多元统计分析试卷
多元统计分析模拟试题
多元统计分析模拟试题Tomorrow Will Be Better, February 3, 2021多元统计分析模拟试题两套:每套含填空、判断各二十道A卷1)判别分析常用的判别方法有距离判别法、贝叶斯判别法、费歇判别法、逐步判别法;2)Q型聚类分析是对样品的分类,R型聚类分析是对变量_的分类;3)主成分分析中可以利用协方差矩阵和相关矩阵求解主成分;4)因子分析中对于因子载荷的求解最常用的方法是主成分法、主轴因子法、极大似然法5)聚类分析包括系统聚类法、模糊聚类分析、K-均值聚类分析6)分组数据的Logistic回归存在异方差性 ,需要采用加权最小二乘估计7)误差项的路径系数可由多元回归的决定系数算出,他们之间的关系为P e=√1−R28)最短距离法适用于条形的类,最长距离法适用于椭圆形的类;9)主成分分析是利用降维的思想,在损失很少的信息前提下,把多个指标转化为几个综合指标的多元统计方法;10)在进行主成分分析时,我们认为所取的mm<p,p为所有的主成分个主成分的累积贡献率达到85%以上比较合适;11)聚类分析的目的在于使类内对象的同质性最大化和类间对象的异质性最大化12)y1是随机变量,并且有y1~N(0,1),那么y12服从卡方分布;13)在对数线性模型中,要先将概率取对数,再分解处理,公式:ηij=lnp ij=lnp i+,i,j=1,2lnp.j+ln p ijp j p i14)将每个原始变量分解为两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子15)判别分析的最基本要求是分组类型在两组之上,每组案例的规模必须至少一个以上,解释变量必须是可测量的16)当被解释变量是属性变量而解释变量是度量变量时判别分析是合适的统计分析方法17)多元正态分布是一元正态分布的推广18)多元分析的主要理论都是建立在多元正态总体基础上的,多元正态分布是多元分析的基础19)因子分析中,把变量表示成各因子的线性组合,而主成分分析中,把主成分表示成各变量的线性组合;20)统计距离包括欧氏距离和马氏距离两类1)因子负荷量是指因子结构中原始变量与因子分析时抽取出的公共因子的相关程度;√ p1472)主成分分析是将原来较少的指标扩充为多个新的综合指标的多元统计方法;×p243)判别分析其被解释变量为属性变量,解释变量是度量变量;√p904)Logistic回归对于自变量有要求,度量变量或者非度量变量都不可以进行回归;× p2205)在系统聚类过程中,聚合系数越大,合并的两类差异越小;× P596)spss只能对单变量进行正态性检验; √7)Logistic回归中的估计参数b0,b1,b2,… ,b n)反应优势比率的变化,如果b i是正的,它的反对数值指数一定小于1; 2288)密度函数可以是负的;× p39)计算典型函数推导的典型权重有较小的不稳定性; × p20510)10、对应分析可以用图形的方式提示变量之间的关系,同时也可以给出具体的统计量来度量这种相关关系,使研究者在作用对应分析时得到主观性较强的结论;×p17911)多元检验具有概括和全面考察的特点,容易发现各指标之间的关系和差异;×p2512)名义尺度的指标用一些类来表示,这些类之间有等级关系,但没有数量关系;×p4313) k-均值法是一种非谱系聚类法√p4414)一般而言,不同聚类方法的结果不完全相同√p615)判别分析最基本要求是分组类型在两组以上且解释变量必须是可测量的√p9016)非谱系聚类法是把变量聚集成k个类的集合;×p6417)主成分的数目大大少于原始变量的数目;√p11418)因子分析只能用于研究变量之间的相关关系;×p14319)聚类分析中的分类方法中,系统聚类法和分解法相似相反;×P4320)聚类分析的目的就是把相似的研究对象归类;√P42B卷一、填空题1. 因子分析中因子载荷系数a ij 的统计意义是第i 个变量与第j 个公因子的相关系数;P 146)2. 类平均法的两种形式为组间联结法和组内联结法 P563. 设3~(,),i 1,2,10.i x x μ∑=⋅⋅⋅则101()~i i W x μ==-∑3(10)W ∑, p54.聚类分析根据实际的需要可能有两个方向,一是对样品,一是对指标聚类;P435. 模糊聚类分析方法中对原始数据进行变换,变换方法通常有标准化变换,极差变换,对数变换 p63()1~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ∑==∑=+-6、设其中则Cov(,)=07.非谱系聚类法是把样品聚集成K 个类的集合;P648.因子分析的基本思想是根据相关性大小把原始变量分组,使得同组内的变量之间相关性较高,而不同组间的相关性较低;P1429.两总体均值的比较问题也可分为两总体协方差阵相等与两总体协方差不相等两种情形;P2510.因子旋转分为正交旋转和斜交旋转;P15011.Q 型聚类是指对样品进行聚类,R 型聚类是指对指标变量进行聚类;42页12. 一元回归的数学模型是: y =β0+β1x +ε,多元回归的数学模型是:_y =β0+β1x 1+β2x 2+ βp x p +ε_;13.变量的类型按尺度划分有间隔尺度、有序尺度、名义尺度_. 43页 14. 判别分析是判别样品所属类型的一种统计方法,常用的判别方法有距离判别法、Fisher 判别法、Bayes 判别法、逐步判别法;80页15若12112~(,),,~(,),0,p p p W n n W n A A ∑≥∑∑>,且A 1和A 2相互独立,则112~AA A+12p n n Λ(,,). ;19页16. 对应分析是将R 型因子分析和Q 型因子分析结合起来进行的统计分析方法;170页17. 典型相关分析是研究两组变量之间相关分析的一种多元统计方法;194页18.判别分析适用于被解释变量是非度量变量的情形; 19. 主成分分析是利用降维的思想,在损失很少信息的前提下,把多个指标转化为几个综合指标的多元统计方法;113页20. 设i x ,1,2,16i =⋅⋅⋅是来自多元正态总体(,)p N μ∑,X 和A 分别为正态总体(,)p N μ∑的样本均值和样本离差阵,则2115[4(X )][4(X )]~T A μμ-'=--2(15P)T ,二、判断题1、 对于任何随机向量X='21)X ...,X X p ,,(来说,其协方差阵∑都是对称阵,同时总是非负定的; T P52、 能够体现各个变量在变差大小上的不同,以及有时存在的相关性还要求距离与各变量所用的单位无关,这种距离是欧式距离; F P73、 最长距离法中,选择最小的距离作为新类与其他类之间的距离,然后将类间距离最小的两类进行合并,一直合并到只有一类为止; F P554、 当总体21G G 和为正态总体且协方差相等时,选用马氏距离; T P905、 进行主成分分析的目的之一是减少变量的个数,所以一般不会去p 个主成分,而是取mm<p 个主成分; T P1196、 第k 个主成分k Y 与原始变量i X 的相关系数 k Y ,i X 称为因子负荷量;T P1207、 F=’),,(m 21F ......,F F m<p 是不可观测的变量,其均值向量EF=0,协方差矩阵covF=I,即向量F 的各分量不是相互独立的; F P1458、 每个典型函数都包括一对变量,通常一个代表自变量,另一个代表因变量;T P2029、 分组数据的Logistic 回归不仅适用于大样本的分组数据,对小样本的未分组数据也适用;F P23210、 一个未知参数可以由显变量的协方差矩阵的一个或多个元素的代数函数来表达,就称这个为参数可识别; T P26411、 随机向量 的协方差阵一定是对称的半正定阵;T P512、 标准化随机变量的协方差阵与原变量的相关系数相同; T P513、 对应分析反应的是列变量与行变量的交叉关系; F P17014、 若一个随机向量的任何边缘分布均为正态,则它是多元正态分布;T p1015、特征函数描述空间的元素之间是否有关联,而隶属度描述了元素之间的关联是多少; T p6216、非谱系聚类法是把变量聚集成K个类的集合; F p6417、在对因素A和因素B进行对应分析之前没有必要进行独立性检验; Tp17318、系统聚类法中的“离差平方和法”的基本思想来源于如果类分得正确,同类样品的离差平方和应该较小,类与类之间的离差平方和应该较大;T p5719、距离判别法对总体的分布没有特定的要求; T p9020、 Wilks统计量可以化成T2统计量但是化不成F统计量; F p18。
多元统计分析期末试题及答案
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计学多元统计分析试题(A卷)(答案)
《多元统计分析》试卷1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X 服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。
5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L =6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
一、填空题(每空2分,共40分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫ ⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。
把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。
多元统计分析试题(A卷)(答案)
多元统计分析试题(A卷)(答案)《多元统计分析》试卷一、填空题(每空2分,共40分)1、若且相互独立,则样本均值向量X服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品的一种统计方法,常用的判别方法有___、、、。
4、Q型聚类是指对_进行聚类,R型聚类是指对进行聚类。
'5、设样品,总体X~Np(,对样品进行分类常用的距离有:明氏距离,马氏距离,兰氏距离6、因子分析中因子载荷系数aij的统计意义是_第i个变量与第j个公因子的相关系数。
7、一元回归的数学模型是:,多元回归的数学模型是:。
8、对应分析是将和结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
二、计算题(每小题10分,共40分)1、设三维随机向量,其中130,问X1与X2是否独立?和X3是否独立?为什么?解:因为,所以X1与X2不独立。
把协差矩阵写成分块矩阵,的协差矩阵为因为,而,所以和X3是不相关的,而正态分布不相关与相互独立是等价的,所以和X3是独立的。
2、设抽了五个样品,每个样品只测了一个指标,它们分别是1 ,2 ,4.5 ,6 ,8。
若样本间采用明氏距离,试用最长距离法对其进行分类,要求给出聚类图。
x1013.55702.54601.53.502x2x3解:样品与样品之间的明氏距离为:D(0)样品最短距离是1,故把X1与X2合并为一类,计算类与类之间距离(最长距离法){x1,x2}03.55701.53.502x3x4得距离阵 D(1)类与类的最短距离是1.5,故把X3与X4合并为一类,计算类与类之间距离(最长距离法)得距离阵D(2){x1,x2}057{x3,x4}x5类与类的最短距离是3.5,故把{X3,X4}与X5合并为一类,计算类与类之间距离(最{x1,x2}07长距离法)得距离阵D(3)分类与聚类图(略)(请你们自己做)3、设变量X1,X2,X3的相关阵为0.631.000.350.35,R的特征值和单位化特征向量分别为TTT(1)取公共因子个数为2,求因子载荷阵A。
多元统计分析试题及答案
X 1的共性方差h12 =
X 1的方差σ
11
= ___1 注(0.128+0.872)___,
公因子f1对X的贡献g12 = 1.743
备注(0.934^2+(-0.417)^2+0.835^2)__。
5、 设 X i , i = 1,⋯ ,16是 来 自 多 元 正 态 总 体 N p ( µ , Σ ), X 和 A分 别 为 正 态 总 体 N p ( µ , Σ ) 的 样 本 均 值 和 样 本 离 差 矩 阵 ,则 T 2 = 15[4( X − µ )]′ A − 1[4( X − µ )] ~ ___________ 。
2、假设检验问题:H 0 : µ = µ0,H1 : µ ≠ µ0 ⎛ −8.0 ⎞ 经计算可得:X − µ0 = ⎜ 2.2 ⎟ , ⎜ ⎟ ⎜ −1.5 ⎟ ⎝ ⎠ ⎛ 4.3107 −14.6210 8.9464 ⎞ −1 −1 ⎜ S = (23.13848) −14.6210 3.172 −37.3760 ⎟ ⎜ ⎟ ⎜ 8.9464 −37.3760 35.5936 ⎟ ⎝ ⎠ 构造检验统计量:T 2 = n( X − µ0 )′S −1 ( X − µ0 ) = 6 × 70.0741 = 420.445 由题目已知F0.01 (3,3) = 29.5,由是 3× 5 F0.01 (3,3) = 147.5 3 所以在显著性水平α = 0.01下,拒绝原设 H 0
⎛ 16 −4 2 ⎞ 1、设X = ( x1 , x2 , x3 ) ~ N 3 ( µ , Σ), 其中µ = (1,0, − 2)′, Σ = ⎜ −4 4 −1⎟ , ⎜ ⎟ ⎜ 2 −1 4 ⎟ ⎝ ⎠ ⎛x −x ⎞ 试判断x1 + 2 x3与 ⎜ 2 3 ⎟ 是否独立? ⎝ x1 ⎠
应用多元统计分析试题及答案
一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和 R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。
3、简述费希尔判别法的基本思想。
从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
应用多元统计分析试题及答案
一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和 R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。
3、简述费希尔判别法的基本思想。
从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
多元统计期末试题及答案
多元统计期末试题及答案一、选择题1. 在多元统计中,什么是协方差矩阵?A. 描述两个变量之间的线性关系的矩阵B. 描述两个变量之间的非线性关系的矩阵C. 描述多个变量之间的线性关系的矩阵D. 描述多个变量之间的非线性关系的矩阵答案:C2. 多元方差分析适用于以下哪种情况?A. 只有一个自变量和一个因变量B. 有一个自变量和多个因变量C. 有多个自变量和一个因变量D. 有多个自变量和多个因变量答案:C3. 多元线性回归分析中的残差是指什么?A. 因变量的观测值与估计值之间的差异B. 自变量的观测值与估计值之间的差异C. 因变量的观测值与真实值之间的差异D. 自变量的观测值与真实值之间的差异答案:A4. 主成分分析的目标是什么?A. 减少变量的数量B. 识别主要影响因素C. 降低模型复杂度D. 提高预测准确率答案:A5. 判别分析的目标是什么?A. 最小化类内方差B. 最大化类间方差C. 最小化类间方差D. 最大化类内方差答案:B二、填空题1. 多元正态分布的概率密度函数用符号____表示。
答案:f(x)2. 多元统计分析中的数据通常以矩阵的形式表示,其中每行代表____,每列代表____。
答案:样本,变量三、计算题假设有一组学生数据,包括他们的数学成绩(变量X1)、英语成绩(变量X2)和科学成绩(变量X3)。
1. 计算变量X1和X2之间的协方差。
答案:可使用协方差公式计算:Cov(X1,X2) = Σ[(X1-μ1)(X2-μ2)] / (n-1)其中,Σ表示求和符号,μ1和μ2分别为X1和X2的均值,n为样本数量。
2. 假设已经进行了主成分分析,计算数据的前两个主成分和对应的方差解释比例。
答案:主成分分析会得到一组主成分,可以通过对应的特征值来计算方差解释比例。
假设前两个特征值为λ1和λ2,总特征值和为Σλi。
则前两个主成分的方差解释比例为:(λ1 + λ2) / Σλi四、简答题1. 解释多元统计分析中的共线性问题。
(完整)多元统计分析期末试题及答案,推荐文档.docx
1 、设 X ~ N2 ( ,), 其中 X( x1 , x 2 ),( 1 ,212 ),,1则 Cov( x1x 2 , x1x 2 )=____.102、设X i ~N 3 (,), i 1, L,10,则 W =( X i)( X i)i 1服从_________。
4433、设随机向量X x1x2x3, 且协方差矩阵 4 9 2 ,3 2 16则它的相关矩阵R___________________4、设 X= x1x2x3,的相关系数矩阵通过因子分析分解为112330.93400.1280.4171R100.4170.9340.83530.8940.8940.027 0.83500.4472010.4470.10332__________,__________,X1的共性方差 h1X1的方差11公因子 f 1对 X的贡献 g12________________。
5、设 X i , i 1,L ,16 是来自多元正态总体N p (, ), X 和 A分别为正态总体N p ( ,)的样本均值和样本离差矩阵 , 则T 215[4( X)] A 1[4( X)] ~ ___________。
1642、设( x1 , x2 , x3) ~ N3(, ),其中(1,0, 2) ,44 1 ,1X214试判断 x12 x3与x2x3是否独立?x12、对某地区农村的 6 名 2 周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下 , 根据以往资料 , 该地区城市 2周岁男婴的这三个指标的均值0(90,58,16), 现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
82.0 4.310714.62108.9464其中 X60.2 ,(5 S ) 1( 115.6924)114.6210 3.17237. 376014.58.946437.376035.5936 (0.01,F 0.01 (3, 2)99.2, F 0.01 (3,3)29.5,F0.01 (3, 4)16.7)、设已知有两正态总体G与 G,且12,24,1211,3126219而其先验概率分别为q1q20.5,误判的代价C (2 1)4;e ,C(1 2)e试用判别法确定样本X 3属于哪一个总体?Bayes514、设X( X1 , X2 , X3 , X4 )T,协方差阵1~ N (0, ),0111(1)试从Σ出发求 X 的第一总体主成分;(2)试问当取多大时才能使第一主成分的贡献率达95%以上。
多元统计分析期末试题及答案
. z4、 __________, __________, ________________。
(1) 试从Σ出发求*的第一总体主成分;(2) 试问当 取多大时才能使第一主成分的奉献率达95%以上。
1、0 2、W 3〔10,∑〕 3、211342113611146R ⎛⎫-⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪- ⎪⎝⎭4、0.872 1 1.7435、T 2〔15,p 〕或〔15p/(16-p)〕F 〔p ,n-p 〕一、填空题:1、多元统计分析是运用 数理统计 方法来研究解决 多指标 问题的理论和方法.2、回归参数显著性检验是检验 解释变量 对 被解释变量 的影响是否著.3、聚类分析就是分析如何对样品〔或变量〕进展量化分类的问题。
通常聚类分析分为 Q 型 聚类和 R 型 聚类。
4、相应分析的主要目的是寻求列联表 行因素A 和 列因素B 的根本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两局部因素:一局部为 公共因子 ,另一局部为 特殊因子 。
6、假设()(,),P x N αμα∑=1,2,3….n 且相互独立,则样本均值向量x 服从的分布为_x ~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的根本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选ρ(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差. z出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的根本思想。
相应分析,是指对两个定性变量的多种水平进展分析。
设有两组因素A 和B ,其中因素A 包含r 个水平,因素B 包含c 个水平。
对这两组因素作随机抽样调查,得到一个rc 的二维列联表,记为 。
多元统计分析期末试题(卷)与答案解析
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
(),123设X=x xx 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
投资组合的多元统计分析考核试卷
B.距离测量
C.马氏距离
D.置信区间
17.以下哪些因素可能导致投资组合的收益与预期不符?()
A.经济周期的变化
B.政策变动
C.公司层面的特定事件
D.投资者情绪的变化
18.在因子分析中,以下哪些步骤是关键的?()
A.选择因子
B.构建因子模型
C.估计因子载荷
D.解释因子
19.以下哪些方法可以用于提高投资组合的流动性?()
5.投资组合的跟踪误差越小,其管理效率)
7.投资组合中的资产数量越多,分散风险的效果越好。()
8.风险价值(VaR)能够完全描述投资组合的风险特征。()
9.在因子分析中,提取的因子数量越多,模型的解释能力越强。()
10.投资组合管理的主要目的是最大化短期收益。()
3.风险价值(VaR)是在给定置信水平下,投资组合可能的最大损失。VaR有助于量化风险,但面临模型风险、参数选择和极端市场情况等问题。
4.因子分析通过提取影响资产收益的共同因素来简化资产之间的关系,优化资产配置。通过构建因子模型,投资者可以依据因子暴露来调整投资组合,以追求更高的风险调整收益。
A.散点图
B.饼图
C.箱线图
D.直方图
2.以下哪项不是投资组合多元统计分析的目的?()
A.降低投资风险
B.提高投资收益
C.消除市场系统性风险
D.评估资产间的相关性
3.在多元正态分布中,相关系数ρ=0表示:()
A.两个变量完全正相关
B.两个变量完全负相关
C.两个变量线性无关
D.两个变量非线性相关
4.投资组合的期望收益是由以下哪个公式计算得出的?()
D.多重共线性
11.以下哪些是有效的风险控制手段?()
(完整版)多元统计分析试题及答案
(完整版)多元统计分析试题及答案试题:1. 试解释多元统计分析的含义及其与单变量和双变量统计分析的区别。
2. 简述卡方检验方法及适用场景。
3. 请解释回归分析中的回归系数及其p值的含义及作用,简单说明如何进行回归模型的选择和评估。
4. 试解释主成分分析的原理及目的,如何进行主成分分析及如何解释因子载荷矩阵。
5. 请列举和简要解释聚类分析和判别分析的适用场景,并说明两种方法的区别。
答案:1. 多元统计分析是一种将多个变量进行综合分析的方法。
与单变量和双变量统计分析不同的是,多元统计分析可以处理多个自变量和因变量的组合关系,从而探究它们之间的综合关系。
该方法通常适用于探究多种变量在某个问题中的关系、探究影响某一结果变量的因素、探究各个变量相互作用的影响等。
2. 卡方检验是根据样本数据与期望值的差异来判断观察值与理论预期是否相符,以此来验证假设是否成立的方法。
它通常用于对某个现象进行分类的相关度检验。
适用场景包括:样本的数量大于等于40,且至少有一个期望值小于5;变量为分类变量,且分类类别数不超过10个。
卡方检验的原理是将观察值和期望值进行比较,并计算卡方值,然后根据卡方值与自由度的乘积查找p值,从而得出结论。
3. 回归系数是回归方程中自变量与因变量之间的关系,在线性回归中,回归系数表示每一个自变量单位变化与因变量单位变化的关系。
p值是评估回归系数是否具有显著性的指标。
回归模型的选择有两种方法:一种是逐步回归分析,根据不同的准则进行多个回归模型的比较,选择最优的模型;另一种是正则化回归,通过加入惩罚项来保证回归模型具有良好的泛化性能。
回归模型的评估有多种方法,包括:残差分析、R方值、方差齐性检验、变量的共线性检验等。
4. 主成分分析是一种将多维数据降维处理的方法,它的目的是通过数据的变换,将多个变量转化为一些综合指标,这些指标是原始变量的线性组合。
主成分分析的步骤包括:数据标准化、计算协方差矩阵或相关系数矩阵、计算特征值和特征向量、选取主成分。
多元统计分析期末试题与答案
多元统计分析期末试题与答案22121212121~(,),(,),(,),,1X N X x x x x x x ρµµµµσρ∑==∑=+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X µµµ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -?? ?'==-- ?-=∑、设随机向量且协⽅差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X µµµµ-=∑∑'=--、设是来⾃多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x µµ-??'=∑=-∑=-- --??+、设其中试判断与是否独⽴?(),123设X=x x x 的相关系数矩阵通过因⼦分析分解为211X h =的共性⽅差111X σ=的⽅差21X g =1公因⼦f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ?--?? ? ?=-=-+11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S µ--'=-?? ?==-- ? 0、对某地区农村的名周岁男婴的⾝⾼、胸围、上半臂围进⾏测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
应用多元统计分析试题及答案
一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B 的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。
3、简述费希尔判别法的基本思想。
从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.填空题(每空2分,共30分)
1.若--------(看不清)且相互独立,则样本均值向量X 2服从的分布为_______
2.聚类分析是判别样品所属类型的一种统计方法,常用的聚类分析方法有距离判别法、Fisher 判别法、Bavers 判别法、逐步判别法。
3.主成份同因子分析之间的差异在于方差,_____。
4.设样本-------,总体-----,对样本进行分类常用的工具有:马氏距离--=_______,相关系数_______,它们之间的关系如何_______。
5.因子分析中的因子载荷系数共性方差的统计意义是_______。
6.典型相关分析是研究两组变量之间_______的一种多元统计方法。
7.刻画两个变量之间相关程度的通过统计指标是_______。
8.数据标准化对因子分析的结构分解有什么影响_______。
二.计算题(每小题12分,共60分)
1.设三维随机变量-----,其中⎪⎪⎪⎭
⎫ ⎝⎛=∑210140005,问1X 与2X 是否独立?---和1X 是否独立?为
什么?
2.设抽了五个样品,每个样品只测了一个指标,它们分别是1 1 2 3 5 4 5,若样本间采用欧式,试用平均距离法对其进行分类,要求给出聚类图。
3.设变量321,,X X X 的相关阵为⎪⎪⎪⎭
⎫ ⎝⎛=00.135.045.035.000.163.045.063.000.1R ,R 的特征值和单位化特征向量分
别为T T T l l l 18.0,64.0,75.0,37.03,
84.0,49.0,22.0,68.0,51.0,59.0,63.0,96.122211--==--====λλλ
(1)取公共因子个数为2,求因子载荷矩阵A 。
(2)计算变量共同度—及公共因子2F 的方差贡献,并说明其统计意义。
4.设三元总体X 的协方差阵为⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=∑841,从∑出发,求总体主成份321,,F F F ,求前两个主成份的累计贡献率。
5.考虑两个数据集
1π ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=745
27
51X ,2π ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=84105972X 32=π
计算线性判别函数。
三.简单题(10分)
简述多元统计的分类思想,结合你本专业谈谈能用到哪些地方。