线性代数学习指导第五章矩阵的特征值与特征向量

合集下载

线性代数第五章特征值和特征向量矩阵的对角化

线性代数第五章特征值和特征向量矩阵的对角化
的特征值;
(5)若f(x)是x的多项式,则f()是f(A)的特征值
特征向量保持不变
10
证:(2)∵AX=X A(AX)=A(X) =(AX)=(X)
A2X=2X
再继续施行上述步骤m2次,就得
AmX=mX m是矩阵Am的特征值,且X是Am的对应于 m的特征向量.
(4)当A可逆时, 0 ∵AX=X A1(AX)=A1(X) =A1X
1
1
1
1
3 2
3 1
3
3
1 3
2 3
5100 2
1 3
5100
5100
1 1
5100 1 5100 2 5100 1
5100 1 5100 1 5100 2
33
5.3 实对称矩阵的对角化 1.实对称矩阵特征值的相关性质 2.求正交矩阵的方法
34
共轭矩阵 如果A=(aij)为复矩阵时,用 aij 表示aij的
1=5: 解方程组 (5IA)X=0
4 2 2 1 0 1 5IA= 2 4 2 →0 1 1
2 2 4 0 0 0
1 基础解系: P1 1
1
对应于1=5的全部特征向量为: k1P1 (k10)
2=3= 1 : 解方程组 (IA)X=0
2 2 2 1 1 1 IA= 2 2 2 →0 0 0
k11+k22=0 (2) (2)2(1)k1(12)=0 ∵12 ,0 ∴k1=0 同理可得k2=0
∴与线性无关
推广 设1,2,,r是矩阵A的对应于不同特 征值1,2,,r的特征向量,则1,2,,r线性
无关.
定理 如果1,2,,r是矩阵A的不同特征值, 而(i=1i,12,,i2,,r)的, 线是性ikAi无的关对的应特于征特向征量值,则i向量组 也11线,性12,无,关1.k1,21,22,, 2k2,,r1,r2,,rkr

线性代数第5章 特征值及特征向量

线性代数第5章 特征值及特征向量

k1 p1 ( k1 0 常数)是对应于1 2 的全部特征向量.
18
回答问题
(1) 向量 0 满足 A ,
0 是 A 的特征向量吗?
(2) 实矩阵的特征值(特征向量)一定是实的吗? (3) 矩阵 A 可逆的充要条件是所有特征值______.
E A 0 或

23
二、填空题
1.已知三阶方阵A的三个特征值为1,-2,3.则
|A|=(
-6
),
A-1的特征值为( AT的特征值为(
1,-1/2, 1/3
1,-2,3.
), ), ).
A2+2A+E的特征值为(
4, 1, 16 0
2.设Ak=0,k是正整数,则A的特征值为( 3.若A2=A,则A的特征值为(
).

齐次线性方程组为 ( A 2E ) X O 2 3 2 时,
4 1 1 4 1 1 A 2E 0 0 0 0 0 0 4 1 1 0 0 0 0 1 得基础解系 P2 1 , P3 0 . 1 4
( ) a0 a1 a22 am m

( A) a0 E a1 A a2 A2 am Am
的特征值。如果 A 可逆,则
( ) a k k a11 a0 a1 am m

( A) a k A k a1 A1 a0 E a1 A am Am
第一节 方阵的特征值与特征向量
一、特征值与特征向量的定义 二、特征值与特征向量的性质 三、特征值与特征向量的求法
1
一、特征值与特征向量的定义 定义1 设 A 是 n 阶方阵,

第五讲 矩阵特征值与特征向量

第五讲 矩阵特征值与特征向量
考研基础复习----线性代数
第五讲
一、 矩阵的特征值与特征向量 1.特征值与特征向量的概念 定义 1
矩阵特征值与特征向量
设方阵 A = (aij ) n×n ,若有数 λ 和非零的 n维向量 X ,使
AX = λX
(5.1)
成立,则称数 λ 为 A 的特征值,称向量 X 为矩阵 A的对应于 λ 的特征向量. 又若 An×n 是一个不可逆矩阵,则方程组 AX = 0 有非零解 X 0,即 AX 0 = 0 = 0 ⋅ X 0 .故不 可逆矩阵必有零特征值 λ = 0 . 对一般的方阵 A而言,AX = λX 是绝大多数非零向量难以满足的方程,仅从矩阵 A 不 容易直接看出它的特征值和特征向量。为此,将(5.1)变形为: (λI − A) X = 0 则齐次线性方程组(5.2)有非零解的充要条件是 λI − A = 0 记 (5.2)
例 2. 设 n 阶方阵 A 满足等式 A 2 = A,证明 A 的特征值为 1 或 0. 证明 设 λ为A 的特征值,则存在向量 X ≠ 0 ,使 AX = λX .由此 A2 X = A( AX ) = A(λX ) = λ2 X 又 故有 即 因 X ≠ 0,所以λ2 − λ = 0,即λ = 1或 0 . 推论 2 设 λ0 是方阵 A 对应于特征向量 X 的特征值,则 A2 = A λ2 X = λX (λ2 − λ ) X = 0 .
n n
∑ λi = ∑ aii
i =1 i =1
这也称为方阵 A的迹,记为tr ( A) ,即 tr ( A) = ∑ λi = ∑ aii 推论 n 阶方阵 A可逆的充要条件是 A的 n 个特征值非零,即 λi ≠ 0,i = 1,2, L, n .
i =1 i =1 n n

线性代数学习指导第五章矩阵的特征值与特征向量

线性代数学习指导第五章矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设()ijn nA a ⨯=是数域P 上的n 阶矩阵,若对于数域P 中的数λ,存在数域P 上的非零n 维列向量X ,使得X AX λ=则称λ为矩阵A 的特征值,称X 为矩阵A 属于(或对应于)特征值λ的特征向量 注意:1)()ijn nA a ⨯=是方阵;2)特征向量 X 是非零列向量;3)方阵 ()ijn nA a ⨯= 与特征值λ 对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A 的特征值与特征向量的步骤为: (1) 计算n 阶矩阵A 的特征多项式|λE -A |;(2) 求出特征方程|λE -A |=0的全部根,它们就是矩阵A 的全部特征值; (3) 设λ1 ,λ2 ,… ,λs 是A 的全部互异特征值。

对于每一个λi ,解齐次线性方程组()i E A X λ-=0,求出它的一个基础解系,该基础解系的向量就是A 属于特征值λi 的线性无关的特征向量,方程组的全体非零解向量就是A 属于特征值λi 的全体特征向量.3. 特征值和特征向量的性质性质1 (1)若X 是矩阵A 属于特征值λ的特征向量,则kX (0k ≠)也是A 属于λ的特征向量;(2)若12,,,s X X X 是矩阵A 属于特征值λ的特征向量,则它们的非零线性组合1122s s k X k X k X +++也是A 属于λ的特征向量;(3)若A 是可逆矩阵,λ是A 的一个特征值,则λ1是A —1的一个特征值,λ||A 是A *的一个特征值;(4)设λ是n 阶矩阵A 的一个特征值,f (x )= a m x m + a m-1x m -1 + … + a 1x + a 0为一个多项式,则()f λ是f (A )的一个特征值。

性质2(1) nn n a a a +⋅⋅⋅++=+⋅⋅⋅++221121λλλ(2) || 21A n =⋅⋅⋅λλλ性质3 n 阶矩阵A 和它的转置矩阵T A 有相同的特征值 性质4 n 阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A 、B 为n 阶矩阵,若存在可逆矩阵P ,使得B=P ―1AP则称A 与B 相似。

线性代数知识点总结(第5章)

线性代数知识点总结(第5章)

线性代数知识点总结(第5章)(一)矩阵的特征值与特征向量1、特征值、特征向量的定义:设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。

2、特征多项式、特征方程的定义:|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。

|λE-A |=0称为矩阵A的特征方程(λ的n次方程)。

注:特征方程可以写为|A-λE|=03、重要结论:(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。

(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。

△4、总结:特征值与特征向量的求法(1)A为抽象的:由定义或性质凑(2)A为数字的:由特征方程法求解5、特征方程法:(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略)(2)解齐次方程(λi E-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λi E-A)个解)6、性质:(1)不同特征值的特征向量线性无关(2)k重特征值最多k个线性无关的特征向量1≤n-r(λi E-A)≤k i(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=0(5)设α是矩阵A属于特征值λ的特征向量,则(二)相似矩阵7、相似矩阵的定义:设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B8、相似矩阵的性质(1)若A与B相似,则f(A)与f(B)相似(2)若A与B相似,B与C相似,则A与C相似(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)【推广】(4)若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A*与B*也相似(三)矩阵的相似对角化9、相似对角化定义:如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化。

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。

则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。

《线性代数》教学教案—05矩阵的特征值与特征向量

《线性代数》教学教案—05矩阵的特征值与特征向量
2.实对称矩阵对应于不同特征值的特征向量必相互正交;
3.设 为n阶实对称矩阵, 是 的特征方程的 重根,则矩阵 的秩 ,从而对应特征值 恰有 个线性无关的特征向量.
1.定理:设A为n阶实对称矩阵,则必存在n阶正交矩阵P,使得 = = ,其中 是 的n个特征值.
2.合同矩阵:给定两个n阶方阵 和 ,若存在可逆矩阵 ,使 = ,则称矩阵 与矩阵 合同,或 , 是合同矩阵.
例2.设矩阵 是3阶实对称阵, 的特征值为 1,2,2, = 与 = 都是矩阵 的属于特征值2的特征向量.求 的属于特征值1的特征向量,并求出矩阵 .
例3.设某城市共有30万人从事农、工、商的工作,假定这个总人数在若干年内保持不变,而社会调查表明:
(1)在这30万就业的人员中,目前约有15万从事农业、9万人从事工业、6万人从事商业;
授课序号02
教 学 基 本 指 标
教学课题
第5章第2节相似矩阵
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件
教学难点
矩阵可相似对角化的方法
参考教材
同济版《线性代数》
作业布置
课后习题
大纲要求
理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件。
推论2.若n阶矩阵 与对角矩阵 = 相似,则 是 的全部n个特征值.
二.方阵的相似对角化
1.相似对角化:若方阵 能与一个对角阵 相似,则称 可以相似对角化,简称 可对角化.
2.定理:n阶方阵 可以相似对角化的充要条件是 有n个线性无关的特征向量.
推论1.如果n阶方阵 的n个特征值互不相等,则 与对角阵相似.

第5章 矩阵的特征值与特征向量

第5章  矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量一、矩阵的特征值与特征向量的概念、性质及方法 (一)矩阵的特征值与特征向量及其相关概念1.矩阵的特征值与特征向量的概念设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得)0(≠=αλααA 成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量,特征向量为非零向量2.矩阵的特征多项式与特征方程的概念行列式A E f -=λλ)(称为矩阵A 的特征多项式;A E -λ=0称为矩阵A 的特征方程特征方程A E -λ=0是λ的n 次方程,它的n 个根就是矩阵A 的n 个特征值 若λ是A 的特征值,则A E -λ=0,A E -λ是不可逆矩阵 ★0=Ax 的基础解系就是λ=0的线性无关的特征向量★ 若1)(=A r ,则A 的n 个特征值是∑=iia1λ,0...1==n λλ(二)特征值与特征向量的性质1.如果21αα,都是特征值i λ所对应的特征向量,则21αα,的线性组合2211ααk k +(非零时)仍属于i λ的特征向量(i λ的特征向量不唯一,但一个特征向量只能属于一个特征值)2.属于不同特征值的特征向量是线性无关的,并且当i λ时矩阵A 的k 重特征根时,矩阵A 属于i λ的线性无关的特征向量的个数不超过k 个;因A 只有n 个特征值,故A 的特征向量虽有无穷多个,但线性无关的至多只有n 个,并且若21λλ,是矩阵A 的不同特征值,21αα,分别是21λλ,的特证向量,则21αα,的线性组合2211ααk k +不再是A 的特证向量★3.特征值的和等于矩阵主对角线上元素之和,特征值的乘积等于A 行列式的值★∑∑===ni iin i i a11λ∏==ni iA 1λ★4. n 阶矩阵A 和它的转置矩阵TA 有相同的特征值★ 用特征方程的转置去证明 5. n 阶矩阵可逆的充要条件是它的任一特征值均不等于0★6.若λ是矩阵A 的特征值,则对任何正整数k ,kλ是kA 的特征值★(三)特征值与特征向量的求法1.对于抽象矩阵,要根据特征值与特征向量的定义及其性质推导出特征值的取值)0(≠=αλααA 2.对于具体的数字矩阵,应先有特征方程A E -λ=0,求出矩阵A 的全部特征值,其中有可能重根,然后对每个不同特征值i λ,分别解齐次方程()0=-x A E i λ。

完整版线性代数第五章特征值与特征向量自考经管类精品

完整版线性代数第五章特征值与特征向量自考经管类精品

完整版线性代数第五章特征值与特征向量自考经管类精

特征值和特征向量是线性代数中非常重要的概念,它们在很多实际问题中具有广泛的应用。

本文将从定义、性质、求解方法以及应用等几个方面介绍特征值和特征向量。

特征值(eigenvalue)是一个方阵在一些线性变换下的伸缩因子,而特征向量(eigenvector)则是特征值对应的非零向量。

对于一个给定的方阵A,如果存在一个非零向量x,使得Ax=λx,其中λ是一个标量,那么λ就是矩阵A的特征值,而x就是对应的特征向量。

特征值和特征向量具有以下几个重要性质:
1.特征值是矩阵的本质性质,不依赖于矩阵的表示方式。

2.每个特征值都有对应的特征向量,但一个特征向量可能对应多个特征值。

3.特征值和特征向量可以是复数,不一定是实数。

要求解特征值和特征向量,可以通过以下步骤进行:
1. 求解矩阵的特征方程:det(A-λI)=0,其中det表示矩阵的行列式,I是单位矩阵。

2.解特征方程得到特征值。

3.将特征值代回到特征方程,解得对应的特征向量。

特征值和特征向量在很多应用中具有重要的意义,如以下几个方面:
1.特征值和特征向量可以用于矩阵的对角化,简化复杂计算。

2.特征值和特征向量在数据降维中有广泛应用,如主成分分析(PCA)。

3.特征值和特征向量可用于解决线性方程组、求解线性变换等问题。

4.特征值和特征向量在机器学习算法中有很多应用,如图像处理、聚类算法等。

综上所述,特征值和特征向量是线性代数中的重要概念,具有广泛的应用。

掌握特征值和特征向量的求解方法和性质,有助于理解和应用线性代数的相关知识。

第五章-矩阵的特征值和特征向量

第五章-矩阵的特征值和特征向量

第五章-矩阵的特征值和特征向量特征值,特征向量: A是n阶⽅阵, 对于数λ, 若存在⾮零列向量α,使得Aα=λα, 此时λ就是特征值, α对应于λ的特征向量λEα - Aα = 0, (λE-A)α=0, 所以(λE-A)x=0 的⾮零解↔|λE-A|=0λE-A: 叫做特征矩阵|λE-A|: 叫做特征多项式|λE-A|: 叫做特征⽅程λ: 叫做特征值, 特征根λ是A的特征值, α是λ对应对的特征向量, cα也是λ的特征向量(c≠0)解带λ的⾏列式:完全展开|X|得⽅程组,(不推荐)把某⾏尽可能化为零, 按⾏展开提公因⼦(含λ)相反数, 相同数, ⾏和列相同特征值, 特征向量的基本性质:A和A T有相同的特征值(注:特征向量不⼀定相同)n个特征值λ1, λ2...λn,∑λi=Σa ii(i=1,...n)(特征值的和=矩阵对⾓线元素的和)λ1·λ2·...λn = |A|(所有特征值相乘=⾏列式的值)A可逆的充要条件是A≠0互不相同的特征值λ1,λ2,...λm对应的特征向量α1,α2,...αn线性⽆关Kλ是KA的特征值,λk是A k的特征值1/λ|A|是A*的特征值相似矩阵:, A,B是两个同阶⽅阵, 存在n阶可逆矩阵P, 使得P-1AP=B, 那么我们就说⽅阵A,B相似. A~B反⾝性: A~A, E-1AE=B对称性: A~B→B~A传递性: A~B, B~C→A~C, P-1AP=B, Q-1BQ=C, 所以Q-1P-1APQ=C (PQ)-1A(PQ)=CA~B, A,B具有相同的特征值, 矩阵A,B的⾏列式|A|=|B|, 矩阵的迹tr(A)=tr(B)(迹是指祝对⾓线元素相加)|λE-A|=|λE-B|, 因为:P-1AP=B,所以|λE-P-1AP|=|λP-1EP-P-1AP|=|P-1||λE-A||P| = |λE-A|如果A~B, A可逆↔B可逆, A-1~B-1如果A~B, 则A m~B m两个矩阵相似:tr(A)=tr(B)|A|=|B|均可逆或者不可逆A-1~B-1A m~B m特征值相同r(A)=r(B)定理: A相似余对⾓形↔A有n个线性⽆关的特征向量推论: A有n个异互的特征根, A~对⾓形定理: A~对⾓形↔对于r i重根, 基础解系有r i个解实对称矩阵的对⾓化含有n个线性⽆关向量的矩阵对⾓化内积:2个向量(同型)的对应元素乘积的和(本质实⼀个数)本⾝性, (α·α)=α12+α22+α32≥0 (α·α)=0↔α=0对称性, (α·β)=(β·α)齐次性, (kα·β)=k(α·β), (α·kβ)=k(α·β), (kα·kβ)=k2(α·β), (α+β, γ)=(α,γ)+(β,γ), (k1α1+k2α2,m1β1+m2β2)=k1m1(α1,α2)+k1m2(α1,β2)+k2m1(α2,β1)+k2m2(α2,β2)(α·β)=αT·β=α·βT向量的长度(范数, 模)向量⾃⾝内积开平⽅: ||α||=(α·α)1/2推⼴: (α·α)=||α||2当α=(-1, -1, 5), ||α||=[(-1)2+(-1)2+52]1/2点到原点的距离, 特别的: ||α||=1, 单位向量, eg:α=(1,0,0), 单位化(标准化)性质1: ||α||≥0, ||α||=0↔α=0性质2(齐次性): ||kα||=|k|||α||性质3: |(α,β)|≤||α||·||β||性质4(三⾓不等式):||α+β||≤||α||+||β||性质5(正交,垂直):(α,β)=0 α垂直β (0,α)=0性质6(正交向量组): α1, ...αs, 两两正交(不包含零向量)定理: α1,...αs正交向量组, α1,...αs线性⽆关施密特正交化给⼀组线性⽆关的向量组α1,...αs, 求与之等价的正交β1,...βsβ1=α1β2=α2-[(α2,β1)/(β1,β1)]β1β3=α3-[(α3,β1)/(β2,β1)]β1-[(α3,β2)/(β2,β2)]β2β4=α4-[(α4,β1)/(β1,β1)]β1-[(α4,β2)/(β2,β2)]β2-[(α4,β3)/(β3,β3)]β3正交矩阵:定义: 如果矩阵A是以个n阶⽅阵, 则AA T=E, 就说明A为正交矩阵性质1: 如果矩阵A实正交矩阵, 则|A|=1 or -1 ,, 证明: A T A=E, |A T A|=1, |A T||A|, |A|2=1性质2:矩阵A为正交矩阵, A-1=A T, 且A-1和A T均正交性质3:如果A,B实正交矩阵, 那么A·B也是正交矩阵(AB)T AB=B T A T AB=B T B=E性质4: A正交矩阵, α,β列, (Aα, Aβ)=(α,β)定理: 如果A是正交矩阵↔矩阵A的列(⾏)向量是标准正交向量组实对称矩阵的对⾓化定理: 是对称矩阵A的不同特征值的特征向量正交正交相似: A,B同阶,存在正交矩阵P,使得P-1AP=B, 那么A,B叫做正交相似。

线性代数矩阵特征值及特征向量

线性代数矩阵特征值及特征向量

a a ... a
11
12
1n
E A
a 21
a ... 22
a 2n
a a ... a
n1
n2
nn
称为A的特征多项式. 方程 E A 0 称为A的
特征方程,其根称为A的特征根,即A的特征值. 注. n阶方阵A在复数范围内有n个特征值.
§1 特征值与特征向量、相似矩阵
(1 ) 若 是A的属于特征值 的特征向量,则 k (k 0) 也是A的属于 的特征向量. (2) 若 1,2, ,s 是A的属于特征值 的特征向量,
§1 特征值与特征向量、相似矩阵
例1. 问A是否可对角化?若可,求可逆矩阵P,使
1 2 2
P1AP 为对角矩阵.
这里
A
2 2
2 4
4 2
解: A的特征多项式为
1 2 2 E A 2 2 4
2 4 2
22 7
得A的特征值是2,2,-7 .
§1 特征值与特征向量、相似矩阵
定理3. 相似矩阵的特征多项式相同,从而特征值相同.
§1 特征值与特征向量、相似矩阵
推论. 设n阶矩阵A与对角矩阵
1
2
n
相似,则 1,2 , ,n 就是A的n个特征值.
注. 若矩阵A与对角矩阵相似,则可方便求出A的幂 Ak 及A的多项式.
§1 特征值与特征向量、相似矩阵
§2 矩阵可对角化的条件、实对称矩阵的对角化 一、矩阵可对角化的条件 二、实对称矩阵的对角化
§1 特征值与特征向量、相似矩阵
一、矩阵可对角化的条件
定义1:矩阵A是一个n 阶方阵,若存在可逆矩阵
P ,使 P1AP 为对角矩阵,即A与对角矩阵相似,则 称矩阵A可对角化.

线性代数第5章特征值与特征向量

线性代数第5章特征值与特征向量

有 n 个根(重根按重数计算), 记为1, 2 , n ,
则特征方程可分解为 fA () ( 1)( 2 ) ( n ) 0.
因此,n 阶方阵在复数域上恰有 n 个特征值.
-9-
例1
求矩阵
0
A
1
1 0
的特征值与特征向量.
解: 求特征多项式
f () E A
1 2 1
1
解特征方程
4 1 3
解 第一步:写出矩阵A的特征方程,求出A E 0 2 0 (2 ) 4 3
4 1 3
( 2)2 ( 1) 特征值为 1 1, 2 3 2.
第二步:对每个特征值 代入齐次线性方程组
A E x 0, 求非零解。
当 2 3 2 时,齐次线性方程组为 ( A 2E) X O
A
2
E
4 1
1 0
0 0
0 0
1 0
0 0
x1 x2
0 0
0
令 x3 1得基础解系:
p1
0 1
k1 p1(k1 0 常数)是对应于 1 2 的全部特征向量。
当 2 3 1 时,齐次线性方程组为 A E x 0
2 1 0 1 0 1
A
E
4 1
2 0
0 1
-34-
定理5.3 n 阶矩阵 A 可对角化的充要条件是 A 有 n 个线性无 关的特征向量。
证: 先证必要性. 设A可对角化,即存在可逆矩阵P使得
P1AP diag(1,2 , , n )
记 P [1,2, ,n ] , 则 A[1,2 , ,n ] [1,2,
,n
]
1
2
n
于是
Ai ii (i 1, , n)

大学线性代数第五章第一节矩阵的特征值与特征向量

大学线性代数第五章第一节矩阵的特征值与特征向量
通过找到一个矩阵的特征值和特征向量,我们可以了解该矩阵所代表的线性变换的性质,例如对称性、 旋转、缩放等。
在解决实际问题时,特征值和特征向量可以帮助我们理解数据的变化趋势和模式,例如在图像处理、信 号处理等领域有广泛应用。
在矩阵分解中的应用
01
矩阵分解是将一个复杂的矩阵 分解为几个简单的、易于处理 的矩阵,例如三角矩阵、对角 矩阵等。
矩阵的分解,如三角分解、 QR分解等,都涉及到特征值 和特征向量的应用,它们是构 造这些分解的基础。
02
矩阵的特征值与特征向量的定义
特征值的概念
特征值是指一个矩阵在某个非零常数倍下的不变性,即当矩阵A 乘以一个非零向量x得到0时,称该非零向量x为矩阵A的对应于 特征值λ的特征向量。
特征值可以通过求解矩阵的特征多项式得到,即|λE-A|=0。
密切的关系。
02
特征值和特征向量的关系可以通过矩阵的行列式、转
置、共轭等运算得到进一步的理解。
03
特征值和特征向量的关系性质在解决实际问题中具有
广泛的应用,如信号处理、控制系统等领域。
05ห้องสมุดไป่ตู้
矩阵特征值与特征向量的应用
在线性变换中的应用
矩阵特征值与特征向量是线性变换的一个重要工具,它们可以描述一个线性变换对一个向量空间的影 响。
特征值和特征向量在解决线性方程组、矩阵的相似变换、矩阵的 分解等领域有广泛应用。
矩阵特征值与特征向量的重要性
在解决线性方程组时,特征值 和特征向量可以提供一种有效 的解法,特别是对于一些特殊 类型的线性方程组。
在矩阵的相似变换中,特征值 和特征向量是确定相似变换的 关键,有助于理解矩阵的性质 和行为。
大学线性代数第五章第一节矩 阵的特征值与特征向量

线性代数 第五章第一节 矩阵的特征值与特征向量 PPT精品课件

线性代数 第五章第一节 矩阵的特征值与特征向量 PPT精品课件

性质6 设 λ1,λ2 ,L,λs为矩阵A的互异特征值 , 对应的
第 五
特征向量分别为 ξ1,ξ2 ,L,ξ s , 则ξ1,ξ2 ,L,ξ s线性无关.
证:⑴ s=1时结论成立;


⑵假设s=r-1时成立,则s=r时:
阵 的
设 k1ξ1 + k2ξ2 + L + kr−1ξr−1 + krξ r = 0, (∗)

n
特 征 值 与
其中 trA = ∑ aii 为A的迹。 i =1 性质2 设相似矩阵有相同的特征多项式,从而特征
对 角
值也相同。

证:设A与B相似, 则存在可逆阵P,使得 B = P −1AP
fB (λ ) = λI − B = λI − P −1AP = P −1(λI − A)P
= P−1 λI − A P = λI − A = fA(λ )
⎜⎛ 1 ⎟⎞
ξ1 = ⎜ 1 ⎟;
⎜⎝ 0 ⎟⎠
⎜⎛ 1 ⎟⎞
ξ2 =⎜ 0⎟;
⎜⎝ 1 ⎟⎠
⎜⎛ 1 ⎟⎞
ξ3 =⎜ −1⎟ .
⎜⎝ − 1 ⎟⎠
-6-
第一节 矩阵的特征值与特征向量

例3 设λ0 为A的特征值,则


⑴ λm0 为Am的特征值;
矩 阵 的 特

若A可逆,

1
λ0
为A−1的特征值;
征 值 与 对

若A可逆,

1
λ0
A 为A∗的特征值.


-7-
第一节 矩阵的特征值与特征向量
特征值与特征向量的性质:
特征方程在复数范围内恒有解,其个数为方程的次

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

Ak
( PP 1 )k
Pk P1
0 P
k
5
P1
上例中,对二阶方阵AP,存在可逆矩阵P, 使得P1AP .
对角阵的对角元是A的特征值,可逆阵P 即为相应对角元位置的特征值的线性无关的特 征向量组成.
接下来,主要研究方阵化对角阵的问题.
定义 设 A, B 都是 n 阶矩阵,若存在可逆矩阵P,使得 P1AP B
特征值, A 为 A 的一个特征值.
问题( :1)已知是A的特征值,求f (A)特征值
(2)已知f (A)=O,求A的特征值
例6 设3阶矩阵A的一个特征值是-3,则-A2必有 一个特征值 ___
例7
设A=
1 0
2 3
,求B=A2
-2A+3E 的所有特征值 2
例8 设三阶矩阵A的特征值分别为1,2,3, 则 A 2E __
4 1 3
( 1) 22 ,
令 ( 1) 22 0
得A的特征值为1 1,2 3 2.
当1 1时,解方程E A x 0.由
1 1 1 1 0 1
E
A
0
3
0
0
1
0
,
4 1 4 0 0 0
得基础解系
1 p1 0, 1
故对应于1 1的全体特征向量为
k p1
E A
a21
L
a22 L
LL
an1
an2 L
a1n
a2n
L
ann
称E A 为A的特征方阵 .
记 f E A ,它是 的 n 次多项式,
称其 为方阵 A的 特征多项式 .
称以 为未知数的一元n 次方程 E A 0
为A的特征方程 .

线性代数(慕课版)第五章 矩阵的特征值与特征向量

线性代数(慕课版)第五章  矩阵的特征值与特征向量

解得x 4.
故应填 4
14
有关特征值的性质
性质5.2 矩阵A与AT 有相同的特征值.
证 AT E ( A E)T A E
性质5.3 设A 是n 阶可逆矩阵, 为其特征值,则(1) 0;
(2) 1 是A1 的特征值.
证 (1) 假设 0,则由定义知A 0 0.
而矩阵A可逆,故上式两端同时左乘A1 得 A10 0.
(1) 12 n A ; (2) 1 2 n a11 a22 ann.
定义5.2 设矩阵A aij nn ,称a11 a22 ann为矩阵A 的迹.
7 4 1
例1
已知三阶矩阵A
4
7 1 有特征值1 2 3,
4 4 x
3 =12,则x ______ .
解 1 2 3 a11 a22 a33, 即3 3 12 7 7 x,
这与特征向量 0矛盾,故 0.
(2) 由条件知有非零向量 满足A ,两边左乘以A1 得 A1
因 0,于是有 A1 1 ①
所以 1 为A1的特征值.
15
有关特征值的性质
性质5.4 若是A 的特征值,则f ()是f ( A) 的特征值.
代数多项式 f (x) am xm am1xm1 a1x a,0 矩阵多项式 f ( A) am Am am1Am1 a1A a0E. 例2 已知三阶矩阵A 的特征值 1,1,2,求 A3 5A2 .
7
特征值与特征向量的定义
2 1 1
求矩阵的特征值与特征向量:A
0
2 0.
4 1 3
对2 3 2,解方程组( A 2E) X 0,
4 1 1 4 1 1
A
2E
0
0
0

五章矩阵的特征值和特征向量ppt课件

五章矩阵的特征值和特征向量ppt课件

,n
的列(行)
向量都是单位向量且两两正交.
由此可知A的列向量组构成 Rn的 一个标准正交基。
同样的方法,行向量组也是。
例3 判别下列矩阵是否为正交矩阵.
1
1 1
2
1 2 1
1 3 1 2,
1 3 1 2 1
解 (2)由于
1
9 8
8 9 1
4
9 4
1
9 8
9 9
4 9
4 9
9 7 9
1 1
,
e2
2 2
,
,er
r r
,
那么 e1, e2 , , er为W的一个标准正交基 .
上述
由线
性无关
向量
组1
,,
构造
r
出正交
向量组1,, r的过程,称为施密特正交化过程 .
例1 用施密特正交化方法,将向量组
a1 (1,1,1,1)T , a2 (1, 1, 0, 4)T , a3 (3, 5,1, 1)T
9 4
9
所以它是正交矩阵.
2
1
9 8
8 9 1
4
9 4
.
9 9 9
4 9
4 9
7 9
8 9 1
4
9 4
T
1 0
0 1
0 0
9 4
9
9 7
9
0
0
1
提示:此法为 定义法,利用定理3如何证明?
定理2 设A, B皆是n阶正交矩阵,则
1 A 1或1
2 AT 即A1 也是正交矩阵.
A1 x 1 x 故 1是矩阵A 1的特征值, 且x是A 1对应于 1

线性代数 第五章第一节 矩阵的特征值与特征向量

线性代数 第五章第一节 矩阵的特征值与特征向量
0 1 1 A 1 0 1 1 1 0
第一步:写出矩阵A的特征方程,求出全 部特征值(注明重数).

l 1 1 lE A 1 l 1 (l 2)( l 1) 2 1 1 l
l 代入齐次线性方程组
所以A的特征值为 l1 2, l2 l3 1.
第二步:对每个特征值
2 1 1 2 1 1 2 E A 1 2 1 1 2 1 1 1 2 0 0 0
A l E x 0, 求基础解系。 当l1 2 时,解方程组 (2 E A) x 0 . 由
1 1ቤተ መጻሕፍቲ ባይዱ
故l0 是矩阵A 的特征值, 且X 0是A
1
1
1
对应于l0 的特征向量.
1
如何求得矩阵A的特征值和特征 向量呢? 式子AX=lX(lE-A)X=0. 由于X是非零向量, 故齐次线性方 程组(lE-A)X=0有非零解, 而这等 价于 |λE-A|=0.
定义 称
为A的特征多项式, 它是以l为未知数的一 元n次多项式, 也记为f(l). 称|lEA|=0为A的特征方程. λE-A称为A的 特征矩阵。
若l0,使得 A(X 1 X 2) l0 X 1 X 2) (
则有
(l1 l0)X 1 l2 l0)X 2 0 (
A左乘 λ1左乘
式两端:l1 l0)l1 X 1 l0 l2)l2 X 2 0 ( ( ( ( 式两端:l1 l0)l1 X 1 l0 l2)l1 X 2 0
(l0 l2)l2 X 2 l0 l2)l1 X 2 (
l2 l1 , X 2 0
l0 l2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设()ijn nA a ⨯=是数域P 上的n 阶矩阵,若对于数域P 中的数λ,存在数域P 上的非零n 维列向量X ,使得则称λ为矩阵A 的特征值,称X 为矩阵A 属于(或对应于)特征值λ的特征向量 注意:1)()ijn nA a ⨯=是方阵;2)特征向量 X 是非零列向量;3)方阵 ()ijn nA a ⨯= 与特征值λ 对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A 的特征值与特征向量的步骤为: (1) 计算n 阶矩阵A 的特征多项式|λE -A |;(2) 求出特征方程|λE -A |=0的全部根,它们就是矩阵A 的全部特征值; (3) 设λ1 ,λ2 ,… ,λs 是A 的全部互异特征值。

对于每一个λi ,解齐次线性方程组()i E A X λ-=0,求出它的一个基础解系,该基础解系的向量就是A 属于特征值λi 的线性无关的特征向量,方程组的全体非零解向量就是A 属于特征值λi 的全体特征向量.3. 特征值和特征向量的性质性质1 (1)若X 是矩阵A 属于特征值λ的特征向量,则kX (0k ≠)也是A 属于λ的特征向量;(2)若12,,,s X X X L 是矩阵A 属于特征值λ的特征向量,则它们的非零线性组合1122s s k X k X k X +++L 也是A 属于λ的特征向量;(3)若A 是可逆矩阵,λ是A 的一个特征值,则λ1是A —1的一个特征值,λ||A 是A *的一个特征值;(4)设λ是n 阶矩阵A 的一个特征值,f (x )= a m x m + a m-1x m -1 + … + a 1x + a 0为一个多项式,则()f λ是f (A )的一个特征值。

性质2(1) nn n a a a +⋅⋅⋅++=+⋅⋅⋅++221121λλλ(2) || 21A n =⋅⋅⋅λλλ性质3 n 阶矩阵A 和它的转置矩阵TA 有相同的特征值 性质4 n 阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A 、B 为n 阶矩阵,若存在可逆矩阵P ,使得B=P ―1AP则称A 与B 相似。

记作A ∽B . 并称P 为相似变换矩阵. 矩阵的相似关系是等价关系,满足:1° 反身性:A ∽A .2° 对称性:若A ∽B,则B∽A . 3° 传递性:若A ∽B,B ∽C 则 A ∽C.5.矩阵相似的性质:设A 、B 为n 阶矩阵,若A ∽B ,则 (1) A B =; (2) ()()R A R B =;(3)A 、B 有相同的迹和特征多项式,相同的特征值;(4) A ,B 或者都可逆或者都不可逆. 当A ,B 都可逆时,1A -∽1B -;(5)设f (x )= a m x m + a m-1x m -1 + … + a 1x + a 0 为一个多项式,则 f (A )∽ f (B ) ;6.n 阶矩阵A 相似对角化的条件(1)n 阶矩阵A 与对角矩阵Λ相似的充分必要条件是A 有n 个线性无关的特征向量. (2)n 阶矩阵A 与对角阵相似的充要条件是A 的每个k 重特征值λ恰好对应有k 个线性无关的特征向量.注(1)与单位矩阵相似的 n 阶矩阵只有单位阵 E 本身,与数量矩阵 kE 相似的 n 阶方阵只有数量矩阵 kE 本身(2)有相同特征多项式的矩阵不一定相似。

7.n 阶矩阵A 相似对角化的方法(1)解特征方程0E A λ-=,求出A 的全部特征值,12,,s λλλL ,设i λ是i n 重根(1,2,)i s =L(2)对每个特征值i λ,解齐次线性方程组()0i E A X λ-=,求得基础解系12,,,i i i in X X X L ; (3)令可逆矩阵1211121,21222,12(,,,,,,,,,,)s n n s s sn P X X X X X X X X X =L L L L 则8.实对称矩阵的特征值和特征向量8.1实对称矩阵的特征值和特征向量的性质 (1) 实对称矩阵的特征值都是实数(2) 实对称矩阵的不同特征值对应的特征向量是正交的(3) 对于任意一个n 阶实对称矩阵A ,都存在一个n 阶正交矩阵Q ,使得1TQ AQ Q AQ-=为对角阵8.2 用正交变换法化实对称阵为对角阵的步骤1) 解特征方程0A E λ-=求出对称阵A 的全部的特征值(根),12,,s λλλL ,设i λ是i n 重根(1,2,)i s =L ;2)对每个特征值i λ,解齐次线性方程组()0i E A X λ-=,求得基础解系12,,,i i i in X X X L3)将基础解系12,,,i i i in X X X L 正交单位化,得正交 单位向量组12,,,i i i in ηηηL 4)令可逆矩阵1211121,21222,12(,,,,,,,,,)s n n s s sn Q ηηηηηηηηη=L L L L则 111Tss Q AQ Q AQ λλλλ-⎛⎫⎪ ⎪ ⎪==⎪ ⎪ ⎪ ⎪ ⎪⎝⎭O O二.重点难点⒈ 矩阵的特征值和特征向量矩阵的特征值与特征向量的定义、性质与求法;矩阵的特征值与迹、矩阵行列式的关系. 2. 相似矩阵与矩阵对角化矩阵对角化的必要条件与充分条件;矩阵对角化的判定与对角化的方法;矩阵对角化的应用.3. 实对称矩阵的对角化实对称矩阵的特征值与特征向量的性质,实对称矩阵正交相似于对角阵的化法.三.学习要求1. 理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2. 理解矩阵相似的概念,掌握相似矩阵的性质,掌握矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3. 掌握实对称矩阵的特征值和特征向量的性质.掌握实对称阵化为正交相似对角阵的方法.四.典型题分析例1 设A 是四阶矩阵,已知30,2,0.T E A AA E A +==<则A 的伴随矩阵*A 的一个特征值是___________分析:考虑根据30E A +=可得A 的一个特征值,再根据A 与其伴随矩阵*A 的关系即可求解.解 由于30E A +=,于是有3λ=-是A 的一个特征值. 又由于22,0,164T AA E A A A =<==-所以易知 由*AA A E =,所以3λ=-是A 的一个特征值,则Aλ是*A 的特征值,因此*A 的一个特征值是43Aλ=例2 已知三阶矩阵A=00110100x ⎛⎫ ⎪⎪ ⎪⎝⎭有三个线性无关的特征向量,则参数x =____________分析 三阶矩阵A 有三个线性无关的特征向量,则A 可以对角化,可通过先求特征根中的重根再代入即可求得x 解 矩阵A 的特征多项式为 解得矩阵A 的特征值为因为A 有3个线性无关的特征向量,所以A 可以对角化,则其二重根1λ=有两个线性无关的特征向量。

于是(1)321R A E -⋅=-=,对1A E -⋅作初等变换,有 例3 设矩阵 A 、B 均为n 阶矩阵,则矩阵A 与B 相似的充分条件是: (A) A 与B 有相同的特征值. (B) A 与B 有相同的特征向量. (C) A 与B 和同一矩阵相似.(D)k A 与k B 相似.分析 A 与B 有相同的特征值不一定相似,因为不一定能找到可逆矩阵P ,使1P AP B -=( B ) 显然,易举反例 (C )由相似的传递性可知正确(D )举反例:设0011,0011A B -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭220,0A B ==显然22A B 与相似,但是矩阵A 与B 不相似解 选(A)例4设矩阵156310ac A c a -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,其行列式1A =-,又A 的伴随矩阵*A 有一个特征值0λ,属于0λ的一个特征向量为(1,1,1)T α=--,求0,,,a b c λ的值 .分析 本题可根据特征值和特征向量的定义求得未知参数.解 根据题设可得:*0A αλα=两边同时左乘A 得 :*0AA A αλα= 即00A E A A αλαλαα=⇒=-所以有 由此可得: 解得:由于1,A a c =-= 又得:2a c == 因此:01,3,2b a c λ==-==例5:设矩阵1114335A xy -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,已知A 有3个线性无关的特征向量,2λ=是A 的二重特征值,试求可逆矩阵P ,使得1P AP -为对角阵.分析 根据A 有3个线性无关的特征向量,2λ=是A 的二重特征值,代入E A λ-,即可求出A 中未知参数。

解 因为A 有3个线性无关的特征向量,2λ=是A 的二重特征值,所以A 的属于2λ=的线性无关的特征向量必有2个 ,故秩 (2)1R E A -=即:111111202333000x y x x y --⎛⎫⎛⎫ ⎪ ⎪---→--- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭于是解得:2,2x y ==-矩阵111242335A -⎛⎫⎪=- ⎪ ⎪--⎝⎭先求A 的特征值: 最后解得可逆矩阵:11112102,20136P P AP -⎛⎫⎛⎫⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭例6设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111ΛM M M ΛΛb b b bb b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. 解 (Ⅰ) ο1当0≠b 时,=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12Λ. 对b n λ)1(11-+=,解得Tξ)1,,1,1,1(1Λ=,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1Λ= (k 为任意不为零的常数). 对b λ-=12, 得基础解系为T ξ)0,,0,1,1(2Λ-=,T ξ)0,,1,0,1(3Λ-=,T n ξ)1,,0,0,1(,-=ΛΛ.故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++Λ3322 (n k k k ,,,32Λ是不全为零的常数).ο2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-ΛM M M ΛΛ,特征值为11===n λλΛ,任意非零列向量均为特征向量.(Ⅱ) ο1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP Λ=,则ο2 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于综合性的题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况.例7设12,λλ是n 阶矩阵A 的两个不同的特征值,12,αα是A 的属于12,λλ的特征向量,试证明12αα+不是A 的特征向量.分析 该结论用定义即可证明,为叙述方便运用反证法.证明 用反证法。

相关文档
最新文档