2020-2021学年人教版八年级上第二次联考数学试卷及答案解析
2020-2021学年江苏省苏州市、常熟市等四市联考八年级(上)期末数学试卷(解析版)
2020-2021学年江苏省苏州市张家港市、常熟市等四市联考八年级(上)期末数学试卷一、选择题(共10小题).1.小篆,是在秦始皇统一六国后创制的汉字书写形式.下列四个小篆字中为轴对称图形的是()A.B.C.D.2.下列四个实数、π、、中,无理数的个数有()A.1个B.2个C.3个D.4个3.如图,在平面直角坐标系中,被墨水污染部分遮住的点的坐标可能是()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)4.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:55.在平面直角坐标系内,将点A(1,2)先向右平移2个单位长度,再向下平移1个单位长度,则平移后所得点的坐标是()A.(3,1)B.(3,3)C.(﹣1,1)D.(﹣1,3)6.如图,在△ABC和△DEF中,AB=DE,BC=EF,∠B+∠E=180°.如果△ABC的面积48cm2,那么△DEF的面积为()A.48cm2B.24cm2C.54cm2D.96cm27.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.8.如图,将长方形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于E,AD =8,AB=4,则重叠部分(即△BDE)的面积为()A.6B.7.5C.10D.209.如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或+1B.3或C.2或D.3或+1 10.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x 的解集是()A.0<x<B.<x<6C.<x<4D.0<x<3二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.若x3=﹣1,则x=.12.如图,△ABC≌△DEF,点B、F、C、E在同一条直线上,AC、DF交于点M,∠ACB =43°,则∠AMF的度数是°.13.已知一次函数y=x+b的图象经过点A(﹣1,1),则b的值是.14.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是.15.在平面直角坐标系内,已知点A(a+3,a)、B(a+7,a)关于y轴对称,则AB的长为.16.如图,在△ABC中,∠BAC=105°,将△ABC绕点A逆时针旋转得到△AB′C′.若点B恰好落在BC边上,且AB′=CB′,则∠C′的度数为°.17.如图,直线y=﹣x+8与x轴、y轴分别交于点A、B,∠BAO的角平分线与y轴交于点M,则OM的长为.18.如图,在△ABC中,∠ACB=90°,AC=BC=6cm,D是AB的中点,点E在AC上,过点D作DF⊥DE,交BC于点F.如果AE=2cm,则四边形CEDF的周长是cm.三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.计算:()2﹣﹣.20.如图,点E、F在AB上,且AE=BF,∠C=∠D,AC∥BD.求证:CF∥DE.21.如图,在Rt△ABC中,∠C=90°,AC=8,AB=10,AB的垂直平分线分别交AB、AC于点D、E.求AE的长.22.已知点P(m,n)在一次函数y=2x﹣3的图象上,且m>2n,求m的取值范围.23.如图,在平面直角坐标系中,A(﹣1,4),B(﹣3,3),C(﹣2,1).(1)已知△A1B1C1与△ABC关于x轴对称,画出△A1B1C1(请用2B铅笔将△A1B1C1描深);(2)在y轴上找一点P,使得△PBC的周长最小,试求点P的坐标.24.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.25.如图,已知直线l:y=2x+b(b>0)分别交x轴、y轴于点A、B.(1)用含b的代数式表示点A的横坐标为;(2)如果△AOB的面积等于4,求b的值;(3)如果直线l与一次函数y=﹣2x﹣1和y=x+2的图象交于同一点,求b的值.26.如图,已知线段MN=4,点A在线段MN上,且AM=1,点B为线段AN上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为α和β.若旋转后M、N两点重合成一点C(即构成△ABC),设AB=x.(1)△ABC的周长为;(2)若α+β=270°,求x的值;(3)试探究△ABC是否可能为等腰三角形?若可能,求出x的值;若不可能,请说明理由.27.如图,直线y=4﹣x与两坐标轴分别相交于A、B两点,过线段AB上一点M分别作MC⊥OA于点C,MD⊥OB于点D,且四边形OCMD为正方形.(1)正方形OCMD的边长为.(2)将正方形OCMD沿着x轴的正方向移动,得正方形EFGH,设平移的距离为a(0<a≤4).①当平移距离a=1时,正方形EFGH与△AOB重叠部分的面积为;②当平移距离a为多少时,正方形EFGH的面积被直线AB分成1:3两个部分?28.某商店代理销售一种水果.某月30天的销售净利润(扣除每天需要缴纳各种费用50元后的利润)y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.日期销售记录1日库存600kg,进价6元/kg,售价10元/kg(除了促销期间降价,其他时间售价保持不变)9日从1日起的9天内一共售出200kg10、11这两天以进价促销,之后售价恢复到10元/kg日12日补充进货200kg,进价6.5元/kg30日800kg水果全部售完,一共获利1200元请根据图象及如表中销售记录提供的相关信息,解答下列问题:(1)A点纵坐标m的值为;(2)求两天促销期间一共卖掉多少水果?(3)求图象中线段BC所在直线对应的函数表达式.2020-2021学年江苏省苏州市张家港市、常熟市等四市联考八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.小篆,是在秦始皇统一六国后创制的汉字书写形式.下列四个小篆字中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.解:A、本选项中小篆字不是轴对称图形,不符合题意;B、本选项中小篆字不是轴对称图形,不符合题意;C、本选项中小篆字不是轴对称图形,不符合题意;D、本选项中小篆字是轴对称图形,符合题意;故选:D.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列四个实数、π、、中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】根据无理数的概念求解即可.解:=3,π,是无理数,共2个,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.如图,在平面直角坐标系中,被墨水污染部分遮住的点的坐标可能是()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)【分析】根据平面直角坐标系内各象限内点的坐标特点解答即可.解:由图可知被墨水污染部分位于坐标系中第四象限,所以被墨水污染部分遮住的点的坐标应位于第四象限,则可以为:(3,﹣2),故选:D.【点评】本题主要考查点的坐标,掌握平面直角坐标系内各象限内点的坐标特点是解题的关键.4.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:5【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.解:A、∵∠B=∠C+∠A,且∠A+∠B+∠C=180°,∴∠B=90°,故△ABC是直角三角形;B、∵a2=(b+c)(b﹣c),∴a2+c2=b2,故△ABC是直角三角形;C、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴最大角∠C=75°≠90°,故△ABC不是直角三角形;D、由条件可设a=3k,则b=4k,c=5k,那么a2+b2=c2,故△ABC是直角三角形;故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.5.在平面直角坐标系内,将点A(1,2)先向右平移2个单位长度,再向下平移1个单位长度,则平移后所得点的坐标是()A.(3,1)B.(3,3)C.(﹣1,1)D.(﹣1,3)【分析】根据平移的法则即可得出平移后所得点的坐标.解:将点A (1,2)先向右平移2个单位长度,再向下平移1个单位长度,则平移后所得点的坐标是(1+2,2﹣1),即(3,1),故选:A .【点评】本题考查了坐标与图形变化中的平移,根据根据平移的法则解答是解题的关键.6.如图,在△ABC 和△DEF 中,AB =DE ,BC =EF ,∠B +∠E =180°.如果△ABC 的面积48cm 2,那么△DEF 的面积为( )A .48cm 2B .24cm 2C .54cm 2D .96cm 2【分析】作AM ⊥BC 于M ,DN ⊥EF 于N ,如图,根据等角的余角相等得到∠ABM =∠E ,则可判断△ABM ≌△DEN ,所以AM =DN ,然后利用三角形的面积公式可得到S △DEF =S △ABC .解:作AM ⊥BC 于M ,DN ⊥EF 于N ,如图,∵∠ABC +∠E =180°,∠ABC +∠ABM =180°,∴∠ABM =∠E ,在△ABM 和△DEN 中,,∴△ABM ≌△DEN (AAS ),∴AM =DN ,∵S △ABC =•BC •AM ,S △DEF =•EF •DN ,而BC =EF ,∴S △DEF =S △ABC =48cm 2.故选:A .【点评】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.也考查了全等三角形的判定与性质.7.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:C.【点评】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.8.如图,将长方形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于E,AD =8,AB=4,则重叠部分(即△BDE)的面积为()A.6B.7.5C.10D.20【分析】由折叠的性质和矩形的性质可证BE=DE,设AE=x,则BE=DE=8﹣x,在直角△ABE中利用勾股定理即可列方程求得x的值,然后根据三角形面积公式求解.解:∵四边形ABCD是矩形,∴AD∥BC,∴∠EDB=∠CBD,由折叠的性质得:∠C'BD=∠CBD,∴∠EDB=∠C'BD,∴BE=DE,设AE=x,则BE=DE=8﹣x,在Rt△ABE中,AB2+AE2=BE2,即42+x2=(8﹣x)2,解得:x=3,则AE=3,DE=8﹣3=5,=DE•AB=×5×4=10,则S△BDE故选:C.【点评】本题考查了折叠的性质、矩形的性质以及勾股定理,正确利用勾股定理求得AE 的长是解决本题的关键.9.如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或+1B.3或C.2或D.3或+1【分析】根据题意解方程得到x=0,则y=2,令y=0,则x=1,求得OA=1,OB=2,根据勾股定理得到AB=,①当∠ACD=90°时,如图1,②当∠ADC=90°时,如图2,根据全等三角形的性质即可得到结论.解:∵AP⊥AB,∴∠BAP=∠AOB=90°,∴∠ABO+∠BAO=∠CAD+∠BAO=90°,∴∠ABO=∠CAD,在y=﹣2x+2中,令x=0,则y=2,令y=0,则x=1,∴OA=1,OB=2,由勾股定理得AB=,①当∠ACD=90°时,如图1,∵△AOB≌△DCA,∴AD=AB=,∴OD=1+;②当∠ADC=90°时,如图2,∵△AOB≌△CDA,∴AD=OB=2,∴OA+AD=3,综上所述:OD的长为1+或3.故选:D.【点评】本题考查了一次函数图像上点的坐标特征,待定系数法求函数的解析式,勾股定理的应用和全等三角形的性质等知识,分类讨论是解题关键,以防遗漏.10.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x 的解集是()A.0<x<B.<x<6C.<x<4D.0<x<3【分析】首先求得A的坐标,然后利用待定系数法求出y=﹣x+4,再求得B的坐标,结合图象写出不等式0<ax+4<2x的解集即可.解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),代入y=ax+4得,3=a+4,∴a=﹣,∴y=﹣x+4,令y=0,则x=6,∴B(6,0),∴0<ax+4<2x的解集为<x<6.故选:B.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A、B点的坐标.二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.若x3=﹣1,则x=﹣1.【分析】根据立方根的定义求解即可.解:∵x3=﹣1,∴x==﹣1,故答案为:﹣1.【点评】本题主要考查了立方根的定义,如果x3=a,则称x是a的立方根,记作.12.如图,△ABC≌△DEF,点B、F、C、E在同一条直线上,AC、DF交于点M,∠ACB =43°,则∠AMF的度数是86°.【分析】根据全等三角形的性质得到∠DFE=∠ACB=43°,根据三角形的外角性质计算,得到答案.解:∵△ABC≌△DEF,∴∠DFE=∠ACB=43°,∵∠AMF是△MFC的一个外角,∴∠AMF=∠DFE+∠ACB=86°,故答案为:86.【点评】本题考查的是全等三角形的性质、三角形的外角性质,掌握全等三角形的对应角相等是解题的关键.13.已知一次函数y=x+b的图象经过点A(﹣1,1),则b的值是2.【分析】把点A的坐标代入函数解析式进行计算即可.解:∵一次函数y=x+b的图象经过点A(﹣1,1),∴1=﹣1+b,解得:b=2,故答案为:2.【点评】此题主要考查了一次函数图象上点的坐标特点,关键是掌握函数图象经过的点必能满足解析式.14.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是54.【分析】根据勾股定理的逆定理得到三角形是直角三角形,然后根据三角形的面积公式即可得到结论.解:设三角形的三边是3x:4x:5x,∵(3x)2+(4x)2=(5x)2,∴此三角形是直角三角形,∵它的周长是36,∴3x+4x+5x=36,∴3x=9,4x=12,∴三角形的面积=×9×12=54,故答案为:54.【点评】本题考查了勾股定理的逆定理,三角形的面积的计算,熟练掌握勾股定理的逆定理是解题的关键.15.在平面直角坐标系内,已知点A(a+3,a)、B(a+7,a)关于y轴对称,则AB的长为4.【分析】直接利用关于y轴对称点的性质得出a的值,进而得出答案.解:∵点A(a+3,a)、B(a+7,a)关于y轴对称,∴a+3+a+7=0,解得:a=﹣5,故a+3=﹣2,a+7=2,则AB的长为:4.故答案为:4.【点评】此题主要考查了关于y轴对称点的性质,正确得出关于y轴对称点横纵坐标的关系是解题关键.16.如图,在△ABC中,∠BAC=105°,将△ABC绕点A逆时针旋转得到△AB′C′.若点B恰好落在BC边上,且AB′=CB′,则∠C′的度数为25°.【分析】由三角形的内角和定理可得∠B+∠C=75°,由等腰三角形的性质和旋转的性质可得∠B=∠AB'B=2∠C,即可求解.解:∵∠BAC=105°,∴∠B+∠C=75°,∵AB′=CB′,∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A逆时针旋转得到△AB′C′,∴AB=AB',∴∠B=∠AB'B=2∠C,∴∠C=25°,故答案为:25.【点评】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.17.如图,直线y=﹣x+8与x轴、y轴分别交于点A、B,∠BAO的角平分线与y轴交于点M,则OM的长为3.【分析】过M点作MN⊥AB于N,如图,先利用坐标轴上点的坐标特征求出A、B点的坐标,则可计算出AB=10,再利用角平分线的性质得MO=MN,然后利用面积法得到×6•OM +×10•MN =×6×8,从而可求出OM 的长.解:过M 点作MN ⊥AB 于N ,如图,当y =0时,﹣x +8=0,解得x =6,则A (6,0);当x =0时,y =﹣x +8=8,则B (0,8),∴AB ==10,∵AM 平分∠OAB ,∴MO =MN ,∵S △OMA +S △BMA =S △OAB , ∴×6•OM +×10•MN =×6×8,即3OM +5MN =24,∴8OM =24,∴OM =3.故答案为3.【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了一次函数的性质.18.如图,在△ABC 中,∠ACB =90°,AC =BC =6cm ,D 是AB 的中点,点E 在AC 上,过点D 作DF ⊥DE ,交BC 于点F .如果AE =2cm ,则四边形CEDF 的周长是 (6+2)cm .【分析】连接CD ,EF ,根据AAS 证明△AED ≌△CFD ,再根据勾股定理可得EF 的长,由△DEF是等腰直角三角形,即可解决问题.解:如图,连接CD,EF,∵∠ACB=90°,AC=BC,∴∠A=45°,∵D是AB的中点,∴CD=AB=AD.∴∠DCA=∠A=∠DCB=45°,∵DF⊥DE,∴∠EDF=90°,∴∠DEF+∠DFC=180°,∵∠AED+∠DEF=180°,∴∠AED=∠DFC,在△AED和△CFD中,,∴△AED≌△CFD(AAS),∴DE=DF,AE=CF=2cm,∴CE=AC﹣AE=6﹣2=4(cm),∴EF===2(cm),∵△DEF是等腰直角三角形,∴DE2+DF2=EF2,∴2DE2=EF2,∴DE=DF=EF=,∴四边形CEDF的周长是CE+CF+DE+DF=CE+AE+2DE=AC+2DE=(6+2)cm.故答案为:(6+2).【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,解决本题的关键是掌握全等三角形的判定与性质.三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.计算:()2﹣﹣.【分析】原式利用平方根及立方根定义化简,计算即可得到结果.解:原式=3﹣(﹣4)﹣5=3+4﹣5=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,点E、F在AB上,且AE=BF,∠C=∠D,AC∥BD.求证:CF∥DE.【分析】根据已知条件证明△ACF≌△BDE可得∠AFC=∠BED,进而可得CF∥DE.【解答】证明:∵AE=BF,∴AE+EF=BF+EF,即AF=BE,∵AC∥BD,∴∠A=∠B,在△ACF和△BDE中,,∴△ACF≌△BDE(AAS),∴∠AFC=∠BED,∴CF∥DE.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.21.如图,在Rt△ABC中,∠C=90°,AC=8,AB=10,AB的垂直平分线分别交AB、AC于点D、E.求AE的长.【分析】由勾股定理先求出BC=6,连接BE,根据中垂线的性质设AE=BE=x,知CE =8﹣x,在Rt△BCE中由BC2+CE2=BE2列出关于x的方程,解之可得答案.解:在Rt△ABC中,∠C=90°,AC=8,AB=10,∴BC===6,连接BE,∵DE垂直平分AB,∴AE=BE,设AE=BE=x,则CE=8﹣x,在Rt△BCE中,∵BC2+CE2=BE2,∴62+(8﹣x)2=x2,解得x=,∴AE=.【点评】本题主要考查勾股定理,解题的关键是掌握勾股定理及线段中垂线的性质.22.已知点P(m,n)在一次函数y=2x﹣3的图象上,且m>2n,求m的取值范围.【分析】先由点P(m,n)在一次函数y=2x﹣3的图象上知n=2m﹣3,将其代入m>2n,进一步求解即可.解:∵点P(m,n)在一次函数y=2x﹣3的图象上,∴n=2m﹣3,∵m>2n,∴m>2(2m﹣3),解得m<2.【点评】本题主要考查一次函数图象上点的坐标特征,解题的关键是掌握一次函数图象上点的坐标满足一次函数的解析式.23.如图,在平面直角坐标系中,A(﹣1,4),B(﹣3,3),C(﹣2,1).(1)已知△A1B1C1与△ABC关于x轴对称,画出△A1B1C1(请用2B铅笔将△A1B1C1描深);(2)在y轴上找一点P,使得△PBC的周长最小,试求点P的坐标.【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)作点C关于y轴的对称点C′,利用待定系数法求BC′所在直线解析式,再求出x=0时y的值即可.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求,点C关于y轴的对称点C′(2,1),设BC′所在直线解析式为y=kx+b,则,解得,∴BC′所在直线解析式为﹣x+,当x=0时,y=,所以点P坐标为(0,).【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对称点及待定系数法求直线解析式.24.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.【分析】(1)根据直角三角形的性质得到DE=AB=4,DF=AC=3,根据四边形的周长公式计算,得到答案;(2)根据三角形的面积公式计算即可.解:(1)∵AD是△ABC的高,∴∠ADB=∠ADC=90°,∵E、F分别是AB、AC的中点,AB=8,AC=6,∴DE=AB=4,DF=AC=3,AE=4,AF=3,∴四边形AEDF的周长=AE+DE+DF+AF=14;(2)△ABC的面积=×AB×AC=24,∵E、F分别是AB、AC的中点,∴△ADE的面积=△BDE的面积,△ADF的面积=△CDF的面积,∴四边形AEDF的面积=×△ABC的面积=12.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.25.如图,已知直线l:y=2x+b(b>0)分别交x轴、y轴于点A、B.(1)用含b的代数式表示点A的横坐标为﹣;(2)如果△AOB的面积等于4,求b的值;(3)如果直线l与一次函数y=﹣2x﹣1和y=x+2的图象交于同一点,求b的值.【分析】(1)令y=0,求得x的值即可;(2)求得B的坐标,根据题意得到OA•OB=4,即=4,即可求得b=4;(3)求得一次函数y=﹣2x﹣1和y=x+2的图象的交点,代入直线l的解析式即可求得.解:(1)∵直线l:y=2x+b(b>0)分别交x轴、y轴于点A、B.∴令y=0,则0=2x+b,解得x=﹣,∴点A的横坐标为﹣,故答案为﹣;(2)令x=0,则y=b,∴B(0,b),∵△AOB的面积等于4,∴OA•OB=4,即=4,解得b=4;(2)由解得,∴直线l与一次函数y=﹣2x﹣1和y=x+2的图象交于同一点(﹣1,1),把(﹣1,1)代入y=2x+b(b>0)得,1=﹣2+b,∴b=3.【点评】本题是两条直线相交或平行问题,考查了一次函数图像上点的坐标特征,两条直线交点的求法,三角形的面积等,求得交点坐标是解题的关键.26.如图,已知线段MN=4,点A在线段MN上,且AM=1,点B为线段AN上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为α和β.若旋转后M、N两点重合成一点C(即构成△ABC),设AB=x.(1)△ABC的周长为4;(2)若α+β=270°,求x的值;(3)试探究△ABC是否可能为等腰三角形?若可能,求出x的值;若不可能,请说明理由.【分析】(1)由旋转的性质得出AC=AM,BC=BN,则可得出答案;(2)求出∠ACB=90°,由勾股定理可得出答案;(3)分三种情况讨论,当AC=BC=1时,当AB=AC=1时,当BC=BA时,由三角形三边关系及等腰三角形的性质可得出答案.解:(1)∵以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,∴AC=AM,BC=BN,∵MN=4,∴△ABC的周长=AC+AB+BC=AM+AB+BN=MN=4.故答案为:4;(2)∵∠MAC=α,∠NBC=β,α+β=270°,∴∠MAC+∠NBC=270°,∴∠CAB+∠CBA=360°﹣270°=90°,∴∠ACB=90°,∵AM=1,AB=x,MN=4,∴AC=1,BC=BN=(3﹣x),由勾股定理得,12+(3﹣x)2=x2,解得x=;(3)存在,理由如下:∵AC=1,△ABC为等腰三角形,∴当AC=BC=1时,则AB=2,此时1+1=2,△ABC不存在,舍去,当AB=AC=1时,同理,不合题意舍去,当BC=AB时,∵AC=1,AB+AC+BC=4,∴AB+BC=3,∴AB=BC=,此时1+,符合题意,∴△ABC能为等腰三角形,AB=x=.【点评】本题是几何变换综合题,考查了旋转的性质,勾股定理,等腰三角形的判定与性质,三角形三边关系,三角形的周长,熟练掌握旋转的性质是解题的关键.27.如图,直线y=4﹣x与两坐标轴分别相交于A、B两点,过线段AB上一点M分别作MC⊥OA于点C,MD⊥OB于点D,且四边形OCMD为正方形.(1)正方形OCMD的边长为2.(2)将正方形OCMD沿着x轴的正方向移动,得正方形EFGH,设平移的距离为a(0<a≤4).①当平移距离a=1时,正方形EFGH与△AOB重叠部分的面积为;②当平移距离a为多少时,正方形EFGH的面积被直线AB分成1:3两个部分?【分析】(1)设点M(x,4﹣x),由正方形的性质可得OC=CM,即可求解;=EM2=,即可求解;(2)①先求出S△MEQ②分两种情况讨论,由等腰直角三角形的性质和正方形的性质可求解.解:(1)设点M(x,4﹣x),∵当四边形OCMD为正方形时,OC=CM,即x=4﹣x,∴x=2,∴CM=OC=2,故答案为2;(2)①∵直线AB的解析式为y=﹣x+4,∴移动过程中正方形EFGH被分割出的三角形是等腰直角三角形,如图1,∵四边形EFGH是正方形,∴正方形EFGH的面积=22=4,当a=1时,EM=1,=EM2=,∴S△MQE∴正方形EFGH与△AOB重叠部分的面积=4﹣=;故答案为;②∵正方形EFGH的面积被直线AB分成1:3两个部分,∴两部分的面积分别为1和3.当0<a≤2时,如图2所示:∵直线AB的解析式为y=4﹣x,∴∠BAO=45°,∴△MQE为等腰直角三角形,∴EQ=ME,∴ME2=1,∴ME=,即a=,当2<a<4时,如图3所示:∵∠BAO=45°,∴△AGQ为等腰直角三角形.∴GQ=GA.∴GA2=1,解得:GA =.∵将y=0代入y=4﹣x得:4﹣x=0,∴x=4,∴OA=4.∴OG=4﹣,即a=4﹣.综上所述,当平移的距离为a =或a=4﹣时,正方形EFGH的面积被直线AB分成1:3两个部分.【点评】本题是一次函数综合题,考查的是一次函数的综合应用,解答本题主要应用了﹣﹣﹣函数图象的点的坐标与函数解析式的关系,正方形的性质,等腰直角三角形的性质和判定,证得△MQE、△GQA是等腰直角三角形是解题的关键.28.某商店代理销售一种水果.某月30天的销售净利润(扣除每天需要缴纳各种费用50元后的利润)y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.日期销售记录1日库存600kg,进价6元/kg,售价10元/kg(除了促销期间降价,其他时间售价保持不变)9日从1日起的9天内一共售出200kg10、11这两天以进价促销,之后售价恢复到10元/kg日12日补充进货200kg,进价6.5元/kg30日800kg水果全部售完,一共获利1200元请根据图象及如表中销售记录提供的相关信息,解答下列问题:(1)A点纵坐标m的值为350;(2)求两天促销期间一共卖掉多少水果?(3)求图象中线段BC所在直线对应的函数表达式.【分析】(1)由表格信息可知,从6月1日到6月9日,成本价6元/kg,售价10元/kg,一共售出200kg,根据利润=每千克的利润×销售量列式计算即可;(2)由题意得出方程,解方程即可;(3)先求出点B的坐标,再由待定系数法求解即可.解:∵从1日起的9天内一共售出200kg,∴总利润为200(10﹣6)﹣9×50=350(元),故答案为:350;(2)设促销期间一共卖掉xkg水果,本月总成本为:600×6+200×6.5+50×30=6400(元),本月总售价为:200×10+x•6+(800﹣200﹣x)•10=(8000﹣4x)元,由图象可知本月总利润为1200元,∴8000﹣4x﹣6400=1200,解得:x=100,即两天促销期间一共卖掉100kg水果;(3)由(2)可知两天促销期间一共卖掉100kg水果,∴B的横坐标200+100=300,∴两天促销期间的净利润为100(6﹣6)﹣2×50=﹣100(元),∴点B的纵坐标为350﹣100=250,∴B(300,250),设直线BC的解析式为y=kx+b,把点B(300,250)和C(800,1200)的坐标代入得:,解得:,∴图象中线段BC所在直线对应的函数表达式为y=x﹣320.。
河南省新乡市红旗区新乡学院附属中学2020-2021学年八年级上学期第二次月考数学试题及参考答案
C. D.
6.如图,在△ABC中,AB=5,AC=3,AD是BC边上的中线,AD的取值范围是()
A.1<AD<6B.1<AD<4C.2<AD<8D.2<AD<4
7.若把分式 的x和y都扩大3倍,那么分式 的值()
A.扩大3倍B.扩大9倍C.扩大4倍D.不变
8.已知 - =3,则 的值是( )
∴∠ACB=180°-∠A-∠CBA=180°-40°-60°=80°,
∵P点在AB边上且不与A、B重合,
∴0°<∠ACP<80°,
∴0°<2∠BOC-220°<80°,
∴110°<∠BOC<150°,
∴m=110,n=150.
∴n-m=40.
故选:B.
【点睛】
本题考查了角平分线的性质,三角形内角和定理,一元一次不等式组的解法,熟练掌握三角形内角和定理是解题的关键.
22.甲、乙两商场自行定价销售某一商品.
(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为元;
(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?
(3)在(1)、(2)的结论下,甲、乙两商场把该商品均按原价进行了两次价格调整.
14.一个长方形的两邻边分别是 , ,若 ,则这个长方形的面积是_________
15.观察下列各式:1×3=3,而22-1=3;3×5=15,而42-1=15;5×7=35,而62-1=35;…;11×13=143,而122-1=143.将你发现的规律用含有一个字母的式子表示为_____
三、解答题
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;
2020--2021学年上学期人教版 八年级数学试题
2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.在预防新冠疫情期间,到公共场所都要佩戴口罩,据了解口罩的规格有两种:儿童款(长14cm)和成人款(长17cm),其中超过标准长度的数量记为正数,不足的数量记为负数.质量监督局检查了四个药店的儿童口罩,结果如下,从长度的角度看,最接近标准的儿童口罩是()A.+0.09B.﹣0.21C.+0.15D.﹣0.062.若|a|=a,则a表示()A.正数B.负数C.非正数D.非负数3.已知方程x2﹣3x=0,下列说法正确的是()A.方程的根是x=3B.只有一个根x=0C.有两个根x1=0,x2=3D.有两个根x1=0,x2=﹣34.x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则=D.若=,则x=y5.点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是()A.(﹣2,3)或(﹣2,﹣3)B.(﹣2,3)C.(﹣3,2)或(﹣3,﹣2)D.(﹣3,2)6.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,0)B.(0,1)C.(﹣1,1)D.(﹣1,﹣2)7.下列属于圆柱体的是()A.B.C.D.8.沿图中虚线旋转一周,能围成的几何体是()A.B.C.D.9.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋10.下列说法:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7;②两边和一角对应相等的两个三角形全等;③如果两个三角形关于某直线成轴对称,那么它们是全等三角形;④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形.其中正确的有()A.1个B.2个C.3D.4个11.某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取7男7女,了解他们吃零食情况12.把25枚棋子放入右图的三角形内,那么一定有一个小三角形中至少放入()枚.A.6B.7C.8D.9二.填空题(共6小题)13.如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作千米.14.若x=﹣1为方程x2﹣m=0的一个根,则m的值为.15.点M(﹣2,3)到x轴和y轴的距离之和是.16.个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.17.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.18.小芸为了解同学们最感兴趣的在线学习方式,设计了如下的调查问题(选项不完整):你最感兴趣的一种在线学习方式是()(单选)A.B.C.D.其他她准备从“①在线听课,②在线讨论,③在线学习2~3小时,④用手机在线学习,⑤在线阅读”中选取三个作为该问题的备选答案,合理的选取是.(填序号)三.解答题(共9小题)19.在抗洪抢险过程中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天航行路程记录如下:(单位:千米)15,﹣7,18,9,﹣3,6,﹣8(1)通过计算说明B地在A地的什么位置;(2)已知冲锋舟每千米耗油0.5升,油箱容量为40升,若冲锋舟在救援前将油箱加满,请问该冲锋舟在救援过程中是否还需要补充油?20.把下列各数填在相应的括号内:﹣,0,﹣30,,+20,﹣2.6,π,0.,0.3030030003…(每两个3之间逐次增加一个0).正有理数集合:{…};负数集合:{…};整数集合:{…}.21.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.22.关于x的方程x﹣2m=﹣3x+4与2﹣x=m的解互为相反数.(1)求m的值;(2)求这两个方程的解.23.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.24.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.问题解决:(1)该长方体纸盒的底面边长为cm;(请你用含a,b的代数式表示)(2)若a=24cm,b=6cm,则长方体纸盒的底面积为多少cm2;动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm的小正方形和两个同样大小的小长方形,再沿虚线折合起来.拓展延伸:(3)该长方体纸盒的体积为多少cm3?(请你用含a,b的代数式表示)25.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.26.甲、乙两种水稻试验品种连续5年的平均单位面积产量(单位:t/hm2)如表,试根据这组数据估计哪一种水稻品种好.品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8 27.若从1,2,3,…,n中任取5个两两互素的不同的整数a1,a2,a3,a4,a5,其中总有一个整数是素数,求n的最大值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据题意可知绝对值最小的即为最接近标准的儿童口罩,即可得出答案.【解答】解:根据题意得:|﹣0.06|<|+0.09|<|+0.15|<|﹣0.21|,故选:D.2.【分析】根据绝对值的意义解答即可.【解答】解:∵|a|=a,∴a为非负数,故选:D.3.【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x(x﹣3)=0,∴x=0或x﹣3=0,∴x=0或x=3,故选:C.4.【分析】根据等式的性质一一判断即可.【解答】解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,原变形正确,故此选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,原变形正确,故此选项不符合题意;C、由x=y得出=必须c≠0,当c=0时不成立,故本选项符合题意;D、根据等式的性质2可得出,若=,则x=y,原变形正确,故此选项不符合题意;故选:C.5.【分析】根据题意,判断出点P所在的象限,再根据点到y轴的距离是点的横坐标的绝对值,到x轴的距离是点的纵坐标的绝对值,判断即可.【解答】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(﹣2,3)或(﹣2,﹣3),故选:A.6.【分析】由点A,B,C,D的坐标可得出四边形ABCD为矩形及AB,AD的长,由矩形的周长公式可求出矩形ABCD的周长,结合2019=202×10﹣1可得出细线的另一端在线段AD上且距A点1个单位长度,结合点A的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,四边形ABCD为矩形,∴C矩形ABCD=(3+2)×2=10.∵2019=202×10﹣1,∴细线的另一端在线段AD上,且距A点1个单位长度,∴细线的另一端所在位置的点的坐标是(1,1﹣1),即(1,0).故选:A.7.【分析】根据圆柱体的形状解答即可.【解答】解:A、图形是正方体,不符合题意;B、图形是梯形,不符合题意;C、图形属于圆柱体,符合题意;D、图形是圆,不符合题意;故选:C.8.【分析】根据“面动成体”可知,将长方形沿着长边所在的直线旋转一周,形成的几何体是圆柱,得出判断即可.【解答】解:将长方形沿着一边旋转一周,所形成的几何体是圆柱,故选:B.9.【分析】利用轴对称画出图形即可.【解答】解:如图所示:,该球最后落入的球袋是4号袋,故选:D.10.【分析】根据三角形的三边关系,全等三角形的判定,等边三角形的判定,轴对称的性质一一判断即可.【解答】解:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7,错误,应该是中线AD的取值范围是1<AD<7.②两边和一角对应相等的两个三角形全等,错误,SSA不一定全等.③如果两个三角形关于某直线成轴对称,那么它们是全等三角形,正确.④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形,正确.故选:B.11.【分析】根据样本抽样的原则要求,逐项进行判断即可.【解答】解:根据样本抽样具有普遍性、代表性和可操作性,选项D比较合理,选项A为普查,没有必要,也不容易操作;选项B、C仅代表男生或女生的情况,不能反映全面的情况,不具有代表性,故选:D.12.【分析】把4个小三角形看作4个抽屉,把25枚棋子看作25个元素,那么每个抽屉需要放25÷4=6…1,所以每个抽屉需要放6枚,剩余的1枚无论怎么放,总有一个抽屉里至少有6+1=7,所以,至少有一个小三角形内至少要放7枚棋子,即可得出结论.【解答】解:25÷4=6……1,6+1=7(枚),故选:B.二.填空题(共6小题)13.【分析】根据正数和负数表示相反意义的量,向东行驶记为正,可得向西行驶的表示方法.【解答】解:如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作﹣20千米.故答案为:﹣20.14.【分析】把x=﹣1代入方程得1﹣m=0,然后解一元一次方程即可.【解答】解:把x=﹣1代入方程得1﹣m=0,解得m=1.故答案为1.15.【分析】根据点的坐标与其到坐标轴的距离的关系进行解答.【解答】解:点M(﹣2,3)到x轴的距离为:3,到y轴的距离为:2,故点M(﹣2,3)到x轴和y轴的距离之和是:3+2=5.故答案为:5.16.【分析】根据圆柱的体积是同底同高的圆锥的体积的三倍解答即可.【解答】解:因为圆柱的体积是同底同高的圆锥的体积的三倍,所以3个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.故答案为:3.17.【分析】如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+1=673次,故答案为:673.18.【分析】根据题意可得“①在线听课,②在线讨论,⑤在线阅读”合理.【解答】解:根据题意可知:①在线听课,②在线讨论,⑤在线阅读,作为该问题的备选答案合理,故答案为:①②⑤.三.解答题(共9小题)19.【分析】(1)求出所有正负数之和,可以判断B点位置;(2)求所有正负数的绝对值之和,即为行程总和,在确定所需油量即可求解.【解答】解:(1)15﹣7+18+9﹣3+6﹣8=30(千米),答:B地在A地东面30千米;(2)15+7+18+9+3+6+8=66(千米),66×0.5=33<40,答:不需补充.20.【分析】按照有理数的分类填写即可.【解答】解:正有理数集合:{,+20,0.…}负数集合:{,﹣30,﹣2.6…}整数集合:{0,﹣30,+20…}故答案为:,+20,0.;,﹣30,﹣2.6;0,﹣30,+20.21.【分析】根据等式的性质解答即可.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.22.【分析】(1)先分别解关于x的一次方程得到x=m+1和x=2﹣m,再利用相反数的定义得到m+1+2﹣m=0,然后解关于m的方程即可;(2)把m的值分别代入x=m+1和x=2﹣m中得到两方程的解.【解答】解:(1)解方程x﹣2m=﹣3x+4得x=m+1,解方程2﹣x=m得x=2﹣m,根据题意得,m+1+2﹣m=0,解得m=6;(2)当m=6时,x=m+1=×6+1=4,即方程x﹣2m=﹣3x+4的解为x=4;当m=6时,x=2﹣m=2﹣6=﹣4,即方程2﹣x=m的解为x=﹣4.23.【分析】(1)根据A、B点坐标,代入(m﹣1,)中,求出m和n的值,然后代入2m=8+n检验等号是否成立即可;(2)直接利用“开心点”的定义得出a的值进而得出答案.【解答】解:(1)点A(5,3)为“开心点”,理由如下,当A(5,3)时,m﹣1=5,,得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“开心点”;点B(4,10)不是“开心点”,理由如下,当B(4,10)时,m﹣1=4,,得m=5,n=18,则2m=10,8+18=26,所以2m≠8+n,所以点B(4,10)不是“开心点”;(2)点M在第三象限,理由如下:∵点M(a,2a﹣1)是“开心点”,∴m﹣1=a,,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1,2a﹣1=﹣3,∴M(﹣1,﹣3),故点M在第三象限.24.【分析】(1)根据折叠可得答案;(2)将a=24,b=6代入底面积的代数式计算即可;(3)根据图2的裁剪,折叠后,表示出长、宽、高进而用代数式表示体积.【解答】解:(1)根据折叠可知,底面是边长为(a﹣2b)(cm)的正方形,故答案为:(a﹣2b);(2)将a=24,b=6代入得,(a﹣2b)2=(24﹣2×6)2=144(cm2)答:长方体纸盒的底面积为144cm2;(3)裁剪后折叠成长方体的长为:(a﹣2b)cm,宽为cm,高为bcm,所以,折叠后长方体的体积为(a﹣2b)××b,即,b(a﹣2b)2,答:长方体的体积为b(a﹣2b)2.25.【分析】(1)结论:AC=CD.想办法证明,AC=CP,CD=CP即可.(2)结论不变,证明方法类似(1).【解答】解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.26.【分析】首先求得平均产量,然后求得方差,进行比较即可.【解答】解:根据表格中的数据求得甲的平均数=(9.8+9.9+10.1+10+10.2)÷5=10;乙的平均数=(9.4+10.3+10.8+9.7+9.8)÷5=10,甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244.∴0.02<0.244,∴产量比较稳定的水稻品种是甲.因为甲、乙两种水稻单位面积产量的平均数相等,甲种方差小于乙种方差,所以甲种水稻品种好.27.【分析】只有1和它本身两个因数的数,就是质数(或素数).除了1和它本身以外,还有别的因数的数,就是合数.因为5个整数两两互素,它们的约数只能取2、3、5、7、11,又因为是合数,只能是约数的平方.所以可求解.【解答】解:若n≥49,取整数1,22,32,52,72,这五个整数是五个两两互素的不同的整数,但没有一个整数是素数,∴n≤48,在1,2,3,……,48中任取5个两两互素的不同的整数,若都不是素数,则其中至少有四个数是合数,不妨假设,a1,a2,a3,a4为合数,设其中最小的素因数分别为p1,p2,p3,p4,由于两两互素,∴p1,p2,p3,p4两两不同,设p是p1,p2,p3,p4中的最大数,则p≥7,因为a1,a2,a3,a4为合数,所以其中一定存在一个,aj≥p2≥72=49,与n≤48矛盾,于是其中一定有一个是素数,综上所述,正整数n的最大值为48.。
2020-2021学年人教版八年级数学上学期《第12章 全等三角形》测试卷及答案解析
2020-2021学年人教版八年级数学上学期《第12章全等三角形》测试卷一.选择题(共8小题)1.下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个2.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB ≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=40°,则∠BFC的大小是()A.105°B.100°C.110°D.115°3.如图,已知:AC=DF,AC∥FD,AE=DB,判断△ABC≌△DEF的依据是()A.SSS B.SAS C.ASA D.AAS4.下列说法正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.三角形的外角等于它的两个内角的和C.斜边和一条直角边相等的两个直角三角形全等D.两条直线被第三条直线所截,内错角相等5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF6.如图,在△ABC中,F是高AD和BE的交点,BC=6,CD=2,AD=BD,则线段AF 的长度为()A.2B.1C.4D.37.平面内,到三角形三边所在直线距离相等的点共有()个.A.3B.4C.5D.68.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF二.填空题(共2小题)9.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=.10.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是cm.2020-2021学年人教版八年级数学上学期《第12章全等三角形》测试卷参考答案与试题解析一.选择题(共8小题)1.下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个【分析】根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断即可.【解答】解:①三角形的三条高交于同一点,所以此选项说法正确;②设这个角为α,则这个角的补角表示为180°﹣α,这个角的余角表示为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,∴一个角的补角比这个角的余角大90°,此选项正确;③垂直于同一条直线的两条直线互相平行,所以此选项不正确;④两直线平行,同位角相等,所以此选项说法不正确;⑤面积相等的两个正方形是全等图形,此选项正确;⑥已知两边及一角不能唯一作出三角形,此选项正确.故选:D.【点评】此题考查全等图形、三角形的高以及平行线的性质等知识,关键是根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断.2.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB ≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=40°,则∠BFC的大小是()A.105°B.100°C.110°D.115°【分析】延长C′D交AB′于H.利用全等三角形的性质,平行线的性质,三角形的外角的性质证明∠BFC=∠C′+∠AHC′,再求出∠C′+∠AHC′即可解决问题.【解答】解:延长C′D交AB′于H.∵△AEB≌△AEB′,∴∠ABE=∠AB′E,∵C′H∥EB′,∴∠AHC′=∠AB′E,∴∠ABE=∠AHC′,∵△ADC≌△ADC′,∴∠C′=∠ACD,∵∠BFC=∠DBF+∠BDF,∠BDF=∠CAD+∠ACD,∴∠BFC=∠AHC′+∠C′+∠DAC,∵∠DAC=∠DAC′=∠CAB′=40°,∴∠C′AH=120°,∴∠C′+∠AHC′=60°,∴∠BFC=60°+40°=100°,故选:B.【点评】本题考查了全等三角形的性质,平行线的性质,三角形的外角的性质等知识,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应边相等,对应角相等.3.如图,已知:AC=DF,AC∥FD,AE=DB,判断△ABC≌△DEF的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据两直线平行内错角相等,再根据SAS即可证明△ABC≌△DEF.【解答】解:∵AC∥FD,∴∠CAD=∠ADF,∵AE=DB,∴ED=AB,∵AC=DF,∴△ABC≌△DEF(SAS),故选:B.【点评】本题主要考查了全等三角形的判定,关键是根据两直线平行内错角相等解答.4.下列说法正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.三角形的外角等于它的两个内角的和C.斜边和一条直角边相等的两个直角三角形全等D.两条直线被第三条直线所截,内错角相等【分析】A、根据三角形全等的判定进行判断;B、根据三角形的外角与内角和关系及三角形的内角和定理可做判断;C、根据三角形全等的判定进行判断;D、根据平行线的性质进行判断.【解答】解:A、两边及夹角分别相等的两个三角形全等,错误;B、三角形的外角等于与它不相邻的两个内角的和,错误;C、边和一条直角边相等的两个直角三角形全等,正确;D、两条平行线被第三条直线所截,内错角相等,错误;故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题可分为真命题和假命题.5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:A.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.6.如图,在△ABC中,F是高AD和BE的交点,BC=6,CD=2,AD=BD,则线段AF 的长度为()A.2B.1C.4D.3【分析】先证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC,利用全等三角形对应边相等就可得到结论.【解答】证明:∵F是高AD和BE的交点,∴∠ADC=∠FDB=∠AEF=90°,∴∠DAC+∠AFE=90°,∵∠FDB=90°,∴∠FBD+∠BFD=90°,又∵∠BFD=∠AFE,∴∠FBD=∠DAC,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴DF=CD=2,∴AD=BD=BC﹣DF=4,∴AF=AD﹣DF=4﹣2=2;故选:A.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.7.平面内,到三角形三边所在直线距离相等的点共有()个.A.3B.4C.5D.6【分析】在三角形内部到三边距离相等的点是三条内角平分线的交点,只有一个;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,有三个【解答】解:∵在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.∴到三角形三边所在直线距离相等的点有4个.故选:B.【点评】此题是考查角平分线的性质的灵活应用.注意三角形的外角平分线不要漏掉,有3个交点.8.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF【分析】根据基本作图的方法,逐项分析,从而得出正确的结论.【解答】解:A.连接AD,不能同时使平分∠BAC,此作图错误;B.只能反向延长射线AB,此作图错误;C.作∠AOB的平分线OC,此作图正确;D.过点A作AB∥CD或AB∥EF,此作图错误;故选:C.【点评】此题主要考查了作图﹣尺规作图的定义:用没有刻度的直尺和圆规作图,正确把握定义是解题关键.二.填空题(共2小题)9.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=45°.【分析】根据题意,作出合适的辅助线,然后根据勾股定理的逆定理即可解答本题.【解答】解:如右图所示,作CD∥AB,连接DE,则∠2=∠3,设每个小正方形的边长为a,则CD=,DE=a,CE=a,∵CD2+DE2==10a2=CE2,CD=DE,∴△CDE是等腰直角三角形,∠CDE=90°,∴∠DCE=45°,∴∠3+∠1=45°,∴∠1+∠2=45°,故答案为:45°.【点评】本题考查全等图形,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.10.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是69cm.【分析】设升旗台的高度是zcm,AC=xcm,BC=ycm.构建方程组即可解决问题.【解答】解:设升旗台的高度是zcm,AC=xcm,BC=ycm.由题意:,①+②可得,2z=138,∴z=69,故答案为69.【点评】本题考查全等三角形的性质,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.。
2020-2021学年北京海淀区人教版八年级(上)期末数学试卷(含答案)
2020-2021学年北京市海淀区八年级(上)期末数学试卷一、选择题(本大题共24分,每小题3分)第1~8题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(2020秋•海淀区期末)冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.2.(2021•朝阳区校级模拟)KN95型口罩可以保护在颗粒物浓度很高的空间中工作的人不被颗粒物侵害,也可以帮助人们预防传染病.“KN95”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m的非油性颗粒.其中,0.0000003用科学记数法表示为()A.3×10﹣6B.3×10﹣7C.0.3×10﹣6D.0.3×10﹣73.(2020秋•海淀区期末)下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.(2a)3=2a3D.a10÷a2=a54.(2020秋•海淀区期末)下列等式中,从左到右的变形是因式分解的是()A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1C.x2﹣4=(x+2)(x﹣2)D.x+2=x(1+)5.(2021•绿园区一模)如图,菊花1角硬币为外圆内正九边形的边缘异形币,则该正九边形的一个内角大小为()A.135°B.140°C.144°D.150°6.(2021•柳南区校级模拟)小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB7.(2021•沂南县模拟)如果a﹣b=2,那么代数式(﹣2b)•的值是()A.2B.﹣2C.D.8.(2020秋•海淀区期末)在△ABC中,AB≠AC,线段AD,AE,AF分别是△ABC的高,中线,角平分线,则点D,E,F的位置关系为()A.点D总在点E,F之间B.点E总在点D,F之间C.点F总在点D,E之间D.三者的位置关系不确定二、填空题(本大题共24分,每小题3分)9.(2020•北京一模)使式子有意义的x取值范围是.10.(2020秋•海淀区期末)计算:(3a2+2a)÷a=.11.(2020秋•海淀区期末)如图,在△ABC中,∠ABC=90°,∠ACB=60°,BD⊥AC,垂足为D.若AB=6,则BD的长为.12.(2020秋•海淀区期末)如图,AB⊥BC,AD⊥DC,垂足分别为B,D.只需添加一个条件即可证明△ABC≌△ADC,这个条件可以是.(写出一个即可)13.(2020秋•海淀区期末)某中学要举行校庆活动,现计划在教学楼之间的广场上搭建舞台.已知广场中心有一座边长为b的正方形的花坛.学生会提出两个方案:方案一:如图1,围绕花坛搭建外围为正方形的“回”字形舞台(阴影部分),舞台的面积记为S1;方案二:如图2,在花坛的三面搭建“凹”字形舞台(阴影部分),舞台的面积记为S2;具体数据如图所示,则S1S2.(填“>”,“<”或“=”)14.(2020秋•海淀区期末)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.则∠DBC 的大小为.15.(2020秋•海淀区期末)在平面直角坐标系xOy中,点A的坐标为(0,3),点B与点A关于x轴对称,点C在x轴上,若△ABC为等腰直角三角形,则点C的坐标为.16.(2020秋•海淀区期末)图1是小明骑自行车的某个瞬间的侧面示意图,将小明右侧髋关节和车座看作一个整体抽象为A点,将膝盖抽象为B点,将脚跟、脚掌、踏板看作一个整体抽象为C点,将自行车中轴位置记为D点(注:自行车中轴是连接左右两个踏板,使两个踏板绕其旋转的部件),在骑行过程中,点A,D的位置不变,B,C为动点.图2是抽象出来的点和线.若AB=BC=40cm,CD=16cm,小明在骑车前,需调整车座高度,保证在骑行过程中脚总可以踩到踏板,则AD最长为cm.三、解答题(本大题共52分,第17题8分,第18~21题每题5分,第22题6分,第23题5分,第24题6分,第25题7分)17.(2020秋•海淀区期末)(1)计算:(﹣)2+2﹣2﹣(2﹣π)0;(2)分解因式:3x2﹣6xy+3y2.18.(2021•朝阳区校级模拟)已知3x2﹣x﹣1=0,求代数式(2x+5)(2x﹣5)+2x(x﹣1)的值.19.(2020秋•海淀区期末)如图,C是AB的中点,CD∥BE,CD=BE,连接AD,CE.求证:AD=CE.20.(2020秋•海淀区期末)《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作,把人们公认的一些事实列成定义、公理和公设,用它们来研究各种几何图形的性质,从而建立了一套从定义、公理和公设出发,论证命题得到定理的几何学论证方法.在其第一卷中记载了这样一个命题:“在任意三角形中,大边对大角.”请补全上述命题的证明.已知:如图,在△ABC中,AC>AB.求证:.证明:如图,由于AC>AB,故在AC边上截取AD=AB,连接BD.(在图中补全图形)∵AD=AB,∴∠ABD=∠.()(填推理的依据)∵∠ADB是△BCD的外角,∴∠ADB=∠C+∠DBC.()(填推理的依据)∴∠ADB>∠C.∴∠ABD>∠C.∵∠ABC=∠ABD+∠DBC,∴∠ABC>∠ABD.∴∠ABC>∠C.21.(2020秋•海淀区期末)列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.22.(2020秋•海淀区期末)如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一点,连接BD,EC⊥AC,且AE=BD,AE与BC交于点F.(1)求证:CE=AD;(2)当AD=CF时,求证:BD平分∠ABC.23.(2020秋•海淀区期末)小明在学习有关整式的知识时,发现一个有趣的现象:对于关于x的多项式x2﹣2x+3,由于x2﹣2x+3=(x﹣1)2+2,所以当x﹣1取任意一对互为相反数的数时,多项式x2﹣2x+3的值是相等的.例如,当x﹣1=±1,即x=2或0时,x2﹣2x+3的值均为3;当x﹣1=±2,即x=3或﹣1时,x2﹣2x+3的值均为6.于是小明给出一个定义:对于关于x的多项式,若当x﹣t取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于x=t对称.例如x2﹣2x+3关于x=1对称.请结合小明的思考过程,运用此定义解决下列问题:(1)多项式x2﹣4x+6关于x=对称;(2)若关于x的多项式x2+2bx+3关于x=3对称,求b的值;(3)整式(x2+8x+16)(x2﹣4x+4)关于x=对称.24.(6分)(2020秋•海淀区期末)已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E,连接AD,AE,CE,DE.(1)如图1,当点D为线段BC的中点时,求证:△ADE是等边三角形;(2)当点D在线段BC的延长线上时,连接BE,F为线段BE的中点,连接CF.根据题意在图2中补全图形,用等式表示线段AD与CF的数量关系,并证明.25.(7分)(2020秋•海淀区期末)在平面直角坐标系xOy中,直线l为过点M(m,0)且与x轴垂直的直线.对某图形上的点P(a,b)作如下变换:当b≥|m|时,作出点P关于直线l的对称点P1,称为Ⅰ(m)变换;当b<|m|时,作出点P关于x轴的对称点P2,称为Ⅱ(m)变换.若某个图形上既有点作了Ⅰ(m)变换,又有点作了Ⅱ(m)变换,我们就称该图形为m﹣双变换图形.例如,已知A(1,3),B(2,﹣1),如图1所示,当m=2时,点A应作Ⅰ(2)变换,变换后A1的坐标是(3,3);点B作Ⅱ(2)变换,变换后B1的坐标是(2,1).请解决下面的问题:(1)当m=0时,①已知点P的坐标是(﹣1,1),则点P作相应变换后的点的坐标是;②若点P(a,b)作相应变换后的点的坐标为(﹣1,2),求点P的坐标;(2)已知点C(﹣1,5),D(﹣4,2),①若线段CD是m﹣双变换图形,则m的取值范围是;②已知点E(m,m)在第一象限,若△CDE及其内部(点E除外)组成的图形是m﹣双变换图形,且变换后所得图形记为G,直接写出所有图形G所覆盖的区域的面积.2020-2021学年北京市海淀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共24分,每小题3分)第1~8题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(2020秋•海淀区期末)冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.【考点】轴对称图形.【专题】平移、旋转与对称;几何直观.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2021•朝阳区校级模拟)KN95型口罩可以保护在颗粒物浓度很高的空间中工作的人不被颗粒物侵害,也可以帮助人们预防传染病.“KN95”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m的非油性颗粒.其中,0.0000003用科学记数法表示为()A.3×10﹣6B.3×10﹣7C.0.3×10﹣6D.0.3×10﹣7【考点】科学记数法—表示较小的数.【专题】实数;数感.【分析】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000003用科学记数法表示为:3×10﹣7.故选:B.【点评】本题考查了科学记数法,用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(2020秋•海淀区期末)下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.(2a)3=2a3D.a10÷a2=a5【考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【专题】整式;运算能力.【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A、a2•a3=a5,故本选项不合题意;B、(a2)3=a6,故本选项符合题意;C、(2a)3=8a3,故本选项不合题意;D、a10÷a2=a8,故本选项不合题意;故选:B.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.4.(2020秋•海淀区期末)下列等式中,从左到右的变形是因式分解的是()A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1C.x2﹣4=(x+2)(x﹣2)D.x+2=x(1+)【考点】因式分解的意义.【专题】整式;运算能力.【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【解答】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、是整式的乘法,不是因式分解,故此选项不符合题意;C、把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.故选:C.【点评】本题考查了因式分解的意义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.5.(2021•绿园区一模)如图,菊花1角硬币为外圆内正九边形的边缘异形币,则该正九边形的一个内角大小为()A.135°B.140°C.144°D.150°【考点】多边形内角与外角.【专题】多边形与平行四边形;几何直观.【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=1260°÷9=140°.故选:B.【点评】本题主要考查了多边形的内角和定理:180°•(n﹣2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.6.(2021•柳南区校级模拟)小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB【考点】全等三角形的判定;等腰三角形的性质;作图—基本作图.【专题】作图题;应用意识.【分析】先利用作法得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法对各选项进行判断.【解答】解:由作图得OD=OC=OD′=OC′,CD=C′D′,则根据“SSS”可判断△C′O′D′≌△COD.故选:A.【点评】本题考查了作图﹣基本作图:基本作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了全等三角形的判定.7.(2021•沂南县模拟)如果a﹣b=2,那么代数式(﹣2b)•的值是()A.2B.﹣2C.D.【考点】分式的化简求值.【专题】分式;运算能力.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•=•=a﹣b,当a﹣b=2时,原式=2.故选:A.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8.(2020秋•海淀区期末)在△ABC中,AB≠AC,线段AD,AE,AF分别是△ABC的高,中线,角平分线,则点D,E,F的位置关系为()A.点D总在点E,F之间B.点E总在点D,F之间C.点F总在点D,E之间D.三者的位置关系不确定【考点】三角形的角平分线、中线和高;全等三角形的判定与性质.【专题】三角形;推理能力.【分析】延长AE至点H,使EH=AE,连接CH,证明△AEB≌△HEC,根据全等三角形的性质得到AB=CH,∠BAE=∠H,根据三角形的高、中线、角平分线的定义解答即可.【解答】解:假设AB<AC,如图所示,延长AE至点H,使EH=AE,连接CH,在△AEB和△HEC中,,∴△AEB≌△HEC(SAS),∴AB=CH,∠BAE=∠H,∵AB<AC,∴CH<AC,∴∠CAH<∠H,∴∠CAH<∠BAE,∴点F总在点D,E之间,故选:C.【点评】本题考查的是全等三角形的判定和性质、三角形的中线、高、角平分线的定义,掌握全等三角形的判定定理和性质定理是解题的关键.二、填空题(本大题共24分,每小题3分)9.(2020•北京一模)使式子有意义的x取值范围是x≠2.【考点】分式有意义的条件.【分析】根据分式的分母不等于零分式有意义,可得答案.【解答】解:要使式子有意义,得x﹣2≠0.解得x≠2,故答案为:x≠2.【点评】本题考查了分式有意义的条件,利用了分式的分母为零分式无意义.10.(2020秋•海淀区期末)计算:(3a2+2a)÷a=3a+2.【考点】整式的除法.【专题】整式;运算能力.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(3a2+2a)÷a=3a2÷a+2a÷a=3a+2.故答案为:3a+2.【点评】此题主要考查了整式的除法,正确掌握相关运算法则是解题关键.11.(2020秋•海淀区期末)如图,在△ABC中,∠ABC=90°,∠ACB=60°,BD⊥AC,垂足为D.若AB=6,则BD的长为3.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】利用含30°的直角三角形的性质解答即可.【解答】解:在△ABC中,∠ABC=90°,∠ACB=60°,∴∠BAC=90°﹣∠ACB=90°﹣60°=30°,∵BD⊥AC,∴∠ADB=90°,∵AB=6,∴BD=AB=,故答案为:3.【点评】此题考查含30°的直角三角形的性质,关键是根据在直角三角形中,30°角所对的直角边等于斜边的一半解答.12.(2020秋•海淀区期末)如图,AB⊥BC,AD⊥DC,垂足分别为B,D.只需添加一个条件即可证明△ABC≌△ADC,这个条件可以是AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD(答案不唯一).(写出一个即可)【考点】全等三角形的判定.【专题】图形的全等;推理能力.【分析】由全等三角形的判定定理可求解.【解答】解:若添加AB=AD,且AC=AC,由“HL”可证Rt△ABC≌Rt△ADC;若添加BC=CD,且AC=AC,由“HL”可证Rt△ABC≌Rt△ADC;若添加∠BAC=∠DAC,且AC=AC,由“AAS”可证Rt△ABC≌Rt△ADC;若添加∠BCA=∠DCA,且AC=AC,由“AAS”可证Rt△ABC≌Rt△ADC;故答案为:AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD(答案不唯一).【点评】本题考查了全等三角形的判定,掌握全等三角形的判定定理是本题的关键.13.(2020秋•海淀区期末)某中学要举行校庆活动,现计划在教学楼之间的广场上搭建舞台.已知广场中心有一座边长为b的正方形的花坛.学生会提出两个方案:方案一:如图1,围绕花坛搭建外围为正方形的“回”字形舞台(阴影部分),舞台的面积记为S1;方案二:如图2,在花坛的三面搭建“凹”字形舞台(阴影部分),舞台的面积记为S2;具体数据如图所示,则S1>S2.(填“>”,“<”或“=”)【考点】正方形的性质.【专题】矩形菱形正方形;运算能力.【分析】根据正方形和矩形的面积公式即可得到结论.【解答】解:方案一:如图1,S1=a2﹣b2,方案二:如图2,S2=(a﹣b)(+b+)﹣b2=(a﹣b)(a﹣b)﹣b2=a2﹣b2﹣b2=a2﹣2b2,∵S1﹣S2=a2﹣b2﹣(a2﹣2b2)=a2﹣b2﹣a2+2b2=b2>0,∴S1>S2.故答案为:>.【点评】本题考查了正方形的性质,正方形和矩形的面积的计算,正确识别图形是解题的关键.14.(2020秋•海淀区期末)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.则∠DBC 的大小为30°.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】等腰三角形与直角三角形;推理能力.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ABC及∠ACB的度数,再根据线段垂直平分线的性质求出∠ABD的度数即可进行解答.【解答】解:∵AB=AC,∴∠ABC=∠ACB=70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.15.(2020秋•海淀区期末)在平面直角坐标系xOy中,点A的坐标为(0,3),点B与点A关于x轴对称,点C在x轴上,若△ABC为等腰直角三角形,则点C的坐标为(﹣3,0)或(3,0).【考点】等腰直角三角形;关于x轴、y轴对称的点的坐标.【专题】等腰三角形与直角三角形;平移、旋转与对称;推理能力.【分析】由轴对称的性质可求点B坐标,由等腰直角三角形的性质可求OC=OA=3,即可求解.【解答】解:∵点A的坐标为(0,3),点B与点A关于x轴对称,∴点B(0,﹣3),∴OA=OB=3,又∵∠ACB=90°,AC=BC,∴OC=OA=OB=3,∴点C(3,0)或(﹣3,0),故答案为:(3,0)或(﹣3,0).【点评】本题考查了轴对称的性质,等腰直角三角形的性质,掌握等腰直角三角形的性质是本题的关键.16.(2020秋•海淀区期末)图1是小明骑自行车的某个瞬间的侧面示意图,将小明右侧髋关节和车座看作一个整体抽象为A点,将膝盖抽象为B点,将脚跟、脚掌、踏板看作一个整体抽象为C点,将自行车中轴位置记为D点(注:自行车中轴是连接左右两个踏板,使两个踏板绕其旋转的部件),在骑行过程中,点A,D的位置不变,B,C为动点.图2是抽象出来的点和线.若AB=BC=40cm,CD=16cm,小明在骑车前,需调整车座高度,保证在骑行过程中脚总可以踩到踏板,则AD最长为64cm.【考点】旋转的性质.【专题】平移、旋转与对称;运算能力;推理能力.【分析】根据已知条件得到当AB+BC=AD+CD时,AD最长,根据线段的和差即可得到结论.【解答】解:∵在骑行过程中脚总可以踩到踏板,∴当AB+BC=AD+CD时,AD最长,则,AD最长为AB+BC﹣CD=40+40﹣16=64(cm),故答案为:64.【点评】本题考查了旋转的性质,知道当AB+BC=AD+CD时,AD最长是解题的关键.三、解答题(本大题共52分,第17题8分,第18~21题每题5分,第22题6分,第23题5分,第24题6分,第25题7分)17.(8分)(2020秋•海淀区期末)(1)计算:(﹣)2+2﹣2﹣(2﹣π)0;(2)分解因式:3x2﹣6xy+3y2.【考点】实数的运算;提公因式法与公式法的综合运用;零指数幂;负整数指数幂.【专题】因式分解;实数;运算能力.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=+﹣1=﹣1=﹣;(2)原式=3(x2﹣2xy+y2)=3(x﹣y)2.【点评】此题考查了提公因式法与公式法的综合运用,以及实数的运算,熟练掌握因式分解的方法是解本题的关键.18.(5分)(2021•朝阳区校级模拟)已知3x2﹣x﹣1=0,求代数式(2x+5)(2x﹣5)+2x(x﹣1)的值.【考点】整式的混合运算—化简求值.【专题】整式;运算能力.【分析】首先利用多项式乘以多项式、多项式乘以单项式进行计算,然后再合并同类项,化简后,再代入求值即可.【解答】解:原式=4x2﹣25+2x2﹣2x=6x2﹣2x﹣25,∵3x2﹣x﹣1=0,∴3x2﹣x=1.∴原式=2(3x2﹣x)﹣25=2×1﹣25=﹣23.【点评】此题主要考查了整式的混合运算,关键是掌握有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.19.(5分)(2020秋•海淀区期末)如图,C是AB的中点,CD∥BE,CD=BE,连接AD,CE.求证:AD =CE.【考点】全等三角形的判定与性质.【专题】图形的全等;几何直观;推理能力.【分析】根据平行线的性质和中点的定义以及全等三角形的判定和性质解答即可.【解答】证明:∵C是AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B.在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴AD=CE.【点评】该题主要考查了全等三角形的判定、平行线的性质及其应用等几何知识点问题;应牢固掌握全等三角形的判定.20.(5分)(2020秋•海淀区期末)《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作,把人们公认的一些事实列成定义、公理和公设,用它们来研究各种几何图形的性质,从而建立了一套从定义、公理和公设出发,论证命题得到定理的几何学论证方法.在其第一卷中记载了这样一个命题:“在任意三角形中,大边对大角.”请补全上述命题的证明.已知:如图,在△ABC中,AC>AB.求证:∠ABC>∠C.证明:如图,由于AC>AB,故在AC边上截取AD=AB,连接BD.(在图中补全图形)∵AD=AB,∴∠ABD=∠ADB.(等边对等角)(填推理的依据)∵∠ADB是△BCD的外角,∴∠ADB=∠C+∠DBC.(三角形的外角等于与它不相邻的两个内角的和)(填推理的依据)∴∠ADB>∠C.∴∠ABD>∠C.∵∠ABC=∠ABD+∠DBC,∴∠ABC>∠ABD.∴∠ABC>∠C.【考点】作图—应用与设计作图.【专题】作图题;推理能力.【分析】根据文字题目的要求写出已知,求证,利用等腰三角形的性质以及三角形的我觉得性质解决问题即可.【解答】已知:如图,在△ABC中,AC>AB.求证:∠ABC>∠C.证明:如图,由于AC>AB,故在AC边上截取AD=AB,连接BD.(在图中补全图形).∵AD=AB,∴∠ABD=∠ADB(等边对等角),∵∠ADB是△BCD的外角,∴∠ADB=∠C+∠DBC.(三角形的外角等于与它不相邻的两个内角的和),∴∠ADB>∠C,∴∠ABD>∠C,∵∠ABC=∠ABD+∠DBC,∴∠ABC>∠ABD,∴∠ABC>∠C.故答案为:∠ABC>∠C,ADB,等边对等角,三角形的外角等于与它不相邻的两个内角的和.【点评】本题考查作图﹣应用与设计,等腰三角形的性质,三角形的外角的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(5分)(2020秋•海淀区期末)列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.【考点】分式方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设橘子每千克的价格为x元,则香蕉每千克的价格为70%x元,根据题意可得等量关系:2800元所购买的香蕉的重量﹣2500元所购买的橘子的重量=150,再列出方程,解出x的值即可.【解答】解:设橘子每千克的价格为x元,则香蕉每千克的价格为70%x元.根据题意,得﹣=150,解得x=10,检验:当x=10时,70%x≠0.所以原分式方程的解为x=10且符合题意.答:橘子每千克的价格为10元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.22.(6分)(2020秋•海淀区期末)如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一点,连接BD,EC⊥AC,且AE=BD,AE与BC交于点F.(1)求证:CE=AD;(2)当AD=CF时,求证:BD平分∠ABC.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】图形的全等;几何直观;推理能力.【分析】(1)根据HL证明Rt△CAE与Rt△ABD全等,进而解答即可;(2)根据全等三角形的性质和角之间的关系解答即可.【解答】证明:(1)∵EC⊥AC,∠BAC=90°,∴∠ACE=∠BAC=90°,在Rt△CAE与Rt△ABD中,,∴Rt△CAE≌Rt△ABD(HL),∴CE=AD.(2)由(1)得Rt△CAE≌Rt△ABD,∴∠EAC=∠ABD,∠E=∠ADB.由(1)得CE=AD,∵AD=CF,∴CE=CF.∴∠CFE=∠E,∵∠CFE=∠AFB,∴∠AFB=∠E.∵∠E=∠ADB,∴∠AFB=∠ADB,∵∠AGB=∠EAC+∠ADB,∠AGB=∠DBC+∠AFB,∴∠EAC=∠DBC.∵∠EAC=∠BAD,∴∠BAD=∠DBC,∴BD平分∠ABC.【点评】此题考查全等三角形问题,关键是根据HL证明三角形全等,再利用全等三角形的性质解答.23.(5分)(2020秋•海淀区期末)小明在学习有关整式的知识时,发现一个有趣的现象:对于关于x的多项式x2﹣2x+3,由于x2﹣2x+3=(x﹣1)2+2,所以当x﹣1取任意一对互为相反数的数时,多项式x2﹣2x+3的值是相等的.例如,当x﹣1=±1,即x=2或0时,x2﹣2x+3的值均为3;当x﹣1=±2,即x=3或﹣1时,x2﹣2x+3的值均为6.于是小明给出一个定义:对于关于x的多项式,若当x﹣t取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于x=t对称.例如x2﹣2x+3关于x=1对称.请结合小明的思考过程,运用此定义解决下列问题:(1)多项式x2﹣4x+6关于x=2对称;(2)若关于x的多项式x2+2bx+3关于x=3对称,求b的值;(3)整式(x2+8x+16)(x2﹣4x+4)关于x=﹣1对称.【考点】配方法的应用.【专题】一元二次方程及应用;运算能力.【分析】(1)对多项式进行配方,根据新定义判断即可;(2)求出x2+2bx+3的对称轴,令对称轴=3即可;(3)对多项式进行配方,根据新定义判定即可.【解答】解:(1)x2﹣4x+6=(x﹣2)2+2,则多项式关于x=2对称,故答案为:2;(2)∵x2+2bx+3=(x+b)2+3﹣b2,∴关于x的多项式x2+2bx+3关于x=﹣b对称,∴﹣b=3,∴b=﹣3;(3)原式=(x+4)2(x﹣2)2=[(x+4)(x﹣2)]2=(x2+2x﹣8)2=[(x+1)2﹣9]2=[(x+1+3)(x+1﹣3)]2=(x+4)2(x﹣2)2,当x=﹣4和2时,原式=0,∴关于x=﹣1对称,故答案为:﹣1.【点评】本题考查了配方法的应用,能够对多项式进行配方,根据新定义判断出对称轴是解题的关键.24.(6分)(2020秋•海淀区期末)已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E,连接AD,AE,CE,DE.(1)如图1,当点D为线段BC的中点时,求证:△ADE是等边三角形;(2)当点D在线段BC的延长线上时,连接BE,F为线段BE的中点,连接CF.根据题意在图2中补全图形,用等式表示线段AD与CF的数量关系,并证明.。
2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析
2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析河南省六市联考高考数学二模试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.33.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.66.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.27.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.99.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm310.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.1211.如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE 上,当E从D运动到C,则K所形成轨迹的长度为()A.B.C.D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为______.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为______.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为______.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|=______.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.63519.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;(2)若BD=,A1D=2,求二面角A1﹣BD﹣B1的大小.20.已知椭圆C:的左、右焦点分别为F1(﹣c,0)、F2(c,0),P为椭圆C 上任意一点,且最小值为0.(Ⅰ)求曲线C的方程;(Ⅱ)若动直线l2,l2均与椭圆C相切,且l1∥l2,试探究在x轴上是否存在定点B,使得点B到l1,l2的距离之积恒为1?若存在,请求出点B的坐标;若不存在,请说明理由.21.设函数f(x)=e x+ln(x+1)﹣ax.(1)当a=2时,判断函数f(x)在定义域内的单调性;(2)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.[选修4-1几何证明选讲]22.自圆O外一点P引圆O的两条割线PAB和PDC,如图所示,其中割线PDC过圆心O.AB= OA,PD=,∠P=15°,(1)求∠PCB的大小;(2)分别球线段BC和PA的长度.[选修4-4坐标系与参数方程]23.已知曲线C的极坐标方程为ρsinθ+2ρcosθ=20,将曲线C1:(α为参数)经过伸缩变换后得到C2(1)求曲线C2的参数方程;(2)若点M在曲线C2上运动,试求出M到曲线C的距离d的取值范围.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣5|﹣|x+a|(1)当a=3时,不等式f(x)≥k+2的解集不是R,求k的取值范围;(2)若不等式f(x)≤1的解集为{x|x≥},求a的值.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}【考点】交集及其运算.【分析】分别求解一元二次不等式与指数不等式化简集合A,B,然后利用交集运算得答案.【解答】解:由x2+x≥0,得x≤﹣1或x≥0,∴A={x|x2+x≥0}={x|x≤﹣1或x≥0},由5x≥5,得x≥1,∴B={x|5x≥5}={x|x≥1},∴A∩B={x|x≤﹣1或x≥0}∩{x|x≥1}={x|x≥1}.故选:C.2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.3【考点】复数代数形式的混合运算.【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1 另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.3.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)【考点】奇偶性与单调性的综合.【分析】判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:y=sinx是奇函数,但是,[﹣1,1]上单调增函数.y=﹣|x+1|不是奇函数,对于,因为f(﹣x)==﹣=﹣f(x),所以是奇函数,在[﹣1,1]上单调减函数,y=(2x+2﹣x)是偶函数,[﹣1,1]上单调递增.故选:C.4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好【考点】相关系数.【分析】A根据相关关系的定义,判断命题A正确;B线性回归分析的相关系数r的绝对值越接近1,线性相关性越强,判断命题B错误;C一组数据拟合程度的好坏,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,判断命题C正确;D用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,由此判断命题D正确.【解答】解:对于A,根据相关关系的定义,即可判断自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系是相关关系,∴命题A正确;对于B,线性回归分析中,相关系数r的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴命题B错误;对于C,残差图中,对于一组数据拟合程度的好坏评价,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,∴命题C正确;对于D,回归分析中,用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,∴R2为0.98的模型比R2为0.80的模型拟合效果好,命题D正确.故选:B.5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.6【考点】等比数列的前n项和.【分析】由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a的方程,解方程可得.【解答】解:设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,∴由等比数列的求和公式可得=381,解得a=3,∴顶层有3盏灯,故选:B.6.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.2【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,y=5,不满足输出条件,故x=5,再次执行循环体后,y=11,不满足输出条件,故x=11,再次执行循环体后,y=23,满足输出条件,故输出的y值为23,故选:A.7.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+【考点】双曲线的简单性质.【分析】将x=c代入双曲线方程求出点M的坐标,通过解直角三角形列出三参数a,b,c的关系,求出离心率的值.【解答】解:将x=c代入双曲线的方程=1(a>0,b>0)得y=,即M(c,).在△MF1F2中tan45°==1即,解得e==+1.故选:C.8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.9【考点】简单线性规划.【分析】作出不等式组对应的平面区域要使z=最大,则x最小,y最大即可,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:则x≥1,y≥1,要使z=的最大,则x最小,y最大即可,由图象知当z=经过点A时,z取得最大值,由,得x=1,y=3,即A(1,3),则z=的最大值是z==9,故选:D.9.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm3【考点】由三视图求面积、体积.【分析】根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,直四棱锥底面是一个边长为1.5、4的矩形,高是3,由俯视图得三棱锥的底面是直角三角形,直角边为1、4,由正视图得高即四棱锥的侧棱为3,∴几何体的体积V=+1.5×4×3=20(cm3)故选:A.10.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.12【考点】轨迹方程.【分析】根据向量加法的几何意义得出P点轨迹,利用正弦定理解出AB,得出△ABC的面积,从而求出围成封闭区域的面积.【解答】解:设=.∵=+(1﹣λ)=+(1﹣λ).∴C,D,P三点共线.∴P点轨迹为直线CD.在△ABC中,sinA=.sinC=.由正弦定理得AB==.sinB=sin (A+C )=sinAcosC+cosAsinC==.∴S △ABC ==.∴S △ACD =S △ABC =.故选:B .11.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为()A .B .C .D .【考点】轨迹方程.【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.【解答】解:由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E 与C 重合时,AK==,取O 为AD ′的中点,得到△OAK 是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣【考点】利用导数研究函数的极值.【分析】求函数的导数,根据函数存在极小值等价为f′(x)=﹣x+b=0有解,转化为一元二次方程,根据一元二次方程根与判别式△之间的关系进行转化求解即可.【解答】解:函数的定义域为(0,+∞),则函数的导数f′(x)=﹣x+b,若函数f(x)=alnx﹣x2+bx存在极小值,则f′(x)=﹣x+b=0有解,即﹣x2+bx+a=0有两个不等的正根,则,得b>2,(a<0),由f′(x)=0得x1=,x2=,分析易得f(x)的极小值点为x1,∵b>2,(a<0),∴x1==∈(0,),则f(x)极小值=f(x1)=alnx1﹣x12+bx1=alnx1﹣x12+x12﹣a=alnx1+x12﹣a,设g(x)=alnx+x2﹣a,x∈(0,),f(x)的极小值恒大于0等价为g(x)恒大于0,∵g′(x)=+x=<0,∴g(x)在(0,)上单调递减,故g(x)>g()=aln﹣a≥0,得ln≤,即﹣a≤e3,则a≥﹣e3,故a的最小值为是﹣e3,故选:A二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为﹣.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值,可得函数的解析式,再利用正弦函数的定义域和值域,求得函数f(x)在[0,]上的最小值.【解答】解:将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后,得到y=sin(2x++φ)的图象,再根据所得图象关于原点对称,可得+φ=kπ,即φ=kπ﹣,k∈Z,又|φ|<,∴φ=﹣,f(x)=sin(2x﹣).∵x∈[0,],∴2x﹣∈[﹣,],故当2x﹣=﹣时,f(x)取得最小值为﹣,故答案为:﹣.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为84 .【考点】二项式系数的性质.【分析】写出二项式(x+)n的展开式的通项,可得y3(x+)n 的展开式的通项,再由x,y的指数为0求得n,r的值,则答案可求.【解答】解:二项式(x+)n的展开式的通项为,则要使y3(x+)n(n∈N*)的展开式中存在常数项,需,即n=9,r=3.∴常数项为:.故答案为:84.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为 4 .【考点】等差数列的性质.【分析】由等比中项的性质、等差数列的通项公式列出方程求公差d,代入等差数列的通项公式、前n项和公式求出a n、S n,代入利用分离常数法化简后,利用基本不等式求出式子的最小值.【解答】解:因为a1,a3,a13成等比数列,所以,又a1=1,所以(1+2d)2=1×(1+12d),解得d=2或d=0(舍去),所以a n=1+(n﹣1)×2=2n﹣1,S n==n2,则====﹣2≥2﹣2=4,当且仅当时取等号,此时n=2,且取到最小值4,故答案为:4.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|= 16 .【考点】抛物线的简单性质.【分析】设AB方程y=k(x﹣1),与抛物线方程y2=4x联立,利用tan∠AMB=,建立k的方程,求出k,即可得出结论.【解答】解:焦点F(1,0),M(﹣1,0),设AB方程y=k (x﹣1),设A(x1,y1),B(x2,y2)∵tan∠AMB=,∴=,整理可得2k(x1﹣x2)=(x1+1)(x2+1)+y1y2…(*)y=k(x﹣1),与y2=4x联立可得k2x2﹣(2k2+4)x+k2=0 可得x1x2=1,x1+x2=+2,y1y2=﹣4代入(*)可得2k(x1﹣x2)=?,∴x1﹣x2=,∴(+2)2﹣4=()2,∴k=±,∴x1+x2=+2=14,∴|AB|==16.故答案为:16.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理化简可得tanA=tanB,于是C=π﹣2A,代入sin2A(2﹣cosC)=cos2B+化简可求得A;(2)利用正弦定理用B表示出b,c,得到面积S关于B的函数,求出B的范围,得出S的范围.【解答】解:(1)∵,,∴tanA=tanB,∴A=B.∴C=π﹣2A.∵sin2A(2﹣cosC)=cos2B+,∴sin2A(2+cos2A)=cos2A+,即(1﹣cos2A)(2cos2A+1)=cos2A+,解得cos2A=,∵A+B+C=π,A=B,∴A,∴cosA=,∴A=,C=π﹣2A=.(2)由正弦定理得,∴b=2sinB,c=2sinC=2sin()=2sinB+2cosB.∴S==2sin2B+2sinBcosB=sin2B﹣cos2B+1=sin(2B﹣)+1.∵△ABC为锐角三角形,∴,∴.∴<2B﹣<,∴2<sin(2B﹣)≤1+.∴△ABC面积的取值范围是(2,1+].18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.635【考点】独立性检验的应用.【分析】(1)计算K2的值,与临界值比较,可得结论;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,可得结论.(3)X的取值为1,2,3,再求出X取每一个值的概率,即可求得X的分布列和数学期望.【解答】解:(1)由题意,K2=≈0.65<0.708,∴没有60%的把握认为“微信控”与“性别”有关;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,所抽取的5人中“微信控”有3人,“非微信控”的人数有2人;(3)X=1,2,3,则P(X=1)==0.3,P(X=2)==0.6,P(X=3)==0.1.X的分布列为:X 1 2 3P 0.3 0.6 0.1X的数学期望为EX=1×0.3+2×0.6+3×0.1=1.8.19.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;。
人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。
2023-2024学年广东省东莞市联考八年级(上)期末数学试卷(含解析)
2023-2024学年广东省东莞市联考八年级(上)期末数学试卷一.选择题(每小题3分共30分)1.(3分)下列图形中,不是轴对称图形的是( )A.B.C.D.2.(3分)下列各组中的三条线段恰好是一个三角形三条边的是( )A.3,4,7B.3,4,10C.3,7,10D.4,7,10 3.(3分)若分式有意义,则x的取值范围是( )A.x>2B.x≠0C.x≠0且x≠2D.x≠24.(3分)若一粒米的质量约是0.000021kg,将数据0.000021用科学记数法表示为( )A.21×10﹣4B.2.1×10﹣6C.2.1×10﹣5D.2.1×10﹣4 5.(3分)下列运算正确的是( )A.x3+x3=x6B.a6÷a2=a3C.(﹣m2)4=m8D.4y3•3y5=12y156.(3分)若一个多边形的内角和等于1800°,这个多边形的边数是( )A.6B.8C.10D.127.(3分)如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是( )A.AB=DE B.BC=EF C.∠B=∠E D.∠ACB=∠DFE 8.(3分)某单位向一所希望小学赠送了1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B 型包装箱比单独使用A型包装箱可少用12个,设B型包装箱每个可以装x件文具,根据题意列方程为( )A.B.C.D.9.(3分)已知2m﹣n=3,4m2﹣3mn+n2=14,则mn的值为( )A.3B.4C.5D.610.(3分)如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°二.填空题(每题3分,共15分)11.(3分)分解因式:3a2﹣12a+12= .12.(3分)如图,已知△ABC≌△ADE,∠B=25°,∠CAD=30°,∠EAC=85°,则∠E= .13.(3分)等腰三角形的一个内角是80°,则它顶角的度数是 .14.(3分)已知点A(a,﹣2)与点B(3,b)关于x轴对称,则a+b = .15.(3分)如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②BC=2PC;③∠APO=∠DCO;④AB=AO+AP.其中正确的是 .(填序号)三、解答题(一)(共2小题,每小题5分,共10分)16.(5分)计算:(x﹣2)2﹣(x+2)(x﹣2).17.(5分)如图:AD∥BC,AE=CF,∠B=∠D,求证:BE=DF.四、解答题(二)(共3小题,每小题7分,共21分)18.(7分)如图,在△ABC中,∠B=30°,∠C=50°,∠BAC的平分线AD 交BC于点D.求∠ADB的度数.19.(7分)先化简,再求值:,从﹣2<x≤2中选出合适的x的整数值代入求值.20.(7分)如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).(1)作出△ABC关于y轴对称的△A'B'C',其中A′,B′,C′分别是A,B,C的对应点;(2)写出C′的坐标;(3)在x轴上找一点P,使得PB+PA的值最小.(保留作图痕迹)五、解答题(三)(共3小题,每小题8分,共24分)21.(8分)如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.(1)求证:∠CAE=∠B;(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.22.(8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?23.(8分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P、BQ⊥AD于点Q、PQ=6,PE=2.(1)求证:AD=BE;(2)求∠PBQ的度数和AD的长.六、解答题(四)(共2小题,每小题10分,共20分)24.(10分)某地产公司推出“主房+多变入户花园”的两种户型,即在图1中边长为a米的正方形主房进行改造.户型一是在主房两侧均加长b米(0<9b <a).阴影部分作为入户花园,如图2所示,户型二是在主房一边减少b米后,另一边再增加b米,阴影部分作为入户花园.如图3所示.解答下列问题:(1)填空:户型一的面积(包括入户花园): ;户型一入户花园与户型二入户花园面积差为M,则M= .(2)若户型一的总价为50万元,户型二的总价为40万元,试判断哪种户型(包括入户花园)单价较低,并说明理由.25.(10分)在Rt△ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N作NE⊥l于点E,设运动时间为t秒.①CM= ,当N在F→C路径上时,CN= .(用含t的代数式表示)②当△MDC与△CEN全等时,求出t的值.2023-2024学年广东省东莞市联考八年级(上)期末数学试卷参考答案与试题解析一.选择题(每小题3分共30分)1.(3分)下列图形中,不是轴对称图形的是( )A.B.C.D.【分析】利用轴对称图形的定义进行解答即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:选项A的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项B、C、D的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.2.(3分)下列各组中的三条线段恰好是一个三角形三条边的是( )A.3,4,7B.3,4,10C.3,7,10D.4,7,10【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、3+4=7,不能组成三角形,不符合题意;B、3+4<10,不能够组成三角形,不符合题意;C、3+7=10,不能够组成三角形,不符合题意;D、4+7>10,能够组成三角形,符合题意.故选:D.3.(3分)若分式有意义,则x的取值范围是( )A.x>2B.x≠0C.x≠0且x≠2D.x≠2【分析】根据分式有意义的条件即可得出答案.【解答】解:∵2﹣x≠0,∴x≠2,故选:D.4.(3分)若一粒米的质量约是0.000021kg,将数据0.000021用科学记数法表示为( )A.21×10﹣4B.2.1×10﹣6C.2.1×10﹣5D.2.1×10﹣4【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种表示数的方法叫做科学记数法,据此即可得出答案.【解答】解:0.000021=2.1×10﹣5,故选:C.5.(3分)下列运算正确的是( )A.x3+x3=x6B.a6÷a2=a3C.(﹣m2)4=m8D.4y3•3y5=12y15【分析】根据合并同类项法则计算并判定A;根据同底数幂的除法法则计算并判定B;根据幂的乘方法则计算并判定C;根据单项式运算法则和同底数幂乘法法则计算并判定D.【解答】解:A、x3+x3=2x3,故此选项不符合题意;B、a6÷a2=a4,故此选项不符合题意;C、(﹣m2)4=m8,故此选项不合题意;D、4y3⋅3y5=12y8,故此选项不符合题意.故选:C.6.(3分)若一个多边形的内角和等于1800°,这个多边形的边数是( )A.6B.8C.10D.12【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,得到方程,从而求出边数.【解答】解:设这个多边形是n边形,根据题意得(n﹣2)×180=1800,解得n=12,∴这个多边形是12边形.故选:D.7.(3分)如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是( )A.AB=DE B.BC=EF C.∠B=∠E D.∠ACB=∠DFE 【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.【解答】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A.AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;B.BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;故选:B.8.(3分)某单位向一所希望小学赠送了1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个,设B型包装箱每个可以装x 件文具,根据题意列方程为( )A.B.C.D.【分析】由每个B型包装箱比A型包装箱多装15件文具,可得出A型包装箱每个可以装(x﹣15)件文具,根据包装1080件文具单独使用B型包装箱比单独使用A型包装箱可少用12个,即可得出关于x的分式方程,此题得解.【解答】解:∵每个B型包装箱比A型包装箱多装15件文具,且B型包装箱每个可以装x件文具,∴A型包装箱每个可以装(x﹣15)件文具.依题意得:=﹣12.故选:B.9.(3分)已知2m﹣n=3,4m2﹣3mn+n2=14,则mn的值为( )A.3B.4C.5D.6【分析】将已知等式两边平方,再代入所求式子可得答案.【解答】解:∵2m﹣n=3,∴(2m﹣n)2=32,即4m2﹣4mn+n2=9,∴4m2+n2=9+4mn,∴4m2﹣3mn+n2=9+4mn﹣3mn=14,∴mn=5,故选:C.10.(3分)如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°【分析】依据线段垂直平分线的性质,即可得到∠A=∠ACD,再根据角平分线的定义,即可得出∠ACB的度数,根据三角形内角和定理,即可得到∠B 的度数.【解答】解:∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣50°﹣100°=30°,故选:B.二.填空题(每题3分,共15分)11.(3分)分解因式:3a2﹣12a+12= 3(a﹣2)2 .【分析】直接提取公因式3,再利用完全平方公式分解因式即可.【解答】解:原式=3(a2﹣4a+4)=3(a﹣2)2.故答案为:3(a﹣2)2.12.(3分)如图,已知△ABC≌△ADE,∠B=25°,∠CAD=30°,∠EAC=85°,则∠E= 100° .【分析】根据全等图形的对应边相等、对应角相等可求出∠D的度数,结合题意∠CAD=30°,∠EAC=85°,可求出∠DAE的度数,继而根据三角形的内角和定理可得出∠E.【解答】解:∵△ABC≌△ADE,∴∠D=∠B=25°,又∵∠CAD=30°,∠EAC=85°,∴∠EAD=85°﹣30°=55°,∴∠E=180°﹣(∠D+∠EAD)=100°.故答案为:100°.13.(3分)等腰三角形的一个内角是80°,则它顶角的度数是 80°或20° .【分析】先分情况讨论:80°是等腰三角形的底角或80°是等腰三角形的顶角,再根据三角形的内角和定理进行计算.【解答】解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故答案为:80°或20°.14.(3分)已知点A(a,﹣2)与点B(3,b)关于x轴对称,则a+b= 5 .【分析】直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.【解答】解:∵点A(a,﹣2)与点B(3,b)关于x轴对称,∴a=3,b=2,则a+b=3+2=5.故答案为:5.15.(3分)如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②BC=2PC;③∠APO=∠DCO;④AB=AO+AP.其中正确的是 ①④ .(填序号)【分析】①根据等边对等角,可得∠APO=∠ABO、∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此可求解;②可先求证△OPC是等边三角形,再根据三角形的三边关系判断即可;③因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,据此可求解;④先证明△OPA≌△CPE,则AO=CE,AB=AC=AE+CE=AO+AP.【解答】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∵BD=CD,,∴OB=OC,∠ABC=90°﹣∠BAD=30°,∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO、∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=60°,∵OP=OC,∴△OPC是等边三角形,∴OC=PC,∵OC≠CD,则PC≠CD,BC=2CD,∴BC≠2PC,故②不正确;③由①知:∠APO=∠ABO、∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,∠APO与∠DCO不一定相等,故③不正确;④如图2,在AC上截取AE=PA,连接PE,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠CPE+∠OPE=∠CPO=60°,∴∠APO=∠CPE,∴△OPA≌△CPE(AAS),∴AO=CE,∴AB=AC=AE+CE=AP+AO,故④正确.故答案为:①④.三、解答题(一)(共2小题,每小题5分,共10分)16.(5分)计算:(x﹣2)2﹣(x+2)(x﹣2).【分析】根据完全平方公式和平方差公式化简即可.【解答】解:原式=x2﹣4x+4﹣(x2﹣4)=x2﹣4x+4﹣x2+4=﹣4x+8.17.(5分)如图:AD∥BC,AE=CF,∠B=∠D,求证:BE=DF.【分析】由AD∥BC可得:∠A=∠C,由AE=CE,再根据已知条件即可证明△ADF≌CBE,进而证明BE=DF.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,在△ADF和△CBE中,,∴△ADF≌CBE,∴BE=CF.四、解答题(二)(共3小题,每小题7分,共21分)18.(7分)如图,在△ABC中,∠B=30°,∠C=50°,∠BAC的平分线AD 交BC于点D.求∠ADB的度数.【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义求出∠DAC,再根据三角形的外角性质计算,得到答案.【解答】解:∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=100°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=∠BAC=×100°=50°,∴∠ADC=∠DAC+∠C=50°+50°=100°.19.(7分)先化简,再求值:,从﹣2<x≤2中选出合适的x的整数值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2<x≤2中选出一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:=[]•=•==,∵﹣2<x≤2且(x+1)(x﹣1)≠0,2﹣x≠0,∴x的整数值为﹣1,0,1,2且x≠±1,2,∴x=0,当x=0时,原式==﹣1.20.(7分)如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).(1)作出△ABC关于y轴对称的△A'B'C',其中A′,B′,C′分别是A,B,C的对应点;(2)写出C′的坐标;(3)在x轴上找一点P,使得PB+PA的值最小.(保留作图痕迹)【分析】(1)利用轴对称变换的性质分别作出A,B,C的对应点A′,B′,C′即可;(2)根据点C′的位置写出坐标即可;(3)作答2B关于x轴的对称点E,连接AE交x轴于点P,连接BP,点P 即为所求.【解答】解:(1)如图,△A'B'C'即为所求;(2)C′的坐标(﹣1,﹣2);(3)如图,点P即为所求.五、解答题(三)(共3小题,每小题8分,共24分)21.(8分)如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.(1)求证:∠CAE=∠B;(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.【分析】(1)根据等腰三角形的性质得到∠CAD=∠CDA,根据角平分线的定义得到∠EAD=∠BAD,于是得到结论;(2)设∠DAB=x,得到∠C=3x,根据角平分线的定义得到∠EAB=2∠DAB=2x,求得∠CAB=∠CAE+∠EAB=50°+2x,根据三角形的内角和即可得到结论.【解答】解:(1)∵CA=CD,∴∠CAD=∠CDA,∵AD平分∠BAE,∴∠EAD=∠BAD,∵∠B=∠CDA﹣∠BAD,∠CAE=∠CAD﹣∠DAE,∴∠CAE=∠B;(2)设∠DAB=x,∵∠C=∠3∠DAB,∴∠C=3x,∵∠CAE=∠B,∠B=50°,∴∠CAE=50°,∵AD平分∠BAE,∴∠EAB=2∠DAB=2x,∴∠CAB=∠CAE+∠EAB=50°+2x,∵∠CAB+∠B+∠C=180°,∴50°+2x+50°+3x=180°,∴x=16°,∴∠C=3×16°=48°.22.(8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【分析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.【解答】解:(1)设乙队单独完成需x天.根据题意,得:×20+(+)×24=1.解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.23.(8分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P、BQ⊥AD于点Q、PQ=6,PE=2.(1)求证:AD=BE;(2)求∠PBQ的度数和AD的长.【分析】(1)由△ABC为等边三角形,CE=BD推出AE=CD,根据SAS证出△ABE≌△CAD即可证出AD=BE;(2)由△ABE≌△CAD推出∠ABE+∠BAP=∠CAD+∠BAP,从而得到∠BPQ =∠BAC=60°,进而得到∠PBQ;由BQ⊥AD,PQ=6,∠BPQ=60°,推出BP=12,进而得出AD=BE=BP+PE=12+2=14.【解答】(1)证明:∵△ABC为等边三角形,∴∠BAC=∠ACD=60°,AB=AC=BC,在△ABE与△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE;(2)∵△ABE≌△CAD(SAS),∴∠ABE+∠BAP=∠CAD+∠BAP,∴∠BPQ=∠BAC=60°,∵BQ⊥AD,PQ=6,∠BPQ=60°,∴∠PBQ=30°,∴BP=12,∴AD=BE=BP+PE=12+2=14.六、解答题(四)(共2小题,每小题10分,共20分)24.(10分)某地产公司推出“主房+多变入户花园”的两种户型,即在图1中边长为a米的正方形主房进行改造.户型一是在主房两侧均加长b米(0<9b <a).阴影部分作为入户花园,如图2所示,户型二是在主房一边减少b米后,另一边再增加b米,阴影部分作为入户花园.如图3所示.解答下列问题:(1)填空:户型一的面积(包括入户花园): (a+b)(a+b); ;户型一入户花园与户型二入户花园面积差为M,则M= ab .(2)若户型一的总价为50万元,户型二的总价为40万元,试判断哪种户型(包括入户花园)单价较低,并说明理由.【分析】(1)利用面积计算公式直接计算户型一面积即可;分别求得户型一与户型二入户花园面积,相减即可得解;(2)根据总价÷总面积=单价,计算两种单价差可作判断.【解答】解:(1)户型一的面积为:(a+b)(a+b);户型一入户花园面积为:ab+ab+b2,户型二入户花园面积为:(a﹣b)b,∴M=ab+ab+b2﹣(a﹣b)b=ab,故答案为:(a+b)(a+b);ab;(2)户型二的单价较低.户型一:万元,户型二:万元,∴﹣===,∵0<9b<a,∴a﹣9b>0,a﹣b>0,∴>0,∴户型二的单价较低.25.(10分)在Rt△ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N作NE⊥l于点E,设运动时间为t秒.①CM= 8﹣t ,当N在F→C路径上时,CN= 6﹣3t .(用含t的代数式表示)②当△MDC与△CEN全等时,求出t的值.【分析】(1)根据垂直的定义得到∠DAC=∠ECB,利用AAS定理证明△ACD ≌△CBE;(2)①由折叠的性质可得出答案;②动点N沿F→C路径运动,点N沿C→B路径运动,点N沿B→C路径运动,点N沿C→F路径运动四种情况,根据全等三角形的判定定理列式计算.【解答】(1)证明:∵AD⊥直线l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)解:①由题意得,AM=t,FN=3t,则CM=8﹣t,由折叠的性质可知,CF=CB=6,∴CN=6﹣3t.故答案为:8﹣t;6﹣3t.②由折叠的性质可知,∠BCE=∠FCE,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD,∴当CM=CN时,△MDC与△CEN全等,当点N沿F→C路径运动时,8﹣t=6﹣3t,解得,t=﹣1(不合题意),当点N沿C→B路径运动时,8﹣t=3t﹣6,解得,t=3.5,当点N沿B→C路径运动时,由题意得,8﹣t=18﹣3t,解得,t=5,当点N沿C→F路径运动时,由题意得,8﹣t=3t﹣18,解得,t=6.5,综上所述,当△MDC与△CEN全等时,t=3.5秒或5秒或6.5秒.。
2020--2021 学年上学期人教版 八年级数学试卷
2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.B.C.D.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.已知(m2﹣9)x2﹣(m﹣3)x+6=0是以x为未知数的一元一次方程,如果|a|≤|m|,那么|a+m|+|a﹣m|的值为()A.2B.4C.6D.84.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人5.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→……,则2018分钟时粒子所在点的横坐标为()A.886B.903C.946D.9906.规定[x]表示不大于x的最大整数,例如[2.3]=2,[3]=3,[﹣2.5]=﹣3.那么函数y=x ﹣[x]的图象为()A.B.C.D.7.一个长为19cm,宽为18cm的长方形,如果把这个长方形分成若干个正方形要求正方形的边长为正整数,那么该长方形最少可分成正方形的个数()A.5个B.6个C.7个D.8个8.下图中各图形经过折叠后可以围成一个棱柱的是()A.B.C.D.9.如图,以平面镜AD和DC为两个侧面的一个黑盒子的另一个侧面BC上开有一个小孔P,一位观察者在盒外沿与BC平行方向走过时,则通过小孔能几次看到光源S所发出的光线()A.1次B.2次C.3次D.4次10.如图,在△ABC中,AB=BC,∠ABC=90°,点D、E、F分别在边AC、BC、AB上.且△CDE与△FDE关于直线DE对称.若AF=2BF,AD=7,则CD=()A.3B.5C.3D.511.某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组植树14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A.条形统计图B.折线统计图C.扇形统计图D.条形统计图、扇形统计图均可12.打字员小金连续打字14分钟,打了2 098个字符,测得她第一分钟打了112个字符,最后一分钟打了97个字符.如果测算她每一分钟所打字符的个数,则那个不成立()A.必有连续2分钟打了至少315个字符B.必有连续3分钟打了至少473个字符C.必有连续4分钟打了至少630个字符D.必有连续6分钟打了至少946个字符二.填空题(共6小题)13.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c﹣b|﹣|b﹣a|﹣|a ﹣c|=.14.20个质量分别为1,2,3,…,19,20克的砝码放在天平两边,正好达到平衡.(1)试将砝码①,②,…,⑳(①,②,…分别代表1克,2克,…的砝码)分别放在天平两边,使之达到平衡,且可从每边各取下同样多的偶数个砝码,仍能使天平保持平衡;(2)试将砝码①,②,…,⑳(①,②,…分别代表1克,2克,…的砝码)分别放在天平两边,使之达到平衡,且从每边无论怎样取下同样多个砝码,都不能再使天平保持平衡.15.如图1,平面上两条直线l1,l2相交于点O,对于平面上任意一点M,若点M到直线l1的距离为p,到直线l2的距离为q,则称有序实数对(p,q)为点M的“距离坐标”,例如,图1中点O的“距离坐标”为(0,0),点N的“距离坐标”为(3.6,4.2).(1)如图2,点A的“距离坐标”为,点B的“距离坐标”为;(2)如图3,点C,D分别在直线l1,l2上,则C,D两个点中,“距离坐标”为(3,0)的点是;(3)平面上“距离坐标”为(0,5)的点有个,“距离坐标”为(5,5)的点有个.16.如图,在长方体ABCD─EFGH中,与棱AB相交的棱有.17.如图,在平行四边形ABCD中,AC⊥AB,AB=2,AC=2.P、Q分别为边AD、DC 上的动点,D1是点D关于PQ的对称点,过点D1作D1F∥BC分别交AC、AB于点E、的最大值为.F,且满足D1E:D1F=1:3,则D1F组别(cm)145.5~152.5152.5~159.5159.5~166.5166.5~173.5频数(人)919148频率是0.28的这一小组的组中值是.三.解答题(共9小题)19.“十一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.4(单位:万人)(1)若9月30日外出旅游人数为5万人,求10月2日外出旅游的人数;(2)在(1)的条件下请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人?(3)如果这七天中最多一天出游人数为8万人,问9月30日出去旅游的人数有多少?20.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)若a,b,c为三个不为0的有理数,且,求的值.21.小明课后利用方程的知识探索发现,所有纯循环小数都可以化为分数,例如,化为分数,解决方法是:设x=,即x=0.333…,将方程两边都×10,得10x=3.333…,即10x=3+0.333…,又因为x=0.333…,所以10x=3+x,所以9x=3,即x=,所以=.尝试解决下列各题:(1)把化成分数为.(2)请利用小明的方法,把纯循环小数化成分数.22.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使P A+PB=BC?求出点P对应的数;若不存在,说明理由.23.如图.已知A(2,0),B(5,0),点P为圆A上一动点,圆A半径为2,以PB为边作等边△PMB,求线段AM的取值范围.24.将一个正方体的表面涂上颜色.如图把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,通过观察我们可以发现8个小正方体全是3个面涂有颜色的.如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体,通过观察我们可以发现这些小正方体中有8个是3个面涂有颜色的,有12个是2个面涂有颜色的,有6个是1个面涂有颜色的,还有1个各个面都没有涂色.(1)如果把正方体的棱4等分,所得小正方体表面涂色情况如何呢?把正方体的棱n等分呢?(请填写下表):棱等分数4等分n等分3面涂色的正方体个个2面涂色的正方体个个1面涂色的正方体个个个个各个面都无涂色的正方体(2)请直接写出将棱7等分时只有一个面涂色的小正方体的个数.25.如图,在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA.(1)求证:∠BAD=∠EDC;(2)作出点E关于直线BC的对称点M,连接DM、AM,猜想DM与AM的数量关系,并说明理由.26.李明为了了解本班同学的身高情况,随机抽取了一部分同学进行身高测量,获得如下数据(单位:cm):139,118,137,129,135,156,148,137,112,149,139,135,138,117,116,160.(1)根据以上数据填表:身高h(单位:cm)画记人数占调查人数的百分比(%)h≤120120<h≤140h>140(2)以上这种调查方式称为调查(填“全面”或“抽样”);(3)要直观地反映各身高段人数的多少,应画统计图比较合适;要直观地反映各身高段人数占被调查人数的百分比,应画统计图比较合适.27.从1、2、3、4、…、2014这2014个数中,抽取n个数,放入集合A中,从A中任意取3个数后,总有一个数能够整除另一个,试求n的最大值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】有条件:分母为22的既约真分数(分子与分母无公约数的真分数,用列举法逐个尝试即可得出答案.【解答】解:这10个有理数,每9个相加,一共得出另外10个数,由于原10个有理数互不相等,可以轻易得出它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22.它们每一个都是原来10个有理数其中9个相加的和,那么,如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.所以,10个真分数相加得出结果为5,于是所求的10个有理数之和为5/9.故选:D.2.【分析】三个顶角分别是4,5,6,4与5之间是3,6和5之间是1,4和6之间是2,这样每边的和才能相等.【解答】解:由图可知S=3+4+5=12.故选:C.3.【分析】根据一元一次方程的定义,则x2系数为0,且x系数≠0,得出m=﹣3;由|a|≤|m|,得a﹣m≥0,a+m≤0,∴|a+m|+|a﹣m|=﹣a﹣m+a﹣m=﹣2m=6.【解答】解:∵一元一次方程则x2系数为0,且x系数≠0∴m2﹣9=0,m2=9,m=±3,﹣(m﹣3)≠0,m≠3,∴m=﹣3,|a|≤|﹣3|=3,∴﹣3≤a≤3,∴m≤a≤﹣m,∴a﹣m≥0,|a﹣m|=a﹣m,a+m≤0,|a+m|=﹣a﹣m,∴原式=﹣a﹣m+a﹣m=﹣2m=6.故选:C.4.【分析】设A组所检验的每个车间原有成品a件,每个车间1天生产b件,可得A组前两天检验的总件数和后三天检验的总件数为.根据检验员的检验速度相同,可列式等式得到a和b的关系,即可得A组一名检验员每天检验的成品数.再根据B组检验员的人数=五个车间的所有成品÷A组一名检验员每天检验的成品数,列式即可得解.【解答】解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.5.【分析】根据点的坐标变化寻找规律即可.【解答】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=,有(n+1)个点,共2n个点;2+4+6+8+10+…+2n≤2018≤2018且n为正整数,得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=44时,x=(44×45)=990,∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:D.6.【分析】[x]还可理解为取小,分当x≥0、x<0,代入相应的点依次求解即可.【解答】解:[x]还可理解为取小,1、x﹣[x]≥0,所以y≥0;2、当x为整数时,x﹣[x]=0,此时y=0;3、y=x﹣[x]的图象为y=x(0≤x≤1)的图象向左或向右平移[x]个单位(根据[x]的±,左加右减);基于以上结论,可得:(1)当x≥0时,当x=0时,y=0﹣0=0,x=1时,y=1﹣1=0,当x=1.2时,y=1.2﹣1=0.2;x=1.5时,y=1.5﹣1=0.5,即x在两个整数之间时,y为一次函数;当x=2时,y=2﹣2=0,符合条件的为A、B;(2)当x<0时,当x=﹣1时,y=﹣1+1=0,x=﹣1.2时,y=﹣1.2+2=0.8,x=﹣2时,y=﹣2+2=0,在A、B中符合条件的为A,故选:A.7.【分析】根据正方形的边长为正整数的特点,可知长为19cm,宽为18cm的长方形,分成若干个正方形,上面两个正方形从左至右为11和8,8下面从左至右是3和5,最下面一排从左至右是7,7,5时正方形的个数最少.【解答】解:7个正方形边长分别11,8,7,7,5,5,3.另外,不可能分成5个或6个正方形,这个证明很麻烦,大概过程是通过编程列出所有可能的组合(如所有满足5个或6个数平方之和等于18×19且最大两个和不超过19的整数组合),然后对每个组合逐一否定其可行性,所以不用担心有更少正方形的组合.故选:C.8.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A缺少两个底面,不能围成棱柱;选项C中折叠后没有上底面,不能折成棱柱,选项D不能组成棱柱,是因为上下两底面四个边的长不能与侧面的边等长、重合.,只有B能围成三棱柱.故选:B.9.【分析】根据光线的反射,即可确定.【解答】解:有4条:分别是:由S发出的线SP;由S发出,经过AD反射直接通过P的光线;由S发出,经过CD反射直接通过P的光线;由S发出,经过CD反射再经过AD反射通过P的光线.故选:D.10.【分析】如图,过点F作FT⊥CF交AC于T,过点T作TH⊥AB于H,设CD=x.用两种方法求出AB的长,由此构建方程求解即可.【解答】解:如图,过点F作FT⊥CF交AC于T,过点T作TH⊥AB于H,设CD=x.∵BA=BC,∠B=90°,AC=7+x,∴AB=BC=7+x,∵△CDE与△FDE关于直线DE对称,∴DC=DF,∴∠DFC=∠FCD,∵∠DFT+∠DFC=90°,∠FCD+∠CTF=90°,∴∠DFT=∠DTF,∴DF=DT=DC=x,∴AT=7﹣x,∵∠A=45°,∠AHT=90°,∴∠A=∠ATH=45°,∴AH=HT=7﹣x,∵∠AFT+∠CFB=90°,∠CFB+∠BCF=90°,∴∠AFT=∠BCF,∵AF=2BF,∴BC=AB=3BF,∴tan∠AFT=tan∠BCF==,∴FH=3HT=21﹣3x,AF=28﹣4x,∴BF=AF=14﹣2x,∵AF+BD=AB,∴28﹣4x+14﹣2x=7+x,∴x=5,∴CD=5,故选:D.11.【分析】根据题意,要表示这个班的植树情况结合三种统计图的特点,折线图体现变化情况,扇形图体现各部分的数值、比例关系,条形图体现各部分的数值大小,分析可得答案.【解答】解:根据题意,要求把这个班的植树情况清楚地反映出来,即体现数字间的关系,使用条形统计图、扇形统计图均可,故选:D.12.【分析】首先根据小金第一分钟打了112个字符,最后一分钟打了97个字符,算出中间12分钟打的字符数.再根据12分钟可以分成6段(6×2)、4段(4×3)、3段(3×4).计算出每段打的字符数,与选项比较.【解答】解:小金中间的12分钟打了2098一112﹣97=1889个字符.把这12分钟分别平均分成6段、4段、3段,每段分别是2分钟、3分钟、4分钟,∵1889÷6≈314.8,1889÷4≈472.3,1889÷3≈629.7,∴应用抽屉原理知A、B、C均成立.但1889÷2=944.5,因此如果小金每分钟所打字符个数依次是112,158,157,158,157,158,157,158,157,158,157,157,157,97,则她连续6分钟最多打了3×(158+157)=945个字符,结论D不成立.故选:D.二.填空题(共6小题)13.【分析】根据图示,可知有理数a,b,c的取值范围b>1>a>0>c>﹣1,然后根据它们的取值范围去绝对值并求|c﹣b|﹣|b﹣a|﹣|a﹣c|的值.【解答】解:根据图示知:b>1>a>0>c>﹣1,∴|c﹣b|﹣|b﹣a|﹣|a﹣c|=﹣c+b﹣b+a﹣a+c=0故答案是0.14.【分析】(1)将砝码①,③,…,⑳放在天平一边,砝码②,④,…,19克放在天平另一边,根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立,两边每次取质量和为21克的偶数个砝码即可;(2)将砝码①,②,…,14克放在天平一边,砝码15克,16克,17克,18克,19克,⑳放在天平另一边,根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立,从每边无论怎样取下同样多个砝码,都不能再使天平保持平衡.【解答】解:(1)天平一边是砝码①,③,…,⑳,天平另一边是砝码②,④,…,19克,两边每次取质量和为21克的偶数个砝码;(2)天平一边是砝码①,③,…,14克,天平另一边是砝码15克,16克,17克,18克,19克,⑳,从每边无论怎样取下同样多个砝码,都不能再使天平保持平衡.15.【分析】首先要了解,距离坐标的有序数对的构成方法,在此基础上要知道当点在某条直线上时,其对应直线上的距离坐标实际为0;同时,要通过画图,分析出到一条直线距离为定值的点在与已知直线平行的两条直线上.此时,答案就比较容易得出.【解答】解:(1)图形点A到直线l1、l2的距离分别是1.6和2.5,点B到直线l1、l2的距离分别是2.2和1.5.故答案是(1.6,2.5),(2.2,1.5)(2)“距离坐标”的两个有序数对的第一个数和第二个数分别表示点到直线l1、l2的距离,所以,到直线l1、l2的距离分别是3,0.结合已知图形,可知满足条件的为点D.故答案是:D(3)(0,5)代表点到直线l1、l2的距离分别是0和5,则所求点在直线l1上,且到l2的距离为5,这样的点在l2两侧各有一个.如图,直线AB∥CD∥l2且相邻两条直线距离为5,直线AD∥BC∥l1,且相邻两条直线距离为5,A、B、C、D四点的“距离坐标”为(5,5).故答案是:2,416.【分析】在长方体中,棱与棱之间有平行,相交(垂直),和异面等关系.【解答】解:观察图形可知,与棱AB相交的棱有AD,AE,BC,BF.故答案为AD,AE,BC,BF.17.【分析】如图,连接AD1.设AF=a,首先证明四边形AED1M是平行四边形,推出∠DMD1=30°,由题意,点D1的运动轨迹是以P为圆心,PD为半径是圆上,当点P与A重合时,D1F的值最大,过点D1作D1H⊥D于H.利用勾股定理构建方程求解即可.【解答】解:如图,连接AD1.设AF=a在AD上取一点M,使得AM=AF=a,连接MD′,在Rt△ABC中,∵∠BAC=90°,AB=2,AC=2,∴tan∠ACB==,∴∠ACB=30°,∵EF∥BC,∴∠AEF=∠ACB=30°,∴EF=2AF=2a,∵D1E=3D1F,∴ED1=a=AM,∵四边形ABCD是平行四边形,∴AD∥BCAD=BC=2AB=4,∴∠CAD=∠ACB=30°,∵AM=ED1,AM∥ED1,∴四边形AMD1E是平行四边形,∴MD1=AE=a,AE∥MD1,∴∠DMD1=∠CAD=30°,∵由题意,点D1的运动轨迹是以P为圆心,PD为半径是圆上,∴当点P与A重合时,D1F的值最大,过点D1作D1H⊥D于H.则有HD1=MD1=a,MH=a,∴AH=a,在Rt△AHD1中,则有42=(a)2+(a)2,解得a=(负根已经舍弃),∴D1F的最大值=3a=,故答案为.18.【分析】频率是0.28的人数为总人数×该组对应的频率,即频率是0.28的人数=50×0.28=14人,所以是159.5到166.5这组;根据组中值的概念可知,组中值=,则159.5到166.5段的组中值为=163.【解答】解:频率是0.28的一组的频数=50×0.28=14人,∴这一组是159.5﹣166.5组,∴组中值为=163.故本题答案为:163.三.解答题(共9小题)19.【分析】(1)根据若9月30日外出旅游人数为5万人,正数表示比前一天多的人数,负数表示比前一天少的人数,表示出10月2日外出旅游的人数,即可解决;(2)分别表示出10月1日到7日的人数,即可得出旅游人数最多的是哪天,最少的是哪天,以及它们相差多少万人;(3)设9月30日外出旅游人数记为a万人,最多一天有出游人数8万人,即:a+1.6+0.8+0.4=8,可得出a的值.【解答】解:(1)根据题意得:∵9月30日外出旅游人数为5万人,∴10月1日外出旅游人数为:5+1.6=6.6(万人),∴10月2日外出旅游人数为:6.6+0.8=7.4(万人);(2)10月3号外出旅游人数为:7.4+0.4=7.8(万人);10月4号外出旅游人数为:7.8﹣0.4=7.4(万人);10月5号外出旅游人数为:7.4﹣0.8=6.6(万人);10月6号外出旅游人数为:6.6+0.2=6.8(万人);10月7号外出旅游人数为:6.8﹣1.4=5.4(万人);10月3号外出旅游人数最多;7号最少;相差7.8﹣5.4=2.4(万人);(3)设9月30日外出旅游人数记为a万人,则a+1.6+0.8+0.4=8,解得a=5.2.故9月30日出去旅游的人数有5.2万.20.【分析】(1)仿照题目给出的思路和方法,解决(1)即可;(2)根据已知等式,利用绝对值的代数意义判断出a,b,c中负数有2个,正数有1个,判断出abc的正负,原式利用绝对值的代数意义化简计算即可.【解答】解:(1)∵abc<0,∴a,b,c都是负数或其中一个为负数,另两个为正数,①当a,b,c都是负数,即a<0,b<0,c<0时,则:=++=﹣1﹣1﹣1=﹣3;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则=++=﹣1+1+1=1.(2)∵a,b,c为三个不为0的有理数,且,∴a,b,c中负数有2个,正数有1个,∴abc>0,∴==1.21.【分析】(1)根据阅读材料设x=0.,方程两边都乘以10,转化为1+x=10x,求出其解即可;(2)根据阅读材料设x=0.,方程两边都乘以100,转化为16+x=100x,求出其解即可;【解答】解:(1)设x=0.,即x=0.1111…,将方程两边都×10,得10x=1.1111…,即10x=1+0.1111…,又因为x=0.111…,所以10x=1+x,所以9x=1,即x=.故答案为:.(2分)(2)设x=,即x=0.1616…,将方程两边都×100,得100x=16.1616…,即100x=16+0.1616…,又因为x=0.1616…,所以100x=16+x,所以99x=16,即x=,所以=.(6分)22.【分析】(1)根据|a+3|+(b﹣2)2=0,可以求得a、b的值,从而可以求得点A、B表示的数;(2)①根据2x+1=x﹣8可以求得x的值,从而可以得到点C表示的数,从而可以得到线段BC的长;②根据题意可以列出关于点P表示的数的关系式,从而可以求得点P表示的数.【解答】解:(1)∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2;(2)①2x+1=x﹣8解得,x=﹣6,∴BC=2﹣(﹣6)=8,即线段BC的长为8;②存在点P,使P A+PB=BC,设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得,m=3.5,当﹣3<m<2时,无解,当m<﹣3时,m=﹣4.5,即点P对应的数是3.5或﹣4.5.23.【分析】要求AM的取值范围,则先确定M点运动轨迹,由等边三角形联想共顶点的双等边结构,可构造和△PBM共顶点B的等边△ABH,则△APB≌△HBM⟹HM=P A=2,所以点M运动轨迹为以H为圆心,半径为2的圆H上的点.AM过圆心时取得相应最大和最小值.因为△PBM是等边三角形,点P在圆心为A半径为2的⊙A上运动,推出点M的运动轨迹也是圆,当点P1(4,0)时,点M与E重合,当P2(0,0)时,点M与F重合,利用点与圆的位置关系即可解决问题.【解答】解:要求AM的取值范围,则先确定M点运动轨迹.如图,由等边三角形联想共顶点的双等边结构,可构造和△PBM共顶点B的等边△ABH,则△APB≌△HBM⟹HM=P A=2,所以点M运动轨迹为以H为圆心,半径为2的圆H上的点.当点P1(4,0)时,点M与E重合,当P2(0,0)时,点M与F重合,此时△BFO和△BEP1都是等边三角形,所以BF=BO=5,BE=BP1=1,所以BH=BA=AH=3,AM过圆心时取得相应最大和最小值.点M运动轨迹为以H为圆心,半径为2的圆H上的点.AM过圆心时取得相应最大和最小值.因为圆A的半径为2,圆H的半径为2,当点A和点M在一条直线上时,HA=3,那么AM的最大值为3+2=5;最小值为3﹣2=1.所以线段AM的取值范围是:1≤AM≤5.24.【分析】(1)根据长方体的分割规律可分别得到4等分时的所得小正方体表面涂色情况,由特殊推广到一般即可得到n等分时所得小正方体表面涂色情况;(2)直接把n=7代入(1)中所得的规律中即可.【解答】解:(1)三面涂色8,8;二面涂色24,12(n﹣2),一面涂色24,6(n﹣2)2各面均不涂色8,(n﹣2)3;(2)当n=7时,6(n﹣2)2=6×(7﹣2)2=150,所以一面涂色的小正方体有150个.25.【分析】(1)根据等腰三角形的性质,得出∠E=∠DAC,根据等边三角形的性质,得出∠BAD+∠DAC=∠E+∠EDC=60°,据此可得出∠BAD=∠EDC;(2)根据轴对称作图,要证明DA=AM,只需根据有一个角是60°的等腰三角形是等边三角形,证△ADM是等边三角形即可.【解答】解:(1)如图1,∵△ABC是等边三角形,∴∠BAC=∠ACB=60°.又∵∠BAD+∠DAC=∠BAC,∠EDC+∠DEC=∠ACB,∴∠BAD+∠DAC=∠EDC+∠DEC.∵DE=DA,∴∠DAC=∠DEC,∴∠BAD=∠EDC.(2)猜想:DM=AM.理由如下:∵点M、E关于直线BC对称,∴∠MDC=∠EDC,DE=DM.又由(1)知∠BAD=∠EDC,∴∠MDC=∠BAD.∵∠ADC=∠BAD+∠B,即∠ADM+∠MDC=∠BAD+∠B,∴∠ADM=∠B=60°.又∵DA=DE=DM,∴△ADM是等边三角形,∴DM=AM.26.【分析】(1)根据数据即可直接进行画记,然后求得对应的人数,根据百分比的意义求得百分比;(2)因为是抽取了部分同学进行身高测量,因而是抽样调查;(3)根据条形统计图和扇形统计图的特点即可确定.【解答】解:(1)根据以上数据填表:身高h(单位:cm)画记人数占调查人数的百分比(%)h≤120 4 25% 120<h≤140正8 50% h>140 4 25% (2)以上这种调查方式称为抽样调查.故答案是:抽样;(3)要直观地反映各身高段人数的多少,应画条形统计图比较合适;要直观地反映各身高段人数占被调查人数的百分比,应画扇形统计图比较合适.故答案是:条形、扇形.27.【分析】首先构造两个数列:{1,2,4,8,16,32,64,128,256,512,1024};{3,6,12,24,48,96,192,384,768,1512}.共21个数,这21个数中任取三个,总有一个数为另一个数的倍数.则n≤21.由抽屉原理,构造集合,从而得到n的最大值是21.【解答】解:首先构造两个数列:{1,2,4,8,16,32,64,128,256,512,1024};{3,6,12,24,48,96,192,384,768,1512}.共21个数,这21个数中任取三个,总有一个数为另一个数的倍数.因此:n≤21.如果n>21,则构造如下集合:{1},{2,3},{4,5,6,7},{8,9,10,…,15},…,{1024,1025,…,2014},共11个集合,如果n>21,至少有某个集合中被选了大于等于3个数,而这个集合中不可能存在一个数是另一个数的倍数.矛盾.故n的最大值为21.。
期末检测卷02(解析版) -2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)
2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)期末检测卷02一、选择题(本题共计6小题,每题3分,共计18分)1.(2020·大庆市万宝学校八年级期中)下列哪组数据能构成三角形的三边( )A .1cm 、2cm 、3cmB .2cm 、3cm 、4cmC .14cm 、4cm 、9cmD .7cm 、2cm 、4cm【答案】B2.(2020·营山县化育初级中学校八年级期中)下列图形中一定是轴对称图形的是( )A .B .C .D .【答案】A3.(2020·河北唐山市·八年级月考)下列计算错误的是( )A .32a b ⋅=5abB .2a a -⋅=3a -C .()()936-x -x =x÷ D .()2362a 4a -=【答案】A4.(2020·浙江杭州市·七年级其他模拟)若24(1)9xm x --+是完全平方式,则m 的值为( )A .13B .12±C .11或13-D .11-或13.【答案】D5.(2020·营山县化育初级中学校八年级期中)如图所示,在△ABC 中,∠C =90°,BC =40,AD 是∠BAC 的平分线,交BC 于点D .若DC ∶DB =3∶5,则点D 到AB 的距离是( )A .40B .15C .25D .20【答案】B6.(2020·广东广州市·执信中学八年级期中)如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm /s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当时间t 为( )s 时,能够使BPE 与CQP 全等.A .1B .1或4C .1或2D .2或4【答案】B二、填空题(本题共计6小题,每题3分,共计18分)7.(2020·上海市建平中学西校七年级期中)分解因式:32327-=xxy ______.【答案】()()333+-xx y x y8.(2019·江西赣州市·八年级期末)为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,根据题意列方程为____.【答案】12000120001001.2x x=+ 9.(2020·昌乐县白塔镇第一中学八年级期中)若关于x 的分式方程4333x ax x --=--有增根,则a 的值是______. 【答案】-110.(2020·重庆市南川道南中学校八年级期中)如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.【答案】611.(2020·宁津县育新中学八年级期中)如图,在△ABC 中,∠A =64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n -1BC 与∠A n -1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.【答案】612.(2020·南昌市心远中学八年级期中)如图:一条船从A 处出发向正北航行,从A 望灯塔C 测得30NAC ∠=︒,当点B在射线AN 上,且BAC 为等腰三角形,则NBC ∠的度数是__________.【答案】105°或60°或150°三、(本题共计5小题,每小题6分,共计30分)13.(2020·福建泉州市·泉州七中八年级期中)分解因式:(1)2x x 30--(2)222ax8axy 8ay -+【答案】解:(1)230x x --()()65x x =-+(2)22288axaxy ay -+()22244a x xy y =-+()222a x y =-【点睛】本题考查的是利用十字乘法,提公因式,完全平方公式分解因式,掌握以上因式分解的方法是解题的关键.14.(2020·剑阁县公兴初级中学校九年级月考)先化简(21x x +-x +1)÷22121x x x -++,再从-1,0,1中选择合适的x 值代入求值.【答案】2221(21)11x x x x x x -+÷++-+ 222121(1)1111x x x x x x x x x x ⎡⎤++=-+⨯⎢⎥++++⎣⎦-+ 222(1)1(1)(1)1x x x x x x x x ⎡⎤-+=⨯⎢⎥+-⎣+++-⎦2(1)()1(1)(1)1x x x x +=⨯+-+ 11x =- 11x x x ≠-≠∴=,0当0x=时,原式11==1101x =--- 【点睛】本题考查分式的化简求值,其中涉及分式有意义的条件、完全平方公式、平方差公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.(2020·马鞍山二中实验学校八年级期中)如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数. 【答案】(1)延长BP 交AC 于D ,如图所示:∵∠BPC 是△CDP 的一个外角,∠1是△ABD 的一个外角,∴∠BPC >∠1,∠1>∠A ,∴∠BPC >∠A ;(2)在△ABC 中,∵∠A =40°,∴∠ABC +∠ACB =180°﹣∠A =180°﹣40°=140°,∵PB 平分∠ABC ,PC 平分∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB , 在△PBC 中,∠P =180°﹣(∠PBC +∠PCB )=180°﹣(12∠ABC +12∠ACB )=180°﹣12(∠ABC+∠ACB)=180°﹣12×140°=110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.16.(2020·江苏淮安市·八年级期中)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(请用直尺保留作图痕迹).(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)△ABC的面积是;(3)在DE上画出点Q,使△QAB的周长最小.【答案】解:(1)如图所示,△A1B1C1即为所求;(2)S△ABC=2×3−12×1×3−12×1×2−12×1×2=52.故答案为:5 2.(3)如图所示,点Q即为所求;【点睛】本题主要考查了利用轴对称作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.17.(2020·武威第十九中学八年级月考)下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4 (第一步)= y2+8y+16 (第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式B.平方差公式C.完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.【答案】解:(1)该同学第二步到第三步运用了因式分解的完全平方公式,故选:C;(2)∵x2-4x+4=(x-2)2 ,∴该同学因式分解的结果不彻底,最后结果为(x-2)4 ,故答案为:不彻底,(x-2)4 ;(3)设x2-2x=y,则:原式=y(y+2)+1=y2+2y+1=(y+1)2=( x2-2x+1)2=(x﹣1)4.【点睛】本题考查利用换元法和公式法进行因式分解,熟记完全平方公式,熟练掌握因式分解的各种方法是解答的关键.四、(本题共计3小题,每小题8分,共计24分)18.(2020·全国八年级期中)如图所示,△ABC中,AB=BC.DE⊥AB于点E.DF⊥BC于点D,交AC于F..若∠AFD=155°,求∠EDF的度数;.若点F是AC的中点,求证:∠CFD=12∠B.【答案】. ∵∠AFD=155°.∴∠DFC=25°.∵DF⊥BC.DE⊥AB.∴∠FDC =∠AED =90°.在Rt △EDC 中,∴∠C =90°.25°=65°.∵AB =BC .∴∠C =∠A =65°.∴∠EDF =360°.65°.155°.90°=50°.. 连接BF .∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC .12ABFCBF ABC ∠=∠=∠.∴∠CFD +∠BFD =90°.∠CBF +∠BFD =90°.∴∠CFD =∠CBF .∴12CFDABC ∠=∠. 19.(2020·重庆西南大学银翔实验中学八年级月考)西南大学银翔实验中学初2022级举行“迎篮而上,求进不止”的篮球比赛,在某商场购买甲、乙两种不同篮球,购买甲种篮球共花费3000元,购买乙种篮球共花费2100元,购买甲种篮球数量是购买乙种篮球数量的2倍.且购买一个乙种篮球比购买一个甲种篮球多花60元;(1)求购买一个甲种篮球、一个乙种篮球各需多少元?(2)活动结束以后,学校决定再次购买甲、乙两种篮球共50个.恰逢该商场对两种篮球的售价进行调整,甲种篮球售价比第一次购买时提高了10%,乙种篮球售价比第一次购买时降低了10%.如果此次购买甲、乙两种篮球的总费用不超过8730元,那么这所学校最多可购买多少个乙种篮球?【答案】解:(1)设购买一个甲种篮球需x 元,则购买一个乙种篮球需()60x +元,根据题意可得:30002100260x x =⨯+, 解得:150x =,经检验得150x =是分式方程的解,∴60210x +=,答:购买一个甲种篮球需150元,则购买一个乙种篮球需210元;(2)调整之后的价格为:甲种篮球()150110165⨯+%=(元),乙种篮球()210110189⨯-%=(元),设购买m 个乙种篮球,则购买()50m -个甲种篮球,根据题意可得:()165501898730m m -+≤,解得:20m ≤,∴这所学校最多可购买20个乙种篮球.【点睛】本题考查分式方程的应用、不等式的实际应用,理解题意并列出方程和不等式是解题的关键.20.(2020·昌乐县白塔镇第一中学八年级期中)如图1,在△ABC 中,90ACB ∠=︒,AC =BC ,直线MN 经过点C ,AD MN ⊥,垂足为点D ,BE MN ⊥,垂足为点E .(1)请说明:①ADC CEB △≌△,②DE AD BE =+;(2)当直线MN 绕着点C 旋转到如图2所示的位置时,猜想线段DE ,AD ,BE 之间有怎样的数量关系?并说明理由.【答案】解:(1)①AD MN ⊥,BE MN ⊥,∴∠=∠=︒,ADC CEB90∴∠+∠=︒,DAC ACD90∠=︒,ACB90∴∠+∠=︒-︒=︒,ACD BCE1809090∴∠=∠;DAC ECB△中,在ADC和CEB=,∠=∠,AC CBADC CEB∠=∠,DAC ECB()∴△≌△;ADC CEBAAS△≌△,②由①得ADC CEB=,DC EB∴=,AD CE=+,DE CD CE∴=+;DE AD BE=-,(2)DE AD BE△≌△,由(1)同理可得:ADC CEB∴=,CD BE=,AD CEDE CE CD,∴=-.DE AD BE【点睛】本题考查了全等三角形的判定和性质,涉及到补角和余角的性质,熟练掌握全等三角形的判定方法是解题的关键.五、(本题共计2小题,每小题9分,共计18分)21.(2020·张家口市宣化区教学研究中心八年级期末)阅读理解 (发现)如果记22()1x f x x =+,并且f (1)表示当x =1时的值,则f (1)=______;()2f 表示当2x =时的值,则()2f =______;12f ⎛⎫ ⎪⎝⎭表示当12x =时的值,则12f ⎛⎫ ⎪⎝⎭=______; ()3f 表示当3x =时的值,则()3f =______;13f ⎛⎫ ⎪⎝⎭表示当13x =时的值,则13f ⎛⎫= ⎪⎝⎭______; (拓展)试计算111(2013)(2012)(2)(1)220122013f f f f f f f ⎛⎫⎛⎫⎛⎫++⋯++++⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 【答案】解:【发现】2211(1)=211=+f ; 2224(2)=512=+f ;221112()=25112⎛⎫ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭f ; 2239(3)=1013=+f ;221113()=310113⎛⎫ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭f 【拓展】∵22()1x f x x =+ ∴2221()11(),111()x f x x x∴1()()1,f x f x += ∴111(2013)(2012)(2)(1)220122013f f f f f f f ⎛⎫⎛⎫⎛⎫++⋯++++⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()111=2012+=201222=2012+f 【点睛】本题考查了函数值,数字变化规律,读懂题目信息,理解变化规律f 的方法并确定出1()()1f x f x+=是解题的关键. 22.(2020·广州市白云区明德中学七年级期中)如图1是一个长为2a ,宽为2b 的长方形()a b >,沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形(1)你认为图2中大正方形的边长为______;小正方形(阴影部分)的边长为______.(用含a 、b 代数式表示)(2)仔细观察图2,利用图2中存在的面积关系,直接写出下列三个代数式.2()a b -,2()a b +,4ab 之间的等量关系.(3)利用(2)中得出的结论解决下面的问题.已知7a b +=,6ab =,求代数式()a b -的值.【答案】解:(1)图2中大正方形的边长为(a +b );小正方形(阴影部分)的边长为(a −b ),故填:()a b +,()a b -;(2)三个代数式之间的等量关系是:(a +b )2=(a −b )2+4ab ;(3)(a −b )2=(a +b )2−4ab =72-4×6=25,∴a −b =5.【点睛】本题主要考查公式变形能力,如何准确地确定三个代数式之间的等量关系是解题的关键.六、(本题共计1小题,每小题12分,共计12分)23.(2020·阳泉市第三中学校八年级期中)问题情境:在自习课上,小雪拿来了如下一道题目(原问题)和合作学习小组的同学们交流,如图①,△ACB 和△∠CDE 均为等腰三角形.CA =CB ,CD =CE ,∠ACB =∠DCE .点A 、D 、E 在同一条直线上,连接BE .求证:∠CDE =∠BCE +∠CBE . 问题发现:小华说:我做过一道类似的题目:如图②,△ACB 和△CDE 均为等边三角形,其他条件不变,求∠AEB 的度数. (1)请聪明的你完成小雪的题目要求并直接写出小华的题目要求.拓展研究:(2)如图③,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同一条直线上,CF 为△DCE 中DE 边上的高,连接BE .请求∠AEB 的度数及线段CF 、AE 、BE 之间的数量关系,并说明理由.【答案】(1)小雪的题目:证明:ACB DCE ∠=∠ACD BCE ∠∠∴=在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△CAD CBE ∴∠=∠又ACD BCE ∠=∠,CDE CAD ACD ∠=∠+∠CDE CBE BCE ∴∠=∠+∠;小华的题目:解:ACB DCE ∠=∠ACD BCE ∠∠∴=在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△ADC BEC ∠∠∴= CDE 为等边三角形60CDE CED ∴∠=∠=︒ 又点A 、D 、E 在同一条直线上120ADC BEC ∴∠=∠=︒60AEB BEC CED ∴∠=∠-∠=︒(2)∠AEB =90︒;2AE BE CF =+;理由如下:△ACB 和△DCE 均为等腰直角三角形,,,9045AC BC CD CE ACB DCE CDE CED ∴==∠=∠=︒∠=∠=︒,,ACB DCB DCE DCB ∴∠-∠=∠-∠即ACD BCE ∠=∠在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△,BE AD BEC ADC ∴=∠=∠,点A 、D 、E 在同一直线上∴∠=︒-︒=︒ADC18045135∴∠=︒BEC135∴∠=∠-∠=︒-︒=︒AEB BEC CED1354590,∠=︒=⊥DCE CD CE CF DE90,∴==CF DF EF∴=+=DE DF EF CF2∴=+=+.AE AD DE BE CF2【点睛】本题考查了全等三角形的判定及性质、等腰三角形的性质、等边三角形的性质,熟练掌握性质定理是解题的关键.。
2023-2024学年江西省南昌市联考八年级(上)期末数学试卷及答案解析
2023-2024学年江西省南昌市联考八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列运算正确的是()A.x5•x2=x10B.(﹣2m3n4)2=4m6n6C.(﹣a2)3=﹣a6D.y4÷y4=02.(3分)当x=2时,下列二次根式没有意义的是()A.B.C.D.3.(3分)某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为()A.1.64×10﹣6B.1.64×10﹣5C.16.4×10﹣7D.0.164×10﹣5 4.(3分)如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB 长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.5.(3分)我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明,下面四幅图中,不能证明勾股定理的是()A.B.C.D.6.(3分)小刚在化简时,整式M看不清楚了,通过查看答案,发现得到的化简结果是,则整式M是()A.B.a+b C.a﹣b D.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)因式分解:ax2+ay2+2axy=.8.(3分)=.9.(3分)已知实数m满足m2﹣m﹣1=0,则代数式m3﹣2m+2023的值为.10.(3分)如图,在△ABC中,∠A=90°,BC=5,AB=3,线段BC的垂直平分线交AC、BC于点P和点Q,则PA的长度为.11.(3分)“孔子周游列国”是流传很广的故事.有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院,设学生步行的速度为每小时x里,则可列方程为.12.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=16,AB=20,动点D从点A出发,沿线段AB以每秒2个单位的速度向B运动,过点D作DF⊥AB交BC所在的直线于点F,连接AF,CD.设点D运动时间为t秒.当△ABF是等腰三角形时,则t=秒.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:﹣12022+(π﹣3.14)0+(﹣2)﹣2;(2)解方程:.14.(6分)如图是由边长为1个单位长度的小正方形组成的网格,△ABC的三个顶点都在格点上.(1)点A的坐标为,点B的坐标为;(2)图中线段BC的长为;(3)△ABC的面积为;(4)点P在y轴上,且△ABP的面积等于△ABC的面积,则点P的坐标为.15.(6分)先化简:,再从x=1,2,3,4中任选一个数,求式子的值.16.(6分)如图,图1为4×4的方格,每个小格的顶点叫做格点,每个小正方形边长为1.(1)图1中正方形ABCD的面积为,边长为;(2)①依照图1中的作法,在下面图2的方格中作一个正方形,同时满足下列两个要求:Ⅰ.所作的正方形的顶点,必须在方格的格点上;Ⅱ.所作的正方形的边长为.②请在图2中的数轴上标出表示实数的点,保留作图痕迹.17.(6分)有一块矩形木板,木工师傅采用如图所示的方式,在木板上截出面积分别为18dm2和32dm2的两块正方形木板.(1)截出的两块正方形木板的边长分别为dm,dm;(2)求剩余木板的面积;(3)如果木工师傅想从剩余的木板中截出长为1.5dm、宽为1dm的矩形木条,最多能截出个这样的木条.四、(本大题共3小题,每小题8分,共24分)18.(8分)燕塔广场视野开阔,阻挡物少,成为不少市民放风筝的最佳场所,某校八年级的王明和孙亮两位同学在学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得BD的长度为8米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的王明身高1.6米;(1)求风筝的垂直高度CE;(2)若王明同学想让风筝沿CD方向下降9米,则他应该往回收线多少米?19.(8分)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1.5万元,用18万元购买甲种农机具的数量和用12万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过72.6万元,则甲种农机具最多能购买多少件?20.(8分)课本上,我们利用数形结合思想探索了整式乘法的法则和一些公式.类似地,我们可以探索一些其他的公式.【以形助数】借助一个棱长为a的大正方体进行以下探索.(1)在其一角截去一个棱长为b(b<a)的小正方体,如图1所示,则得到的几何体的体积为.(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,因为BC=a,AB =a﹣b,CF=b,所以长方体①的体积为ab(a﹣b),类似地,长方体②的体积为,长方体③的体积为:(结果不需要化简)(3)将表示长方体①、②、③的体积的式子相加,并将得到的多项式分解因式,结果为.(4)用不同的方法表示图1中几何体的体积,可以得到的等式为.【以数解形】(5)对于任意数a、b,运用整式乘法法则证明(4)中得到的等式成立.五、(本大题2小题,共18分)21.(9分)已知直线l为长方形ABCD的对称轴,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,点D的对应点D′恰好落在对称轴l上.(1)如图,当点E在边DC上时,①填空:点D′到边AB的距离是;(直接写出结果)②求DE的长.(2)当点E在边DC的延长线上时,(友情提醒:可在备用图上画图分析)①填空:点D′到边CD的距离是;(直接写出结果)②填空:此时DE的长为.(直接写出结果)22.(9分)材料阅读:在分式中,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:.类似地,假分式也可以化为“带分式”,即整式与真分式的和的形式,例如:;.请根据上述材料,解答下列问题:(1)填空:①分式是分式(填“真”或“假”);②把下列假分式化成一个整式与一个真分式的和(差)的形式:=.(2)把分式化成一个整式与一个真分式的和(差)的形式,并求x取何整数时,这个分式的值为整数.六、(本大题12分)23.(12分)定义:连接三角形的一个顶点和其对边上一点,若所得线段能将该三角形分割成一个等腰三角形和一个直角三角形,则称该线段为原三角形的“妙分线”.(1)如图1,在△ABC中,AB=,AD⊥BC,D为垂足,AD为△ABC的“妙分线”.若BD=1,则CD长为;(2)如图2,在△ABC中,∠ABC=90°,AB=BC,D是CB延长线上一点,E为AB 上一点,BE=BD,连接CE并延长交AD于点F,BH平分∠ABC,分别交CF,AC于点G,H,连接AG.求证:AG是△AFC的“妙分线”;(3)如图3,在△ABC中,AB=AC=5,BC=3.若AC为△BCD的“妙分线”,直接写出CD的长.2023-2024学年江西省南昌市联考八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.【分析】根据同底数幂的乘法即可判断A,根据幂的乘方和积的乘方即可判断B和C,根据同底数幂的除法即可判断D.【解答】解:A.x5⋅x2=x7,该选项计算错误,故该选项不符合题意;B.(﹣2m3n4)2=4m6n8,该选项计算错误,故该选项不符合题意;C.(﹣a2)3=﹣a6,该选项计算正确,故该选项符合题意;D.y4÷y4=1,该选项计算错误,故该选项不符合题意;故选:C.【点评】本题主要考查了同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法,熟练掌握同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法的运算法则是解题的关键.2.【分析】根据二次根式有意义的条件:形如(a≥0)的式子叫做二次根式,求解即可.【解答】解:当x=2时,,,,故选项A、B、C不符合题意;x﹣3=2﹣3=﹣1<0,即没有意义,选项D符合题意.故选:D.【点评】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:0.00000164=1.64×10﹣6,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】利用勾股定理即可求得CB的长度,然后根据实数与数轴的关系即可求得答案.【解答】解:由题意可得∠BAC=90°,AB=1,AC=3﹣1=2,则CB==,那么点P表示的实数为3﹣,故选:A.【点评】本题考查勾股定理及实数与数轴的关系,结合已知条件求得CB的长度是解题的关键.5.【分析】根据基础图形的面积公式表示出各个选项的面积,同时根据割补的思想可以写出另外一种面积表示方法,即可得出一个等式,进而可判断能否证明勾股定理.【解答】解:A、大正方形的面积为:c2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:=a2+b2,∴a2+b2=c2,故A选项能证明勾股定理.B、梯形的面积为:=;也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:=,∴=,∴a2+b2=c2,故B选项能证明勾股定理.C、大正方形的面积为:(a+b)2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:=2ab+c2,∴(a+b)2=2ab+c2,∴a2+b2=c2,故C选项能证明勾股定理.D、大正方形的面积为:(a+b)2;也可看作是2个矩形和2个小正方形组成,则其面积为:a2+b2+2ab,∴(a+b)2=a2+b2+2ab,∴D选项不能证明勾股定理.故选:D.【点评】本题考查勾股定理的证明方法,熟练掌握内弦图、外弦图是解题关键.6.【分析】由题意列出算式,利用分式的加减法法则解答即可得出结论.【解答】解:∵化简时,整式M看不清楚了,通过查看答案,发现得到的化简结果是,∴====,∴M=a+b.故选:B.【点评】本题主要考查了分式的加减法,利用已知条件列出算式是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.【分析】先提取公因式,再利用完全平方公式因式分解即可.【解答】解:ax2+ay2+2axy=a(x2+y2+2xy)=a(x+y)2.故答案为:a(x+y)2.【点评】本题考查的是因式分解,熟知利用提公因式法以及完全平方公式进行因式分解是解题的关键.8.【分析】先根据积的乘方运算得到原式=[(+1)(﹣1)]2023×(﹣1),然后利用平方差公式计算.【解答】解:原式=[(+1)(﹣1)]2023×(﹣1)=(2﹣1)2023×(﹣1)=﹣1.故答案为:﹣1.【点评】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和积的乘方运算法则是解决问题的关键.9.【分析】根据所给等式m2﹣m﹣1=0,可得m2﹣m=1,m2=m+1两个式子,把代数式m3﹣2m+2023中的m3分成m2•m,把m2=m+1代入,化简后再把m2﹣m=1代入求解即可.【解答】解:∵m2﹣m﹣1=0,∴m2﹣m=1,m2=m+1.∴m3﹣2m+2023=m2•m﹣2m+2023=(m+1)m﹣2m+2023=m2+m﹣2m+2023=m2﹣m+2023=1+2023=2024.【点评】本题考查了用整体思想求代数式的值的问题.整体思想,通常把等式中含字母的项看成一个整体,得到相应的值;或者把等式中的最高次项看成一个整体,得到相应的值.10.【分析】连接PB,然后根据线段垂直平分线的性质,可以得到PC=PB,根据勾股定理可以求得AC的长,再设AP=x,则可以用含x的代数式表示出PB,最后根据勾股定理即可计算出AP的长.【解答】解:连接PB,如图,∵PQ垂直平分BC,∴PC=PB,∵∠A=90°,BC=5,AB=3,∴AC===4,设PA=x,则PC=4﹣x,∴PB=4﹣x,∵∠PAB=90°,∴AP2+AB2=PB2,∴x2+32=(4﹣x)2,解得x=,即PA=,故答案为:.【点评】本题考查勾股定理、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.11.【分析】根据时间=距离÷速度,结合学生早出发1小时,孔子和学生们同时到达书院列分式方程即可.【解答】解:设学生步行的速度为每小时x里,则牛车的速度是每小时1.5x里,∵学生早出发1小时,孔子和学生们同时到达书院,∴,故答案为:.【点评】本题考查分式方程的应用,正确找出等量关系是解题关键.12.【分析】先根据勾股定理求出BC,再分FA=FB、AF=AB、BF=AB三种情况,根据等腰三角形的性质、勾股定理计算即可.【解答】解:在Rt△ABC中,∠ACB=90°,AC=16,AB=20,由勾股定理得:,当FA=FB时,DF⊥AB,∴,∴t=10÷2=5;当AF=AB=20时,∠ACB=90°,则BF=2BC=24,∴,即,解得:,由勾股定理得:,∴;当BF=AB=20时,∵BF=20,BC=12,∴CF=BF﹣BC=8,由勾股定理得:,∵BF=BA,FD⊥AB,AC⊥BF,∴DF=AC=16,∴,∴t=8÷2=4;综上所述,△ABF是等腰三角形时,t的值为5或或4,故答案为:5或或4.【点评】本题考查的是勾股定理、三角形的面积计算、等腰三角形的性质,灵活运用分情况讨论思想是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1+1+=;(2)去分母得:1﹣x2+1=﹣x(1+x),解得:x=﹣2,检验:把x=﹣2代入得:(x+1)(x﹣1)≠0,∴x=﹣2是分式方程的解.【点评】此题考查了解分式方程,实数的运算,熟练掌握运算法则及分式方程的解法是解本题的关键.14.【分析】(1)根据图形即可得到结论;(2)根据勾股定理即可得到结论;(3)根据矩形和三角形的面积公式即可得到答案;(4)根据三角形的面积公式列方程即可得到结论.【解答】解:(1)点A的坐标为(3,4),点B的坐标为(0,2);故答案为:(3,4),(0,2);(2)BC==;故答案为:;=4×3﹣×2×3﹣×1×4﹣×1×3=5.5;(3)S△ABC故答案为:5.5;(4)设P(0,m),∵△ABP的面积等于△ABC的面积,∴|m﹣2|×3=5.5,解得:m=或﹣,∴点P的坐标为(0,)或(0,﹣).故答案为:(0,)或(0,﹣).【点评】本题考查了勾股定理,三角形的面积的计算,坐标与图形性质,熟练掌握勾股定理是解题的关键.15.【分析】先把括号内通分,再把除法运算化为乘法运算,约分得到原式=,然后把x=3或4代入计算即可.【解答】解:==;∵x≠1,2,∴取x=3时,原式=(或取x=4,原式=).【点评】本题考查了分式的化简求值,掌握通分,约分是解题关键.16.【分析】(1)利用勾股定理可求得正方形的边长,面积等于边长的平方;(2)①为直角边长为2,2的直角三角形的斜边,据此作正方形即可.(3)根据题意画出面积为8的格点正方形,根据算术平方根得到,尺规作图即可.【解答】解:(1)正方形的边长为:,面积为:,故答案为:10,;(2)①如图所示的正方形即为所作;②如图2中,正方形EFGH是所画的面积为8的格点正方形,以点E为圆心、EF为半径画弧,交数轴于点P,则点P的坐标为实数.【点评】本题考查的是实数与数轴、算术平方根的概念,掌握三角形的面积公式是解题的关键.17.【分析】(1)由正方形的面积可得边长分别为dm,dm,再利用二次根式的性质化简,即可求解;(2)先求矩形的长和宽,再用矩形的面积减去两个正方形的面积,即可求解;(3)求剩余的木料的长和宽,即可求解.【解答】解:(1)根据题意得:截出的两块正方形木料的边长分别为=3dm,=4dm,故答案为:3,4;(2)根据题意得:矩形的长为3(dm),宽为4dm,∴剩余木板的面积=(7)﹣18﹣32=6(dm2);(3)根据题意得:从剩余的木料的长为3dm,宽为4=(dm),∵3,,∴能截出2×1=2块这样的木条.故答案为:2.【点评】本题考查二次根式的应用,正方形的性质,熟练掌握二次根式的化简和运算,矩形的面积公式是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.【分析】(1)利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度;(2)根据勾股定理即可得到结论.【解答】解:(1)在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=172﹣82=225,所以,CD=15(负值舍去),所以,CE=CD+DE=15+1.6=16.6(米),答:风筝的高度CE为16.6米;(2)由题意得,CM=9米,∴DM=6,∴BM===10(米),∴BC﹣BM=17﹣10=7(米),∴他应该往回收线7米.【点评】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.19.【分析】(1)设乙种农机具一件需x万元,则甲种农机具一件需(x+1.5)万元,根据“用18万元购买甲种农机具的数量和用12万元购买乙种农机具的数量相同.”列出方程,即可求解;(2)设甲种农机具最多能购买a件,根据题意,列出不等式,即可求解.【解答】解:(1)设乙种农机具一件需x万元,则甲种农机具一件需(x+1.5)万元,根据题意得:,解得:x=3,经检验:x=3是方程的解且符合题意.答:甲种农机具一件需4.5万元,乙种农机具一件需3万元,(2)设甲种农机具最多能购买a件,则:4.5a+3(20﹣a)≤72.6,解得:a≤8.4,因为a为正整数,所以甲种农机具最多能购买8件.【点评】本题主要考查了分式方程的应用,一元一次不等式的应用,明确题意,准确列出方程和不等式是解题的关键.20.【分析】(1)由大正方体的体积减去小正方体的体积可得;(2)根据长方体的体积=长×宽×高,可求体积;(3)根据提公因式法可求得;(4)根据几何体体积的不同表示方法可得:a3﹣b3=(a﹣b)(a2+ab+b2);(5)运用整式乘法法则可证明:a3﹣b3=(a﹣b)(a2+ab+b2)成立.【解答】解:(1)由题意可得:a3﹣b3.故答案为:a3﹣b3.(2)由题意可得:b2(a﹣b),a2(a﹣b)故答案为:b2(a﹣b),a2(a﹣b)(3)由题意可得:b2(a﹣b)+a2(a﹣b)+ab(a﹣b)=(a﹣b)(a2+ab+b2)故答案为:(a﹣b)(a2+ab+b2)(4)根据几何体体积的不同表示方法可得:a3﹣b3=(a﹣b)(a2+ab+b2)故答案为:a3﹣b3=(a﹣b)(a2+ab+b2)(5)∵右边=(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3.∴右边=左边∴对于任意数a、b,a3﹣b3=(a﹣b)(a2+ab+b2)成立.【点评】本题考查了因式分解的应用,立体图形,整式的乘法,利用数形结合思想解决问题是本题的关键.五、(本大题2小题,共18分)21.【分析】(1)设直线l交CD于点M,交AB于点N,①当点E在边DC上,则点D′在线段MN上,由矩形的性质得∠D=∠DAB=90°,DC=AB=8,由轴对称的性质得l⊥AB,l⊥DC,,,则∠DMN=∠ANM=90°,由折叠得D′E=DE,A′D=AD=5,勾股定理求得D′N即可求解;②先求得MN=AD=5,则D′M=5﹣3=2,再根据勾股定理列方程得(4﹣DE)2+22=DE2,求得DE;(2)①点E在边DC的延长线上,则点D′线段MN的延长线上,D′N=3,则D′M =8,于是得到问题的答案;②由勾股定理得EM2+D′M2=D′E2,而EM=DE﹣4,D′M=8,D′E=DE,则(DE ﹣4)2+82=DE2,求得DE=10,于是得到问题的答案.【解答】解:(1)设直线l交CD于点M,交AB于点N,①如图,点E在边DC上,则点D′在线段MN上,∵四边形ABCD是矩形,AD=5,AB=8,∴∠D=∠DAB=90°,DC=AB=8,∵直线l是长方形ABCD的对称轴,∴l⊥AB,l⊥DC,,,∴∠DMN=∠ANM=90°,MN⊥AB,由折叠得D′E=DE,A′D=AD=5,∴,∴点D'到边AB的距离是3,故答案为:3;②∵DC∥AB,AD⊥AB,MN⊥AB,∴MN=AD=5,∴D′M=5﹣3=2,∵EM2+D′M2=D′E2,且EM=4﹣DE,∴(4﹣DE)2+22=DE2,解得,∴DE的长为;(2)①如图2,点E在边DC的延长线上,则点D′线段MN的延长线上,∵∠AND′=90°,AN=4,AD′=5,∴,∴D′M=5+3=8,∴点D′到边CD的距离是8,故答案为:8;②∵∠D′ME=90°,∴EM2+D′M2=D′E2,∵EM=DE﹣4,D′M=8,D′E=DE,∴(DE﹣4)2+82=DE2,解得DE=10,故答案为:10.【点评】本题考查了勾股定理与折叠问题,平行线的性质,轴对称的性质,解决问题的关键利用直角三角形,运用勾股定理列方程求解.22.【分析】(1)①根据真分式的定义判断即可;②根据材料中的方法变形即可得到结果;(2)原式利用材料中的方法变形,即可确定出分式的值为整数时整数x的值;【解答】解:(1)①分式中,分子的次数小于分母的次数,∴分式是真分式;②,故答案为:①真;②(2)==,若这个分式的值为整数,则x﹣3=1或x﹣3=﹣1或x﹣3=2或x﹣3=﹣2,∴x=4或x=2或x=5或x=1.【点评】本题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.六、(本大题12分)23.【分析】(1)利用勾股定理求出AD,再根据等腰直角三角形的性质求出CD即可;(2)证明△AFG是直角三角形,△ACG是等腰三角形,根据三角形的“妙分线”的定义可得结论;(3)如图3中,过点A作AH⊥BC于点H.有两种情形:当CD⊥BD时,或当CD′⊥AC时,符合条件,由勾股定理可求出答案.【解答】(1)解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=,BD=1,∴AD===2,∵AD为△ABC的“妙分线”,∴△ADC是等腰直角三角形,∴CD=AD=2,故答案为:2;(2)证明:∵∠ABC=90°,∴∠ABD=∠ABC=90°,∵AB=BC,BE=BD,∴△ABD≌△CBE(SAS),∴∠BAD=∠BCE,∵∠CEB=∠AEF,∴∠AFE=∠CBE=90°,∴△AFG是直角三角形,∵BH平分∠ABC,∴∠ABG=∠CBG,∵AB=BC,BG=BG,∴△ABG≌△CBG(SAS),∴AG=CG,∴△AGC是等腰三角形,∴AG是△AFC的“妙分线”;(3)解:如图3中,过点A作AH⊥BC于点H.有两种情形:①当CD⊥BD时,或当CD′⊥AC时,AC为△BCD或△BCD'的“妙分线”,∵BC=3,又∵AB=AC=5,AH⊥BC,∴BH=CH=,∴AH===,=•BC•AH=•AB•CD,∵S△ABC∴××=×5CD,∴CD=3,∴AD==4,∴S△BCD=•BD•CD =×(5+4)×3=,设CD′=x,DD′=y,∴,解得:,∴CD'=,综上所述,CD的长为3或.【点评】本题属于三角形综合题,考查了新定义—原三角形的“妙分线”的定义,勾股定理,等腰三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题。
2020-2021学年上海市中考数学二模试卷及答案解析A
上海市中考数学二模试卷一、选择题(共6小题,每小题4分,满分24分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.2.下列属于最简二次根式的是()A.B.C.D.3.下列方程中,有实数根的是()A.=﹣2 B.x2+1=0 C.=1 D.x2+x+1=04.在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E.如果DE过重心G点,且DE=4,那么BC的长是()A.5 B.6 C.7 D.85.饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是()A.15元和18元B.15元和15元C.18元和15元D.18元和18元6.如图,某水渠的横断面是等腰梯形,已知其斜坡AD和BC的坡度为1:0.6,现测得放水前的水面宽EF为1.2米,当水闸放水后,水渠内水面宽GH为2.1米.求放水后水面上升的高度是()A.0.55 B.0.8 C.0.6 D.0.75二、填空题(共12小题,每小题4分,满分48分)7.计算:2﹣2= .8.用科学记数法表示:3402000= .9.化简分式:= .10.不等式组的解集是.11.方程x+=0的解是.12.已知反比例函数y=(k≠0)图象过点(﹣1,﹣3),在每个象限内,自变量x的值逐渐增大时,y的值随着逐渐.(填“减小”或“增大”)13.文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为.14.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价万元.15.如图,在正方形ABCD中,如果AC=3,=,=,那么|﹣|= .16.某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm,请判断哪种颜色的郁金香样本长得整齐?.(填“红”或“黄”)17.已知⊙O的直径是10,△ABC是⊙O的内接等腰三角形,且底边BC=6,求△ABC的面积是.18.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿BD折叠,点C恰巧落在边AB上的C′处,折痕为BD,再将其沿DE折叠,使点A落在DC′的延长线上的A′处.若△BED与△ABC相似,则相似比= .三、解答题(共7小题,满分78分)19.计算:﹣|cos45°﹣1|+(﹣2015)0+3.20.解方程组:.21.已知:如图,点E是矩形ABCD的边AD上一点,BE=AD,AE=8,现有甲乙两人同时从E点出发,分别沿EC,ED方向前进,甲的速度是乙的倍,甲到达目的地C点的同时乙恰好到达终点D处.(1)求tan∠ECD的值;(2)求线段AB及BC的长度.22.某公司的物流业务原来由A运输队承接,已知其收费标准y(元)与运输所跑路程x(公里)之间是某种函数关系.其中部分数据如表所示:x(公里)80 120 180 200 …y(元)200 300 450 500 …(1)写出y(元)关于x(公里)的函数解析式;(不需写出定义域)(2)由于行业竞争激烈,现B运输队表示:若公司每次支付200元的汽车租赁费,则可按每公里0.9元收费.请写出B运输队每次收费y(元)关于所跑路程x(公里)的函数解析式;(不需写出定义域)(3)如果该公司有一笔路程500公里的运输业务,请通过计算说明应该选择哪家运输队?23.已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.(1)求证:四边形ABCD是菱形;(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.24.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.25.已知:如图1,在△ABC中,已知AB=AC=6,BC=4,以点B为圆心所作的⊙B与线段AB、BC 都有交点,设⊙B的半径为x.(1)若⊙B与AB的交点为D,直线CD与⊙B相切,求x的值;(2)如图2,以AC为直径作⊙P,那么⊙B与⊙P存在哪些位置关系?并求出相应x的取值范围;(3)若以AC为直径的⊙P与⊙B的交点E在线段BC上(点E不与C点重合),求两圆公共弦EF的长.上海市中考数学二模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故选B【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.2.下列属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、,无法化简,故是最简二次根式,故本选项正确;B、,被开方数中含有分母;故本选项错误;C、,被开方数中含有分母,故本选项错误;D、所以本二次根式的被开方数中含有没开的尽方的数;故本选项错误;故选:A.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.3.下列方程中,有实数根的是()A.=﹣2 B.x2+1=0 C.=1 D.x2+x+1=0【考点】根的判别式;无理方程;分式方程的解.【专题】计算题.【分析】根据二次很式的性质可对A进行判断;根据判别式的意义对B、D进行判断;通过解分式方程对C进行判断.【解答】解:A、方程=﹣2没有实数解,所以A选项错误;B、△=0﹣4<0,方程没有实数解,所以B选项错误;C、去分母得1=x+1,解得x=0,经检验x=0是原方程的解,所以C选项正确;D、△=14<0,方程没有实数解,所以D选项错误.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了分式方程和无理方程.4.在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E.如果DE过重心G点,且DE=4,那么BC的长是()A.5 B.6 C.7 D.8【考点】三角形的重心.【专题】计算题.【分析】如图,连结AG并延长交BC于F,根据三角形重心性质得=2,再证明△ADE∽△ABC,根据相似三角形的性质得=,然后利用比例的性质计算BC的长.【解答】解:如图,连结AG并延长交BC于F,如图,∵点G为△ABC的重心,∴=2,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,∴BC=6.故选B.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.5.饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是()A.15元和18元B.15元和15元C.18元和15元D.18元和18元【考点】众数;中位数.【分析】根据题意先计算出本周销售套餐12元和18元的份数,再根据中位数和众数的定义即可得出答案.【解答】解:12元的份数有500×20%=100(份),18元的份数有500﹣100﹣180=220(份),∵本周销售套餐共计500份,∴所购买的盒饭费用的中位数是第250和251个数的平均数,∴中位数是15元;18元出现的次数最多,则众数是18元;故选A.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.如图,某水渠的横断面是等腰梯形,已知其斜坡AD和BC的坡度为1:0.6,现测得放水前的水面宽EF为1.2米,当水闸放水后,水渠内水面宽GH为2.1米.求放水后水面上升的高度是()A.0.55 B.0.8 C.0.6 D.0.75【考点】解直角三角形的应用-坡度坡角问题.【分析】先过点E作EM⊥GH于点M,根据水渠的横断面是等腰梯形,求出GM,再根据斜坡AD 的坡度为1:0.6,得出EM:GM=1:0.6,最后代入计算即可.【解答】解:如图;过点E作EM⊥GH于点M,∵水渠的横断面是等腰梯形,∴GM=×(GH﹣EF)=×(2.1﹣1.2)=0.45,∵斜坡AD的坡度为1:0.6,∴EM:GM=1:0.6,∴EM:0.45=1:0.6,∴EM=0.75,故选:D.【点评】此题考查了解直角三角形的应用,用到的知识点是坡度、等腰三角形的性质,关键是根据题意画出图形,作出辅助线,构造直角三角形.二、填空题(共12小题,每小题4分,满分48分)7.计算:2﹣2= .【考点】负整数指数幂.【专题】计算题.【分析】根据负整数指数幂的定义求解:a﹣p=(a≠0,p为正整数)【解答】解:2﹣2==,故答案为.【点评】本题考查了负整数指数幂的定义,解题时牢记定义是关键,此题比较简单,易于掌握.8.用科学记数法表示:3402000= 3.402×106.【考点】科学记数法—表示较大的数.【分析】确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于3402000有7位,所以可以确定n=7﹣1=6.【解答】解:3402000=3.402×106.故答案为:3.402×106.【点评】此题考查科学记数法,用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9.化简分式:= .【考点】约分.【专题】计算题.【分析】先把分母因式分解,然后进行约分即可.【解答】解:原式==.故答案为.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.10.不等式组的解集是x≥3 .【考点】解一元一次不等式组.【分析】根据不等式的性质求出不等式①和②的解集,根据找不等式组的解集的规律找出不等式组的解集即可.【解答】解:由①得:x>﹣2,由②得:x≥3,∴不等式组的解集是x≥3.故答案为x≥3.【点评】本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.方程x+=0的解是0 .【考点】无理方程.【分析】本题含根号,计算比较不便,因此可先对方程两边平方,得到x=x2,再对方程进行因式分解即可解出本题.【解答】解:原方程变形为:x=x2即x2﹣x=0∴(x﹣1)x=0∴x=0或x=1∵x=1时不满足题意.∴x=0.故答案为:0.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.12.已知反比例函数y=(k≠0)图象过点(﹣1,﹣3),在每个象限内,自变量x的值逐渐增大时,y的值随着逐渐减小.(填“减小”或“增大”)【考点】反比例函数的性质.【分析】首先利用待定系数法确定反比例函数的比例系数,然后根据其符号确定其增减性即可.【解答】解:设反比例函数的解析式为y=(k≠0),∵反比例函数图象过点(﹣1,﹣3),∴把(﹣1,﹣3)代入得3=k>0,根据反比例函数图象的性质可知它在每个象限内y随x的增大而减小,故答案为:减小;【点评】考查了反比例函数的性质,解答此题的关键是要熟知反比例函数图象的性质及用待定系数法求反比例函数的解析式.反比例函数图象的性质:(1)当k>0时,反比例函数的图象位于一、三象限;(2)当k<0时,反比例函数的图象位于二、四象限.13.文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为.【考点】概率公式.【分析】由文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,直接利用概率公式求解即可求得答案.【解答】解:∵文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,∴随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价9.9 万元.【考点】有理数的混合运算.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:10×(1﹣10%)×(1+10%)=9.9(万元),则现售价为9.9万元.故答案为:9.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.如图,在正方形ABCD中,如果AC=3,=,=,那么|﹣|= 3 .【考点】*平面向量.【分析】首先由在正方形ABCD中,如果AC=3,可求得BC的长,又由=,=,可得|﹣|=||=BC.【解答】解:∵在正方形ABCD中,AC=3,∴AB=BC=3,∵=,=,∴﹣=﹣=,∴|﹣|=||=BC=3.故答案为:3.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用.16.某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm,请判断哪种颜色的郁金香样本长得整齐?黄.(填“红”或“黄”)【考点】方差.【分析】先根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出红颜色和黄颜色的方差,然后进行比较,即可得出答案.【解答】解:红颜色的郁金香的方差是:[(54﹣40)2+(44﹣40)2+(37﹣40)2+(36﹣40)2+(35﹣40)2+(34﹣40)2]≈49.67,黄颜色的郁金香的方差是:[(48﹣40)2+(35﹣40)2+(38﹣40)2+(36﹣40)2+(43﹣40)2+(40﹣40)2]≈29.67,>S2黄,∵S2红∴黄颜色的郁金香样本长得整齐;故答案为:黄.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.已知⊙O的直径是10,△ABC是⊙O的内接等腰三角形,且底边BC=6,求△ABC的面积是3或27 .【考点】垂径定理;等腰三角形的性质;勾股定理.【分析】从圆心在三角形内部和外部两种情况讨论,根据垂径定理和三角形的性质求出答案.【解答】解:当圆心在三角形内部时,0B=5,BD=3,根据勾股定理,OD=4,则AD=9,S△=×6×9=27,ABC当圆心在三角形外部时,0B=5,BD=3,根据勾股定理,OD=4,则AD=1,=×6×1=3,S△ABC故答案为:3或27.【点评】本题考查的是垂径定理、等腰三角形的性质和勾股定理,正确运用定理和性质是解题的关键,注意分情况讨论思想的运用.18.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿BD折叠,点C恰巧落在边AB上的C′处,折痕为BD,再将其沿DE折叠,使点A落在DC′的延长线上的A′处.若△BED与△ABC相似,则相似比= .【考点】相似三角形的性质;翻折变换(折叠问题).【分析】根据△BED与△ABC相似和△ABC沿BD折叠,点C恰巧落在边AB上的C′处,求出∠A=∠DBA=∠DBC=30°,利用三角函数求出BD、AC的长,得到答案.【解答】解:△BED与△ABC相似,∴∠DBA=∠A,又∠DBA=∠DBC,∴∠A=∠DBA=∠DBC=30°,设BC为x,则AC=x,BD=x,=.故答案为:.【点评】本题考查的是相似三角形的性质和翻折变换的知识,掌握相似三角形的对应角相等和锐角三角函数的应用是解题的关键.三、解答题(共7小题,满分78分)19.计算:﹣|cos45°﹣1|+(﹣2015)0+3.【考点】二次根式的混合运算;分数指数幂;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、分数指数幂和特殊角的三角函数值得到原式=﹣|﹣1|+1+,然后分母有理化和去绝对值后合并即可.【解答】解:原式=﹣|﹣1|+1+=2﹣+﹣1+1+=2+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和分数指数幂.20.解方程组:.【考点】高次方程.【分析】把①化为x=±2y,把②化为x+y=±2,重新组成方程组,解二元一次方程组即可.【解答】解:,由①得,x=±2y,由②得,x+y=±2,则,,,解得,,,,.【点评】本题考查的是二元二次方程组的解法,把二元二次方程根据平方差公式和完全平方公式进行变形化为两个二元一次方程是解题的关键.21.已知:如图,点E是矩形ABCD的边AD上一点,BE=AD,AE=8,现有甲乙两人同时从E点出发,分别沿EC,ED方向前进,甲的速度是乙的倍,甲到达目的地C点的同时乙恰好到达终点D处.(1)求tan∠ECD的值;(2)求线段AB及BC的长度.【考点】勾股定理.【分析】(1)设ED=a,则EC=a,在Rt△EDC中根据勾股定理用a表示出DC的长,在Rt△ABE 中,根据BE2=AB2+AE2求出a的值,故可得出ED及CD的长,由锐角三角函数的定义即可得出结论;(2)由(1)中,DE=a,CD=3a,a=2可得出DE=2,CD=6,再根据四边形ABCD是矩形,BE=AD 即可得出结论.【解答】解:(1)设ED=a,则EC=a,在Rt△EDC中,∵DC===3a,∴BE=AE+ED=8+a.在Rt△ABE中,∵BE2=AB2+AE2,即(8+a)2=(3a)2+82,解得a=2,∴ED=2,CD=6,∴tan∠ECD===.(2)∵由(1)知,DE=a,CD=3a,a=2,∴DE=2,CD=6.∵四边形ABCD是矩形,BE=AD,AE=8,∴AB=CD=6,BC=AD=AE+DE=8+2=10.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.某公司的物流业务原来由A运输队承接,已知其收费标准y(元)与运输所跑路程x(公里)之间是某种函数关系.其中部分数据如表所示:x(公里)80 120 180 200 …y(元)200 300 450 500 …(1)写出y(元)关于x(公里)的函数解析式y A=2.5x ;(不需写出定义域)(2)由于行业竞争激烈,现B运输队表示:若公司每次支付200元的汽车租赁费,则可按每公里0.9元收费.请写出B运输队每次收费y(元)关于所跑路程x(公里)的函数解析式y B=200+0.9x ;(不需写出定义域)(3)如果该公司有一笔路程500公里的运输业务,请通过计算说明应该选择哪家运输队?【考点】一次函数的应用.【分析】(1)根据表可知:当运输路程跑80公里时,收费200元,所以每公里收费为2.5元,所以y A=2.5x.(2)根据题意得:y B=200+0.9x.(3)当x=500时,y A=2.5×500=1250,y B=2000+0.9×500=2450,因为y A>y B,所以选择B运输队.【解答】解:(1)根据表可知:当运输路程跑80公里时,收费200元,∴每公里收费为2.5元,=2.5x.∴yA故答案为:y A=2.5x.(2)根据题意得:y B=200+0.9x.故答案为:y B=200+0.9x.(3)当x=500时,y A=2.5×500=1250,y B=200+0.9×500=650,>y B,∴yA∴选择B运输队.【点评】本题考查了一次函数的应用,解决本题的关键是读懂题意,列出函数解析式.23.已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.(1)求证:四边形ABCD是菱形;(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.【考点】相似形综合题.【分析】(1)通过AAS证得△AEB≌△AFD,则其对应边相等:AB=AD,所以“邻边相等的平行四边形是菱形”;(2)欲证明AF2=AG•DF,需要通过相似三角形△GAD∽△AFD的对应边成比例得到AD=AF,则AF2=AG•DF;(3)根据菱形的性质和平行线分线段成比例得到:AH:HG=BH:HD,BH:HD=EH:AH,故AH:HG=EH:AH.把相关线段的长度代入来求AH的长度即可.【解答】(1)证明:如图1,∵四边形ABCD是平行四边形,∴∠B=∠D.∵∠AEC=∠AFC,∠AEC+∠AEB=∠AFC+∠AFD=180°,∴∠AEB=∠AFD.在△AEB和△AFD中,,∴△AEB≌△AFD(AAS)∴AB=AD,∴平行四边形ABCD是菱形;(2)由(1)知,△AEB≌△AFD,则∠BAE=∠DAF.如图2,∵四边形ABCD是平行四边形,∴AB∥DG,∴∠BAE=∠G,∴∠G=∠DAF.又∵∠ADF=∠GDA,∴△GAD∽△AFD,∴DA:DF=DG:DA,∴DA2=DG•DF.∵DG:DA=AG:FA,且AD=AF,∴DG=AG.又∵AD=AF,∴AF2=AG•DF;(3)如图2,在菱形ABCD中,∵AB∥DC,AD∥BC,∴AH:HG=BH:HD,BH:HD=EH:AH,∴AH:HG=EH:AH.∵HE=4,EG=12,∴AH:16=4:AH,∴AH=8.【点评】本题考查了相似综合题.此题综合性比较强,其中涉及到了菱形的性质,平行线分线段成比例,相似三角形的判定与性质,解题时,需要弄清楚相似三角形的对应边与对应角,以防弄错.24.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质;二次函数的应用.【分析】(1)由二次函数对称轴为直线x=2,根据A坐标确定出二次函数与x轴的另一个交点坐标,设出二次函数解析式为y=a(x+6)(x﹣2),把C坐标代入求出a的值,确定出二次函数解析式,进而确定出C与D坐标即可;(2)连接AB、BC、CD、DA,点E在线段AB上,连接DE,如图1所示,利用勾股定理求出AB,BC,CD与BD的长,根据直线CD与直线AB斜率相等,得到DC与AB平行,继而得到四边形ABCD 为直角梯形,若DE平分四边形ABCD的面积,可得直角梯形面积等于三角形ADE面积的2倍,求出AE的长即可;(3)在二次函数的图象上存在点P,能够使∠PCA=∠BAC,如图2所示,直线CP与AB交于点G,可得GA=GC,根据直线AB解析式设出G坐标(x,x+6),利用两点间的距离公式求出x的值,确定出G坐标,利用待定系数法求出直线CG解析式,与二次函数解析式联立求出P坐标;由(2)得到四边形ABCD为直角梯形,即DC与AB平行,利用两直线平行内错角相等,得到P 与D重合时,满足题意,确定出此时P的坐标即可.【解答】解:(1)∵二次函数经过A(﹣6,0),B(0,6),对称轴为直线x=2,∴二次函数图象经过(2,0),设二次函数解析式为y=a(x+6)(x﹣2),把B(0,6)代入得:6=﹣12a,即a=﹣,∴二次函数解析式为y=﹣(x+6)(x﹣2)=﹣x2﹣2x+6=﹣(x+2)2+8,则C(﹣2,8),D(﹣4,6);(2)如图1所示,由题意得:AB=6,BC=CD=2,BD=4,∵BD2=CD2+BC2,∴∠DCB=90°,∵直线AB的解析式为y=x+6,直线DC解析式为y=x+10,∴DC∥AB,∴四边形ABCD为直角梯形,,即×2×(2+6)=2××2×AE,若S梯形ABCD=2S△ADE解得:AE=4;(3)如图2,在二次函数的图象上存在点P,使∠PCA=∠BAC,直线CP与AB交于点G,可得GA=GC,∵A(﹣6,0),C(﹣2,8),直线AB解析式为y=x+6,设G(x,x+6),∴=,解得:x=﹣,经检验是原方程的根且符合题意,∴G(﹣,),设直线CG解析式为y=kx+b,把C与G坐标代入得:,解得:,∴直线CG解析式为y=7x+22,联立得:,解得:或(经检验不合题意,舍去),∴P坐标为(﹣16,﹣90);由(2)得到四边形ABCD为直角梯形,AB∥CD,∴∠DCA=∠BAC,此时P与D重合,即P(﹣4,6),综上,满足题意P的坐标为(﹣16,﹣90)或(﹣4,6).【点评】此题属于二次函数综合题,涉及的知识有:待定系数法确定二次函数解析式,待定系数法确定一次函数解析式,直角梯形的判定,直线与二次函数的交点,坐标与图形性质,熟练掌握待定系数法是解本题的关键.25.已知:如图1,在△ABC中,已知AB=AC=6,BC=4,以点B为圆心所作的⊙B与线段AB、BC 都有交点,设⊙B的半径为x.(1)若⊙B与AB的交点为D,直线CD与⊙B相切,求x的值;(2)如图2,以AC为直径作⊙P,那么⊙B与⊙P存在哪些位置关系?并求出相应x的取值范围;(3)若以AC为直径的⊙P与⊙B的交点E在线段BC上(点E不与C点重合),求两圆公共弦EF的长.【考点】圆的综合题.【分析】(1)作AH⊥BC于点H,根据直线CD与⊙B相切,得到CD⊥AB,从而得到cos∠DBC=cos∠ACH,利用余弦的定义得到BD:BC=CH:CA,从而得到BD:4=2:6,求得BD 的长即可求得圆的半径;(2)作PK⊥BC于点K,求得两圆的圆心距,然后根据两圆的半径和圆心距的大小关系得到位置关系即可;(3)设EF与PB交于点G,BG=m,在△PBE中,PE2﹣PG2=BE2﹣BG2求得m的值,然后根据EG2﹣BG2=BE2求得EG的长即可求得EF的长.【解答】解:(1)如图1,作AH⊥BC于点H,∵AB=AC=6,BC=4,∴BH=2.∵直线CD与⊙B相切,∴CD⊥AB,∵∠DBC=∠ACH,∴cos∠DBC=cos∠ACH,∴BD:BC=CH:CA,∴BD:4=2:6,∴BD=.(2)如图1,作PK⊥BC于点K,∴PK∥AH.∵AH⊥BC,AB=AC=6,BC=4,∴BH=2,∴AH=4.∵以AC为直径作⊙P,∴AP=PC,∴PK=2,CK=BC=1,∴BK=3,∴在Rt△PBK中,PB===,∴当0<x<﹣3时,⊙B与⊙P外离,当x=﹣3时,⊙B与⊙P外切,当﹣3<x≤4时,⊙B与⊙P相交;(3)如图2,点E即为BC边的中点H,∴PE=3.设EF与PB交于点G,BG=m,∴在△PBE中,PE2﹣PG2=BE2﹣BG2,∴32﹣(﹣m)2=22﹣m2,∴m=.∵EG2﹣BG2=BE2,∴EG2﹣()2=22,∴EG=,∴EF=.【点评】本题考查了圆的综合知识,题目中还涉及到了勾股定理、两圆的位置关系等知识,知识点较多,难度较大,特别是最后一题中两次运用勾股定理求得EG的长更是解决本题的关键.。
_江苏省泰州市姜堰区2020-2021学年八年级上学期期末数学试卷 解析版
2020-2021学年江苏省泰州市姜堰区八年级(上)期末数学试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个图形中,是轴对称图形的是()A.B.C.D.2.下列说法正确的是()A.是有理数B.5的平方根是C.2<<3D.数轴上不存在表示的点3.下列长度的三条线段能组成直角三角形的是()A.B.,C.32,42,52D.4,5,64.已知点(﹣1,y1)、(3,y2)在一次函数y=﹣x+2的图象上,则y1、y2、0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y15.下列关系中,y不是x的函数关系的是()A.长方形的长一定时,其面积y与宽xB.高速公路上匀速行驶的汽车,其行驶的路程y与行驶的时间xC.y=|x|D.|y|=x6.如图,在四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D=40°,AB=DE,AC=AE,则∠B的度数为()A.100°B.110°C.120°D.130°二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.4的平方根是.8.已知一个直角三角形的两直角边长分别为3和4,则斜边长是.9.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.10.如图,BD、CE是等边三角形ABC的中线,则∠EFD=.11.请你写出一个图象过点(0,2)且y随x的增大而减小的一次函数的表达式:.12.若点P(﹣3,4)和点Q(a,b)关于x轴对称,则2a+b=.13.一个水库的水位在最近5h内持续上涨.下表记录了这5h内6个时间点的水位高度,其中x表示时间,y表示水位高度.x/h012345y/m3 3.3 3.6 3.9 4.2 4.5根据表格中水位的变化规律,则y与x的函数表达式为.14.如图,已知B中的实数与A中的实数之间的对应关系是某个一次函数.若用y表示B 中的实数,用x表示A中的实数,则a=.15.一次函数y=kx+b(k≠0)的图象如图所示,则一元一次不等式﹣kx+2k+b>0的解集为.16.在平面直角坐标系中,对于两点A、B,给出如下定义:以线段AB为直角边的等腰直角三角形称为点A、B的“对称三角形”.一次函数y=﹣x+4的图象与x轴、y轴分别交于点A和点B,在第一象限内,点A,B的“对称三角形”的另一个顶点坐标为.三、解答题(本大题共10小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)计算:﹣;(2)求x的值:4x2﹣25=0.18.已知y﹣2与x+1成正比例,且x=2时,y=8.(1)写出y与x之间的函数关系式;(2)当x=﹣4时,求y的值.19.已知2x+3的算术平方根是5,5x+y+2的立方根是3,求x﹣2y+10的平方根.20.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是.21.某学校举办一次乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例.当x=10时,y=1200,当x=40时,y=2400.(1)求y与x之间的函数关系式;(2)学校一学年举行了两次乒乓球比赛,共花费3600元,那两次共有多少名运动员参加比赛?22.如图,Rt△ABC中,∠ACB=90°.(1)作AB边的垂直平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,BC=8cm,求BD的长.23.如图,∠BAC=∠DAE=90°,AB=AC,AD=AE,BE、CD交于F.(1)求证:BE=CD;(2)连接CE,若BE=CE,求证:(从“①DE⊥AC”、“②DE∥AB”中选择一个填入(2)中,并完成证明)24.学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:如图,在△ABC中,AB=AC=10,BC=12,AD∥BC,CD⊥AD,BD和AC相交于点P.求△BPC的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适当的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点P的坐标,从而可求得△BPC的面积.请你按照小明的思路解决这道思考题.25.小明骑自行车保持匀速从甲地到乙地,到达乙地后,休息了一段时间,然后以相同的速度原路返回,停在甲地.设小明出发x(min)后,到达距离甲地y(m)的地方,图中的折线表示的是y与x之间的函数关系.(1)甲、乙两地的距离为,a=;(2)求小明从乙地返回甲地过程中,y与x之间的函数关系式;(3)在小明从甲地出发的同时,小红从乙地步行至甲地,保持100m/min的速度不变,到甲地停止.小明从甲地出发多长时间,与小红相距200米?26.如图,在平面直角坐标系xOy中,一次函数y=﹣2x+3的图象与x轴、y轴分别交于A、B两点,E(1,1)为平面内一点.(1)点E是否在一次函数y=﹣2x+3的图象上?说明理由;(2)一次函数y=﹣x+b的图象经过E点,与x轴交于C点.①求BC的长;②求证:AB平分∠OBC;③正比例函数y=kx的图象与一次函数y=﹣2x+3的图象交于P点,O、P到一次函数y=﹣x+b的图象的距离相等,直接写出符合条件的k值.2020-2021学年江苏省泰州市姜堰区八年级(上)期末数学试卷参考答案与试题解析一.选择题(共6小题)1.下列四个图形中,是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形的定义进行解答即可.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.2.下列说法正确的是()A.是有理数B.5的平方根是C.2<<3D.数轴上不存在表示的点【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【解答】解:A、是无理数,故A错误;B、5的平方根是,故B错误;C、<,∴2<3,故C正确;D、数轴上存在表示的点,故D错误;故选:C.3.下列长度的三条线段能组成直角三角形的是()A.B.,C.32,42,52D.4,5,6【分析】根据勾股定理的逆定理,可以判断各个选项中的三条边的长度能否构成直角三角形.【解答】解:()2+()2=()2,故选项A符合题意;()2+()2≠()2,故选项B不符合题意;(32)2+(42)2≠(52)2,故选项C不符合题意;42+52≠62,故选项D不符合题意;故选:A.4.已知点(﹣1,y1)、(3,y2)在一次函数y=﹣x+2的图象上,则y1、y2、0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【分析】把﹣1和3代入一次函数解析式中,即可算出y1与y2的值,即可得出答案.【解答】解:当x=﹣1时,y1=﹣(﹣1)+2=3,当x=3时,y2=﹣3+2=﹣1,∵﹣1<0<3,∵y2<0<y1.故选:D.5.下列关系中,y不是x的函数关系的是()A.长方形的长一定时,其面积y与宽xB.高速公路上匀速行驶的汽车,其行驶的路程y与行驶的时间xC.y=|x|D.|y|=x【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A、∵对于x的每一个取值,y都有唯一确定的值,故A正确;B、∵对于x的每一个取值,y都有唯一确定的值,故B正确;C、∵对于x的每一个取值,y都有唯一确定的值,故C正确;D、∵对于x的每一个取值,y没有唯一确定的值,故D错误;故选:D.6.如图,在四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D=40°,AB=DE,AC=AE,则∠B的度数为()A.100°B.110°C.120°D.130°【分析】先ASA证明△BAC≌△EDC,再利用全等三角形的性质,等腰三角形的两底角相等即可求解.【解答】解:∵∠BCE=∠ACD,又∵∠BCE=∠BCA+∠ACE,∠ACD=∠DCE+∠ACE,∴∠BCA=∠DCE,∵∠BAC=∠D=40°,AB=DE,∴△BAC≌△EDC(ASA),∴AC=CD,∴∠CAE=∠D=40°,∵AC=AE,∴∠AEC=∠ACE=(180°﹣∠CAE)=70°,∵∠AEC=∠D+∠DCE,∴∠DCE=30°,∴∠ACB=30°,∴∠B=180°﹣∠ACB﹣∠BAC=110°.故选:B.二.填空题(共10小题)7.4的平方根是±2.【分析】根据平方根的定义,求非负数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.8.已知一个直角三角形的两直角边长分别为3和4,则斜边长是5.【分析】根据勾股定理计算即可.【解答】解:由勾股定理得,斜边长==5,故答案为:5.9.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.10.如图,BD、CE是等边三角形ABC的中线,则∠EFD=120°.【分析】利用等边三角形的性质得到BD⊥AC,CE⊥AB,∠A=60°,然后利用四边形的内角和可计算出∠EFD的度数.【解答】解:∵BD、CE是等边三角形ABC的中线,∴BD⊥AC,CE⊥AB,∠A=60°,∴∠AEF=∠ADF=90°,∵∠EFD=360°﹣90°﹣90°﹣∠A=180°﹣60°=120°.故答案为120°.11.请你写出一个图象过点(0,2)且y随x的增大而减小的一次函数的表达式:y=﹣x+2(答案不唯一).【分析】由图象经过点(0,2),则b=2,又y随x的增大而减小,只要k<0即可.【解答】解:设函数y=kx+b(k≠0,k,b为常数),∵图象经过点(0,2),∴b=2,又∵y随x的增大而减小,∴k<0,可取k=﹣1.这样满足条件的函数可以为:y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.若点P(﹣3,4)和点Q(a,b)关于x轴对称,则2a+b=﹣10.【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:由题意,得a=﹣3,b=﹣4,2a+b=﹣6+(﹣4)=﹣10,故答案为:﹣10.13.一个水库的水位在最近5h内持续上涨.下表记录了这5h内6个时间点的水位高度,其中x表示时间,y表示水位高度.x/h012345y/m3 3.3 3.6 3.9 4.2 4.5根据表格中水位的变化规律,则y与x的函数表达式为y=0.3x+3.【分析】根据记录表由待定系数法就可以求出y与x的函数表达式.【解答】解:设y与x的函数表达式为y=kx+b,由记录表得:,解得:.故y与x的函数表达式为y=0.3x+3.故答案为:y=0.3x+3.14.如图,已知B中的实数与A中的实数之间的对应关系是某个一次函数.若用y表示B 中的实数,用x表示A中的实数,则a=1.【分析】设一次函数解析式为y=kx+b(k≠0),将x,y的两对对应值代入计算,即可得到函数解析式,进而得出a的值.【解答】解:设一次函数解析式为y=kx+b(k≠0),把,代入可得,,解得,∴y=2x﹣3,∴当x==2时,y=2×2﹣3=1,∴a=1,故答案为:1.15.一次函数y=kx+b(k≠0)的图象如图所示,则一元一次不等式﹣kx+2k+b>0的解集为x<4.【分析】根据函数图象可以得到一次函数y=kx+b(k≠0)的图象交x轴于点(﹣2,0),y随x的增大而增大,从而可以得到k和b的关系,k>0,然后即可得到不等式﹣kx+2k+b >0的解集.【解答】解:由图象可得,一次函数y=kx+b(k≠0)的图象交x轴于点(﹣2,0),y随x的增大而增大,∴﹣2k+b=0,k>0,∴b=2k,∴不等式﹣kx+2k+b>0可以化为﹣kx+2k+2k>0,解得x<4,故答案为:x<4.16.在平面直角坐标系中,对于两点A、B,给出如下定义:以线段AB为直角边的等腰直角三角形称为点A、B的“对称三角形”.一次函数y=﹣x+4的图象与x轴、y轴分别交于点A和点B,在第一象限内,点A,B的“对称三角形”的另一个顶点坐标为(12,8),(4,12).【分析】先求出点A,B的坐标,再通过三角形全等即可求出C的坐标,即可得出结论.【解答】解:如图1,过点C作CD⊥x轴于D,令x=0,得y=4,令y=0,得x=8,∴A(8,0),B(0,4),∴OA=8,OB=4,∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∴∠BAO+∠CAD=90°,∵∠ACD+∠CAD=90°,∴∠BAO=∠ACD,∵∠BOA=∠ADC=90°,∴△ABO≌△CAD(AAS),∴AD=BO=4,CD=AO=8,∴OD=12,∴C(12,8);如图2,过点C作CD⊥y轴于D,同理:△ABO≌△BDC(AAS),∴CD=BO=4,BD=AO=8,∴OD=12,∴C(4,12);综上,点A,B的“对称三角形”的另一个顶点坐标为(12,8),(4,12);故答案为(12,8),(4,12).三.解答题17.(1)计算:﹣;(2)求x的值:4x2﹣25=0.【分析】(1)本题涉及零开立方、二次根式化简2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)首先把﹣25移到等号右边,再两边同时除以4,然后求的平方根即可.【解答】解:(1)原式=4﹣2+=2;(2)4x2﹣25=0.x2=,x=±.18.已知y﹣2与x+1成正比例,且x=2时,y=8.(1)写出y与x之间的函数关系式;(2)当x=﹣4时,求y的值.【分析】(1)设y﹣2=k(x+1)(k为常数,k≠0),把x=2,y=8代入求出k即可;(2)把x=﹣4代入y=2x+4,即可求出答案.【解答】解:(1)∵y﹣2与x+1成正比例,∴设y﹣2=k(x+1)(k为常数,k≠0),把x=2,y=8代入得:8﹣2=k(2+1),解得:k=2,即y﹣2=2(x+1),即y=2x+4,∴y与x之间的函数关系式是y=2x+4;(2)当x=﹣4时,y=2×(﹣4)+4=﹣4.19.已知2x+3的算术平方根是5,5x+y+2的立方根是3,求x﹣2y+10的平方根.【分析】根据立方根与算术平方根的定义得到5x+y+2=27,2x+3=25,则可计算出x=11,y=﹣30,然后计算x﹣2y+10后利用平方根的定义求解.【解答】解:因为2x+3的算术平方根是5,5x+y+2的立方根是3,所以,解得,所以x﹣2y+10=81,所以x﹣2y+10的平方根为.20.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是(a+4,﹣b).【分析】(1)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用平移变换的性质得出点M2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,﹣b).故答案为:(a+4,﹣b).21.某学校举办一次乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例.当x=10时,y=1200,当x=40时,y=2400.(1)求y与x之间的函数关系式;(2)学校一学年举行了两次乒乓球比赛,共花费3600元,那两次共有多少名运动员参加比赛?【分析】(1)根据叙述即可得到y与x之间的关系是一次函数关系,可以利用待定系数法求解;(2)在(1)求得的函数解析式中,令y=3600,即可求得x的值.【解答】解:(1)设y=kx+b,根据题意得:,解得,∴y=40x+800;(2)在y=40x+800中y=3600,解得x=50,答:两次共有50名运动员参加比赛.22.如图,Rt△ABC中,∠ACB=90°.(1)作AB边的垂直平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,BC=8cm,求BD的长.【分析】(1)利用基本作图,作AB的垂直平分线得到D点;(2)先利用勾股定理计算出AC=6,再根据线段的垂直平分线的性质得到DA=DB,设BD=x,则AD=x,CD=8﹣x,利用勾股定理得到(8﹣x)2+62=(8﹣x)2,然后解方程即可.【解答】解:(1)如图,点D为所作;(2)在Rt△ABC中,∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵点D在AB的垂直平分线上,∴DA=DB,设BD=x,则AD=x,CD=8﹣x,在Rt△ACD中,(8﹣x)2+62=(8﹣x)2,解得x=,即BD的长为.23.如图,∠BAC=∠DAE=90°,AB=AC,AD=AE,BE、CD交于F.(1)求证:BE=CD;(2)连接CE,若BE=CE,求证:(从“①DE⊥AC”、“②DE∥AB”中选择一个填入(2)中,并完成证明)【分析】(1)根据等腰直角三角形的性质和全等三角形的判定和性质解答即可;(2)根据全等三角形的性质解答即可.【解答】证明:(1)∵∠BAC=∠DAE=90°,∴∠DAE+∠DAB=∠BAC+∠DAB,即∠BAE=∠CAD,在△BAE与△CAD中,,∴△BAE≌△CAD(SAS),∴BE=CD;(2)∵BE=CD,又∵BE=CE,∴CE=CD,又∵AD=AE,∴CA垂直平分DE,∴DE⊥AC(可得①),又∵∠BAC=90°,∴DE∥AB(可得②).24.学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:如图,在△ABC中,AB=AC=10,BC=12,AD∥BC,CD⊥AD,BD和AC相交于点P.求△BPC的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适当的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点P的坐标,从而可求得△BPC的面积.请你按照小明的思路解决这道思考题.【分析】以BC为x轴,过A点垂直于BC的直线为y轴,建立平面直角坐标系,则B(﹣6,0),C(6,0),OB=OC=6,AD=OC=6,CD=OA=8,得A(0,8),D(6,8),由待定系数法求出直线AC和BD的解析式,进而求出点P的坐标,即可解决问题.【解答】解:以BC为x轴,过A点垂直于BC的直线为y轴,建立平面直角坐标系,如图所示:则B(﹣6,0),C(6,0),OB=OC=6,AD=OC=6,∴CD=OA===8,∴A(0,8),D(6,8),设直线AC的解析式为y=kx+b,则,解得:,∴直线AC的解析式为y=﹣x+8,同理得:直线BD的解析式为y=x+4,解方程组得:,∴P(2,),∴△BPC的面积=×12×=32.25.小明骑自行车保持匀速从甲地到乙地,到达乙地后,休息了一段时间,然后以相同的速度原路返回,停在甲地.设小明出发x(min)后,到达距离甲地y(m)的地方,图中的折线表示的是y与x之间的函数关系.(1)甲、乙两地的距离为2000m,a=14;(2)求小明从乙地返回甲地过程中,y与x之间的函数关系式;(3)在小明从甲地出发的同时,小红从乙地步行至甲地,保持100m/min的速度不变,到甲地停止.小明从甲地出发多长时间,与小红相距200米?【分析】(1)根据图象可知甲、乙两地的距离为2000m,根据以相同的速度原路返回,可知a=24﹣10=14;(2)设y与x解析式为y=kx+b,把(14,2000)与(24,0)代入求出k与b的值,即可确定出解析式;(3)先求出小明骑自行车的速度,再根据题意列方程解答即可.【解答】解:(1)由图象可知,甲、乙两地的距离为2000m;a=24﹣10=14;故答案为:2000m;14;(2)设y=kx+b,把(14,2000)与(24,0)代入得:,解得:k=﹣200,b=4800,则y=﹣200x+4800;(3)小明骑自行车的速度为:2000÷10=20(m/min),根据题意,得(200+100)x=2000﹣200或(2000+100)=2000+200或200(x﹣4)=2000﹣200,解得x=6或x=或x=23,答:小明从甲地出发6小时或小时或23小时,与小红相距200米.26.如图,在平面直角坐标系xOy中,一次函数y=﹣2x+3的图象与x轴、y轴分别交于A、B两点,E(1,1)为平面内一点.(1)点E是否在一次函数y=﹣2x+3的图象上?说明理由;(2)一次函数y=﹣x+b的图象经过E点,与x轴交于C点.①求BC的长;②求证:AB平分∠OBC;③正比例函数y=kx的图象与一次函数y=﹣2x+3的图象交于P点,O、P到一次函数y=﹣x+b的图象的距离相等,直接写出符合条件的k值.【分析】(1)将点E坐标代入解析式可求解;(2)①分别求出点B,点C坐标,由勾股定理可求解;②由“SSS”可证△ABD≌△ABC,可得∠ABD=∠ABC,可得结论;③分两种情况讨论,全等三角形的性质和平行线的性质可求解.【解答】解:(1)在,理由如下:∵当x=1时,y=﹣2×1+3=1,∴点E在一次函数y=﹣2x+3的图象上;(2)①∵一次函数y=﹣x+b的图象经过E点,∴1=﹣+b,∴b=,∴y=﹣x+,当y=0时,x=4,∴点C(4,0),∴OC=4,∵一次函数y=﹣2x+3的图象与x轴、y轴分别交于A、B两点,∴点A(,0),点B(0,3),∴OB=3,OA=,∴BC===5;②如图,取点D(0,﹣2),连接AD,∴BD=BO+OD=5=BC,∵AO=,∴AC=4﹣=,AD===,∴AD=AC,在△ABD和△ABC中,,∴△ABD≌△ABC(SSS),∴∠ABD=∠ABC,∴AB平分∠OBC;③当点O,点P在直线AB的同侧时,∵O、P到一次函数y=﹣x+的图象的距离相等,∴OP与直线y=﹣x+平行,∴k=﹣,当点O,点P在直线AB的异侧时,过点O作OH⊥CE于H,过点P作PQ⊥CE于Q,直线y=kx交CE于F,∵O、P到一次函数y=﹣x+的图象的距离相等,∴OH=PQ,又∵∠PFQ=∠OFH,∠PQF=∠OHF,∴△PQF≌△OHF(AAS),∴PF=OF,∵直线y=kx的图象与直线y=﹣2x+3的图象交于P点,∴,∴,∴点P(,),∴点F坐标为(,),∵点F在一次函数y=﹣x+上,∴=﹣×+,∴k=13,综上所述:k=﹣或13.。
2020—2021年人教版八年级数学上册期末试卷(及答案)
2020—2021年人教版八年级数学上册期末试卷(及答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .123.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为(( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)ky k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .40二、填空题(本大题共6小题,每小题3分,共18分)1x 2-x 的取值范围是________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.328n n 为________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行_______cm .三、解答题(本大题共6小题,共72分)1.解方程:(1)4342312x y x y ⎧+=⎪⎨⎪-=⎩ (2)1263()46x y y x y y +⎧-=⎪⎨⎪+-=⎩2.先化简:221-21-11a a a a a a ⎛⎫++÷ ⎪++⎝⎭,再从-1,0,1中选取一个数并代入求值.3.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.4.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、C5、B6、B7、D8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x 2≥2、22()1y x =-+3、74、145、50°6三、解答题(本大题共6小题,共72分)1、(1)1083x y =⎧⎪⎨=⎪⎩;(2)20x y =⎧⎨=⎩.2、13、(1)k <52(2)24、略(2)∠EBC=25°5、(1)1,20 km/h ;(2)95. 6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。
河北省衡水中学2020-2021学年第二次联考数学(理科)试卷(全国Ⅱ) (解析版)
2021年河北省衡水中学高考数学第二次联考试卷(理科)(全国Ⅱ)一、选择题(共12小题).1.已知集合U={0,1,2,3,4,5},A={2,4,5},B={0,2,4},则A∩∁U B=()A.{5}B.{2,4}C.{0,2,5}D.{0,2,4,5} 2.已知sinα>0,cosα<0,则()A.sin2α>0B.cos2α<0C.D.3.已知复数z=a+(a﹣1)i(a∈R),则|z|的最小值为()A.B.C.D.14.直线y=2x﹣1被过点(0,1)和(2,1),且半径为的圆截得的弦长为()A.B.C.D.或5.已知一四棱锥的三视图如图所示,则该四棱锥的较长侧棱与底面所成角的正切值为()A.B.C.D.6.已知双曲线的焦点F(c,0)到渐近线的距离为,且点在双曲线上,则双曲线的方程为()A.B.C.D.7.异或运算是一种逻辑运算,异或用符号“∧”表示,在二进制下,当输入的两个量的同一数位的两个数字不同时,输出1,反之输出0.如十进制下的数10与9表示成二进制分别是1010,1001(即10=1×23+0×22+1×21+0×20,9=1×23+0×22+0×21+1×20),那么10∧9=1010∧1001=0011,现有运算12∧m=1100∧n=0001,则m的值为()A.7B.9C.11D.138.已知奇函数f(x)的定义域为R,且满足f(2+x)=f(2﹣x),以下关于函数f(x)的说法:①f(x)满足f(8﹣x)+f(x)=0;②8为f(x)的一个周期;③是满足条件的一个函数;④f(x)有无数个零点.其中正确说法的个数为()A.1B.2C.3D.49.已知三棱锥P﹣ABC的高为1,底面△ABC为等边三角形,PA=PB=PC,且P,A,B,C都在体积为的球O的表面上,则该三棱锥的底面△ABC的边长为()A.B.C.3D.10.甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n次由甲掷的概率为P n,则P10的值为()A.B.C.D.11.若P(n)表示正整数n的个位数字,a n=P(n2)﹣P(2n),数列{a n}的前n项和为S n,则S2021=()A.﹣1B.0C.1009D.101112.已知函数f(x)=e x ln|x|,a=f(﹣ln3),b=f(ln3),c=f(3e),d=f(e3),则a,b,c,d的大小顺序为()A.a>b>c>d B.d>c>b>a C.c>d>b>a D.c>d>a>b二、填空题(共4小题).13.若向量,满足=(cosθ,sinθ)(θ∈R),||=2,则|2﹣|的取值范围为.14.在一次去敬老院献爱心活动中,甲、乙、丙、丁、戊5名同学比带队老师先到,老师想知道他们到的先后顺序,甲说乙不是最早的,乙说甲不是最晚的,丙说他比乙先到.若他们说的都为真话,从上述回答分析,5人可能到的先后顺序的不同情况种数为.15.已知等差数列{a n}满足a2=3,a3是a1与a9的等比中项,则的值为.16.在长方体ABCD﹣A1B1C1D1中,AB=1,AD+AA1=2,E为棱C1D1上任意一点,给出下列四个结论:①BD1与AC不垂直;②长方体ABCD﹣A1B1C1D1外接球的表面积最小为3π;③E到平面A1B1D的距离的最大值为;④长方体ABCD﹣A1B1C1D1的表面积的最大值为6.其中所有正确结论的序号为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在四边形ABCD中,对角线AC与BD相交于点E,△ABD为等边三角形,BD=2,AC =,BC=1.(1)求∠CBD的大小;(2)求△ADE的面积.18.为贯彻“不忘立德树人初心,牢记为党育人、为国育才使命”的要求,某省推出的高考新方案是“3+1+2”模式,“3”是语文、外语、数学三科必考,“1”是在物理与历史两科中选择一科,“2”是在化学,生物,政治,地理四科中选择两科作为高考科目.某学校为做好选课走班教学,给出三种可供选择的组合进行模拟选课,其中A组合:物理、化学、生物,B组合:历史、政治、地理,C组合:物理、化学、地理根据选课数据得到,选择A组合的概率为,选择B组合的概率为,选择C组合的概率为,甲、乙、丙三位同学每人选课是相互独立的.(1)求这三位同学恰好选择互不相同组合的概率;(2)记η表示这三人中选择含地理的组合的人数,求η的分布列及数学期望.19.如图,两个全等的梯形ABCD与BAEF所在的平面互相垂直,AB⊥AD,AD∥BC,AB =AD,BC=2AD,P为CF的中点.(1)证明:DP∥平面ABFE;(2)求平面DEF与平面BCF所成的锐二面角的余弦值.20.已知曲线C的方程为.(1)求曲线C的离心率;(2)设曲线C的右焦点为F,斜率为k的动直线l过点F与曲线C交于A,B两点,线段AB的垂直平分线交x轴于点P,证明:为定值.21.已知函数f(x)=x+alnx,g(x)=x2e x,a∈R.(1)求函数f(x)的单调区间;(2)当a=2时,方程g(x)=mf(x)有两个实根,求实数m的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的普通方程及曲线C2的直角坐标方程;(2)若曲线C1上存在点P到曲线C2的距离为1,求b的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|x+b|,a,b∈R.(1)当a=4,b=1时,求不等式f(x)≤9的解集;(2)当ab>0时,f(x)的最小值为1,证明:|+|≥.参考答案一、选择题(共12小题).1.已知集合U={0,1,2,3,4,5},A={2,4,5},B={0,2,4},则A∩∁U B=()A.{5}B.{2,4}C.{0,2,5}D.{0,2,4,5}解:由题意得∁U B={1,3,5},所以A∩∁U B={5}.故选:A.2.已知sinα>0,cosα<0,则()A.sin2α>0B.cos2α<0C.D.解:由sinα>0,cosα<0,可得α∈(2kπ+,2kπ+π),k∈Z,对于A,可得sin2α=2sinαcosα<0,错误;对于B,当α∈(2kπ+,2kπ+π),k∈Z时,cosα∈(﹣1,0),此时cos2α=2cos2α﹣1∈(﹣1,1),错误;对于C,因为∈(kπ+,kπ+),k∈Z,可得,正确;对于D,因为∈(kπ+,kπ+),k∈Z,当k为偶数时,可得sin>0,错误;故选:C.3.已知复数z=a+(a﹣1)i(a∈R),则|z|的最小值为()A.B.C.D.1解:因为z=a+(a﹣1)i,所以,所以|z|的最小值为,故选:B.4.直线y=2x﹣1被过点(0,1)和(2,1),且半径为的圆截得的弦长为()A.B.C.D.或解:过点(0,1)和(2,1),半径为的圆的圆心(1,﹣1)或(1,3).过点(0,1),(2,1)且半径为的圆的方程为(x﹣1)2+(y+1)2=5或(x﹣1)2+(y﹣3)2=5,则圆心到直线y=2x﹣1的距离为或,则弦长=.故选:B.5.已知一四棱锥的三视图如图所示,则该四棱锥的较长侧棱与底面所成角的正切值为()A.B.C.D.解:设该四棱锥为P﹣ABCD,则由题意可知四棱锥P﹣ABCD满足底面ABCD为矩形,则:平面PDC⊥平面ABCD,且PC=PD=3,AB=4,AD=2.如图,过点P作PE⊥CD,则PE⊥平面ABCD,连接AE,可知∠PAE为直线PA与平面ABCD 所成的角,则,,所以.故选:C.6.已知双曲线的焦点F(c,0)到渐近线的距离为,且点在双曲线上,则双曲线的方程为()A.B.C.D.解:双曲线的焦点F(c,0)到渐近线bx±ay=0的距离为,解得,所以.又c2=a2+b2,所以b2=3a2.因为点在双曲线上,所以,所以a2=3,b2=9,所以双曲线的方程为.故选:D.7.异或运算是一种逻辑运算,异或用符号“∧”表示,在二进制下,当输入的两个量的同一数位的两个数字不同时,输出1,反之输出0.如十进制下的数10与9表示成二进制分别是1010,1001(即10=1×23+0×22+1×21+0×20,9=1×23+0×22+0×21+1×20),那么10∧9=1010∧1001=0011,现有运算12∧m=1100∧n=0001,则m的值为()A.7B.9C.11D.13解:由12∧m=1100∧n=0001,可得n=1101,表示成十进制为13,所以m=13.故选:D.8.已知奇函数f(x)的定义域为R,且满足f(2+x)=f(2﹣x),以下关于函数f(x)的说法:①f(x)满足f(8﹣x)+f(x)=0;②8为f(x)的一个周期;③是满足条件的一个函数;④f(x)有无数个零点.其中正确说法的个数为()A.1B.2C.3D.4解:因为f(2+x)=f(2﹣x),所以f(4+x)=f(﹣x),因为f(x)是奇函数,所以f(﹣x)=﹣f(x),所以f(4+x)=﹣f(x),所以f(8+x)=﹣f(x+4)=f(x),所以8为f(x)的一个周期,故②正确;由f(8+x)=f(x)可得f(8﹣x)=f(﹣x)=﹣f(x),所以f(8﹣x)+f(x)=0,故①正确;为奇函数满足f(x)+f(﹣x)=0,且一条对称轴为直线x=2,故③正确;由f(x)为奇函数且定义域为R知,f(0)=0,又f(x)为周期函数,所以f(x)有无数个零点,故④正确.故选:D.9.已知三棱锥P﹣ABC的高为1,底面△ABC为等边三角形,PA=PB=PC,且P,A,B,C都在体积为的球O的表面上,则该三棱锥的底面△ABC的边长为()A.B.C.3D.解:设球O的半径为R,由球的体积为可得,,解得R=2.因为三棱锥P﹣ABC的高h为1,所以球心O在三棱锥外.如图,设点O1为△ABC的外心,则OO1⊥平面ABC.在Rt△AO1O中,由,且OO1=R﹣h=1,得.因为△ABC为等边三角形,所以,所以.故选:C.10.甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n次由甲掷的概率为P n,则P10的值为()A.B.C.D.解:抛掷两颗正四面体骰子观察底面上的数字之和为5有4种情况,得点数之和为5的概率为,第n次由甲掷有两种情况:一是第n﹣1由甲掷,第n次由甲掷,概率为,二是第n﹣1次由乙掷,第n次由甲掷,概率为.这两种情况是互斥的,所以,即,所以,即数列是以为首项,为公比的等比数列,所以,所以.故选:A.11.若P(n)表示正整数n的个位数字,a n=P(n2)﹣P(2n),数列{a n}的前n项和为S n,则S2021=()A.﹣1B.0C.1009D.1011解:由题意得a1=﹣1,a2=0,a3=3,a4=﹣2,a5=5,a6=4,a7=5,a8=﹣2,a9=﹣7,a10=0,a11=﹣1,a12=0,…∴数列{a n}为周期数列,且周期为10,因为S10=5,所以S2021=5×202+(﹣1)=1009,故选:C.12.已知函数f(x)=e x ln|x|,a=f(﹣ln3),b=f(ln3),c=f(3e),d=f(e3),则a,b,c,d的大小顺序为()A.a>b>c>d B.d>c>b>a C.c>d>b>a D.c>d>a>b解:因为,所以a<b.因为函数f(x)=e x ln|x|在区间(0,+∞)上单调递增,所以b,c,d中b最小.构造函数g(x)=x﹣elnx,则,当x≥e时,g'(x)≥0,所以g(x)在区间[e,+∞)上单调递增,所以g(3)=3﹣eln3>g(e)=0,所以3>eln3.所以e3>3e,所以d>c,所以d>c>b>a.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.若向量,满足=(cosθ,sinθ)(θ∈R),||=2,则|2﹣|的取值范围为[0,4].解:,,设与的夹角为α,则:,∵α∈[0,π],∴0≤8﹣8cosα≤16,∴,∴的取值范围为[0,4].故答案为:[0,4].14.在一次去敬老院献爱心活动中,甲、乙、丙、丁、戊5名同学比带队老师先到,老师想知道他们到的先后顺序,甲说乙不是最早的,乙说甲不是最晚的,丙说他比乙先到.若他们说的都为真话,从上述回答分析,5人可能到的先后顺序的不同情况种数为48.解:按乙到达的名次顺序进行分类:乙第二个到达有A21A22=4种,乙第三个到达有A21A21A22=8种,乙第四个到达有A32A22=12种,乙最后到达有A44=24种,所以不同的情况种数为4+8+12+24=48.故答案为:48.15.已知等差数列{a n}满足a2=3,a3是a1与a9的等比中项,则的值为3n或(3n2+3n).解:设等差数列{a n}的公差为d,由a2=3,可得a1+d=3,①由a3是a1与a9的等比中项,可得a32=a1a9,即(a1+2d)2=a1(a1+8d),化为da1=d2,②由①②可得a1=d=或a1=3,d=0,当a1=3,d=0时,=a2+a4+…+a2n=3+3+…+3=3n;当a1=d=时,=a2+a4+…+a2n=3+6+…+3n=(3n2+3n).故答案为:3n或(3n2+3n).16.在长方体ABCD﹣A1B1C1D1中,AB=1,AD+AA1=2,E为棱C1D1上任意一点,给出下列四个结论:①BD1与AC不垂直;②长方体ABCD﹣A1B1C1D1外接球的表面积最小为3π;③E到平面A1B1D的距离的最大值为;④长方体ABCD﹣A1B1C1D1的表面积的最大值为6.其中所有正确结论的序号为②③④.解:对于①,当长方体为正方体时,BD1⊥AC,故①错误;对于②,如图,设AD=x,则AA1=2﹣x(0<x<2),所以,当x=1时,BD1的最小值为,即长方体ABCD﹣A1B1C1D1外接球的直径为,所以外接球表面积的最小值为3π,故②正确;对于③,设点E到平面A1B1D的距离为h,如图,由,可得,所以由②可知,,其中,当且仅当x=2﹣x,即x=1时等号成立,,当且仅当x=2﹣x,即x=1时等号成立,所以,当且仅当x=2﹣x,即x=1时,等号成立,故③正确;对于④,该长方体的表面积为S=2x+2x(2﹣x)+2(2﹣x)=4+4x﹣2x2=﹣2(x﹣1)2+6,当x=1时,S的最大值为6,故④正确.故答案为:②③④.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在四边形ABCD中,对角线AC与BD相交于点E,△ABD为等边三角形,BD=2,AC=,BC=1.(1)求∠CBD的大小;(2)求△ADE的面积.解:(1)在△ABC中,,由余弦定理得.因为0<∠ABC<π,所以,所以.(2)由知,BC∥AD,所以△BCE∽△DAE,所以,所以DE=2BE.因为BD=2,所以.所以.18.为贯彻“不忘立德树人初心,牢记为党育人、为国育才使命”的要求,某省推出的高考新方案是“3+1+2”模式,“3”是语文、外语、数学三科必考,“1”是在物理与历史两科中选择一科,“2”是在化学,生物,政治,地理四科中选择两科作为高考科目.某学校为做好选课走班教学,给出三种可供选择的组合进行模拟选课,其中A组合:物理、化学、生物,B组合:历史、政治、地理,C组合:物理、化学、地理根据选课数据得到,选择A组合的概率为,选择B组合的概率为,选择C组合的概率为,甲、乙、丙三位同学每人选课是相互独立的.(1)求这三位同学恰好选择互不相同组合的概率;(2)记η表示这三人中选择含地理的组合的人数,求η的分布列及数学期望.解:用A i表示第i位同学选择A组合,用B i表示第i位同学选择B组合,用∁i表示第i 位同学选择C组合,i=1,2,3.由题意可知,A i,B i,∁i互相独立,且.(1)三位同学恰好选择不同组合共有种情况,每种情况的概率相同,故三位同学恰好选择不同组合的概率为:.(2)由题意知η的所有可能取值为0,1,2,3,且η~B(3,),所以,,,,所以η的分布列为η0123P所以.19.如图,两个全等的梯形ABCD与BAEF所在的平面互相垂直,AB⊥AD,AD∥BC,AB =AD,BC=2AD,P为CF的中点.(1)证明:DP∥平面ABFE;(2)求平面DEF与平面BCF所成的锐二面角的余弦值.【解答】(1)证明:如图,取BF的中点Q,连接PQ,AQ.因为P,Q为CF,BF的中点,所以PQ∥BC,且.又因为AD∥BC,BC=2AD,所以PQ∥AD,且PQ=AD,所以四边形ADPQ为平行四边形,所以DP∥AQ.又AQ⊂平面ABFE,DP⊄平面ABFE,所以DP∥平面ABFE.(2)解:因为平面ABCD⊥平面BAEF,平面ABCD∩平面BAEF=AB,FB⊥AB,FB⊂平面BAEF,所以FB⊥平面ABCD.又BC⊂平面ABCD,所以FB⊥BC.又AB⊥FB,AB⊥BC,所以以B为坐标原点,分别以BA,BC,BF所在直线为x,y,z轴建立如图所示的空间直角坐标系.设BC=2,则.设平面DEF的一个法向量为,则,令z=1,得.易知平面BCF的一个法向量为,所以.所以平面DEF与平面BCF所成锐二面角的余弦值为.20.已知曲线C的方程为.(1)求曲线C的离心率;(2)设曲线C的右焦点为F,斜率为k的动直线l过点F与曲线C交于A,B两点,线段AB的垂直平分线交x轴于点P,证明:为定值.【解答】(1)解:由可知,点(x,y)到点(﹣1,0),(1,0)的距离之和为4,且4>2,根据椭圆的定义可知,曲线C为焦点在x轴上的椭圆.设椭圆的长轴长为2a,焦距为2c,则2a=4,2c=2,所以曲线C的离心率为.(2)证明:设椭圆的短轴长为2b,由(1)可得b2=a2﹣c2=3,所以曲线C的方程为,则F(1,0).由题意可知,动直线l的方程为y=k(x﹣1),设A(x1,y1),B(x2,y2),由,得(3+4k2)x2﹣8k2x+4(k2﹣3)=0,所以.设AB的中点为Q(x0,y0),则,.当k≠0时,线段AB的垂直平分线的方程为,令y=0,得,所以,==,所以.当k=0时,l的方程为y=0,此时,.综上,为定值.21.已知函数f(x)=x+alnx,g(x)=x2e x,a∈R.(1)求函数f(x)的单调区间;(2)当a=2时,方程g(x)=mf(x)有两个实根,求实数m的取值范围.解:(1)由题意知函数f(x)的定义域为(0,+∞),因为f(x)=x+alnx,a∈R,所以,①当a≥0时,f'(x)>0在区间(0,+∞)上恒成立,所以函数f(x)的单调递增区间为(0,+∞),无单调递减区间;②当a<0时,令f'(x)>0,得x>﹣a,令f'(x)<0,得0<x<﹣a,所以函数f(x)的单调递增区间为(﹣a,+∞),单调递减区间为(0,﹣a);综上:当a≥0时,函数f(x)的单调递增区间为(0,+∞),无单调递减区间;当a<0时,函数f(x)的单调递增区间为(﹣a,+∞),单调递减区间为(0,﹣a);(2)方程g(x)=mf(x)有两个实根,即关于x的方程x2e x﹣m(x+2lnx)=0有两个实根,即函数h(x)=x2e x﹣m(x+2lnx)有两个零点,又h(x)=x2e x﹣m(x+2lnx)=e x+2lnx﹣m(x+2lnx),令t=x+2lnx,由(1)得t是关于x的单调递增函数,且t∈R,所以只需函数u(t)=e t﹣mt有两个零点,令u(t)=0,得,令,则,易知当t∈(﹣∞,1)时,φ(t)单调递增,当t∈(1,+∞)时,φ(t)单调递减,所以当t=1时,φ(t)取得最大值,又因为当t<0时,φ(t)<0,当t>0时,φ(t)>0,φ(0)=0,则函数的图象如图所示:所以当,即m∈(e,+∞)时,函数h(x)有两个零点,所以实数m的取值范围为(e,+∞).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的普通方程及曲线C2的直角坐标方程;(2)若曲线C1上存在点P到曲线C2的距离为1,求b的取值范围.解:(1)由(α为参数),消去参数α,得曲线C1的普通方程为(x﹣1)2+(y﹣1)2=4,由,得,令x=ρcosθ,y=ρsinθ,得x﹣y=b,所以曲线C2的直角坐标方程为x﹣y﹣b=0.(2)设P(1+2cosα,1﹣2sinα),因为点P到直线x﹣y﹣b=0的距离为1,所以,化简得①.若关于α的方程①有解,则曲线C1上存在点P到曲线C2的距离为1,所以②,或③由②得,由③得,所以b的取值范围为.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|x+b|,a,b∈R.(1)当a=4,b=1时,求不等式f(x)≤9的解集;(2)当ab>0时,f(x)的最小值为1,证明:|+|≥.【解答】(1)解:由题意得f(x)=|2x﹣4|+|x+1|,当x≥2时,原不等式可化为3x﹣3≤9,解得x≤4,故2≤x≤4;(1分)当﹣1≤x<2时,原不等式可化为5﹣x≤9,解得x≥﹣4,故﹣1≤x<2;当x<﹣1时,原不等式可化为﹣3x+3≤9,解得x≥﹣2,故﹣2≤x<﹣1.综上,不等式f(x)≤9的解集为[﹣2,4].(2)证明:因为≥=,且ab>0,高中数学资料群734924357所以,当且仅当或时等号成立,高中数学资料群734924357。
山东省济南市片区联考2021-2022学年八年级上学期期末数学试出题参考
2021-2022学年山东省济南市片区联考八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分。
在每个小题给出四个选项中,只有一项符合题目要求)1.16的平方根是()A.±16B.±8C.±4D.±22.在平面直角坐标系中,点M(﹣3,6)关于x轴的对称点M′的坐标是()A.(3,﹣6)B.(﹣3,﹣6)C.(3,6)D.(6,﹣3)3.由线段a,b,c组成的三角形是直角三角形的是()A.a=1,b=2,c=3B.a=2,b=3,c=4C.a=3,b=4,c=5D.a=4,b=5,c=64.在实数、、﹣3π、、1.41414141中,有理数有()A.1个B.2个C.3个D.4个5.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()A.50°B.65°C.75°D.80°6.已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是()A.平均数和中位数都是3B.极差为4C.众数是3D.标准差是7.已知点(﹣4,y1),(2,y2)都在直线y=x+2上,则y1和y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定8.若是关于x、y的二元一次方程ax﹣5y=1的解,则a的值为()A.﹣5B.﹣1C.9D.119.已知一次函数y=kx+b,y随x的增大而增大,且kb<0,则在直角坐标系中的大致图象是()A.B.C.D.10.如图,一次函数y=2x+1的图象与y=kx+b的图象相交于点A,则方程组的解是()A.B.C.D.11.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)12.如图,甲乙两人以相同的路线前往距离学校10km的文博中心参加学习,图中l1和l2分别表示甲乙两人前往目的地所走的路程(千米)随时间(分)变化的函数图象,以下说法:①乙比甲提前12分钟到达;②甲平均速度为0.25千米/小时;③甲、乙相遇时,乙走了6千米;④乙出发6分钟后追上甲;其中正确的是()A.②③④B.①③④C.③④D.①②二、填空题(本大题共6小题,每小题4分,共24分)13.化简:(+2)(﹣2)=.14.人数相同的甲乙两班学生在同一次数学单元测试中,班级平均分和方差如下:==85,s甲2=25,s乙2=16,则成绩较为稳定的班级是.15.如图,直线a∥b,∠1=55°,∠2=65°,则∠3的大小是.16.如图,在△ABC中,∠C=90°,AC=2,BC=4.以AB为一边在△ABC的同侧作正方形ABDE,则图中阴影部分的面积为.17.一次函数y=mx+|m﹣1|的图象经过(0,3),且y随x增大而减小,则m=.18.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1,∠A1BC 和∠A1CD的平分线交于点A2,得∠A2,…,∠A2020BC和∠A2020CD的平分线交于点A2021,则∠A2021=度.三、解答题(本大题共9小题,共78分。
辽宁省鞍山市2020-2021学年八年级(上)期末数学试卷 解析版
2020-2021学年辽宁省鞍山市八年级(上)期末数学试卷一、选择题:(每题2分,共20分)1.2﹣3的值是()A.﹣6B.﹣8C.D.﹣2.下面各图形中,对称轴最多的是()A.长方形B.正方形C.等边三角形D.等腰三角形3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.下列运算正确的是()A.a3•a4=a12B.(m3)2=m5C.x3+x3=x6D.(﹣a2)3=﹣a6 5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 6.下列各分式中,最简分式是()A.B.C.D.7.下列因式分解正确的是()A.﹣3x2n﹣6x n=﹣3x n(x2+2)B.x2+x+1=(x+1)2C.2x2﹣=2(x+)(x﹣)D.4x2﹣16=(2x+4)(2x﹣4)8.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A.65°B.60°C.55°D.45°9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,点E在边AC上,若DE=DB,则下列结论不正确的是()A.DC=DF B.DE=BF C.AC=AF D.AB=AC+CE 10.在平面直角坐标系中,点A,B的坐标分别为(﹣3,0)、(0,﹣5),若平面内存在一点C,使△ABC是等腰直角三角形,则下列C点坐标不符合题意的是()A.(﹣8,﹣3)B.(﹣5,﹣8)C.(2,3)D.(5,﹣3)二、填空题:(每题2分,共16分)11.(﹣)2020•(1.5)2021=.12.已知△ABC的两条边长分别为2和5,则第三边c的取值范围是.13.如图,△ABC中,CD平分∠ACB,若∠A=68°,∠BCD=31°,则∠B=.14.若一个多边形外角和与内角和相等,则这个多边形是边形.15.已知x+y=6,xy=7,则x2y+xy2的值是.16.甲、乙两个港口之间的海上行程为skm,一艘轮船以akm/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.17.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使P A+PB最短,则点P应选点(C或D).18.如图,在△ABC中,若∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,过点C作CE⊥AP,则∠ACB的度数是.三、解答题:(本题共44分)19.计算:(1)4xy2z÷(﹣2x﹣2yz﹣1)2;(2)(m+2+)•.20.先化简,再求值:(a2b﹣2ab﹣b2)÷b﹣(a+b)(a﹣b),其中a=0.5,b=﹣1.21.如图,在等腰直角三角形ABC中,∠ACB=90°,点M是边AB上任意一点,连接CM,过点A,B分别作AE⊥CM,BF⊥CM,垂足分别为E,F,若BF=2.6cm,AE=0.9cm,分别求出CF,EF的长.22.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)以点M所在的水平直线为对称轴,画出△ABC的轴对称图形△A2B2C2.23.观察下列各式:12+32+42=2×(12+32+3)22+32+52=2×(22+32+6)32+62+92=2×(32+62+18)…(1)请用a,b,c表示左边由小到大的三个底数,并写出它们之间的关系;(2)请用字母a,b写出上述等式的规律,并加以证明.四、综合题:(本题共20分)24.假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度.(2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?25.如图,在△ABC中.(1)如图①,分别以AB、AC为边作等边△ABD和等边△ACE,连接BE,CD;①猜想BE与CD的数量关系是;②若点M,N分别是BE和CD的中点,求∠AMN的度数;(2)如图②,若分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB =∠CAE=α,DC、BE交于点P,连接AP,请直请接写出∠APC与α的数量关系2020-2021学年辽宁省鞍山市八年级(上)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.2﹣3的值是()A.﹣6B.﹣8C.D.﹣【分析】直接利用负整数指数幂的性质分析得出答案.【解答】解:2﹣3==.故选:C.2.下面各图形中,对称轴最多的是()A.长方形B.正方形C.等边三角形D.等腰三角形【分析】利用轴对称图形的性质分别判断各选项的对称轴条数,进而得出答案.【解答】解:∵长方形有两条对称轴,正方形有4条对称轴,等边三角形有3条对称轴,等腰三角形有1条对称轴,∴对称轴最多的是:正方形.故选:B.3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.4.下列运算正确的是()A.a3•a4=a12B.(m3)2=m5C.x3+x3=x6D.(﹣a2)3=﹣a6【分析】根据幂的乘方和积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【解答】解:∵a3•a4=a7,∴选项A不符合题意;∵(m3)2=m6,∴选项B不符合题意;∵x3+x3=2x3,∴选项C不符合题意;∵(﹣a2)3=﹣a6,∴选项D符合题意.故选:D.5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.6.下列各分式中,最简分式是()A.B.C.D.【分析】利用最简分式定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==x+y,不符合题意;C、原式==,不符合题意;D、原式==,不符合题意.故选:A.7.下列因式分解正确的是()A.﹣3x2n﹣6x n=﹣3x n(x2+2)B.x2+x+1=(x+1)2C.2x2﹣=2(x+)(x﹣)D.4x2﹣16=(2x+4)(2x﹣4)【分析】运用提取公因式法,完全平方公式和平方差公式进行因式分解,并作出正确的判断.【解答】解:A、﹣3x2n﹣6x n=﹣3x n(x n+2),故本选项计算错误.B、x2+x+1≠(x+1)2,故本选项计算错误.C、2x2﹣=2(x+)(x﹣),故本选项计算正确.D、4x2﹣16=4(x+2)(x﹣2),故本选项计算错误.故选:C.8.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A.65°B.60°C.55°D.45°【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选:A.9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,点E在边AC上,若DE=DB,则下列结论不正确的是()A.DC=DF B.DE=BF C.AC=AF D.AB=AC+CE 【分析】根据全等三角形的判定和性质解答即可.【解答】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF ⊥AB,垂足为点F,∴DC=DF,故A正确,在Rt△DCE与Rt△DFB中,,∴Rt△DCE≌Rt△DFB(HL),∴CE=BF,故B错误,在Rt△ADC与Rt△ADF中,,∴Rt△ADC≌Rt△ADF(HL),∴AC=AF,故C正确,∴AB=AF+BF=AC+CE,故D正确,故选:B.10.在平面直角坐标系中,点A,B的坐标分别为(﹣3,0)、(0,﹣5),若平面内存在一点C,使△ABC是等腰直角三角形,则下列C点坐标不符合题意的是()A.(﹣8,﹣3)B.(﹣5,﹣8)C.(2,3)D.(5,﹣3)【分析】根据由全等三角形的判定和性质可求点C坐标.【解答】解:∵A(﹣3,0),B(0,﹣5),∴OA=3,OB=5,∵△ABC是等腰直角三角形,∴点C的坐标为(﹣8,﹣3),(﹣5,﹣8),(2,3),(5,﹣2),故选:D.二.填空题11.(﹣)2020•(1.5)2021=.【分析】积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,据此计算即可.【解答】解:(﹣)2020•(1.5)2021=(﹣)2020•(1.5)2020×=(﹣)2020•()2020×====.故答案为:.12.已知△ABC的两条边长分别为2和5,则第三边c的取值范围是3<c<7.【分析】根据三角形三边关系定理可得5﹣2<c<5+2,进而求解即可.【解答】解:由题意,得5﹣2<c<5+2,即3<c<7.故答案为:3<c<7.13.如图,△ABC中,CD平分∠ACB,若∠A=68°,∠BCD=31°,则∠B=50°.【分析】根据角平分线的定义和三角形内角和解答即可.【解答】解:∵CD平分∠ACB,∠BCD=31°,∴∠ACB=2∠BCD=62°,∵∠A=68°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣62°﹣68°=50°,故答案为:50°.14.若一个多边形外角和与内角和相等,则这个多边形是四边形.【分析】利用多边形的内角和公式与多边形的外角和定理列出方程,然后解方程即可求出多边形的边数.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=360°,解得n=4.故答案为:四.15.已知x+y=6,xy=7,则x2y+xy2的值是42.【分析】将所求式子因式分解,然后将x+y=6,xy=7代入,即可解答本题.【解答】解:∵x+y=6,xy=7,∴x2y+xy2=xy(x+y)=7×6=42,故答案为:42.16.甲、乙两个港口之间的海上行程为skm,一艘轮船以akm/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.【分析】用航行的路程除以逆水航行的速度即可得到时间.【解答】解:∵甲港顺水以akm/h的航速航行到乙港,已知水流的速度为xkm/h,∴逆水航行的速度为(a﹣2x)km/h,∴返回时的时间为:h.故答案是:.17.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使P A+PB最短,则点P应选C点(C或D).【分析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.【解答】解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a 的交点,即为点P,此时P A+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.18.如图,在△ABC中,若∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,过点C作CE⊥AP,则∠ACB的度数是75°.【分析】根据直角三角形的性质和三角形的内角和解答即可.【解答】解:连接BE,在Rt△CEP中,∠PCE=90°﹣∠APC=90°﹣60°=30°,∴PE=PC,∵PC=2PB,∴PE=PB,∴∠PBE=∠PEB,∵∠PBE+∠PEB=∠APC=60°,∴∠PBE=∠PEB=30°,∵∠ABE=∠ABC﹣∠PBE,∠ABC=45°,∴∠ABE=45°﹣30°=15°,∴∠ABE=∠BAE,∴EB=EA,∵∠EBP=30°,∠PCE=30°,∴∠EBP=∠PCE,∴EB=EC,∴EA=EC,∴∠EAC=∠ECA,∵CE⊥AP,∴∠AEC=90°,∴∠EAC+∠ECA=90°,∴∠ECA=45°,∴∠ACB=∠ECA+∠PCE=45°+30°=75°,故答案为:75°.三.解答题19.计算:(1)4xy2z÷(﹣2x﹣2yz﹣1)2;(2)(m+2+)•.【分析】(1)先进行乘方运算,然后进行同底数幂的除法运算;(2)先把括号内通分,再把分子分母因式分解,然后约分即可.【解答】解:(1)原式=4xy2z÷(4x﹣4y2z﹣2)=x5z3;(2)原式=•=﹣•=﹣2(m+3)=﹣2m﹣6.20.先化简,再求值:(a2b﹣2ab﹣b2)÷b﹣(a+b)(a﹣b),其中a=0.5,b=﹣1.【分析】直接利用整式的混合运算法则化简,进而把a,b的值代入得出答案.【解答】解:原式=a2﹣2a﹣b﹣(a2﹣b2)=a2﹣2a﹣b﹣a2+b2=﹣2a﹣b+b2,当a=0.5,b=﹣1时,原式=﹣2×0.5﹣(﹣1)+(﹣1)2=﹣1+1+1=1.21.如图,在等腰直角三角形ABC中,∠ACB=90°,点M是边AB上任意一点,连接CM,过点A,B分别作AE⊥CM,BF⊥CM,垂足分别为E,F,若BF=2.6cm,AE=0.9cm,分别求出CF,EF的长.【分析】由AE⊥CM.BF⊥CM,推出∠AEC=∠BFC=∠ACB=90°,推出∠CAE+∠ACE=90°,∠ACE+∠BCF=90°,可得∠CAE=∠BCF,根据AAS即可证△ACE≌△CBF,可得AE=CF=0.9cm,BF=CE=2.6cm,即可求解.【解答】证明:∵AE⊥CM.BF⊥CM,∴∠AEC=∠BFC=∠ACB=90°,∴∠CAE+∠ACE=90°,∠ACE+∠BCF=90°,∴∠CAE=∠BCF,在△ACE和△CBF中,,∴△ACE≌△CBF(AAS),∴AE=CF=0.9(cm),BF=CE=2.6(cm),∴EF=CE﹣CF=1.7(cm).22.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)以点M所在的水平直线为对称轴,画出△ABC的轴对称图形△A2B2C2.【分析】(1)根据对称性即可画出一个格点△MB1C1,使它与△ABC全等且A与M是对应点;(2)根据对称性即可以点M所在的水平直线为对称轴,画出△ABC的轴对称图形△A2B2C2.【解答】解:(1)如图,△MB1C1即为所求;(2)如图,△A2B2C2即为所求.23.观察下列各式:12+32+42=2×(12+32+3)22+32+52=2×(22+32+6)32+62+92=2×(32+62+18)…(1)请用a,b,c表示左边由小到大的三个底数,并写出它们之间的关系;(2)请用字母a,b写出上述等式的规律,并加以证明.【分析】(1)根据题目中的等式,可以写出用a,b,c表示左边由小到大的三个底数对应的等式,然后即可写出它们之间的关系;(2)根据(1)中结果,可以用a、b表示出相应的等式,然后证明即可.【解答】解:(1)∵12+32+42=2×(12+32+3),22+32+52=2×(22+32+6),32+62+92=2×(32+62+18),…,∴用a,b,c表示左边由小到大的三个底数,这个式子是a2+b2+c2=2×(a2+b2+ab),它们之间的关系是c=a+b;(2)a2+b2+(a+b)2=2(a2+b2+ab),证明:∵a2+b2+(a+b)2=a2+b2+a2+2ab+b2=2a2+2b2+2ab=2(a2+b2+ab),∴a2+b2+(a+b)2=2(a2+b2+ab)成立.24.假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度.(2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?【分析】(1)设大车速度为x千米/时,则小车速度为1.4x千米/时,根据“小车比大车早一个小时到达”列出方程并解答.(2)设原速度为a千米/时,小车后来提速到原来得m倍,根据两车行驶时间相等列出方程并解答.【解答】解:(1)设大车速度为x千米/时,由题意,得,解得x=40,经检验x=40是方程的解,∴1.4x=56(千米/时).∴大车得速度是40千米/时,小车得速度是56千米/时;(2)设原速度为a千米/时,小车后来提速到原来得m倍,则,解得m=2.5,且符合题意.答:应提速到原来的2.5倍.25.如图,在△ABC中.(1)如图①,分别以AB、AC为边作等边△ABD和等边△ACE,连接BE,CD;①猜想BE与CD的数量关系是BE=CD;②若点M,N分别是BE和CD的中点,求∠AMN的度数;(2)如图②,若分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB =∠CAE=α,DC、BE交于点P,连接AP,请直请接写出∠APC与α的数量关系【分析】(1)①证△ABE≌△ADC(SAS),即可得出结论;(2)连接AN,由①得:△ABE≌△ADC(SAS),则BE=CD,∠ABE=∠ADC,再证△ADN≌△ABM(SAS),得AN=AM,∠DAN=∠BAM,然后证∠MAN=∠BAD=60°,得△AMN为等边三角形,即可得出∠AMN=60°;(3)过A作AM⊥CD于M,AN⊥BE于N,同(2)得:△ABE≌△ADC(SAS),△ADM ≌△ABN(SAS),则∠AEB=∠ACD,AM=AN,证出P A平分∠DPE,得∠APE=∠DPE,再证∠EPC=∠CAE=α,得∠DPE=180°﹣α,则∠APE=90°﹣α,即可得出结论.【解答】解:(1)①BE=CD,理由如下:∵△ABD和△ACE是等边三角形,∴AB=AD,∠BAD=∠CAE=60°,AC=AE,∴∠CAE+∠BAC=∠BAD+∠BAC,即∠BAE=∠DAC,∴△ABE≌△ADC(SAS),∴BE=CD,故答案为:BE=CD;(2)连接AN,如图①所示:由①得:△ABE≌△ADC(SAS),∴BE=CD,∠ABE=∠ADC,∵点M,N分别是BE和CD的中点,∴BM=DN,又∵AD=AB,∴△ADN≌△ABM(SAS),∴AN=AM,∠DAN=∠BAM,∴∠BAM+∠BAN=∠DAN+∠BAN,即∠MAN=∠BAD=60°,∴△AMN为等边三角形,∴∠AMN=60°;(3)∠APC=,理由如下:过A作AM⊥CD于M,AN⊥BE于N,如图②所示:同(2)得:△ABE≌△ADC(SAS),△ADM≌△ABN(SAS),∴∠AEB=∠ACD,AM=AN,∵AM⊥CD,AN⊥BE,∴P A平分∠DPE,∴∠APE=∠DPE,又∵∠EPC+∠ACD=∠CAE+∠AEB,∴∠EPC=∠CAE=α,∴∠DPE=180°﹣α,∴∠APE=(180°﹣α)=90°﹣α,∴∠APC=∠APE+∠EPC=90°﹣α+α=90°+α.。
人教版2020-2021学年八年级数学上册期末试卷及答案
2020-2021学年八年级数学上册期末试卷一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±22.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣13.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.144.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.55.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.87.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个二.填空题(共6小题)9.若代数式的值为零,则x的取值应为.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是分.11.如果x+=3,则的值等于12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=度.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.18.解分式方程(1)(2)19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.参考答案与试题解析一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±2【分析】根据分式有意义的条件即可求出答案.【解答】解:x+2≠0,∴x≠﹣2故选:A.2.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣1【分析】根据完全平方公式:a2±2ab+b2=(a±b)2可得答案.【解答】解:A、x2﹣x+1不能用完全平方公式分解,故此选项错误;B、1﹣2x+x2能用完全平方公式分解,故此选项正确;C、﹣a2+b2﹣2ab不能用完全平方公式分解,故此选项错误;D、4x2+4x﹣1不能用完全平方公式分解,故此选项错误;故选:B.3.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.14【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:B.4.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.5.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选:C.6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.8【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE 的长即为BQ+QE的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE==5,∴△BEQ周长的最小值=DE+BE=5+1=6.故选:B.7.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【分析】由矩形的判定和菱形的判定即可得出结论.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个【分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD =∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故②正确,∵EF=FM=CF,∴∠ECM=90°,∵AB∥CD,∴∠BEC=∠ECM=90°,∴CE⊥AB,故③④正确,故选:D.二.填空题(共6小题)9.若代数式的值为零,则x的取值应为2.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.【解答】解:若代数式的值为零,则(x﹣2)=0或(x﹣1)=0,即x=2或1,∵|x|﹣1≠0,x≠1,∴x的取值应为2,故代数式的值为零,则x的取值应为2.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是89.3分.【分析】因为数学期末成绩由课堂、作业和考试三部分组成,并按1:3:6的比例确定,所以利用加权平均数的公式即可求出答案.【解答】解:小明的数学期末成绩是=89.3(分),故答案为:89.3.11.如果x+=3,则的值等于【分析】由x+=3得x2+2+=9,即x2+=7,整体代入原式==,计算可得.【解答】解:∵x+=3,∴(x+)2=9,即x2+2+=9,则x2+=7,∵x≠0,∴原式====,故答案为:.12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=50度.【分析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【解答】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=50°,∴∠θ=50°,故答案为:50.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为96【分析】可设菱形ABCD的边长为x,则AC=32﹣2x,根据菱形可得AO=16﹣x,BO =8,根据勾股定理可求x,进一步得到AC,再根据菱形的面积公式即可求解.【解答】解:如图,设菱形ABCD的边长为x,则AC=32﹣2x,AO=16﹣x,BO=8,依题意有(16﹣x)2+82=x2,解得x=10,AC=32﹣2x=12,则菱形ABCD的面积为16×12÷2=96.故答案为:96.14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为6.【分析】根据题意,可求得D为A′B′的中点,则可知△C′DC的面积为△ABC的面积的一半.【解答】解:∵将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,∴AB∥A′B′,∵BC=CC′,∴D为A′B′的中点,∴△C′DC的面积为△ABC的面积的一半,即为6.故答案为:6.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.【分析】(1)连接AA,BB 1,作线段AA1,BB1的垂直平分线交于点O,点O即为所求.(2)分别作出A,B,C的对应点A2,B2,C2即可.【解答】解:(1)如图,点O即为所求.(2)如图,△A2B2C2即为所求.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a【分析】(1)首先提公因式a,再利用平方差进行分解即可;(2)首先提公因式﹣2a,再利用完全平方公式进行分解即可.【解答】解:(1)原式=a(a2﹣16)=a(a+4)(a﹣4);(2)原式=﹣2a(4a2﹣4a+1)=﹣2a(2a﹣1)2.17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.【分析】(1)先计算乘法,再计算加法即可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=﹣=﹣=;(2)原式=•=•=﹣,当x=﹣5时,原式=﹣=﹣.18.解分式方程(1)(2)【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x﹣1=﹣1﹣2x+4,移项合并得:3x=4,解得:x=,经检验x=是分式方程的解;(2)去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校858585B校8580100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出A校、B校的方差即可.【解答】解:(1)A校平均数为:×(75+80+85+85+100)=85(分),众数85(分);B校中位数80(分).填表如下:平均数/分中位数/分众数/分A校858585B校8580100故答案为:85;85;80.(2)A校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.(3)∵A校的方差s12=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,B校的方差s22=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴s12<s22,因此,A校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.【分析】先根据平行四边形的性质和三角形的内角和定理求出∠ABC与∠ABE度数,据此得出∠CBG度数,再证△BCG≌△EAF得出∠AEF=∠CBG,继而由三角形外角性质可得答案.【解答】解:∵四边形ABCD是平行四边形,∠C=50°,∴∠A=∠C=50°,∠ABC=180°﹣∠C=130°,AE=BC,∵∠E=30°,∴∠ABE=180°﹣∠A﹣∠E=100°,∴∠CBG=30°,在△BCG和△EAF中,∵,∴△BCG≌△EAF(SAS),∴∠CBG=∠AEF=30°,则∠BFD=∠A+∠AEF=80°.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.【分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)由AB⊥AC,AD是BC边上的中线,可得AD=CD=BC,然后由四边形ADCF 是平行四边形,证得四边形ADCF是菱形.【解答】(1)解:四边形CDAF是平行四边形,理由如下:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)四边形ADCF是菱形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∵四边形ADCF是平行四边形,∴平行四边形ADCF是菱形.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?【分析】设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x本练习本,根据单价=总价÷数量结合元旦这天的单价比元旦前便宜0.2元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x 本练习本,根据题意得:﹣=0.2,解得:x=6,经检验,x=6是原方程的解,且符合题意.答:小明元旦前在该超市买了6本练习本.23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;②由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;③由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD 为等腰直角三角形,则OD=OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.【解答】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.【分析】(1)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可;(2)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可.【解答】解:(1)连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠AMP=180°﹣∠ADP=90°,∴AM=PM,AM⊥PM.(2)成立,理由如下:连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠DAM=∠MPC,∵∠PND=∠ANM∴∠AMP=∠ADP=90°∴AM=PM,AM⊥PM.1、三人行,必有我师。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年人教版八年级上第二次联考数学试卷一、选择题(每小题3分,共30分)1.(3分)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.(3分)下列计算正确的是()A.(a3)2=a6B.a•a2=a2C.a3+a2=a6 D.(3a)3=9a33.(3分)若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()A.0<x<8 B.2<x<8 C.0<x<6 D.2<x<64.(3分)若a、b、c是三角形三边的长,则代数式(a﹣b)2﹣c2的值是()A.大于零B.小于零C.大于或等于零D.小于或等于零5.(3分)如图,已知∠ADB=∠CBD,下列所给条件不能证明△ABD≌△CDB的是()A.∠A=∠C B.AD=BC C.∠ABD=∠CDB D.AB=CD6.(3分)若(x+y)2=9,(x﹣y)2=5,则xy的值为()A.﹣1 B.1 C.﹣4 D.47.(3分)已知点P(1,a)与Q(b,2)关于x轴成轴对称,又有点Q(b,2)与点M(m,n)关于y轴成轴对称,则m﹣n的值为()A.3 B.﹣3 C.1 D.﹣18.(3分)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣29.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.(a+b)(a﹣b)=a2﹣b2C.x2﹣1=(x+1)(x﹣1)D.x2y﹣y3=y(x2﹣y2)10.(3分)如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°二、填空题(每小题3分,共24分)11.(3分)计算1982=21ab2•(﹣a2c)=(6x3﹣12x2+x)÷(﹣3x)=.12.(3分)一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是.13.(3分)一等腰三角形的一腰上的高与另一腰成30°,则此等腰三角形的顶角的度数是.14.(3分)分解因式:2x2+4xy+2y2=.15.(3分)在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.16.(3分)若x2+(m﹣3)x+16是完全平方式,则m=.17.(3分)观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=.18.(3分)如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.三、运算题(共20分)19.(8分)计算:(1)(2)(x+3y)(x﹣3y)﹣(x﹣3y)2.20.(12分)因式分解(1)a3b﹣ab(2)﹣ax+(3)a3+2a2﹣3a(4)x(x﹣y)2﹣2x2(y﹣x)四.解答题(21题8分,22题8分,23题10分,共计26分)21.(8分)如图,在平面直角坐标系中,已知点A(2,3),点B(6,1)关于y轴对称的点分别是点C,点D.(1)请写出点C,点D的坐标;(2)在x轴上求作一点P,使PA+PB的值最小(保留作图痕迹,不要求写作法)并直接写出点P的坐标.22.(8分)请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);并由此得到怎样的等量关系?请用等式表示;(2)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a﹣b的值.23.(10分)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?2020-2021学年人教版八年级上第二次联考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.【分析】据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)下列计算正确的是()A.(a3)2=a6B.a•a2=a2C.a3+a2=a6 D.(3a)3=9a3【分析】A、根据幂的乘方的定义解答;B、根据同底数幂的乘法解答;C、根据合并同类项法则解答;D、根据积的乘方的定义解答.【解答】解:A、(a3)2=a3×2=a6,故本选项正确;B、a•a2=a1+2=a3,故本选项错误;C、a3和a2不是同类项,不能合并,故本选项错误;D(3a)3=27a3,故本选项错误.故选A.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.(3分)若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()A.0<x<8 B.2<x<8 C.0<x<6 D.2<x<6【分析】三角形的三边关系是:任意两边之和>第三边,任意两边之差<第三边.已知两边时,第三边的范围是>两边的差,<两边的和.这样就可以确定x 的范围,从而确定x的值.【解答】解:依据三角形三边之间的大小关系,列出不等式组,解得2<x<8.故选B.【点评】考查了三角形的三边关系,能够熟练解不等式组.4.(3分)若a、b、c是三角形三边的长,则代数式(a﹣b)2﹣c2的值是()A.大于零B.小于零C.大于或等于零D.小于或等于零【分析】根据三角形任意两边之和大于第三边可得a+c>b,a<b+c,整理可得a+c﹣b>0,a﹣b﹣c<0,而(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c),那么可知乘积结果小于0.【解答】解:根据题意可得a+c>b,a<b+c,即a+c﹣b>0,a﹣b﹣c<0,∵(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c),∴(a﹣b)2﹣c2<0,故选B.【点评】本题考查了因式分解、三角形三边关系,解题的关键是知道三角形任意两边之和大于第三边.5.(3分)如图,已知∠ADB=∠CBD,下列所给条件不能证明△ABD≌△CDB的是()A.∠A=∠C B.AD=BC C.∠ABD=∠CDB D.AB=CD【分析】由全等三角形的判定方法AAS、SAS、ASA得出选项A、B、C能证明,D 不能证明;即可得出结论.【解答】解:在△ABD和△CDB中,,∴△ABD≌△CDB(AAS)∴选项A能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(SAS),∴选项B能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),∴选项C能证明;选项D不能证明△ABD≌△CDB;故选:D.【点评】本题考查了全等三角形的判定与性质;熟记全等三角形的判定方法AAS、SAS、ASA是解决问题的关键.6.(3分)若(x+y)2=9,(x﹣y)2=5,则xy的值为()A.﹣1 B.1 C.﹣4 D.4【分析】(x+y)2=9减去(x﹣y)2=5,然后用平方差公式计算即可.【解答】解:(x+y)2﹣(x﹣y)2=4,∴[(x+y)+(x﹣y)][(x+y)﹣(x﹣y)]=4.∴2x•2y=4.∴4xy=4.∴xy=1.故选:B.【点评】本题主要考查的是完全平方公式或平方差公式的应用,熟练掌握公式是解题的关键.7.(3分)已知点P(1,a)与Q(b,2)关于x轴成轴对称,又有点Q(b,2)与点M(m,n)关于y轴成轴对称,则m﹣n的值为()A.3 B.﹣3 C.1 D.﹣1【分析】根据关于x轴对称的点的坐标规律,可得b的值,根据关于y轴对称的点的坐标规律,可得m、n的值,根据有理数的减法,可得答案.【解答】解:由P(1,a)与Q(b,2)关于x轴成轴对称,得b=1.由点Q(b,2)与点M(m,n)关于y轴成轴对称,得m=﹣b=﹣1,n=2.由有理数的减法,得m﹣n=﹣1﹣2=﹣3,故选:B.【点评】本题考查了关于坐标轴对称的点的坐标规律,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.8.(3分)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.9.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.(a+b)(a﹣b)=a2﹣b2C.x2﹣1=(x+1)(x﹣1)D.x2y﹣y3=y(x2﹣y2)【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、还可以再分解,故D错误;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,分解要彻底.10.(3分)如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°【分析】首先证明△DBE≌△ECF,进而得到∠EFC=∠DEB,再根据三角形内角和计算出∠CFE+∠FEC的度数,进而得到∠DEB+∠FEC的度数,然后可算出∠DEF 的度数.【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°,故选:C.【点评】本题考查了全等三角形的性质和判定,以及三角形内角和的定理,关键是掌握三角形内角和是180°.二、填空题(每小题3分,共24分)11.(3分)计算1982=3920421ab2•(﹣a2c)=﹣6a3b2c(6x3﹣12x2+x)÷(﹣3x)=﹣2x2+4x﹣.【分析】原式变形后,利用完全平方公式计算即可得到结果;原式利用单项式乘以单项式法则计算即可得到结果;原式利用多项式除以单项式法则计算即可得到结果.【解答】解:1982=(200﹣2)2=40000﹣800+4=39204;21ab2•(﹣a2c)=﹣6a3b2c;(6x3﹣12x2+x)÷(﹣3x)=﹣2x2+4x﹣.故答案为:39204;﹣6a3b2c;﹣2x2+4x﹣.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.12.(3分)一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是10.【分析】多边形的外角和是360度,多边形的外角和是内角和的4倍,则多边形的内角和是360×4=1440度,再由多边形的内角和列方程解答即可.【解答】解:设这个多边形的边数是n,由题意得,(n﹣2)×180°=360°×4解得n=10.故答案为:10.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.13.(3分)一等腰三角形的一腰上的高与另一腰成30°,则此等腰三角形的顶角的度数是60°或120°.【分析】根据已知利用三角形内角和定理及三角形外角的性质进行分析求解,注意分情况进行讨论.【解答】解:①∵AB=AC,∠ABD=30°,BD⊥AC,∴∠A=60°.②∵AB=AC,∠ABD=30°,BD⊥AC,∴∠BAC=30°+90°=120°.故答案为:60°或120°.【点评】此题主要考查三角形内角和定理及三角形外角的性质的综合运用.14.(3分)分解因式:2x2+4xy+2y2=2(x+y)2.【分析】先提取公因式2,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:2x2+4xy+2y2=2(x2+2xy+y2)=2(x+y)2.故答案为:2(x+y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.15.(3分)在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有4个.【分析】以O为圆心,OA为半径画弧交x轴于点P1、P2,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P3.【解答】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点评】本题考查了等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等.也考查了坐标与图形性质.16.(3分)若x2+(m﹣3)x+16是完全平方式,则m=11或﹣5.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+(m﹣3)x+16是完全平方式,∴m﹣3=±8,解得:m=11或m=﹣5,故答案为:11或﹣5【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.17.(3分)观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=1016064.【分析】根据1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,可得1+3+5+…+(2n ﹣1)=n2,据此求出1+3+5+…+2015的值是多少即可.【解答】解:因为1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,所以1+3+5+…+2015=1+3+5+…+(2×1008﹣1)=10082=1016064故答案为:1016064.【点评】此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:1+3+5+…+(2n﹣1)=n2.18.(3分)如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB 上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为①②④①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.【分析】要得到OE=OF,就要让△OCE≌△OCF,①②④都行,只有③EC=FC不行,因为证明三角形全等没有边边角定理.【解答】解:①若①∠OCE=∠OCF,根据三角形角平分线的性质可得,∠EOC=∠COF,故居ASA定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;②若∠OEC=∠OFC,同①可得△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;③若EC=FC条件不够不能得出.错误;④若EF⊥OC,根据SSS定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确.故填①②④.【点评】本题主要考查了三角形全等的判与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、运算题(共20分)19.(8分)计算:(1)(2)(x+3y)(x﹣3y)﹣(x﹣3y)2.【分析】(1)原式先利用幂的乘方与积的乘方运算,以及单项式除以单项式法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=4x2y4÷xy=12xy3;(2)原式=x2﹣9y2﹣(x2﹣6xy+9y2)=x2﹣9y2﹣x2+6xy﹣9y2=6xy﹣18y2.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.(12分)因式分解(1)a3b﹣ab(2)﹣ax+(3)a3+2a2﹣3a(4)x(x﹣y)2﹣2x2(y﹣x)【分析】(1)直接提取公因式ab,进而利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式即可;(3)直接提取公因式a,进而利用十字相乘法分解因式即可;(4)直接提取公因式x(x﹣y),进而分解因式即可.【解答】解:(1)原式=ab(a2﹣1)=ab(a+1)(a﹣1);(2)原式=(x﹣a)2;(3)原式=a(a2+2a﹣3)=a(a﹣1)(a+3);(4)原式=x(x﹣y)(x﹣y+2x)=x(x﹣y)(3x﹣y).【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.四.解答题(21题8分,22题8分,23题10分,共计26分)21.(8分)如图,在平面直角坐标系中,已知点A(2,3),点B(6,1)关于y轴对称的点分别是点C,点D.(1)请写出点C,点D的坐标;(2)在x轴上求作一点P,使PA+PB的值最小(保留作图痕迹,不要求写作法)并直接写出点P的坐标.【分析】(1)关于y轴对称的两点的横坐标互为相反数,纵坐标相等;(2)首先求得点A关于x轴的对称点A′,连接A′B交x轴于点P,此时PA+PB 的值最小.【解答】解:(1)点C的坐标为(﹣2,3),点D的坐标为(﹣6,1);(2)如图所示:根据图形可知点P的坐标为(5,0).【点评】本题主要考查的是轴对称图形的性质、轴对称﹣﹣路径最短问题,掌握轴对称图形的性质是解题的关键.22.(8分)请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);并由此得到怎样的等量关系?请用等式表示;(2)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a﹣b的值.【分析】(1)直接把两个正方形的面积相加或利用大正方形的面积减去两个长方形的面积;利用面积相等即可得出结论;(2)注意a,b都为正数且a>b,利用(1)的结论进行探究得出答案即可.【解答】解:(1)两个阴影图形的面积和可表示为:a2+b2或(a+b)2﹣2ab;由此得到怎样的等量关系:a2+b2=(a+b)2﹣2ab;(2)∵a,b(a>b)满足a2+b2=53,ab=14,∴①(a+b)2=a2+b2+2ab=53+2×14=81∴a+b=±9,又∵a>0,b>0,∴a+b=9.②(a﹣b)2=a2+b2﹣2ab=53﹣2×14=25,∴a﹣b=±5又∵a>b>0,∴a﹣b=5.【点评】本题考查对完全平方公式几何意义的理解与运用,从整体和部分两方面来理解完全平方公式的几何意义是关键.23.(10分)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?【分析】(1)首先把x2+2y2﹣2xy+4y+4=0,配方得到(x﹣y)2+(y+2)2=0,再根据非负数的性质得到x=y=﹣2,代入求得数值即可;(2)先把a2+b2﹣6a﹣6b+18+|3﹣c|=0,配方得到(a﹣3)2+(b﹣3)2+|3﹣c|=0,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.【解答】解:(1)∵x2+2y2﹣2xy+4y+4=0∴x2+y2﹣2xy+y2+4y+4=0,∴(x﹣y)2+(y+2)2=0∴x=y=﹣2∴;(2)∵a2+b2﹣6a﹣6b+18+|3﹣c|=0,∴a2﹣6a+9+b2﹣6b+9+|3﹣c|=0,∴(a﹣3)2+(b﹣3)2+|3﹣c|=0∴a=b=c=3∴三角形ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.。