线性规划问题 及其数学模型
第一章线性规划-模型和图解法
a22 am2
a1n
a2n amn
(P1,
P2 ,
, Pn )
用向量表示时,上述模型可写为:
max(min)Z CX
s.t
n j 1
Pj x j
(, )b
X 0
线性规划问题可记为矩阵和向量的形式:
max(min)Z CX
s.t
AX
X
(, )b 0
max(min)Z CX
x21 x23
x14
x23
x32
x41
xij 0(i 1, ,4;
15
x22 x31 12
x23 x32
j 1, ,4)
10 20
二。线性规划问题的数学模型 下面从数学的角度来归纳上述三个例子的共同点。 ①每一个问题都有一组变量---称为决策变量,一般记为
x1, x2 , , xn. 对决策变量每一组值:(x1(0) , x2(0) , xn(0) )T 代表了
表1-3
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
表1-4
单位;元/100m2
1个月 2个月 3个月 4个月
2800 4500 6000 7300
表1-2
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
max(min) Z c1x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (, )b1
s.t
a21x1
a22 x2
a2n xn
(, )b2
am1x1 am2 x2 amnxn (, )bm
线性规划
• 4.2 两阶段法
• 两阶段法是处理人工变量的另一种方法。其具体做 法是在原约束条件中增加人工变量,构造一个新的 目标函数,其中人工变量的系数为-1,其余变量的 系数为0,这样就产生了如下的最优解有三种情形。 (1)这说明在辅助问题的最优解中,还有人工变量是基变量, 且取值不为0,此时原问题无可行解。 (2)且最优解中人工变量均为非基变量,则把它们划去后就得 到了原问题的一个基本可行解。 (3)但最优解中还有人工变量是基变量,其取值为0。这时, 只要选某个不是人工变量的非基变量进基,把在基中的人工 变量替换出来,则情形同(2)。 第二阶段:对于第一阶段的后两种情形,在第一阶段的最优单 纯形表中划去人工变量所在的列,并把检验数行换成原问题 目标函数(消去基变量以后)的系数,从而得到原问题的初 始单纯形表,再继续迭代求解。
2014-6-19 3
例2(运输问题)
• 设有某种物资要从A1,A2,A3三个仓库运往四个 销售点B1,B2,B3,B4。各发点(仓库)的发货 量、各收点(销售点)的收货量以及 到 的单位运 费如表1-2。问如何组织运输才能使总运费最少?
例3(配料问题)
• 在现代化的大型畜牧业中,经常使用工业生产的饲料。 设某种饲料由四种原料B1,B2,B3 ,B4混合而成,要 求它含有三种成份(如维生素、抗菌素等)A1,A2, A3的數量分別不少于25、36、40个单位(这些单位可 以互不相同),各种原料的每百公斤中含三种成份的数 量及各种原料的单价如表1-3.
1.2 线性规划的数学模型
一、一般形式 上述各例具有下列共同特征: 1.存在一组变量 ,称为决策变量,表示某一方案。通 常要求这些变量的取值是非负的。 2.存在若干个约束条件,可以用一组线性等式或线性 不等式来描述。 3.存在一个线性目标函数,按实际问题求最大值或最 小值。
第1章 线性规划
1.1 线性规划问题及其数学模型
线性规划
该公司想达到的目标为:投资 风险最小,每年红利至少为6.5万 元,最低平均增长率为12%,最低 平均信用度为7。请用线性规划方 法求解该问题。
1.1 线性规划问题及其数学模型
解:
(1)决策变量
线性规划
本问题的决策变量是在每种投资项目上的投 资 额 。 设 xi 为 项 目 i 的 投 资 额 ( 万 元 ) ( i=1,2,,6)
(2)目标函数
本问题的目标为总投资风险最小,即
Min z 0.18x1 0.06x2 0.10x3 0.04x4 0.12x5 0.08x6
线性规划
运筹学
线性规划
线性规划
本章内容要点
线性规划问题及其数学模型;
线性规划的电子表格建模; 线性规划的多解分析。
线性规划
本章内容
1.1 线性规划问题及其数学模型
1.2 线性规划问题的图解法
1.3 用Excel“规划求解”功能求解线性规划问题
1.4 线性规划问题求解的几种可能结果
本章主要内容框架图
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解 无穷多解 无解 可行域无界(目标值不收敛)
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解
线性规划问题具有 唯一解是指该规划 问题有且仅有一个 既在可行域内、又 使目标值达到最优 的解。例1.1就是一 个具有唯一解的规 划问题
(1-1)
线性规划问题及其数学模型
第一章线性规划问题及其数学模型一、问题旳提出在生产管理和经营活动中常常提出一类问题,即怎样合理地运用有限旳人力、物力、财力等资源,以便得到最佳旳经济效果。
例1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需旳设备台时及A、B两种原材料旳消耗,如表1-1所示。
表1-1该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应怎样安排计划使该工厂获利最多?这问题可以用如下旳数学模型来描述,设x1、x2分别表达在计划期内产品I、II旳产量。
由于设备旳有效台时是8,这是一种限制产量旳条件,因此在确定产品I、II旳产量时,要考虑不超过设备旳有效台时数,即可用不等式表达为:x1+2x2≤8同理,因原材料A、B旳限量,可以得到如下不等式4x1≤164x2≤12该工厂旳目旳是在不超过所有资源限量旳条件下,怎样确定产量x1、x2以得到最大旳利润。
若用z表达利润,这时z=2x1+3x2。
综合上述,该计划问题可用数学模型表达为:目旳函数 max z =2x 1+3x 2 满足约束条件 x 1+2x 2≤84x 1≤16 4x 2≤12 x 1、x 2≥0例2 某铁路制冰厂每年1至4季度必须给冷藏车提供冰各为15,20,25,10kt 。
已知该厂各季度冰旳生产能力及冰旳单位成本如表6-26所示。
假如生产出来旳冰不在当季度使用,每千吨冰存贮一种季度需存贮费4千元。
又设该制冰厂每年第3季度末对贮冰库进行清库维修。
问应怎样安排冰旳生产,可使该厂整年生产费用至少?解:由于每个季度生产出来旳冰不一定当季度使用,设x ij 为第i 季度生产旳用于第j 季度旳冰旳数量。
按照各季度冷藏车对冰旳需要量,必须满足:⎪⎪⎩⎪⎪⎨⎧++++++33231343221242114144x x x x x x x x x x 。
,,,25201510==== 又每个季度生产旳用于当季度和后来各季度旳冰旳数量不也许超过该季度旳生产能力,故又有⎪⎪⎩⎪⎪⎨⎧++++++33232213121143424144x x x x x x x x x x 。
第1章-线性规划模型-宋
第一章 线性规划模型线性规划(Linear Programming )是数学规划的一个重要组成部分,是最优化与运筹学理论中的一个重要分支和常用的方法,是最优化理论的基础性内容。
第一节 线性规划问题及其数学模型一、问题的提出在生产管理和经营活动中经常提出一类问题,即如何利用有限的人力、物力、财力等资源,以便得到最好的经济效果。
例1 生产计划问题某工厂在计划期内要安排生产Ⅰ、Ⅱ的两种产品,已知生产单位产品所需的设备台时,A 、B 两种原材料的消耗以及每件产品可获得的利润如下表所示。
问应如何安排生产计划使该工厂获利最多?解:设12,x x 分别表示在计划期内生产产品Ⅰ、Ⅱ的产量。
由于资源的限制,所以有:机器设备的限制条件: 1228x x +≤原材料A 的限制条件: 1416x ≤(称为资源约束条件) 原材料B 的限制条件: 2412x ≤同时,产品Ⅰ、Ⅱ的产量不能是负数,所以有120,0x x ≥≥(称为变量的非负约束)。
显然,在满足上述约束条件下的变量取值,均能构成可行方案,且有许许多多。
而工厂的目标是在不超过所有资源限量的条件下,如何确定产量12,x x 以得到最大的利润,即使目标函数1223z x x =+的值达到最大。
综上所述,该生产计划安排问题可用以下数学模型表示:例2 运输问题某公司经销某种产品,三个产地和四个销地的产量、销量、单位运价如下表所示。
问在保证产销平衡的条解:(1)决策变量:设(1,2,3;1,2,3,4)ij x i j ==为从产地i 运到销地j 的运量(2)目标函数:总运费最小3411min ij iji j z c x===∑∑(3)约束条件: 产量约束 销量约束 非负约束 模型为:二、线性规划问题的模型上述几例所提出的问题,可归结为在变量满足线性约束条件下,求使线性目标函数值最大或最小的问题。
它们具有以下共同的特征。
(1)每个问题都可用一组决策变量12(,,,)n x x x 表示某一方案,其具体的值就代表一个具体方案。
1.1 72线性规划问题及其数学模型
4 3 2
最优解
8 0 3 4
x1
无穷多最优解(多重最优解)
即可行域的范围延伸到无 例: max z=x1+x2
穷远,目标函数值可以无 穷大或无穷小。 ≤4 s.t. -2x1+ x2 一般来说,这说明模型有 x1 - x2 ≤2 错,忽略了一些必要的约 束条件。 ≥0, x2≥0 x1 x2
无穷 多个最优解
2.可行域为非封闭的无界区域
x2 x2 x2
z
z
x1 x1
Z
x1
唯一最优解
无穷多个最优解
无界解
3、可行域为空集
x2
空集 x1
无可行解
两个变量的LP问题的解的启示:
(1)可行域非空时,它是有界或无界凸多边形 (凸集) ,顶点个数只有有限个。 (2)求解LP问题时,解的情况有: 唯一最优解;无穷多最优解;无界解;无可行解。 (3)若可行域非空且有界则必有最优解, 若可行域无界,则可能有最优解,也可能无最优解。 (4)若最优解存在,则最优解或最优解之一一定是 可行域的凸集的某个顶点。 (5)若在两个顶点上同时取到最优解,则这两点的 连线上 任一点都是最优解
由图解法得到的结论:
求解线性规划问题最优解的方法:
确定可行域 = 凸集(凸多边形) 确定可行域顶点 = 求基可行解 寻找最优解, 如果最优解存在,则必在可行域的某一顶点 = 在基可行解中寻找
图解法优点: 直观、易掌握。有助于了解解的结构。
图解法缺点:
只能解决低维问题,对高维无能为力。
1.3 线性规划问题的标准型式
m i nZ
C
j 1
n j1
n
j
Xj
线性规划
M1 : 目标函数: max z c 1 x 1 c 2 x 2 c n x n a 11 x 1 a 12 x 2 a 1 n x n b1 a x a 22 x 2 a 2 n x n b 2 21 1 约束条件: a x a x a x b m2 2 mn n n m1 1 x 1 , x 2 , , x n 0
24
第2节 应用举例
最终计算表(第3次计算)
c j→ CB 0.1 -0.3 0 XB x2 x4 x1 c j -z j b 10 50 30 0 x1 0 0 1 0 0.1 x2 1 0 0 0 0.2 x3 -1 1 1 0 0.3 x4 0 1 0 0 0.8 x5 -9/10 1/3 13/10 -0.74 -M x6 3/5 0 -1/5 -M + 0.06 -M x7 -3/10 1/3 1/10 -M + 0.12 -M x8 -1/5 0 2/5 -M -0.02 θ
27
第2节 应用举例
表1-7表明这些原材料供应数量的限额。加入到产品A、 B、D的原材料C总量每天不超过100kg,P的总量不超过 100kg,H总量不超过60kg。
表1-7
原材料名称 C P H 每 天 最 多 供 应 量 ( kg) 100 100 60 单 价 /(元 /kg) 65 25 35
29
第2节 应用举例
约束条件可表示为:
1 2 1 4 x1 x1 1 2 3 4 x2 x2 1 2 1 4 x3 x3 x1 x2 x3 x1 , , x 9 0 3 4 1 2 x4 x4 1 4 1 2 x5 x5 1 4 1 2 x6 x6 x7 x5 x6 x8 0 0 0 0 100 100 x 9 60
线性规划问题的数学模型
工地 砖厂
运价
A1
A2
B1
B2
B3
50
60
70
60
110
160
在线才智在线才智在线才智在线才
智在线才智
2
解:设 xi j表示由砖厂Ai 运往工地 Bj 砖的数量(i=1,2; j=1,2,3)
运量
工
地
B1
B2
B3
发量
砖厂
A1
x11
x12
x13
23
A2
x21
x22
x23
27
收量 17 18 15 50
⑵ 存在一定的限制条件,称为约束条件。这些约束条件 都可以用一组线性等式或不等式来表示。
⑶ 都有一个期望达到的目标,并且这个目标可以表示为 决策变量的线性函数(称为目标函数)。按所研究问题的不 同,要求目标函数值最大化或最小化。
我们将具有上述三个特点的最优化问题归结为线性规划问
题,其数学模型称为线性规划问题的数学模型,简称线性规划 数学模型。
智在线才智
15
解:
x2 x1 + x2 = -2
x1
-x1 + x2 =1
没有可行解,当然没有最优解。
在线才智在线才智在线才智在线才
智在线才智
16
第三节 单纯形法
(一)线性规划问题的标准形式
线性规划问题的数学模型有各种不同的形式。为了便于讨论,需要将线性 规划数学模型写成统一格式。
线性规划问题的标准型是:
4.配料问题
5.布局问题
6.分配问题
在线才智在线才智在线才智在线才
智在线才智
1
(二)线性规划问题的数学模型
1-1线性规划问题及模型
西安邮电大学 现代邮政学院
Xi'an post and telecommunications university modern post College
第一章 线性规划与单纯形法
1.1线性规划问题及模型 运 筹 学
主要内容
01 线性规划问题
运
02 线性规划模型及特征
筹
学
一 线性规划问题
二 线性规划模型
2.线性规划模型的一般形式
运 筹 学
二 线性规划模型
简写式
运 筹 学
n
max(或 min)Z c j x j j 1
s.t.
n
aij x j
(或 ,)bi
j1
xj 0
i 1,,m j 1,, n
二 线性规划模型
运向量式 筹 学
max(或 min ) Z CX
星期 需要人数 星期 需要人数
运
一
300
五
480
筹
二
300
六
600
学
三
350
日
550
四
400
应如何安排每天的上班人数,使商场总的营业员最少。
一 线性规划问题
在上班 周 周 周 周 周 周 周 一二三四五六日
开始上班
周一
周二
运
周三
筹
周四
学
周五 周六
周日
一 线性规划问题
解:设xj(j=1,2,…,7)为休息2天后星期一到星
期日开始上班的营业员,则这个问题的线性规划模型为
min Z x1 x2 x3 x4 x5 x6 x7
x1 x4 x5 x6 x7 300
x1
线性规划概念与数学模型
约束条件的图解:
每一个约束不等式在平面直角坐标系中都 代表一个半平面,只要先画出该半平面的边 界,然后确定是哪个半平面。
怎么画边界
?
怎么确定 半平面
以第一个约束条件(工时)
x1+2 x2 8 为例 说明约束条件的图解过程。
如果全部的劳动工时都用来生产甲 产品而不生产
乙产品,那么甲产品的最大可能产量为8吨,计算
D
条件的边界--
4
Q4
Q3
直线CD,EF: E
3
F
4x1 =16,4x2 =12
2
Q2 4x2 = 12
1
Q1
0
1
2
3
4
5
6
7
8
9
B
C
x1+4x2 = 8
4x1=16
三个约束条件及非负条件x1,x2 0所代表的公共部分
--图中阴影区,就是满足所有约束条件和非负条件的点的
集合,即可行域。在这个区域中的每一个点都对应着一个可
目标函数值递增的方向, 用箭头标出这个方向。 图中两条虚线 l1和l2就 分别代表 目标函数等值线 2x1+3x2=0 和 2x1+3x2=6, 箭头表示使两种产品的总 利润递增的方向。
5
l3
A4
E
B
3
l1 l2 2
1
1
2
D
F 4x1=12
Q2 4,2
x1+2x2 = 8
A
3
4
5
6
7
8
9
B
4x1=16 C
1 1
1 1
1 1
B1 1
4 , B2 1
线性规划问题及其数学模型
6
例 : min z x1 2 x2 3x3
x1
x2 x3 7 x7
x1
x2 x3 2
3x1 x2 2 x3 7
x1, x2 0, x3无约x束 3 x4 x5
上页 下页 返回
解 :标准形为
max z x1 2x2 3(x4 x5 ) 0x6 0x7
供需平衡
上页 下页 返回
线性规划模型举例
(一) 运输问题 (二) 布局问题 (三) 分派问题 (四) 生产计划问题 (五) 合理下料问题
上页 下页 返回
线性规划模型的条件
• (1)要求解问题的目标函数能用数 值指标来反映,且为线性函数;
• (2)存在着多种方案; • (3)要求达到的目标是在一定约束
• “” 约束:加入非负松驰变量
例: max z 2x1 3x2 0x3 0x4 0x5
x1 2x2 x3
8
4
x1
4 x2
x4 16 x5 12
x1, x2 , x3, x4 , x5 0
上页 下页 返回
• “” 约束: 减去非负剩余变量;
• xk可正可负(即无约束);
x 令 xk Mxak' x xk" xk' , xk" 0
i 1
每人只做一件工作
n xij 1
每人i 对每1,件2工,作只, n有
j 1
做与不做两种情况
xij 0 或 1 i, j 1,2,, n
上页 下页 返回
(四)生产组织与计划问题
(Ⅰ) 生产的机器最多 (Ⅱ) 总的加工成本最低 (Ⅲ)生产存储问题
上页 下页 返回
(四)生产组织与计划问题 应如何分配机
第01次课--第一章 线性规划
(如果取≥0)
x1 , x2 , , xn (, )0
约束条件 (1-3)
决策变量
30
非负约束条件
国防科技大学
第一节 线性规划的问题及其数学模型
标准形式
max Z c1 x1 c2 x2
cn xn
顶点同时得到最优解,则它们连线上的任意一点都是最
优解,即有无穷最优解。
28
国防科技大学
第一节 线性规划的问题及其数学模型
图解法的优缺点分析
• 直观、简便 • 变量数多于三个以上时,无能为力
通用普遍的 求解方法 (代数方法)
?
单纯形法
模型的标准形式
?
29
国防科技大学
第一节 线性规划的问题及其数学模型 线性规划的数学模型的一般形式:
2
国防科技大学
第一章 线性规划与单纯形法
在军事活动,以及生产、管理、经营等社 会活动中经常提出一类问题,即如何合理地利用 有限的人力、物力、财力等资源,以得到最好的 效果。
3
国防科技大学
第一节 线性规划的问题及其数学模型
例 兵力运送问题 设有A、B两种型号的直升机,每次A能运 载35人,需驾驶员2人,B能运载20人,需驾
目标函数取 最大值
j 1 a11 x1 a12 x2 a1n xn b1 n a21 x1 a22 x2 a2 n xn b2 简记做 aij x j bi (i 1, 2, , m) j 1 x 0 ( j 1, 2, , m) a x a x a x b j mn n m m1 1 m 2 2 约束条件为等式, x , x , , x 0 且右端项为非负 1 2 n 值
线性规划问题及其数学模型
设 Q 为第i处设厂的规模,即年产产品数量(万吨),则有
i
Q 1 = y 11 + y 12 , Q 2 = y 21 + y 22 , Q 3 = y 31 + y 32
据每吨产品需3吨原料,有 (生产的产品全部+ x 31 = 3 ( y 11 + y 12 )
)
例8:厂址选择问题 甲、乙、丙三地,每地都生产一定数量的原料,也消耗一定 数量的产品(如下表)。已知制成每吨产品需3吨原料,各地之 间的距离为:甲—乙,150千米;甲—丙,100千米;乙—丙, 200千米。假定每万吨原料运输1千米的运价为5000元,每万吨 产品运输1千米的运价为6000元。由于地区差异,在不同地点设 厂的生产费用也不同。试问究竟在哪些地方设厂,规模多大, 才能使总费用最小?另外,由于其他条件限制,在乙处建厂的 规模(生产的产品数量)不能超过5万吨
解:设xij为第i年投资到第j个方向的资金
第一年年初: 第二年年初: 第三年年初: 第三年底:
x11 + x12 = 3
x12 ≤ 2 x23 ≤ 1.5 x34 ≤ 1
x21 + x23 = 1.2 x11
x31 + x34 = 1.5x12 +1.2x21
z = 1.6 x23 + 1.2 x31 + 1.4 x34
2 x2 + x3 + 3x5 + 2 x6 + x7 = 10000 x1 + x3 + 3x4 + 2 x6 + 3x7 + 4 x8 = 10000
x j ≥ 0 . j = 1, 2 , 3 , K ,8
例6:某厂在今后四个月内需租用仓库堆存货物。已知各个月所需 的仓库面积数如表1所示。又知,当租借合同期限越长时,场地租 借费用享受的折扣优待越大,有关数据如表2所示。租借仓库的合 同每月初都可办理,每份合同应具体说明租借的场地面积数和租借 期限。工厂在任何一个月初办理签约时,可签一份,也可同时签若 干份租借场地面积数和租借期限不同的合同。为使所付的场地总租 借费用最少,试建立一个线性规划模型。
线性规划问题数学模型的组成部分及其特征
线性规划问题数学模型的组成部分及其特征
线性规划问题是一种典型数学优化问题,广泛应用于工业服务管理、决策理论、财务等当今社会的各个领域,是整个运筹学最基本的实践方法之一。
其数学模型由三部分组成:目标函数、约束条件和决策变量。
首先便是目标函数,它是指将求解目标如最大化或最小化表达为函数形式的模
型中的函数,它常用于表述系统的最终目的或期望得到的结果。
其次是约束条件,即为了减少不确定性,对变量做必要的约束,它有助于将解
得到确定性,充分考虑变量各自之间的关系,将开放性变换成固定性,此外,它还为该问题提供了更多的参数。
最后便是决策变量,影响目标函数的最大或最小值的变量及其取值,这些变量
是被试者可以控制的。
决策变量是模型计算中不可缺少的环节,它属于未知量,并且给出可行解。
以上便是线性规划问题数学模型的组成部分以及其特征,它们可以在诸多领域
用于解决多样化的问题,为科学发展作出了重大贡献。
线性规划问题及其数学模型
2要有各种资源和使用有关资源的技术数据 创造新价值的数据;
a i; jcj(i1 , m ;j1 , n)
共同的特征继续
3 存在可以量化的约束条件这些约束条件可 以用一组线性等式或线性不等式来表示;
4 要有一个达到目标的要求它可用决策变量 的线性函数称为目标函数来表示按问题的 不同要求目标函数实现最大化或最小化
约束条件:
a
21
x1
a22
x
2
a2n xn
b2
a
m
1
x1
am 2 x2
a mn xn
bn
x1 , x2 , , xn 0
线性规划问题的几种表示形式
M
' 1
:
n
目标函数:max z c j x j
j 1
约束条件:
n
aij x j
j 1
bi ,
i 1,2, ,m
x
j
0,
j 1,2, ,n
弛变量x6; 3 在第二个约束不等式≥号的左端减去剩
余变量x7; 4 令z′= -z把求min z 改为求max z′即可得到
该问题的标准型
例4的标准型
max z ' x1 2 x 2 3( x 4 x5 ) 0 x6 0 x7
x1 x2 ( x4 x5 ) x6
7
x1 x2 ( x4 x5 )
经第2工厂后的水质要求:
[0.8(2x1)(1.4x2 )] 2
700
1000
数学模型
目标函数 约束条件
min z 1000 x1 800 x2 x1 1
0.8 x1 x2 1.6 x1 2 x2 1.4 x1 , x2 0
第一章 线性规划
第一章 线性规划
(Linear Programming, LP)
概述
• 线性规划问题的提出最早是1939年由前苏联 数学家康托洛维奇在研究铁路运输的组织问题、 工业生产的管理问题时提出来的。
(5)若bi < 0,则-bi > 0
举例: 化下列线性规划为标准形
max z=2x1+2x2-4x3 x1 + 3x2-3x3 ≥30 x1 + 2x2-4x3≤80 x1、x2≥0,x3无限制
max z=2x1+2x2-4x3’+4x3” x1 + 3x2-3x3’+3x3” –x4 = 30 x1 + 2x2-4x3+ 4x3” + x5 = 80 x1、x2 、x3’、x3” 、x4、x5 ≥0
称X0为该线性规划对应与基B的一个基本解。
同样,在A中任选m个线性无关的列向量都可以组成一个基, 对应基一个基本解。对于一个LP最多有多少呢?从n个中 选m个进行组合,即:
Cnm=n!/[(n-m)!m!] 因此,基本解是有限的。
举例:找出下列LP所有的基及其对应的基本解 max z=6x1+4x2 2x1 + 3x2≤100 4x1 + 2x2≤120 x1、x2≥0
资源
产品
甲
乙 资源限制
A
1
B
2
C
0
单位产品利润(元/件) 50
1
300kg
1
400kg
1
250kg
100
• 决策变量:x1、x2——分别代表甲、乙两
线性规划的解法
线性规划的解法线性规划(Linear Programming)是数学优化的一个重要分支,旨在寻求一组最优解,以满足一系列线性约束条件。
在实际问题中,线性规划方法被广泛应用于资源分配、生产调度、运输计划等领域。
本文将介绍线性规划的解法及其应用。
一、线性规划问题的描述与模型建立线性规划问题可以用数学模型来描述,一般表示为:$max\{c^Tx | Ax \leq b, x \geq 0\}$其中,$c$表示目标函数的系数向量,$x$表示决策变量的值向量,$A$和$b$分别表示约束条件的系数矩阵和常数向量。
解决线性规划问题的关键是确定目标函数和约束条件,以及求解最优解的方法。
二、单纯形法(Simplex Method)单纯形法是解决线性规划问题最常用的方法之一,由乔治·丹尼格(George Dantzig)于1947年提出。
该方法基于下面的原理:从一个顶点出发,沿着边界不断移动到相邻的顶点,直到找到目标函数的最大(或最小)值。
具体而言,单纯形法的步骤如下:1. 将线性规划问题转化为标准形式(如果不满足标准形式)。
2. 选择一个初始基本可行解。
3. 判断当前解是否为最优解,若是,则结束;否则,进行下一步。
4. 选择一个进入变量和一个离开变量,即确定下一个顶点。
5. 进行变量的调整,即计算新的基本可行解。
6. 重复3-5步,直到找到最优解。
三、内点法(Interior Point Method)内点法是另一种常用的线性规划求解方法,其优点是能够在多项式时间内找到最优解。
与单纯形法相比,内点法不需要从一个顶点移动到相邻的顶点,而是通过在可行域内搜索,在每次迭代中逐渐接近最优解。
内点法的基本思路是通过寻找原问题的拉格朗日对偶问题的最优解来解决线性规划问题。
它通过引入一个额外的人工变量,将原问题转化为一个等价的凸二次规划问题,并通过迭代的方式逐步逼近最优解。
四、应用举例线性规划方法在各个领域都有广泛的应用。
B_第五章 线性规划
练习: 将下列线性规划问题化成标准型 1、 min Z= 5x1+ x2 + x3 3x1+ x2 - x3≤7 -3x1+ x2 ≤6 s.t x1+ 2x2≤4 x2≥-3, x1无限制
2、
max Z= -x1+4 x2 s.t x1- 2x2+4x3≥-6 x2+3x3 =3 x1 ,x2≥0, x3无限制
2.1、图解法:
§2 线性规划图解法
图解法不是解线性规划的主要方法,只是用于说明线性规 划解的性质和特点。只能解两个变量问题。 (用图解法求解,线性规划不需要化成标准型) 图解法的步骤: 1、约束区域的确定 2、目标函数等值线 3、平移目标函数等值线求最优值
线性规划解的几种可能情况
1、唯一最优解 2、无穷多最优解 3、无可行解 4、无有限最优解(无界解)
A—系数矩阵
b—资源向量
线性规划问题模型的标准型 分量形式:线性规划(LP)的标准型: 目标函数: max z=c1 x1+ c2 x2+ …+ cn xn 约束条件: a11 x1 + a12 x2+ …+ a1n xn=b1 s.t a21 x1 + a22 x2+ …+ a2n xn=b2 … … … am1 x1 + am2 x2+ …+ amn xn=bm x1≥0,x2≥0,…,xn≥0 且bi≥0,若 bi<0,则乘(-1) 注: 有些书中以min型目标函数为标准型
第五章 线性规划
第一节
线性规划问题
(Linear Programming )
§1 线性规划问题及其数学模型
问题1:某工厂计划生产甲、乙两种产品。所需的设备台 时及A、B两种原材料消耗,详见下表
《线性规划》课件
其中,bi≥0 (i=1,2,,m)
不符合标准型的几个方面:
⑴目标函数为 min z=c1x1+c2x2++cnxn 令z=-z ,变为 max z= -c1x1- c2x2- -cnxn
⑵约束条件为 a11x1+a12x2++a1nxn≤b1 加入非a1负1x1变+a量12xx2n++1,+称a为1nx松n+弛xn+变1=量b1,有
⑴用一组变量表示某个 线性规划模型的一般形式
方案,一般这些变量取 如下:
值是非负的。
⑵存在一定的约束条件, 可以用线性等式或线性 不等式来表示。
max(min)z c1x1 c2 x2 cn xn a11x1 a12 x2 a1n xn (, )b1 a21x1 a22 x2 a2n xn (, )b2
σ j 3-6M –1+M –1+3M 0 -M 0 0 X4 3 -2 0 1 0 0 -1 10 X6 0 (1) 0 0 -1 1 -2 1 X3 -2 0 1 0 0 0 1 1 σ j 1 -1+M 0 0 -M 0 1-3M X4 (3) 0 0 1 -2 2 -5 12 X2 0 1 0 0 -1 1 -2 1 X3 -2 0 1 0 0 0 1 1
用单纯行法求解线性规划问题后,应回答下面 几个问题:
⑴是否解无界?上面的步骤已作出回答。
⑵是否无可行解?求解后,若人工变量都已取 0,则有可行解;否则,无可行解。
⑶唯一最优解还是无穷多最优解?在最后的单 纯形表中,若所有非基变量的检验数都严格小于0, 则为唯一最优解;若存在某个非基变量的检验数等 于0,则有无穷多最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上页 下页 返回
该计划的数学模型
目标函数 max Z 2x1 3x2
x1 2x2 8
约束条件s.t
4x1 16 4x2 12
x1, x2 0
上页 下页 返回
•上述问题推广到一般情况如下:
•有m种不同资源(例如原材料,动力资源,资金,劳力 等)可以用来生产n种不同产品。假设有关的数据为:
• 可行解( Feasible sol指ut决io策n变)量取值时受到的
• 可行域(Feasible regi各常o种表n)资达源为条含件决的策限变制量,的通等 • 最优解(Optimal solution)式或不等式。
可行域中使目标 函数达到最优的 决策变量的值
满足约束条件的决策 变量的取值
满足约束条件的决 策变量的取值范围
a11x1 a12 x2 L a1n xn b1
s.t
a21x1 LL
a22 x2 LLL
L a2n xn b2 LLLLLL
am1x1 am2 x2 L amn xn bm
x1 0, x2 0,L , xn 0
上页 下页 返回
【例1.2】配料问题一饲养场饲养动物出售,每只动 物每天至少需要700克蛋白质, 30克矿物质,100毫克
30 100
x1, x2 , x3, x4 0
上页 下页 返回
•上述模型推广到一般情况为:
•每只动物每天至少需要有m种不同营养成分bi; •有n种饲料可供选用,每公斤第j种饲料所含第i种
营养成分量为aij;
•第j种饲料的单价为cj 。 i=1,2,…,m, j=1,2,…,n。
•设x1、x2、…、xn 分别表示n种产品的产量,则其 数学模型为:
x13 x23 15
xij 0(i 1, 2, j 1, 2,3)
上页 下页 返回
问题中要确定的未知量,表
•基本概念
明规划中的用数量表示的方 案、措施,可由决策者决定
• 决策变量(D和ec控is制io。n variables)
• 目标函数(Objective function) • 约束条件(Constraint cond它it是io决n策s)变量的函数
•第i种资源的拥有量为bi ;i=1,2,…,m,
生产一个单位第j种产品需要消耗第i种资源的数量为aij;
第 i种产品的单价(或利润产值等)为cj 。j=1,2,…,n。
•设x1、x2、…、xn 分别表示n种产品的产量,则其 数学模型为:
上页 下页 返回
max Z c1x1 c2 x2 L cn xn
利润
2
II 资源限量
2 8 台时
0
16kg
4
12kg
3
上页 下页 返回
如何安排生产 使利润最大
?
产品 I
产品 2
上页 下页 返回
• 第1步 -确定决策变量
•设 x1 ——I的产量
x2 ——II的产量
z ——利润
是问题中要确定的未知量, 表明规划中的用数量表示的 方案、措施,可由决策者决 定和控制。
维生素。现有四种饲料可供选用,各种饲料每公斤 营养成分含量及单价如下表所示;
饲料
营养成分
ⅠⅡ
蛋白质
32
矿物质
1 0.5
维生素
0.5 1
单价 (元/公斤) 0.8 1.2
Ⅲ Ⅳ 需要量
1
5 700克
0.2 2 30克
0.3 2.5 100毫克
0.6 2
四种饲料各采购多少,才能使总费用最小?
上页 下页 返回
上页 下页 返回
线性规划问题的共同特征
• 一组决策变量X表示一个方案,一般X大 于等于零。
• 约束条件是线性等式或不等式。 • 目标函数是线性的。 求目标函数最大
化或最小化
上页 下页 返回
线性规划模型的一般形式
max(min)Z c1x1 c2 x2 ... cn xn a11x1 a12 x2 ... a1n xn (, )b1 .a..2.1.x..1.....a..2.2.x..2...............a..2.n.x..n......(...,....).b. 2 am1x1 am2 x2 ... amn xn (, )bm x1, x2 ,..., xn 0
【解】设 x1、x2、 x3、 x4分别表示四种饲料的采购 量,那么该问题的数学模型可以表示为:
min Z 0.8x1 1.2x2 0.6x3 2x4
3x1 2x2 x3 5x4 700
s.t
0.x51 x1
0.5x2 0.2x3 .2x4 x2 0.3x3 2.5x4
x1
x2
上页 下页 返回
第2步 --定义目标函数
Max Z = 2 x1 + 3 x2
上页 下页 返回
第3步 --表示约束条件
x1 + 2 x2 8
4 x1
16
4 x2 12
x1、 x2 0
I
设备 1 原材料 A 4 原材料 B 0
利润 2
II 资源限量 2 8 台时 0 16kg 4 12kg
上页 下页 返回
【例1.3】运输问题设有两个砖厂A1 、A2 ,产量分别为 23万块、27万块,现将其产品联合供应三个施工现场 B1 、 B2 、 B3 ,其需要量分别为17万块、18万块、15 万块。各产地到各施工现场的单位运价如下表:
现场
砖厂
B1
B2
B3
A1
5
14
7
A2
6
18
9
问如何调运才能使总运费最省?
第一节 线性规划问题 及其数学模型
❖ 线性规划问题的提出 ❖ 线性规划的基本概念 ❖ 线性规划的数学模型 ❖ 线性规划问题的标准形式
继续 返回
•问题的提出
【例1.1】 :生产计划问题某工厂生产 I.II 两种 产品。每件产品的利润,所耗A.B材料,设备及 这两种材料,设备的限额如表
I
设备
1
原材料 A 4 原材料 B 0
上页 下页 返回
min Z c1x1 c2 x2 L cn xn
a11x1 a12 x2 L a1n xn b1
s.t
a21x1 LL
a22 x2 LLL
L a2n xn b2 LLLLLL
am1x1 am2 x2 L amn xn bm
x1 0, x2 0,L , xn 0
上页 下页 返回
【解】设xij表示从砖厂Ai运至现场Bj的数量(i=1,2; j=1,2,3),则其数学模型如下:
min Z 5x11 14x12 7x13 6x21 18x22 9x23
x11 x12 x13 23
x21 x22 x23 27
s.t
x11 x21 17 x12 x22 18