膨胀波和激波
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
激波的传播速度:
(1)v s-激波向右的传播速度,激波后气体的
v 运动速度则为活塞向右移动的速度 ,
见图9-8(a)
(2)当把坐标系建立在激波面上时,激波前的
气体以速度v1 vs 向左流向激波,经过 激波后气体速度为 v2 v ,见图9-8(b).
10
▪ 应用动量方程:
A( p1 p2 ) A1vs[(vs v) vs ]
表示。设激波等速移动,并将坐标系固连在激波
上,这样无论激波运动与否,均可将激波视为静止
的。通常把这种激波叫做定常运动的正激波或驻址
正激波。若激波面的面积为A(垂直于纸面),并设
正激波前p后1 ,的1气,流T1参,v1数和分p别2 ,为 2,T2
v ,
2
,
则可以根据以下四个方程—连续性方程、动量方
程、能量方程和状态方程来建立正激波前后各参数
T1
k 1
(k 1)Ma12
c2 c1
{[2kMa12 (k k 1
1)
][
2
(k (k
1)Ma12 1)Ma12
]}0.5
▪ 6.马赫数比
Ma2 Ma1
Ma12 (k 1) / 2 kMa12 (k 1) / 2
17
第四节 斜激波
▪ 当超音速气流以其法向分速流 过图中所示的凹壁面时将产生 斜激波,气流的法向分速由超 音速变为亚音速,而且流动的 方向也将发生变化。壁面的转
4
一、激波的分类
▪ 1. 斜激波(超声速气流经过激波流动方向变化) (图9-4)
▪ 2.正激波 (超声速气流经过激波流动方向不变化) (图9-5)
▪ 3.脱体激波(超声速气流流过钝头物体产生的激波) (图9-6)
▪ 激波实例: 美军超音速飞机 ▪ 激波的流动不能作为等熵流动处理。但是,气流
经过激波可以看作是绝热过程。
2
膨胀波产生的特点:
1.超声速来流为定常二维流动,在壁面折 转处必定产生一扇型膨胀波组,此扇 型膨胀波是有无限多的马赫波所组成
2.经过膨胀波组时,气流参数是连续变 化的,其速度增大,压强、密度和温 度相应减小,流动过程为绝热等熵的膨 胀过程.
3.气流通过膨胀波组后,将平行于壁面 OB流动.
4.沿膨胀波束的任一条马赫线,气流参 数不变,因每条马赫线也是等压线。而且 马赫线是一条直线 .
2 k 1 2 k 1 k 1 2
状态方程 :
p1 p 2
1T1
2T2
14
M a,1M a,2 1
二、普朗特关系式
由能量方程和动量方程可得:
v1 v2
p2
2 v2
p1
1v1
c22 k v2
c12 k v1
而
c12
ห้องสมุดไป่ตู้
k
2
1
c2
k
2
1
v12
c22
k
2
1
c
2
k
2
1
v22
由上面三式可得
普朗特(Prandtl)关系式 :
第九章 膨胀波和激波
▪ 第一节 ▪ 第二节 ▪ 第三节 ▪ 第四节 ▪ 第五节 ▪ 第六节
膨胀波 激波 正激波前后的参数关系 斜激波 激波的反射与相交 拉瓦尔喷管内的正激波
1
第一节 膨胀波
▪ 当超声速流流过凸 曲面或凸折面时,通道 面积加大,气流发生膨 胀,而在膨胀伊始因受 扰动而产生马赫波。这 种气流受扰后压强将下 降,速度将增大情况下 的马赫波称为膨胀波。 ( 图9-1、9-2)
的传播速度也增大。若激波强度很弱,即 p2 / p1 1,2 / 1 1 。
此时激波已成为微弱压缩波,则式(9-1)可写成:
vs
p2 p1
2 1
dp c
d
上式表示微弱压缩波是以声速传播的
将式(9-1)代入式(b)得波面后得气流速度
v ( p2 p1)(2 1) p1 ( p2 1)(1 1 )
之间的关系式。
13
qm1 1v1 A1 2v2 A2 qm2
一、激波的基本控制方程
连续性方程:
1v1 2v2
动量方程: p2 p1 1v12 2v22
能量方程: v12 k p1 v22 k p2
2 k 1 1 2 k 1 2
或
v12 c12 v22 c12 k 1 c2
M a,1M a,2 1
15
三、正激波前、后参数的关系式
▪ 1.速度比 ▪ 2.压强比 ▪ 3.密度比
v2 1 1 ( p2 1)
v1
k Ma12 p1
p2 p1
2k k
1
Ma12
k k
1 1
2
k k
1 1
M
a12
1
k
2 1
M a12
16
▪ 4.温度比 ▪ 5.声速比
T2 [2kMa12 (k 1)][2 (k 1)Ma12 ]
1 2
1 p1
2
(9-2)
由此式可见,激波的强度越弱,气体的流速越低。如果是微弱的扰动
波,波面后的气体是没有运动的,即 p2 / p1 1,2 / 1 1,v 0 。
12
第三节 正激波前后的参数关系
▪ 气体在绝热的管内流动产生正激波。激波上游
(波后)和下游(波前)的参数分别以下脚标“1”、 “2”
vsv
p2 p1
1
(a)
A -为圆管横截面的面积
应用连续性方程:
A1vs A2 (vs v)
v
2 1 2
vs
(b)
联立(a)和(b) 得正激波的传播速度 :
vs
p2 p1 2 2 1 1
p2 1 p1 p1
1 1 1
(9-1)
2
11
▪ 由式(9-1)可见,随着激波强度的增大( p2 / p1,2 / 1 增大),激波
5. 膨胀波束中的任一点的速度大小仅与 该点的气流方向有关.
3
第二节 激 波
▪ 气流通过凹面时从B开始通道面逐
渐减小,在超声速流情况下,速度就会 逐渐减小,压强就会逐渐增大。与此同 时,气流的方向也逐渐转向,产生一系 列的微弱扰动,从而产生一系列的马赫 波,这种马赫波称为压缩波。气流沿整 个凹曲面的流动,实际上是由这一系列 的马赫波汇成一个突跃面(图9-4)。气 流经过这个突跃面后,流动参数要发生 突跃变化:速度会突跃减小;而压强和 密度会突跃增大。这个突跃面是个强间 断面,即是激波面。
5
二、正激波
正激波的形成过程:见图9-7直圆管在活塞右 侧是无限延伸的,开始时管道中充满静止气体 如(a)所示,活塞向右突然作加速运动,在一 段时间内速度逐步加大到,然后以等速动. 活塞表面靠近的气体依次引起微弱的扰动, 这些扰动波一个个向右传播。 如(b)所示,当活塞不断向右加速时,一道接 一道的扰动波向右传播,而且后续波的波速总 是大于现行波的波速,所以后面的波一定能追 上前面的波。 如(c)所示,无数个小扰动弱波叠加在一起形 成一个垂直面的压缩波,这就是正激波。
激波的传播速度:
(1)v s-激波向右的传播速度,激波后气体的
v 运动速度则为活塞向右移动的速度 ,
见图9-8(a)
(2)当把坐标系建立在激波面上时,激波前的
气体以速度v1 vs 向左流向激波,经过 激波后气体速度为 v2 v ,见图9-8(b).
10
▪ 应用动量方程:
A( p1 p2 ) A1vs[(vs v) vs ]
表示。设激波等速移动,并将坐标系固连在激波
上,这样无论激波运动与否,均可将激波视为静止
的。通常把这种激波叫做定常运动的正激波或驻址
正激波。若激波面的面积为A(垂直于纸面),并设
正激波前p后1 ,的1气,流T1参,v1数和分p别2 ,为 2,T2
v ,
2
,
则可以根据以下四个方程—连续性方程、动量方
程、能量方程和状态方程来建立正激波前后各参数
T1
k 1
(k 1)Ma12
c2 c1
{[2kMa12 (k k 1
1)
][
2
(k (k
1)Ma12 1)Ma12
]}0.5
▪ 6.马赫数比
Ma2 Ma1
Ma12 (k 1) / 2 kMa12 (k 1) / 2
17
第四节 斜激波
▪ 当超音速气流以其法向分速流 过图中所示的凹壁面时将产生 斜激波,气流的法向分速由超 音速变为亚音速,而且流动的 方向也将发生变化。壁面的转
4
一、激波的分类
▪ 1. 斜激波(超声速气流经过激波流动方向变化) (图9-4)
▪ 2.正激波 (超声速气流经过激波流动方向不变化) (图9-5)
▪ 3.脱体激波(超声速气流流过钝头物体产生的激波) (图9-6)
▪ 激波实例: 美军超音速飞机 ▪ 激波的流动不能作为等熵流动处理。但是,气流
经过激波可以看作是绝热过程。
2
膨胀波产生的特点:
1.超声速来流为定常二维流动,在壁面折 转处必定产生一扇型膨胀波组,此扇 型膨胀波是有无限多的马赫波所组成
2.经过膨胀波组时,气流参数是连续变 化的,其速度增大,压强、密度和温 度相应减小,流动过程为绝热等熵的膨 胀过程.
3.气流通过膨胀波组后,将平行于壁面 OB流动.
4.沿膨胀波束的任一条马赫线,气流参 数不变,因每条马赫线也是等压线。而且 马赫线是一条直线 .
2 k 1 2 k 1 k 1 2
状态方程 :
p1 p 2
1T1
2T2
14
M a,1M a,2 1
二、普朗特关系式
由能量方程和动量方程可得:
v1 v2
p2
2 v2
p1
1v1
c22 k v2
c12 k v1
而
c12
ห้องสมุดไป่ตู้
k
2
1
c2
k
2
1
v12
c22
k
2
1
c
2
k
2
1
v22
由上面三式可得
普朗特(Prandtl)关系式 :
第九章 膨胀波和激波
▪ 第一节 ▪ 第二节 ▪ 第三节 ▪ 第四节 ▪ 第五节 ▪ 第六节
膨胀波 激波 正激波前后的参数关系 斜激波 激波的反射与相交 拉瓦尔喷管内的正激波
1
第一节 膨胀波
▪ 当超声速流流过凸 曲面或凸折面时,通道 面积加大,气流发生膨 胀,而在膨胀伊始因受 扰动而产生马赫波。这 种气流受扰后压强将下 降,速度将增大情况下 的马赫波称为膨胀波。 ( 图9-1、9-2)
的传播速度也增大。若激波强度很弱,即 p2 / p1 1,2 / 1 1 。
此时激波已成为微弱压缩波,则式(9-1)可写成:
vs
p2 p1
2 1
dp c
d
上式表示微弱压缩波是以声速传播的
将式(9-1)代入式(b)得波面后得气流速度
v ( p2 p1)(2 1) p1 ( p2 1)(1 1 )
之间的关系式。
13
qm1 1v1 A1 2v2 A2 qm2
一、激波的基本控制方程
连续性方程:
1v1 2v2
动量方程: p2 p1 1v12 2v22
能量方程: v12 k p1 v22 k p2
2 k 1 1 2 k 1 2
或
v12 c12 v22 c12 k 1 c2
M a,1M a,2 1
15
三、正激波前、后参数的关系式
▪ 1.速度比 ▪ 2.压强比 ▪ 3.密度比
v2 1 1 ( p2 1)
v1
k Ma12 p1
p2 p1
2k k
1
Ma12
k k
1 1
2
k k
1 1
M
a12
1
k
2 1
M a12
16
▪ 4.温度比 ▪ 5.声速比
T2 [2kMa12 (k 1)][2 (k 1)Ma12 ]
1 2
1 p1
2
(9-2)
由此式可见,激波的强度越弱,气体的流速越低。如果是微弱的扰动
波,波面后的气体是没有运动的,即 p2 / p1 1,2 / 1 1,v 0 。
12
第三节 正激波前后的参数关系
▪ 气体在绝热的管内流动产生正激波。激波上游
(波后)和下游(波前)的参数分别以下脚标“1”、 “2”
vsv
p2 p1
1
(a)
A -为圆管横截面的面积
应用连续性方程:
A1vs A2 (vs v)
v
2 1 2
vs
(b)
联立(a)和(b) 得正激波的传播速度 :
vs
p2 p1 2 2 1 1
p2 1 p1 p1
1 1 1
(9-1)
2
11
▪ 由式(9-1)可见,随着激波强度的增大( p2 / p1,2 / 1 增大),激波
5. 膨胀波束中的任一点的速度大小仅与 该点的气流方向有关.
3
第二节 激 波
▪ 气流通过凹面时从B开始通道面逐
渐减小,在超声速流情况下,速度就会 逐渐减小,压强就会逐渐增大。与此同 时,气流的方向也逐渐转向,产生一系 列的微弱扰动,从而产生一系列的马赫 波,这种马赫波称为压缩波。气流沿整 个凹曲面的流动,实际上是由这一系列 的马赫波汇成一个突跃面(图9-4)。气 流经过这个突跃面后,流动参数要发生 突跃变化:速度会突跃减小;而压强和 密度会突跃增大。这个突跃面是个强间 断面,即是激波面。
5
二、正激波
正激波的形成过程:见图9-7直圆管在活塞右 侧是无限延伸的,开始时管道中充满静止气体 如(a)所示,活塞向右突然作加速运动,在一 段时间内速度逐步加大到,然后以等速动. 活塞表面靠近的气体依次引起微弱的扰动, 这些扰动波一个个向右传播。 如(b)所示,当活塞不断向右加速时,一道接 一道的扰动波向右传播,而且后续波的波速总 是大于现行波的波速,所以后面的波一定能追 上前面的波。 如(c)所示,无数个小扰动弱波叠加在一起形 成一个垂直面的压缩波,这就是正激波。