、相似形、圆等知识的基础。

2.学生情况:在“新课程标准”指导下,本班通过一学期的课程改革实践,学生已初步形成自主探索、积极思考、动手实践的学风,从而乐于在教师的指导下主动参与、勤于动手、认真归纳、经历数学知识形成的过程。

另一方面七年级的学生刚正式接触几何知识,学生的抽象的逻辑推理能力发展刚刚起步,但由于认知结构水平的不同,初中学生只能作直观理解。

同时,考虑到平行线的性质和判定形式上较为相似,七年级的学生年纪较小,逻辑思维能力、理解和分析能力都相对较弱,对平行线的判定和特征容易混淆,因此,我本节课的难点为初步理解平行线的性质和判定的联系与区别。

3.教学方式:启发式、探究式。

人教版数学七年级下册5.3.1平行线的判定(教案)

人教版数学七年级下册5.3.1平行线的判定(教案)
3.重点难点解析:在讲授过程中,我会特别强调平行线的判定方法,包括同位角相等、内错角相等、同旁内角互补。对于难点部分,我会通过图形示例和对比分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用直尺和量角器来验证平行线的判定方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“平行线的判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”比如,铁轨或者教室的黑板边缘。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
人教版数学七年级下册5.3.1平行线的判定(教案)
一、教学内容Biblioteka 本节课选自《人教版数学七年级下册》第五章第三节第一部分“5.3.1平行线的判定”。教学内容主要包括以下两点:
1.掌握平行线的定义:在同一平面内,两条直线不相交,且在平面内没有任何其他直线与这两条直线同时相交,则这两条直线互相平行。
2.学会平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
举例解释:在讲解平行线的判定方法时,可以通过具体图形展示同位角、内错角、同旁内角的概念,并通过实际例题让学生练习如何使用这些方法。
2.教学难点
-理解“同一平面”的概念:学生需要理解为什么要在同一平面内讨论直线是否平行,不同平面内的直线是否有平行的可能性。
-判定方法的适用条件:学生需要明确在什么情况下可以使用同位角相等、内错角相等、同旁内角互补这些判定方法,以及这些方法之间的关系。

5.3.1平行线的性质教案

5.3.1平行线的性质教案

5.3.1平行线的性质教案课题课时:第五章§5.3.1平行线的性质授课人:许昌县实验中学刘冬冬课型:新授课教学目标:1.经历观察、操作、推理、交流等学习活动,进一步发展空间观念、推理能力和有条理表达的能力.2. 经历探索平行线性质的过程,掌握平行线的性质,并能解决一些问题.教学重点与难点:重点:掌握平行线的性质。

难点:运用平行线的性质进行有条理的分析、表达教法及学法指导:教法:采用尝试指导、引导发现法,充分利用学生手中的资源,发挥学生的主体作用,引导学生经历操作、探究、验证、应用性质的数学活动过程,帮助学生在探究学习的过程中理解、掌握新知识,提高他们的讨论能力和解决实际问题的能力.学法:在教师的指导下积极动手操作、对比及归纳猜想,参与性质的探究,从学习中感受乐趣,并学会用性质进行简单推理和解决问题.课前准备:教师准备多媒体课件.学生准备条格纸、量角器。

教学过程:一、前置诊断,复习旧知师:前面我们探索了两条直线平行的条件,学习了哪些判断两条直线平行的条件?生:(齐答)1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.师:观察图形,回答下面问题:(多媒体展示)(1)因为∠1=∠5 (已知)所以a∥b()(2)因为∠4=∠ (已知)所以a∥b(内错角相等,两直线平行)(3)因为∠4+∠ =1800 (已知)所以a∥b()生:口头填空,并回答理由。

【设计意图】平行线的性质与判定直线平行的条件是互逆的,对初学者来说易将它们混淆,并为新课的学习做准备。

活动注意事项:因为学生在应用平行线的性质与条件推理时非常容易混淆,因此在学生回答判定直线平行的三个条件后,又给学生结合图形直观地进行直线平行的条件的推理,加深学生的印象,节约学生复习的时间,提高复习的效果。

二、创设情境引入新课师:想一想:反过来,若改变已知与结论的位置。

即:已知两条平行线被第三条直线所截,那么所形成的同位角、内错角、同旁内角,有什么关系呢?这就是本节课要学习的平行线的性质。

《平行线的性质》教学设计

《平行线的性质》教学设计

)
● ∵AC∥DF(
)
∴∠D+ _______=180° (
)
● ∴∠A+∠D=180°(

● 中的两面镜子是互相平行放置的,光线经过镜子反射时, ● ∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的? ● (2)反射光线BC与EF也平行吗?
平行线的性质
几何语言
● 本节课研究的内容是平行线的性质,它是在学生学习了平行线的判定之后来进行学习,因此,在引 ● 入环节,就充分考虑到这一点,从复习平行线的判定入手,创设一个疑问来激发学生思考,进而引导学 ● 生进行平行线性质的探究。 ● 本节课最突出的是平行线性质的得出过程,它是通过学生自动手实践,观察分析,合理猜想,合作 ● 交流解决问题体验并感悟平行线的性质,即学生在充分活动的基础上,由学生自己发现,并用自己的语 ● 言来归纳的。使他们感受到学习的快乐,真正成为学习的主人,达到突出重点突破难点的目的。同时对 ● 学生增强学习兴趣和自信心都有好处。区分性质与判定方法,以及对三个性质之间内在联系的理解,都 ● 为学生正确应用平行线的性质打好基础。
● 问题3:如图,已知a//b,那么∠2与 ● ∠4有什么关系呢?为什么?
● 总结归纳 平行线的性质3:__________________________________________ ● 几何语言表示: __________________________________________ ●
● 2、典例精析 ● 例1.如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别
是多少? ● ●
● 问题4:平行线三个性质的条件是什么?结论是什么?它与判定有什么区别?

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案第1课时平行线的性质【教学目标】1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)【教学过程】一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD 的度数.解析:先利用GF ∥CE ,易求∠CAG ,而∠PAG =12°,可求得∠PAC =48°.由AP 是∠BAC 的角平分线,可求得∠BAP =48°,从而可求得∠BAG =∠BAP +∠PAG =48°+12°=60°,即可求得∠ABD 的度数.解:∵FG ∥EC ,∴∠CAG =∠ACE =36°.∴∠PAC =∠CAG +∠PAG =36°+12°=48°.∵AP 平分∠BAC ,∴∠BAP =∠PAC =48°.∵DB ∥FG ,∴∠ABD =∠BAG =∠BAP +∠PAG =48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC .请你再画一个∠DEF ,使DE ∥AB ,EF ∥BC ,且DE 交BC 边与点P .探究:∠ABC 与∠DEF 有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC 与∠DEF 的数量关系是相等或互补.理由如下:如图①,因为DE ∥AB ,所以∠ABC =∠DPC .又因为EF ∥BC ,所以∠DEF =∠DPC ,所以∠ABC =∠DEF .如图②,因为DE ∥AB ,所以∠ABC +∠DPB =180°.又因为EF ∥BC ,所以∠DEF =∠DPB ,所以∠ABC +∠DEF =180°.故∠ABC 与∠DEF 的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计平行线的性质⎩⎨⎧⎭⎬⎫两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补求角的大小或说明角之间的数量关系【教学反思】平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学第2课时平行线的性质和判定及其综合运用【教学目标】1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.【教学过程】一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF ∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.解析:(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;(2)由平行线的性质,可得∠CDF=50°.由DE平分∠CDF,可得∠CDE=1 2∠CDF=25°.最后根据“两直线平行,内错角相等”,可得到∠DEF的度数.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=12∠CDF=25°.∵EF∥AB,∴∠DEF=∠CDE=25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE +∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD .方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎬⎫同位角相等内错角相等同旁内角互补判定性质两直线平行【教学反思】本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质《5.3.1 平行线的性质》导学案第1课时 平行线的性质【学习目标】:1.掌握两直线平行,同位角、内错角相等,同旁内角互补,并能熟练运用.2.通过独立思考,小组合作,运用猜想、推理的方法,提升自己利用图形分析问题的能力.3.激情投入,全力以赴,培养严谨细致的学习习惯.【重点】:平行线的性质.【难点】:根据平行线的性质进行推理.【自主学习】一、知识链接平行线的判定方法有哪几种?二、新知预习如图,直线a与直线b平行,直线c与它们相交.(1)量一量:用量角器量图中8个角的度数.(2)说一说:由测量的结果,你发现∠1与∠5、∠2与∠6、∠3与∠7、∠4与∠8、∠3与∠6、∠4与∠5、∠3与∠5、∠4与∠6的大小有什么关系?(3)想一想:(2)中的各对角分别是什么角?(4)议一议:两条平行直线被第三条直线所截,所得的同位角、内错角、同旁内角有什么关系?三、自学自测1.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.50°B.60°C.70°D.80°2.下列说法中,(1)同位角相等,两直线平行;(2)两直线平行,同旁内角互补;(3)内错角相等,两直线平行;(4)同一平面内,垂直于同一直线的两条直线平行.其中是平行线的性质的是()A.(1)和(3)B.(2)C.(4)D.(2)和(4)【课堂探究】要点探究探究点:平行线的性质问题1:画两条平行线a//b,然后画一条截线c与a、b相交,标出如图所示的角. 度量所形成的8个角的度数,把结果填入下表:角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数观察:∠1~ ∠8中,哪些是同位角?它们的度数之间有什么关系?说出你的猜想.猜想:两条平行线被第三条直线所截,同位角 .思考:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?问题2:如图,已知a//b,那么∠2与∠3相等吗?为什么?问题3:如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?例1.如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?例2:小明在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法测出∠A的度数?【当堂检测】1.如图,已知平行线AB、CD被直线AE所截(1)从∠1=110°可以知道∠2 是多少度吗,为什么?(2)从∠1=110°可以知道∠3是多少度吗,为什么?(3)从∠1=110°可以知道∠4 是多少度吗,为什么?2.如图,一条公路两次拐弯的前后两条路互相平行.第一次拐弯时∠B是142°,第二次拐弯时∠C是多少度?为什么?3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a垂直于直线c吗?4.如果有两条直线被第三条直线所截,那么必定有()A.内错角相等B.同位角相等C.同旁内角互补D.以上都不对5.(1)如图1,若AB∥DE , AC∥DF,试说明∠A=∠D.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A=_______ ( )∵AC∥DF( )∴∠D=______ ( )∴∠A=∠D ( )(2)如图2,若AB∥DE , AC∥DF,试说明∠A+∠D=180o.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A= ______ ( )∵AC∥DF( )∴∠D+ _______=180° ( )∴∠A+∠D=180°()6.【拓展题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?5.3.1 平行线的性质第2课时平行线的性质和判定及其综合运用【学习目标】:1.进一步熟悉平行线的判定方法和性质.2.运用平行线的性质和判定进行简单的推理和计算.【重点】:平行线的判定方法和性质.【难点】:平行线的性质和判定的综合运用.【自主学习】一、知识链接1.平行线的判定方法有哪些?2.平行线的性质有哪些?二、新知预习1.两条直线被第三条直线所截,同位角、内错角相等,或者说同旁内角互补,这句话对吗?2.自主归纳:(1)两直线平行,同位角,内错角,同旁内角 .(2)不难发现,平行线的判定,反过来就是,注意它们之间的联系和区别.(3)运用平行线的性质时,不要忽略前提条件“”,不要一提同位角或内错角,就认为是相等的.【课堂探究】一、要点探究探究点:平行线的性质和判定及其综合应用例1.如图,三角形ABC中,D是AB上一点,E是AC上一点,∠ADE=60°,∠B = 60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?做一做:已知AB∥CD,∠1 = ∠2.试说明:BE∥CF.例2.如图,AB∥CD,猜想∠A、∠P 、∠PCD的数量关系,并说明理由.例3.如图,若AB//CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.【变式题1】如图,AB//CD ,探索∠B 、∠D 与∠DEB 的大小关系 .【变式题2】如图,AB ∥CD,则∠A ,∠C 与∠E 1,∠E 2,…,∠E n 有什么关系?【变式题3】如图,若AB ∥CD, 则∠A ,∠C 与各拐角之间有什么关系?EDC BA【当堂检测】1.填空:如图,(1)∠1= 时,AB∥CD.(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°,其中能判断a//b的是( )A. ①②③④ B .①③④ C. ①③ D. ④3. 有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数. 请补全下列解答过程.解:过点E作EF//AB.∵AB//CD(已知),∴ // (平行于同一直线的两直线平行).∴∠A+∠ =180°,∠C+∠ =180°(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知),∴∠ = °, ∠ = °.∴∠AEC=∠1+∠2= °+ ° = °.4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD的度数.第五章相交线与平行线5.3.1《平行线的性质》同步练习一、单选题(共15题;共30分)1、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( )A、30°B、25°C、20°D、15°2、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A、60°B、33°C、30°D、23°3、两条平行直线被第三条直线所截,下列命题中正确的是()A、同位角相等,但内错角不相等B、同位角不相等,但同旁内角互补C、内错角相等,且同旁内角不互补D、同位角相等,且同旁内角互补4、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A、40°B、50°C、130°D、150°5、如图,下列说法正确的是()A、若AB//CD,则∠1=∠2B、若AD//BC,则∠B+∠BCD=180ºC、若∠1=∠2,则AD//BCD、若∠3=∠4,则AD//BC6、下列图形中,由AB//CD能得到∠1=∠2的是()A、 B、C、 D、7、下列语句:①两条不相交的直线叫做平行线;②过直线外一点有且只有一条直线与已知直线垂直;③若AB=BC,则点B是AC的中点;④若两角的两边互相平行,则这两个角一定相等;其中说法正确的个数是()A、1B、2C、3D、48、同一平面内,两条不重合的直线的位置关系是()A、平行或垂直B、平行或相交C、平行、相交或垂直D、相交9、下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有()A、1个B、2个C、3个D、4个10、如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为()A、19°B、29°C、63°D、73°11、如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,∠2的度数为()A、95°B、65°C、85°D、35°12、如图,已知:AB∥CD,CE分别交AB、CD于点F、C,若∠E=20°,∠C=45°,则∠A的度数为()A、5°B、15°C、25°D、35°13、如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=()A、20°B、25°C、30°D、35°14、如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A、 B、C、 D、15、如图,如果AB∥CD,那么图中相等的内错角是()A、∠1与∠5,∠2与∠6B、∠3与∠7,∠4与∠8C、∠5与∠1,∠4与∠8D、∠2与∠6,∠7与∠3二、填空题(共5题;共10分)16、如图,已知:∠A=∠F,∠C=∠D,求证:BD∥EC,下面是不完整的说明过程,请将过程及其依据补充完整.证明:∵∠A=∠F(已知)∴AC∥________,________∴∠D=∠1________又∵∠C=∠D(已知)∴∠1=________________∴BD∥CE ________17、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为________ 度(用关于α的代数式表示).18、如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________ .19、如图,把含有60 º角的三角尺ABC的直角顶点C放在直线DE上,当AB∥DE。

平行线的性质(教案)

平行线的性质(教案)

人教版七年级数学(下册)第五章相交线与平行线5.3.1 平行线的性质(教案设计)信阳市罗山县第四中学【教学目标】1、知识与技能:使学生熟练掌握两条平行线具有的性质,并根据直线的平行关系得到角之间的关系;2、过程与方法:引导学生通过动手实践、观察、发现,学会逆向思考,掌握两条直线平行时同位角、内错角和同旁内角的特点,并初步学会对照着图形,说明几何推理过程.3、情感态度与价值观:培养学生的探索精神和动手能力,提高学习数学的兴趣.【教学重难点】重点:引导学生通过动手实践、观察、发现平行线的性质并掌握两条直线平行时同位角、内错角和同旁内角的特点;难点:培养学生初步掌握几何推理的能力.【教学方法】启发式教学、多媒体辅助教学【教学过程】一、回顾与思考平行线的判定方法:思考:反过来,如果两条直线平行, 同位角、内错角、同旁内角各有什么关系呢?二、合作交流,探索发现合作交流11、画一画:学生利用坐标纸上的直线,或者用直尺和三角板画两条平行线a//b,再画一条截线c与a、b相交,标出如图所示的角.2、猜一猜:观察∠1~ ∠8中,哪些是同位角?它们的大小有什么关系?说出你的猜想:两条平行线被第三条直线所截,同位角。

3、量一量;学生使用量角器测量每一组同位角的度数并做好记录:。

1.同位角相等2.内错角相等3.同旁内角互补两直线平行(或剪一剪、拼一拼,看每组同位角是否能完全重合)4、验一验:教师通过几何画板任意改变截线c的位置,并演示对应的每组同位角均相等。

5、得出结论:,简单说成:;几何语言:6、典例示范:例1、如图,D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?合作交流21、思考:若两直线平行,内错角之间又有怎样的数量关系?,你能运用所学知识证明你的猜想吗?如图,已知a//b,那么∠2与∠3相等吗?为什么? 2、得出结论:,简单说成:;几何语言:3、典例示范:例2、如图所示,AC∥BD,∠A=70°,∠C=50°,求∠1,∠2,∠3的度数.合作交流31、思考:类似地,已知两直线平行,同旁内角之间的数量关系是什么?2、验证猜想如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?3、得出结论:,简单说成:;几何语言:4、典例示范:例3、如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?【知识小结】平行线的性质:(利用动画游戏的方式检验和加深学生对平行线性质的掌握)三、当堂检测(一)头脑风暴,砸蛋有奖1、判断:若一条直线垂直两条平行线中的一条,则它也垂直另一条。

平行线的性质教案

平行线的性质教案

5.3.1平行线的性质【教学目标】1、使学生理解平行线的性质和判定的区别。

2、经历探索直线平行的性质的过程;掌握平行线的三条性质,并能用它们进行简单的理解和计算。

3、经历观察、操作、想象、推理、交流等活动,培养推理能力和有条理的表达能力。

【教学重点】探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。

【教学难点】能区分平行线的性质和判定,平行线的性质与判定的混合运用。

【教学方法】有目的、有计划地设计问题,引导学生进行观察、实验、推理等活动,从而使学生形成自己对数学知识的理解和有效的学习策略。

在平行线性质2,3的探究中关注它们的证明,把证明作为探究活动的自然延续和必然发展,引导学生根据观察、实验的结果,运用归纳、类比的方法先得出猜想,然后再进行证明。

【教学过程】一、复习回顾根据右图,填空:①如果∠1=∠C,那么__∥__()②如果∠1=∠B那么__∥__()③如果∠2+∠B=180°,那么__∥__()想一想:平行线的三种判定方法分别是先知道什么……、后知道什么?二、动手操作,归纳性质思考:利用同位角相等,或者内错角相等,或者同旁内角互补可以判定两条直线平行.反过来如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?探究:画两条平行线a//b,然后画一条截线c与a、b相交,标出如图的角.任选一组同位角、内错角或同旁内角,度量这些角,把结果填入下表:角∠1∠2∠3∠4度数角∠5∠6∠7∠8度数观察与猜想:两条平行线被第三条直线截得的各对同位角的度数之间有什么关系?说出你的猜想:两条平行线被第三条直线所截,同位角___.再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?进而得到平行线的性质:性质1 两条平行线被第三条直线所截,同位角相等.三、应用转化,推出性质思考:你能根据性质1,推出性质2、3吗?如右图,已知:a// b ,那么(1)∠3与∠2有什么关系?为什么?(2)∠2与∠4有什么关系?为什么?如图∵a∥b (已知)∴∠3=∠2 ( )又∵∠3 =∠ 1 ( )∴∠2=∠1( )进而得到平行线性质:性质2 两条平行线被第三条直线所截,内错角相等.思考:两条平行线被第三条直线截得的同旁内角会具有怎样的数量关系?学生思考后回答,进而归纳平行线性质:性质3 两条平行线被第三条直线所截,同旁内角互补.综合以上探究,总结平行线性质:那么∠2、∠3、∠4各是多少度?2.如图,D 是AB 上一点,E 是AC 上一点,∠ADE=60°,∠B=60°,∠AED=40°。

平行线的性质教学设计

平行线的性质教学设计

5.3.1平行线的性质教学设计七年级数学杨宏斌一.教学内容分析平行线的性质是证明角相等、研究角的关系的重要依据。

是研究几何图形位置关系与数量关系的基础,是平面几何的一个重要内容和学习简单的逻辑推理的素材。

它不但为三角形内角和定理的证明提供了转化的方法,而且也是今后学习三角形、四边形、平移等知识的基础。

二.学习者分析平行线的性质是学生对图形性质的第一次系统研究,对于研究过程和研究方法都是相对陌生的,所以学生需要在老师的引导下类比研究平行线判定的过程来构建平行线性质的研究过程。

对于作为培养学生推理能力的内容——性质2和性质3的得出,学生可以做到“说理”,但把推理过程从逻辑上叙述清楚存在困难,需要教师先做示范,然后进行模仿。

推理过程的符号化,对于刚刚接触平面几何的七年级学生而言,具有一定的难度。

为此,在推理过程符合逻辑的前提下,需更多关注学生对证明本身的理解。

三.学习目标分析1.目标(1)理解平行线的性质。

(2)经历平行线性质的探究过程,从中体会研究几何图形的一般方法。

2.目标解析达成目标(1)的标志是:学生知道平行线性质的内容,并会运用性质进行简单推理。

达成目标(2)的标志是:学生通过实验探究、操作确认获得性质1,再借助已有相关知识通过推理得到另外两条性质。

知道平行线的判定和性质的异同,能用自己的语言叙述获得性质的过程。

四.学习重难点学习重点:得到平行线的性质的过程学习难点:性质2和性质3的推理过程的逻辑表述五.学习评价设计六.学习活动设计五.归纳小结 (1)平行线的性质是什么? (2)你能用自己的语言叙述研究平行线性质的过程吗? (3)性质2和性质3是通过简单推理得到的,在推理论证中需要注意哪些问题?教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题: (1)平行线的性质是什么?(2)你能用自己的语言叙述研究平行线性质的过程吗?(3)性质2和性质3是通过简单推理得到的,在推理论证中需要注意哪些问题?通过小结,帮助学生梳理本节课所学内容,掌握本节课的核心一平行线的性质,引导学生回顾探究平行线性质的过程,体会研究几何问题的一般方法。

平行线的性质教案

平行线的性质教案

5.3.1平行线的性质教案五十三团第一中学《平行线的性质》教案一、教学目标:依据知识与能力、过程与方法、情感态度价值观三维目标的要求,结合教材和学情特点,把教学目标定位为以下几点:知识目标:1.了解平行线的性质,并能运用这些性质进行简单的推理与计算.2.能够运用:“两直线平行,同位角相等。

”这一基本事实证明平行线的另外两条性质。

(两直线平行,内错角相等;两直线平行,同旁内角互补。

)能力目标:1.经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力.2.经历探索平行线的特征的过程,掌握平行线的特征,并能解决一些问题.情感目标:通过学生动手操作、观察,来发展他们的空间观念,培养其主动探索与合作的能力。

通过学生动手操作、观察,来发展他们的空间观念,培养其主动探索与合作的能力。

二、教学重点:探究平行线的性质.三、教学难点:明确平行线的性质和判定的区别。

四、教学设想:1.教法:采用引导发现法,教师通过精心设置的一个个问题链,激发学生的求知欲,使学生在教师的引导和合作下,通过自主探索,合作交流,发现问题,解决问题。

引导学生观察动手测量,猜想小组交流合作探究总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点.2.学法:在教师的引导下,学生通过观察、动手测量、猜想、小组交流合作探究总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点.逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。

3.学情:结合七年级刚进入初中的学生实际情况,以刚进初中的中等学生为主体,适当兼顾两头。

组成两至四人学习小组,便于自评、互评,合作交流。

4.课时:一课时五、教学方法:学生动手,合作讨论六、教学过程:(一)复习回顾1.通过欣赏生活中的平行线回顾上节课学习的判定直线平行的条件,请同学思考作答。

2.提出问题:若两直线平行,那同位角、内错角、同旁内角的大小各有什么关系?【设计意图】检验学生平行线的判定的掌握情况,回顾判定平行线条件的同时,为本节课创造条件,为以下问题的提出做好铺垫。

5.3.1平行线的性质(第1课时)教学设计

5.3.1平行线的性质(第1课时)教学设计

5.3.1平行线的性质(第1课时)教学设计一、教材分析1、教材分析:平行线的性质是学生对图形性质的第一次系统研究,对今后学习其他图形性质有“示范”的作用。

平行线的性质是证明角相等、研究角关系的重要依据,是研究几何图形位置关系与数量关系的基础,是平面几何图形的一个重要内容个学习简单逻辑推理的素材,它不但为三角形的证明提供了转化的方法,而且也是今后学习三角形、四边形、平移等知识的基础。

教科书有平行线的判定引入对平行线性质的研究,既渗透了图形的判定和性质之间的互逆关系,又体现了知识的连贯性。

平行线的三条性质都是需要证明的,但是为了与学生思维发展水平相适应,性质1是通过操作确认的方式得出的,在性质1的基础上经过进一步的推理,得到性质2和性质3。

这一过程体现了由实验几何到论证几何的过渡,渗透了简单的推理,体现了数学在培养良好思维品质方面的价值。

2、教学目标:知识与技能:掌握平行线的三条性质,并能用它们进行简单的推理和计算;过程与方法:经历探究直线平行的性质的过程,领悟归纳和转化的数学思想方法。

情感、态度与价值观:经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力。

3、教学重、难点:教学重点:平行线的性质的研究与发现过程教学难点:平行线的性质定理的推导及平行线的性质定理的应用。

教学方法:引导观察、动手测量、猜想、合作交流探究。

二、教学准备:白纸、直尺、三角板、量角器、计算器、剪刀等。

三、教学过程板书设计:5.3.1 平行线的性质已知结论判定同位角相等两直线平行内错角相等同旁内角互补性质两直线平行同位角相等内错角相等。

平行线的性质教案

平行线的性质教案

XX市XXX中学统一备课用纸科目数学年级七年级班级授课时间年月日课题 5.3.1 平行线的性质课型新授课教学目标1.理解平行线的性质,会利用平行线的性质求角的度数;2.能利用性质1推导性质2,3,体会数学化归思想方法;3.能正确区分平行线的判定和性质,能进行简单的推理说明.教学重点平行线的性质.教学难点区分平行线的判定方法和性质.教具准备多媒体及课件.教学内容及过程教学方法和手段一、知识回顾①∵∠1=∠C∴__//__()②∵∠1=∠B∴__// __()③∵∠2+∠B=180°∴__// __()判定:数量关系→位置关系二、思考探究问题通过上题可知平行线的判定方法是什么?思考反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?探究:利用坐标纸上的直线或者用直尺和三角尺画两条平行线a∥b,然后,画一条截线c与这两条平行线相交,标出这些角.度量这些角,把结果填入下表:角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数各对同位角、内错角、同旁内角的度数之间有什么关系?写出你的猜想.两条平行线被第三条直线所截,同位角_____;内错角______;•同旁内角_______.三、揭示内涵,得出性质一般地,平行线具有如下性质:性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.几何语言:∵a∥b(已知)∴∠1=∠2 (两直线平行,同位角相等)巩固练习:1.如图,已知a//b,那么2与3相等吗?为什么?性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.几何语言:∵a∥b(已知)∴∠2=∠3(两直线平行,内错角相等)巩固练习:2.如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.几何语言:∵a∥b(已知)∴∠2+∠4=180 °(两直线平行,内错角相等)巩固练习:3.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=1804.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.若∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°5.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠CED是( )A.30°B.40°C.50°D.60°6.判断:①两直线被第三条直线所截,同位角相等. ()②两直线平行,同旁内角相等. ()③“内错角相等,两直线平行”是平行线的性质. ()④“两直线平行,同旁内角互补”是平行线的性质. ()7.如图:∵∠1=∠2()∴AD∥()∴∠BCD+=180°()四、典例分析例1 如图是一块梯形铁片的残余部分,量得∠A =100°,∠B =115°,梯形的另外两个角是多少度?为什么?巩固练习:8.如图,直线a∥b,∠1 =54º,则∠2=_______,∠3=_______,∠4=_______.9.如图,三角形ABC中,D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?10.如图,∠1与∠2互为补角,∠D=∠A.试说明:∠B=∠C.11.基训P12 T10五、课堂小结作业布置板书设计教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题课时:第五章§5.3.1平行线的性质
授课人:许昌县实验中学刘冬冬
课型:新授课
教学目标:
1.经历观察、操作、推理、交流等学习活动,进一步发展空间观念、推理能力和有条理表达的能力.
2.经历探索平行线性质的过程,掌握平行线的性质,并能解决一些问题.
教学重点与难点:
重点:掌握平行线的性质。

难点:运用平行线的性质进行有条理的分析、表达
教法及学法指导:
教法:采用尝试指导、引导发现法,充分利用学生手中的资源,发挥学生的主体作用,引导学生经历操作、探究、验证、应用性质的数学活动过程,帮助学生在探究学习的过程中理解、掌握新知识,提高他们的讨论能力和解决实际问题的能力.
学法:在教师的指导下积极动手操作、对比及归纳猜想,参与性质的探究,从学习中感受乐趣,并学会用性质进行简单推理和解决问题.
课前准备:教师准备多媒体课件.学生准备条格纸、量角器。

教学过程:
一、前置诊断,复习旧知
师:前面我们探索了两条直线平行的条件,学习了哪些判断两条直线平行的条件?
生:(齐答)1.同位角相等,两直线平行.
2.内错角相等,两直线平行.
3.同旁内角互补,两直线平行.
师:观察图形,回答下面问题:(多媒体展示)
(1)因为∠1=∠5 (已知)
所以a∥b()
(2)因为∠4=∠(已知)
所以a∥b(内错角相等,两直线平行)
(3)因为∠4+∠=1800 (已知)
所以a∥b()
生:口头填空,并回答理由。

【设计意图】平行线的性质与判定直线平行的条件是互逆的,对初学者来说易将它们混淆,并为新课的学习做准备。

活动注意事项:因为学生在应用平行线的性质与条件推理时非常容易混淆,因此在学生回答
判定直线平行的三个条件后,又给学生结合图形直观地进行直线平行的条件
的推理,加深学生的印象,节约学生复习的时间,提高复习的效果。

二、创设情境引入新课
师:想一想:反过来,若改变已知与结论的位置。

即:已知两条平行线被第三条直线所截,那么所形成的同位角、内错角、同旁内角,有什么关系呢?
这就是本节课要学习的平行线的性质。

(板书课题:5.3.1平行线的性质)
【设计意图】利用判断与性质中已知与结论的联系,自然引入新课,不仅调动学生的学习积极性,同时为本节课学习的顺利进行做好铺垫。

三、动手操作探索新知
师:请每位同学利用手中的条格纸,任意选取其中的两条线作a、b,再随意画一条直线c与a、b相交,用量角器量得图中的八个角,并填表:(投影片出示图形和表格):角∠1 ∠2 ∠3 ∠4
度数
角∠5 ∠6 ∠7 ∠8
度数
2.观察图形及上面表格中量得的数据,完成下面的填空:
生:动手操作:画图、测量、填表。

师:请同学们根据测量结果回答问题:(投影片展示)
(1)∠1和∠5在位置上是什么角?你测量∠1和∠5的大小有何关系?
图中还有其他同位角吗?它们的大小有什么关系?
生:对比后回答:同位角∠1和∠5相等,其他的同位角也相等。

师:(投影出示问题):
生:对比后回答:内错角∠3和∠5相等,内错角∠4
和∠6相等。

师:(投影出示问题)
生:计算后回答:同旁内角∠4与∠5的和等于180°,同旁内角∠3与∠6的和等于180
°。

师:另外画一组平行线被第三条直线所截,同样测量并计算各角的度数,检验刚才的猜想
是否成立?
生:动手操作,画图、测量、对比与计算后发现刚才的结论依然成立。

师:如果你没有量角器,你能用什么方法验证刚才的结论。

生:剪下角,进行对比同位角、内错角是否重合,两个同旁内角放在一起是否能组成一个
平角。

师:如果直线a 与b 不平行,猜想还成立吗?
生:画图、测量后发现刚才的猜想不成立。

师:由此,你能得出什么结论?
生:用自己的语言归纳平行线的性质。

师生小结:(投影展示)平行线的性质:
【设计意图】把发现性质定理的权利还给学生,让学生动手测量、观察和猜想,使每一个学
生原有的相关知识、经验都可以全部地投入,思维充分参与,感受发现的乐趣。

通过分组探索、交流等实践活动,使学生增强对图形的直观体验和性质的理解,
培养了学生的动手画图能力、操作能力和推理能力。

活动注意事项:对于没有量角器的探究活动,教师提示他们剪下同位角的一个,把它贴在另
一个角的上面,观察两个角是否重合,其他的稍作实验即可。

用几何语言叙述平行线的性质要求学生同位之间进行,培养学生简单的说理能力。

鼓励学生用其他的方式对平行线的性质进行探索,教师要给予学生充分的时间。

四、课堂检测 解决问题
师:学会了平行线的性质,我们就利用性质解决一些问题。

(投影出示) 1、已知:在四边形ABCD 中, AB ∥CD ,∠B = 60°,求:∠C 的度数
2、已知: AB ∥CD ,∠1=110 °求:∠2、∠
3、∠4的度数。

解: ∵ AB ∥CD
∴∠1 = ∠ ( ) ∵∠1 = 110° ∴∠3 = ∵ AB ∥CD
∴∠1 = ∠ ( ) ∵∠1 =110° ∴∠2 = ∵ AB ∥CD
∴_____ + _____ = 1800
( ) ∵∠1 = 110°
∴∠4 = -0
180______ = -0
180______ =_______
五、课堂小结:平行线判定与性质的区别与联系
投影:显示平行线的判定与平行线的性质.
区别:(1)判定:根据两角 ,或 ,去证两条直线 .
(2)性质:根据两条直线 ,去证角的 ,或 . 联系:它们的条件和结论有什么关系?
【设计意图】通过这两道题就是来落实平行线的性质,因为学生刚刚接触到新知识,往往应
用起来会比较生疏。

所以设计这两个题目层层深入,对新知识从熟悉到熟练的过程,有利于学生进一步理解知识,感受数学和生活的联系,以达到透彻理解性质的目标。

活动注意事项:让学生独立思考,相互之间讨论并试着在练习本上写出解题过程,训练学生
运用性质进行简单的推理能力。

五、对比学习 加深理解
师:请你对比这些平行线的性质与前面所学的平行线的条件,它们有什么不同?请大家
填写下面的表格,加以对比。

生:填表,讨论。

条 件
结 论
平行线的性质
判定平行的条件
师生共同总结: 同位角相等
两直线平行 内错角相等 同旁内角互补
条件:角的关系线的关系 性质:线的关系
角的关系
【设计意图】避免出现性质和条件的混淆,渗透“命题” 与“逆命题”的概念,突破本节课
条件 性质
的难点,帮助学生更好的理解和运用性质和条件。

活动注意事项:让学生积极讨论,通过观察、分析、对比,能够说出由角的关系得到两条直线平行的结论是判定平行线的条件,反过来,由已知直线平行,得到角相等
或互补的结论是平行线的性质.
六、拓展提高:
1、如图所示:量得梯形铁片的残余部分,∠A=100°,∠B=115°
求:梯形的另外两个角∠C、∠D分别是多少度
2、已知:如图所示∠1=∠2,∠3=75°,求:∠4的度数
【设计意图】通过两道练习题的设置,进一步巩固落实本课所学,鼓励学生用自己的语言说明理由,初步学会简单的推理或表达。

活动注意事项:推理时用“因为…,所以…”的形式,每一步要能说明理由或根据。

如果学生一时学不会,教师要逐步引导,不可操之过急。

七、作业设置:
●P20练习:第2题。

●P23习题5.3:第6题。

【设计意图】分层作业的布置满足不同学生的不同需求.
板书设计
教后反思:
本节课的成功之处:
1.这节课学习平行线的性质,是在学生已学习平行线条件的基础上进行的,很多学生学习平行线的性质与条件时非常容易混淆,所以教学中我先让学生复习平行线的条件;探究得到性质后又对两者进行对比学习,提高学生正确运用条件和性质推理的能力。

2.整个课最突出的环节是平行线性质的得到过程,事先让学生准备好条格纸,三角板,在上课时学生通过自主画图进行探索,得到猜想,再通过验证发现的。

即在学生充分活动的基础上,由学生自己发现问题的结论,让学生感受成功的喜悦,增强学习的兴趣和学习的自信心。

在探究“两直线平行,同位角相等”时,要求全体学生参与,体现了新课程理念下的交流与合作。

3.在教学中,设计了综合运用性质和条件解决实际问题的环节,加深了学生对平行性质和条件的理解。

4.在练习的设置过程中,从简到难,题目的条件由直观到隐含,步步深入,层层推进,学生容易接受。

这节课存在的问题:
1.在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。

2.由于课堂练习时间短,所以学生在灵活运用知识上还有欠缺,推理过程还不够规范。

相关文档
最新文档