人教版初中数学函数基础知识难题汇编及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学函数基础知识难题汇编及答案
一、选择题
1.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x之间的函数关系的图象如图乙所示,则线段AB长为()
A.2 B.2 C.2 D.2
∴S△PEF= S△ABP,
根据图像可以看出x的最大值为4,
∴CD=4,
∵当P在D点时,△PEF的面积为2,
∴S△ABP=2×4=8,即S△ABD=8,
∴AD= = =4,
当点P在C点时,S△PEF=3,
∴S△ABP=3×4=12,即S△ABC=12,
∴BC= = =6,
过点A作AG⊥BC于点G,
∴∠AGC=90°,
【解析】
【分析】
根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.
【详解】
解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.
故选:B.
【点睛】
此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.
A. B. C. D.
【答案】A
【解析】
分析:在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.
A. B.
C. D.
【答案】A
【解析】
【分析】
根据题意分当 、 时两种情况,分别表示出 的长 与 的关系式,进而得出答案.
【详解】
解:在 中, , ,AB=10,
∴AC=5, ,
I.当 时,P在AB上,Q在AC上,由题意可得: , ,
依题意得: ,
又∵
∴ ,

则 ,
II.当 ,P、Q在BC上,由题意可得:P走过的路程是 ,Q走过的路程是 ,
∴y2<y1<y3.
故选:B.
【点睛】
本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.
7.已知:在 中, 边上的高 ,点 在边 上,过点 作 交 边于点 .点 为 上一点,连接 .设点 到 的距离为 ,则 的面积 关于 的函数图象大致为()
A. B.
C. D.
【答案】D
【解析】
【分析】
判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.
【详解】
解:∵EF∥BC,
∴△AEF∽△ABC,
∴ ,
∴EF= •10=10-2x,
∴S= (10-2x)•x=-x2+5x=-(x- )2+ ,
∴S与x的关系式为S=-(x- )2+ (0<x<5),
A. B. C. D.
【答案】B
【解析】
【分析】
注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.
【详解】
旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.
故选B.
【点睛】
考查动点问题的函数图象问题,关键要仔细观察.
14.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的 , 分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )
【答案】A
【解析】
【分析】
根据分式的意义,进行求解即可.
【详解】
解:根据分式的意义得2-x≠0,解得x≠2
故选:A
【点睛】
本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
③当4<x≤6时,如图4,
矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,
∴EH=MH=2,DE=CH=x﹣2,
∵MN=6,CM=x,
∴CG=CN=6﹣x,
∴DF=DG=2﹣(6﹣x)=x﹣4,
∴y=S梯形EMCD﹣S△FDG= ﹣ = ×2×(x﹣2+x)﹣ =﹣ +10x﹣18,
当D在边PN上时,过P作PF⊥MN于F,交AD于G,
∵∠N=45°,CD=2,
∴CN=CD=2,
∴CM=6﹣2=4,
即此时x=4,
当2<x≤4时,如图3,
矩形ABCD与△PMN重叠部分是四边形EMCD,
过E作EF⊥MN于F,
∴EF=MF=2,
∴ED=CF=x﹣2,
∴y=S梯形EMCD= CD•(DE+CM)= =2x﹣2;
11.如图,矩形 的周长是 ,且 比 长 .若点 从点 出发,以 的速度沿 方向匀速运动,同时点 从点 出发,以 的速度沿 方向匀速运动,当一个点到达点 时,另一个点也随之停止运动.若设运动时间为 , 的面积为 ,则 与 之间的函数图象大致是()
A. B.
C. D.
【答案】A
【解析】
【分析】
先根据条件求出AB、AD的长,当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,分析图像可排除选项B、C;当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,分析图像即可排除选项D,从而得结论.
【答案】B
【解析】
【分析】
根据函数图象上特殊点的坐标和实际意义即可作出判断.
【详解】
根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;
②甲的速度为:64÷8=8米/秒,乙的速度为:52÷8=6.5米/秒,故甲的速度比乙快1.5米/秒,正确;
③甲让乙先跑了12米,正确;
详解:∵∠P=90°,PM=PN,
∴∠PMN=∠PNM=45°,
由题意得:CM=x,
分三种情况:
①当0≤x≤2时,如图1,
边CD与PM交于点E,
∵∠PMN=45°,
∴△MEC是等腰直角三角形,
此时矩形ABCD与△PMN重叠部分是△EMC,
∴y=S△EMC= CM•CE= ;
故选项B和D不正确;
②如图2,
当直线l过点C时,x=a+2,y=0
∴菱形的边长为a+2﹣a=2
∴当点E与点D重合时,由勾股定理得a2+ =4
∴a=1
∴菱形的高为
∴菱形的面积为2 .
故选:C.
【点睛】
本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,
4.函数 中自变量 的取值范围是()
A.x≠2B.x≥2C.x≤2D.x>2
5.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是( )
【答案】C
【解析】
【分析】
根据三角形中位线定理,得到S△PEF= S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.
【详解】
解:∵E、F分别为AP、BP的中点,
∴EF∥AB,EF= AB,
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
【答案】B
【解析】
【分析】
把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.
【详解】
解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,
∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,
【解析】
【分析】
由题意当 时, ,当 时, ,由此即可判断.
【详解】
由题意当 时, ,
当 时, ,
故选D.
【点睛】
本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.
9.如图,在 中, , , , 两点同时从点 分别出发,点 以 的速度,沿 运动,点 以 的速度,沿 运动,相遇后停止,这一过程中,若 两点之间的距离 ,则 与时间 的关系大致图像是()
A.3B. C.2 D.3
【答案】C
【解析】
【分析】
将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.
【详解】
解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF= ;
直线l向右平移直到点F过点B时,y= ;
【点睛】
本题主要考查了求一次函数表达式和函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
3.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为( )
∴ ,
故选:A.
【点睛】
此题主要考查了动点问题的函数图象,正确理解PQ长与时间是一次函数关系,并得出函数关系式是解题关键.
10.圆周长公式C=2πR中,下列说法正确的是( )
A.π、R是变量,2为常量B.C、R为变量,2、π为常量
C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量
【答案】B
A. B. C. D.
【答Biblioteka Baidu】C
【解析】
【分析】
根据图像分别求出 和 时的函数表达式,再求出当x=1,x=3,x=6时的y值,从而确定y的范围.
【详解】
解:设当 时,设 ,

解得: ,

当 时,设 ,

解得: ,

当 时, ,当 时, 有最大值8,当 时, 的值是 ,
∴当 时, 的取值范围是 .
故选: .
故选项A正确;
故选:A.
点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.
6.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()
∵AD∥BC,
∴∠ADC+∠BCD=180°,
∵∠BCD=90°,
∴∠ADC=180°-90°=90°,
∴四边形AGCD是矩形,
∴CG=AD=4,AG=CD=4,
∴BG=BC-CG=6-4=2,
∴AB= =2 .
故选C.
【点睛】
本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.
2.药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度 (微克/毫升)与服药后的时间 (时)之间的函数关系如图所示,则当 , 的取值范围是()
纵观各选项,只有D选项图象符合.
故选:D.
【点睛】
此题考查动点问题函数图象,相似三角形的性质,求出S与x的函数关系式是解题的关键.
8.如图,在矩形 中, , ,动点 沿折线 从点 开始运动到点 .设运动的路程为 , 的面积为 ,那么 与 之间的函数关系的图象大致是( )
A. B.
C. D.
【答案】D
12.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:
①射线AB表示甲的路程与时间的函数关系;
②甲的速度比乙快1.5米/秒;
③甲让乙先跑了12米;
④8秒钟后,甲超过了乙
其中正确的说法是( )
A.①②B.②③④C.②③D.①③④
【详解】
解:由题意得 , ,
可解得 , ,即 ,
①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,
S△APQ= ,
图像是开口向上的抛物线,故选项B、C不正确;
②当4<t≤6时,Q在边BC上,P在边AD上,如图2,
S△APQ= ,
图像是一条线段,故选项D不正确;
故选:A.
【点睛】
本题考查了动点问题的函数图象,根据动点P和Q的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S与t的函数关系式.
④8秒钟后,甲超过了乙,正确;
故选B.
【点睛】
正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.
13.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是( )
相关文档
最新文档