三角函数及解三角形高考模拟考试题精选含详细答案

合集下载

三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。

根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。

根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。

根据正切的定义,$\tan A=\frac{a}{b}$。

根据余切的定义,$\cotA=\frac{b}{a}$。

根据正割的定义,$\sec A=\frac{c}{a}$。

根据余割的定义,$\csc A=\frac{c}{b}$。

2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。

2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。

4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。

5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。

6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。

2023届高考数学大题专项(三角函数与解三角形)练习(附答案)

2023届高考数学大题专项(三角函数与解三角形)练习(附答案)
DF=AC.
(1)若 D 为 BC 的中点,且△CDF 的面积等于△ABC 的面积,求∠ABC;
(2)若∠ABC=45°,且 BD=3CD,求 cos∠CFB.
参考答案
1.解 (1)f(0)=2cos20+sin 0=2.
(2)方案一:选条件①.f(x)的一个周期为 π.
f(x)=2cos2x+sin 2x=(cos 2x+1)+sin 2x=√2
6.(山东潍坊一模,17)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知向量 m=(c-a,sin B),n=(b-a,sin
A+sin C),且 m∥n.
(1)求 C;
(2)若√6c+3b=3a,求 sin A.
7.(山东模考卷,18)在△ABC 中,∠A=90°,点 D 在 BC 边上.在平面 ABC 内,过点 D 作 DF⊥BC,且
-B =4√3sin B
cos
2
sin
2
3
B+ sin B =6sin Bcos B+2√3sin2B=2√3sin 2B当 2B-
π
6
π

π
π
+√3.因为 0<B< ,所以- <2B6
3
6
6

.
6
π
π
,即 B= 时,△ABC 面积取得最大值 3√3.
2
3
4.解 (1)在△ABC 中,因为 a=3,c=√2,B=45°,由余弦定理 b2=a2+c2-2accos B,得 b2=9+2
由正弦定理得,c2=a+b2.
因为 a=4,所以 b2=c2-4.

解三角形三角函数高考模拟题

解三角形三角函数高考模拟题

三角函数、解三角形高考模拟题一、选择题1、在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a 2+c 2-b 2=3ac ,则B =( ) A.π6 B.π3 C.π6或5π6 D.π3或2π32、在△ABC 中,已知A =45°,AB =2,BC =2,则C =( )A .30°B .60°C .120°D .30°或150° 3、△ABC 的外接圆半径R 和△ABC 的面积都等于1,则sin A sin B sin C 的值为( ) A.14 B.32 C.34 D.12 4、若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,那么a 的取值范围是( ) A .(1,2) B .(2,3) C .(3,2) D .(1,2) 5、若sin θ+cos θ=2,则tan ⎝⎛⎭⎪⎫θ+π3的值是( )A .2- 3B .-2- 3C .2+ 3D .-2+ 3 6、设函数f (x )=2cos ⎝ ⎛⎭⎪⎫π2x -π3,若对于任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值为( )A .4B .2C .1 D.12二、解答题1、(德州二模)在△ABC 中,角A ,B ,C 的对边分别是a 、b 、c ,已知(cos ,cos ),(,2),m A B n a c b ==-且m//n. (I )求角A 的大小;(II )若4,a ABC =∆求面积的最大值。

2、青岛二中在锐角ABC ∆中,c b a ,,分别是角C B A ,,所对的边.已知()b c a p ,+=,()c b a c q --=,且q p ⊥.(I )求角A 的大小;(II )记)62sin()(sin 2)(2π+++=B C A B f ,求)(B f 的值域.3、在△ABC 中,,,A B C 为三个内角,,a b c 为三条边,23ππ<<C 且.2sin sin 2sin CA C ba b -=-(I )判断△ABC 的形状;(II )若||2BA BC +=,求BA BC⋅ 的取值范围.4、在锐角三角形ABC 中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,且.t a n t a n 1)t a n (t a n 3B A B A ⋅+=-(I )若222b c ab a -=-,求A 、B 、C 的大小;(II )已知向量|23|),sin ,(cos ),cos ,(sin n m B B n A A m -==求的取值范围.5、已知向量()cos ,1m x →=-,向量1,2n x →⎛⎫=-⎪⎝⎭,函数()f x m n m→→→⎛⎫=+⋅ ⎪⎝⎭.(Ⅰ)求()f x 的最小正周期T ;(Ⅱ)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,A 为锐角,1,a c ==,且()f A 恰是()f x 在[0,2π]上的最大值,求A ,b 和ABC ∆的面积.6、已知函数21()sin 2cos ().22f x x x x R =--∈(I )求函数()f x 的最小值和最小正周期;(II )设△ABC 的内角,,A B C 对边分别为,,a b c ,且()0c f C ==,若(1,s i n)m A =与(2,sin )n B =共线,求,a b 的值.7、已知函数2()2cos 1sin (01)f x x x x ωωωω=-+<<,直线()3x f x π=是图象的一条对称轴. (1)试求ω的值:(2)已知函数y=g (x )的图象是由y=()f x 图象上的各点的横坐标伸长到原来的2倍,然后再向左平移23π个单位长度得到,若6(2),(0,),sin 352g ππααα+=∈求的值。

三角函数与解三角形_测试题(有解析、答案)

三角函数与解三角形_测试题(有解析、答案)

三角函数与解三角形 测试题(有解析、答案)(时间120分钟,满分150分) 第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是符合题目要求的)1.已知α∈(π2,π),sin α=35,则tan(α+π4)等于 ( )A.17 B .7 C .-17 D .-7 解析:由α∈(π2,π),sin α=35,得tan α=-34,tan(α+π4)=1+tan α1-tan α=17.答案:A2.sin45°·cos15°+cos225°·sin15°的值为 ( )A .-32 B .-12 C.12 D.32解析:sin45°cos15°+cos225°sin15°=sin45°cos15°-cos45°sin15°=sin(45°-15°)=sin30° =12. 答案:C3.要得到y =sin(2x -π3)的图像,只要将y =sin2x 的图像 ( )A .向左平移π3个单位B .向右平移π3个单位C .向左平移π6个单位D .向右平移π6个单位解析:∵y =sin(2x -π3)=sin2(x -π6),∴只要将y =sin2x 的图像向右平移π6个单位便得到y =sin(2x -π3)的图像.答案:D4.在△ABC 中,若sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3 解析:∵sin 2A +sin 2B -sin A sin B =sin 2C , ∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =60°,∴S △ABC =12ab sin C =12×4×32= 3.答案:D5.有一种波,其波形为函数y =sin(π2x )的图像,若在区间[0,t ]上至少有2个波峰(图像的最高点),则正整数t 的最小值是 ( ) A .3 B .4 C .5 D .6 解析:由T =2πω=2ππ2=4,可知此波形的函数周期为4,显然当0≤x ≤1时函数单调递增, x =0时y =0,x =1时y =1,因此自0开始向右的第一个波峰所对的x 值为1,第二个 波峰对应的x 值为5,所以要区间[0,t ]上至少两个波峰,则t 至少为5. 答案:C6.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 ( )A .1B .2 C.3+1 D.3+2 解析:f (x )=(1+3tan x )cos x =cos x +3sin x =2sin(x +π6),∵0≤x <π2,∴f (x )max =2.答案:B7.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的θ 值为 ( )A .-π3B .-π6 C.5π6 D.2π3解析:由已知得:f (x )=2sin(2x +θ+π3),由于函数为奇函数,故有θ+π3=kπ⇒θ=kπ-π3(k ∈Z),可淘汰BC 选项,然后分别将A和D 选项代入检验,易知当θ=2π3时,f (x )=-2sin2x 其在区间[-π4,0]上递减. 答案:D8.若向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于 ( )A .-34 B.34 C .-14 D.14解析:∵a ⊥b ,∴a ·b =0, ∴4sin(α+π6)+4cos α-3=0,∴sin αcos π6+cos αsin π6+cos α=34,∴12sin α+32cos α=14,∴sin(α+π3)=14,∴sin(α+4π3)=-sin(α+π3)=-14.答案:C9.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则 ( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π2,φ=5π4解析:T 4=3-1=2,∴T =8,ω=2πT =π4令π4×1+φ=π2,得φ=π4. 答案:C10.设函数f (x )=A sin(ωx +φ),(A ≠0,ω>0,-π2<φ<π2)的图像关于直线x =2π3对称,它的周期是π,则 ( ) A .f (x )的图像过点(0,12)B .f (x )的图像在[5π12,2π3]上递减C .f (x )的最大值为AD .f (x )的一个对称中心是点(5π12,0)解析:T =π,∴ω=2.∵图像关于直线x =2π3对称,∴sin(2π3ω+φ)=±1即2π3×2+φ=π2+kπ,k ∈Z 又∵-π2<φ<π2∴φ=π6∴f (x )=A sin(2x +π6).再用检验法.答案:D第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知α是第二象限角,sin α=12,则sin2a 等于________解析:由已知得cos α=-32,则sin2α=2sin αcos α=2×12×(-32)=-32.答案:-3212.已知函数f (x )=2sin(ωx +φ)的图像如下图所示,则f (7π12)=________.解析:由图像知,函数的周期为32×T =π,∴T =2π3.∵f (π4)=0,∴f (7π12)=f (π4+π3)=f (π4+T 2)=-f (π4)=0.答案:013.计算:cos10°+3sin10°1-cos80°=________.解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin 240°=2cos50°2sin40°= 2. 答案: 214.设函数y =2sin(2x +π3)的图像关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________.解析:因为图像的对称中心是与x 轴的交点,所以由y =2sin(2x +π3)=0,x 0∈[-π2,0]得x 0=-π6.答案:-π615.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c 且a cos B -b cos A =35c .则tan A tan B的值为________.解析:由a cos B -b cos A =35c 及正弦定理可得sin A cos B -sin B cos A =35sin C ,即sin A cos B-sin B cos A =35sin(A +B ),即5(sin A cos B -sin B cos A )=3(sin A cos B +sin B cos A ),即sin A cos B =4sin B cos A ,因此tan A =4tan B ,所以tan Atan B=4. 答案:4三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)设函数f (x )=cos x -sin x ,试求f (α)的值.解:(1)∵cos(β-π4)=13,∴cos(2β-π2)=2cos 2(β-π4)-1=2×19-1=-79,即sin2β=-79.(2)∵0<α<π2<β<π,∴π4<β-π4<3π4,π2<α+β<3π2,∴sin(β-π4)>0,cos(α+β)<0,∴sin(β-π4)=223,cos(α+β)=-35.∴f (α)=cos α-sin α=2cos(α+π4) =2cos[(α+β)-(β-π4)]=2[cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4)]=2(-35×13+45×223)=16-3215.17.(本小题满分12分)如图,点A ,B 是单位圆上的两点,A ,B点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值;(2)求|BC |2的值.解:(1)∵A 的坐标为(35,45),根据三角函数的定义可知,sin α=45,cos α=35,∴1+sin2α1+cos2α=1+2sin αcos α2cos 2α=4918.(2)∵△AOB 为正三角形,∴∠AOB =60°.∴cos ∠COB =cos(α+60°)=cos αcos60°-sin αsin60°=35×12-45×32=3-4310, ∴|BC |2=|OC |2+|OB |2-2|OC |·|OB |cos ∠COB =1+1-2×3-4310=7+435. 18.(本题满分13分)(2010·黄冈模拟)△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且lg a-lg b =lgcos B -lgcos A ≠0. (1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(-m +n )=14,求a ,b ,c . 解:由题lg a +lgcos A =lg b +lgcos B ,故a cos A =b cos B . 由正弦定理sin A cos A =sin B cos B ,即sin2A =sin2B . 又cos A >0,cos B >0,故A ,B ∈(0,π2),2A,2B ∈(0,π)因a ≠b ⇒A ≠B ,故2A =π-2B . 即A +B =π2,故△ABC 为直角三角形.(2)由于m ⊥n ,所以2a 2-3b 2=0 ① 且(m +n )·(-m +n )=n 2-m 2=14,即8b 2-3a 2=14 ② 联立①②解得a 2=6,b 2=4,故在直角△ABC 中,a =6,b =2,c =10.19.(本小题满分12分)已知a =(sin x ,32),b =(cos x ,-1).(1)当a 与b 共线时,求2cos 2x -sin2x 的值; (2)求f (x )=(a +b )·b 在[-π2,0]上的值域.解:(1)∵a 与b 共线, ∴32cos x +sin x =0.∴tan x =-32. 故2cos 2x -sin2x =2cos 2x -2sin x cos x sin 2x +cos 2x=2-2tan x 1+tan 2x =2013. (2)∵a +b =(sin x +cos x ,12),∴f (x )=(a +b )·b =(sin x +cos x ,12)·(cos x ,-1).∴sin x cos x +cos 2x -12=12(sin2x +cos2x )=22sin(2x +π4). ∵-π2≤x ≤0,∴-3π4≤2x +π4≤π4, ∴-1≤sin(2x +π4)≤22,∴f (x )的值域为[-22,12]. 20.(本小题满分13分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)根据表格提供的数据求函数f (x )的一个解析式; (2)根据(1)的结果,若函数y =f (kx )(k >0)周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰 有两个不同的解,求实数m 的取值范围. 解:(1)设f (x )的最小正周期为T ,得 T =11π6 -(-π6)=2π, 由T =2πω,得ω=1.又⎩⎪⎨⎪⎧ B +A =3B -A =-1,解得⎩⎪⎨⎪⎧A =2B =1. 令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3,∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的周期为2π3,又k >0,∴k =3. 令t =3x -π3,∵x ∈[0,π3],∴t ∈[-π3,2π3]如图sin t =s 在[-π3,2π3]上有两个不同的解的充要条件是s ∈[32,1),∴方程f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解的充要条件是m ∈[3+1,3),即实数m 的取值范围是[3+1,3). 21.(本小题满分13分)已知函数y =|cos x +sin x |.(1)画出函数在x ∈[-π4,7π4]上的简图;(2)写出函数的最小正周期和在[-π4,3π4]上的单调递增区间;试问:当x 在R 上取何值时,函数有最大值?最大值是多少?(3)若x 是△ABC 的一个内角,且y 2=1,试判断△ABC 的形状. 解:(1)∵y =|cos x +sin x |=2|sin(x +π4)|,∴当x ∈[-π4,7π4]时,其图像如图所示.(2)函数的最小正周期是π,在[-π4,3π4]上的单调递增区间是[-π4,π4];由图像可以看出,当x =kπ+π4(k ∈Z)时,该函数有最大值,最大值是 2.(3)若x 是△ABC 的一个内角,则有0<x <π, ∴0<2x <2π.由y 2=1,得|cos x +sin x |2=1⇒1+sin2x =1. ∴sin2x =0,∴2x =π,x =π2,故△ABC 为直角三角形.。

2024年上海市高考数学一模考试题分类(三角与三角函数 )汇编(附答案)

2024年上海市高考数学一模考试题分类(三角与三角函数 )汇编(附答案)

1一、三角定义、常用三角公式1.(2024 高三一模闵行 2)若sin 3α=,则()sin πα-=______.2.(2024高三一模青浦3)已知α满足cos m α=,则πsin 2α⎛⎫+=⎪⎝⎭.(结果用含有m 的式子表示).3.(2024高三一模杨浦3)若3sin 5α=,则cos 2α=______.4.(2024高三一模嘉定4)已知tan 2α=,则tan 2πα⎛⎫+= ⎪⎝⎭______.5.(2024高三一模金山5)已知角α、β的终边关于原点O 对称,则()cos αβ-=______.6.(2024高三一模松江5)已知3sin ,0,52πθθ⎛⎫=∈ ⎪⎝⎭,则tan 4πθ⎛⎫- ⎪⎝⎭的值为______.7.(2024高三一模虹口6)已知1cos 3x =-,且x 为第三象限的角,则tan 2x =______.8.(2024高三一模静安14)设α是第一象限的角,则2α所在的象限为()A.第一象限B.第三象限C.第一象限或第三象限D.第二象限或第四象限9.(2024高三一模长宁15)设点P 是以原点为圆心的单位圆上的动点,它从初始位置()01,0P 出发,沿单位圆按逆时针方向转动角02παα⎛⎫<< ⎪⎝⎭后达点1P ,然后继续沿单位圆按逆时针方向转动角4π到2P .若点2P 的横坐标为35-,则点1P 的纵坐标为()A.210B.25 C.325D.7210二、解三角形1.(2024 高三一模黄浦 8)在 ∆ABC 中,三个内角 A , B ,C 的对边长分别为a ,b ,c ,若5a 2 −5b 2 +6bc −5c 2 =0,则sin 2A 的值为______.2.(2024 高三一模松江 9)在 ∆ABC 中,设角 A , B ,C 所对边的边长分别为a ,b ,c ,若a =3,c =5, B =2A ,则边长b =______.2024年上海市高考数学一模考试题分类(三角与三角函数 )汇编3.(2024高三一模普陀14)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =20c b C -+=,则该三角形外接圆的半径为()A.1B.C.2D.4.(2024高三一模虹口17)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若()sin sin sin ,sin m A B C A =+- ,(),n c b c a =+- ,且m //n .(1)求角B 的大小;(2)若△ABC 为锐角三角形,求sin sin y A C =+的取值范围.5.(2024高三一模奉贤17)在ABC ∆中,设角A 、B 及C 所对边的边长分别为a 、b 及c .cos sin A a B=+(1)求角B 的大小;(2)当a =b =c 和ABC ∆的面积S .6.(2024高三一模嘉定17)已知三角形ABC ,1CA CB ⋅=- ,三角形的面积12S =,(1)求角C 的值;(2)若3sin cos 4A A =,2a =,求c .7.(2024高三一模宝山18)在ABC ∆中,角C B A 、、的对边分别为c b a 、、.(1)若2sin a B =,求角A 的大小;(2)若BC 边上的高等于2a ,求cbb c +的最大值.8.(2024高三一模崇明18)在ABC ∆中,5a =,6b =.(1)若4cos 5B =-,求A 和ABC ∆外接圆半径R 的值;(2)若ABC ∆的面积4S =,求c 的值.9.(2024高三一模闵行18)在ABC △中,角A B C 、、所对边的边长分别为a b c 、、,且2cos a c B c -=.(1)若1cos 3B =,3c =,求b 的值;(2)若ABC △为锐角三角形,求sin C 的取值范围.10.(2024高三一模青浦18)在△ABC 中,角,,A B C 所对的边分别为a ,b ,c ,且满足2220a c b ac -++=.(1)求角B 的大小;(2)若23b =,求△ABC 的周长的最大值.三、三角函数及其性质1.(2024 高三一模嘉定 3)函数y =sin πx 的最小正周期为______.2.(2024高三一模普陀6)若函数tan 3y x =在区间,6m π⎛⎫⎪⎝⎭上是严格增函数,则实数m 的取值范围为______.3.(2024高三一模闵行7)若将函数()()sin 20y x ϕϕπ=+<<的图像向右平移3π个单位,得到的图像所对应的函数为奇函数,则ϕ=______.4.(2024高三一模虹口8)已知函数()()cos 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如右图所示,则()f x =______.(第8题图)5.(2024高三一模青浦8)若函数cos()y x ϕ=+是奇函数,则该函数的所有零点是.6.(2024高三一模奉贤9)设函数()sin 0y x ωω=>在区间()0,2π上恰有三个极值点,则ω的取值范围为______.7.(2024高三一模金山9)已知()()sin 0y x ωω=>在区间[]0,π上是严格增函数,且其图像关于()4,0π对称,则ω的值为______.8.(2024高三一模黄浦10)若ϕ是一个三角形的内角,且函数()3sin 2y x ϕ=+在区间,46ππ⎡⎤-⎢⎥⎣⎦上是单调函数,则ϕ的取值范围是______.9.(2024高三一模杨浦10)函数()()cos f x x ωϕ=+,()0,2ϕπ∈,在x ∈R 上是单调增函数,且函数关于原点对称,则满足条件的数对(),ωϕ=______.10.(2024高三一模普陀10)设函数()sin 2y x ϕ=+02πϕ⎛<<⎫⎪⎝⎭的图像与直线y t =相交的连续的三个公共点从左到右依次记为A ,B ,C ,若2BC AB =,则正实数t 的值为______.11.(2024高三一模浦东新区10)如图,已知函数()sin 0,0,02y A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的图像与y 轴的交点为()0,1,并已知其在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()0,2x 和()02,2x π+-.记()y f x =,则3f π⎛⎫= ⎪⎝⎭______.12.(2024高三一模长宁11)若函数()sin cos x a x f x =+在27,36ππ⎛⎫⎪⎝⎭上是严格单调函数,则实数a 的取值范围为______.13.(2024高三一模静安17)记)(cos sin 32cos sin )(22R ∈++-=x x x x x x f λ,其中λ为实常数.(1)求函数)(x f y =的最小正周期;(2)若函数)(x f y =的图像经过点⎪⎭⎫ ⎝⎛0,2π,求该函数在区间⎥⎦⎤⎢⎣⎡π32,0上的最大值和最小值.四、三角应用题1.(2024 高三一模奉贤 10)某林场为了及时发现火情,设立了两个观测点A 和B . 某日两个观测点的林场人员都观测到C 处出现火情. 在 A 处观测到火情发生在北偏西40方向,而在B 观测到火情在北偏西60方向. 已知B 在A 的正东方向10km 处(如图所示),则BC AC -=______km.(精确到0.1km )2.(2024高三一模徐汇10)某建筑物内一个水平直角型过道如图所示,两过道的宽度均为3米,有一个水平截面为矩形的设备需要水平通过直角型过道.若该设备水平截面矩形的宽BC 为1米,则该设备能水平通过直角型过道的长AB 不超过______米.3.(2024高三一模长宁19)汽车转弯时遵循阿克曼转向几何原理,即转向时所有车轮中垂线交于一点,该点称为转向中心.如图1,某汽车四轮中心分别为A、B、C、D,向左转向,左前轮转向角为α,右前轮转向角为β,转向中心为O.设该汽车左右轮距AB为w米,前后轴距AD为l米.(1)试用w、l和α表示tanβ;(2)如图2,有一直角弯道,M为内直角顶点,EF为上路边,路宽均为3.5米,汽车行驶其中,左轮A、D与路边FS相距2米.试依据如下假设,对问题*做出判断,并说明理由.假设:①转向过程中,左前轮转向角α的值始终为30︒;②设转向中心O到路边EF的距离为d,若OB d<且OM ODw=,<,则汽车可以通过,否则不能通过;③ 1.570l=.2.680问题*:可否选择恰当转向位置,使得汽车通过这一弯道?图1图24.(2024高三一模杨浦19)某数学建模小组研究挡雨棚(图1),将它抽象为柱体(图2),底面ABC 与111A B C 全等且所在平面平行,ABC △与111A B C △各边表示挡雨棚支架,支架1AA 、1BB 、1CC 垂直于平面ABC .雨滴下落方向与外墙(所在平面)所成角为π6(即π6AOB ∠=),挡雨棚有效遮挡的区域为矩形11AA O O (O 、1O 分别在CA 、11C A 延长线上).(1)挡雨板(曲面11BB C C )的面积可以视为曲线段BC 与线段1BB 长的乘积.已知1.5OA =米,0.3AC =米,12AA =米,小组成员对曲线段BC 有两种假设,分别为:①其为直线段且π3ACB ∠=;②其为以O 为圆心的圆弧.请分别计算这两种假设下挡雨板的面积(精确到0.1平方米);(2)小组拟自制ABC △部分的支架用于测试(图3),其中0.6AC =米,π2ABC ∠=,CAB θ∠=,其中ππ62θ<<,求有效遮挡区域高OA 的最大值.图15.(2024高三一模浦东新区19)某街道规划建一座口袋公园.如图所示,公园由扇形AOC 区域和三角形COD 区域组成.其中A O D 、、三点共线,扇形半径OA 为30米.规划口袋公园建成后,扇形AOC 区域将作为花草展示区,三角形COD 区域作为亲水平台区,两个区域的所有边界修建休闲步道.(1)若π3AOC ∠=,2OD OA =,求休闲步道总长(精确到米);(2)若π6ODC ∠=,在前期民意调查时发现,绝大部分街道居民对亲水平台区更感兴趣.请你根据民意调查情况,从该区域面积最大或周长最长的视角出发,选择其中一个方案,设计三角形COD 的形状.6.(2024高三一模黄浦19)某公园的一个角形区域AOB 如图所示,其中23AOB π∠=.现拟用长度为100米的隔离档板(折线DCE )与部分围墙(折线DOE )围成一个花卉育苗区ODCE ,要求满足OD OC OE ==.(1)设333DOC πππαα⎛⎫∠=+-<< ⎪⎝⎭,试用α表示OD ;(2)为使花卉育苗区的面积最大,应如何设计?请说明理由.7.(2024高三一模金山19)网络购物行业日益发达,各销售平台通常会配备送货上门服务.小金正在配送客户购买的电冰箱,并获得了客户所在小区门户以及建筑转角处的平面设计示意图.图1图2第19题图(1)为避免冰箱内部制冷液逆流,要求运送过程中发生倾斜时,外包装的底面与地面的倾斜角α不能超过4π,且底面至少有两个顶点与地面接触.外包装看作长方体,如图1所示,记长方体的纵截面为矩形ABCD ,0.8m AD =, 2.4m AB =,而客户家门高度为2.3米,其他过道高度足够.若以倾斜角4πα=的方式进客户家门,小金能否将冰箱运送入客户家中?计算并说明理由.(2)由于客户选择以旧换新服务,小金需要将客户长方体形状的旧冰箱进行回收.为了省力,小金选择将冰箱水平推运(冰箱背面水平放置于带滚轮的平板车上,平板车长宽均小于冰箱背面).推运过程中遇到一处直角过道,如图2所示,过道宽为1.8米.记此冰箱水平截面为矩形EFGH , 1.2m EH =.设PHG β∠=,当冰箱被卡住时(即点H 、G 分别在射线PR 、PQ 上,点O 在线段EF 上),尝试用β表示冰箱高度EF 的长,并求出EF 的最小值,最后请帮助小金得出结论:按此种方式推运的旧冰箱,其高度的最大值是多少?(结果精确到0.1m )8.(2024高三一模徐汇19)2023年杭州亚运会首次启用机器狗搬运赛场上的运动装备.如图所示,在某项运动赛事扇形场地OAB 中,2AOB π∠=,500OA =米,点Q 是弧AB 的中点,P 为线段OQ 上一点(不与点O ,Q 重合).为方便机器狗运输装备,现需在场地中铺设三条轨道PO ,PA ,PB .记APQ θ∠=,三条轨道的总长度为y 米.(1)将y 表示成θ的函数,并写出θ的取值范围;(2)当三条轨道的总长度最小时,求轨道PO 的长.参考答案1一、三角定义、常用三角公式1. (2024 高三一模闵行 2)若sin 3α=,则()sin πα-=______.【答案】13【解析】诱导公式,()1sin sin 3παα-==.2.(2024高三一模青浦3)已知α满足cos m α=,则πsin 2α⎛⎫+=⎪⎝⎭.(结果用含有m 的式子表示).【答案】m【解析】由诱导公式πsin 2α⎛⎫+= ⎪⎝⎭cos α,所以答案为m .3.(2024高三一模杨浦3)若3sin 5α=,则cos 2α=______.【答案】725【解析】27cos 212sin 25αα=-=.4.(2024高三一模嘉定4)已知tan 2α=,则tan 2πα⎛⎫+= ⎪⎝⎭______.【答案】12-【解析】11tan cot 2tan 2πααα⎛⎫+=-=-=- ⎪⎝⎭.5.(2024高三一模金山5)已知角α、β的终边关于原点O 对称,则()cos αβ-=______.【答案】1-【解析】角α、β的终边关于原点O 对称,所以()21,k k αβπ-=+∈Z ,所以()cos 1αβ-=-.6.(2024高三一模松江5)已知3sin ,0,52πθθ⎛⎫=∈ ⎪⎝⎭,则tan 4πθ⎛⎫- ⎪⎝⎭的值为______.【答案】17-【解析】343sin ,0,,cos ,tan 5254πθθθθ⎛⎫=∈∴== ⎪⎝⎭,3tan tan1144tan 3471tan tan 144πθπθπθ--⎛⎫∴-===- ⎪⎝⎭++.7.(2024高三一模虹口6)已知1cos 3x =-,且x 为第三象限的角,则tan 2x =______.【答案】427-【解析】1cos 3x =-,且x 为第三象限的角,则sin 3x =-,tan x ∴=,()222tan 22242tan 21tan 71x x x ⨯∴===---.8.(2024高三一模静安14)设α是第一象限的角,则2α所在的象限为()A.第一象限B.第三象限C.第一象限或第三象限D.第二象限或第四象限【答案】C【解析】由题意,222k k ππαπ<<+,k ∈Z ,则24k k απππ<<+,k ∈Z ,当k 为奇数时,2α在第三象限,当k 为偶数时,2α在第一象限,故选C.8.(2024高三一模长宁15)设点P 是以原点为圆心的单位圆上的动点,它从初始位置()01,0P 出发,沿单位圆按逆时针方向转动角02παα⎛⎫<< ⎪⎝⎭后达点1P ,然后继续沿单位圆按逆时针方向转动角4π到2P .若点2P 的横坐标为35-,则点1P 的纵坐标为()A.10B.5C.5D.10【答案】D【解析】由题意可知3cos 45πα⎛⎫+=- ⎪⎝⎭,因为3444πππα<+<,所以4sin 45πα⎛⎫+=⎪⎝⎭24372sin sin sin cos cos sin 44444425510ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎫=+-=+-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故选D.二、解三角形1.(2024 高三一模黄浦 8)在 ∆ABC 中,三个内角 A , B ,C 的对边长分别为a ,b ,c ,若5a 2 −5b 2 +6bc −5c 2 =0,则sin 2A 的值为______.【答案】2425【解析】222222655650,5bca b bc c b c a -+-=∴+-=,222635cos 225bcb c a A bc bc +-∴===,4sin 5A ∴=,4324sin 22sin cos 25525A A A ∴==⨯⨯=.2.(2024高三一模松江9)在ABC ∆中,设角,,A B C 所对边的边长分别为,,a b c ,若3,5,2a c B A ===,则边长b =______.【答案】【解析】由正弦定理sin sin sin 22sin cos a b b b A B A A A ===得cos 2bA a=①,由余弦定理可得222cos 2b c a A bc+-=②,则2222225322625b bc a b b b a bc b +-+-=⇒=⇒=⨯.3.(2024高三一模普陀14)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c,若a =20c b C -+=,则该三角形外接圆的半径为()A.1B.C.2D.【答案】A【解析】20c b C -+=,因为a =22cos 0c b a C -+=,由正弦定理可得sin 2sin 2sin cos 0C B A C -+=,即()sin 2sin 2sin cos 0C A C A C -++=,化简可得1cos 2A =,所以sin 2A =,由正弦定理可得2sin aR A=(R 为外接圆半径),解得1R =.故选A.4.(2024高三一模虹口17)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若()sin sin sin ,sin m A B C A =+- ,(),n c b c a =+- ,且m //n.(1)求角B 的大小;(2)若△ABC 为锐角三角形,求sin sin y A C =+的取值范围.【答案】(1)3B π=;(2)32,⎛ ⎝【解析】(1)因为m //n,所以()()sin sin sin sin A B C b c a c A +-⋅+-=⋅,由正弦定理,可得()()a b c b c a ac +-⋅+-=,即222ac a c b =+-.于是,由余弦定理得2221cos 22a c b B ac+-==,又()0,B π∈,所以3B π=.(2)由(1)可知2,3A C π+=所以2sin sin sin sin()3y A C A A π=+=+-3sin cos )226A A A π=+=+……11分由△ABC 为锐角△,得20,0,232A A πππ<<<-<且所以,62A ππ<<从而362.3A πππ<+<所以sin sin )6y A C A π=+=+的取值范围为32,.⎛ ⎝5.(2024高三一模奉贤17)在ABC ∆中,设角A 、B 及C 所对边的边长分别为a 、b 及c .cos sin A a B=+(1)求角B 的大小;(2)当a =b =时,求边长c 和ABC ∆的面积S .【答案】(1)3π=B ;(2)3+【解析】(1)由正弦定理得B A A B C sin sin cos sin 3sin 3⋅+⋅=由于()B A C +-=π,得()BA AB B A sin sin cos sin 3sin 3⋅+⋅=+展开得B A A B B A B A sin sin cos sin 3sin cos 3cos sin 3⋅+⋅=⋅+⋅化简得B B sin cos 3=,则3tan =B ,所以3π=B (2)由正弦定理,得2322sin sin sin3π==cA C Cc A sin sin 2260sin 32==,22sin =A ,因为<a b ,所以A 是锐角,即4π=A 因为32π=+C A ,所以,5,sin 12sin 3π===C c C所以115sin sin32212ABC S ab C π∆==⨯=+6.(2024高三一模嘉定17)已知三角形ABC ,1CA CB ⋅=- ,三角形的面积12S =,(1)求角C 的值;(2)若3sin cos 4A A =,2a =,求c .【答案】(1)34π;(2)c =【解析】(1)1cos 1CA CB ab C ⋅=⇒=-,1sin 12S ab C =⇒=,两式相除得:tan 1C =-,所以3π4C =.(2)sin cos sin 242A A A =⇒=,所以π6A =或π3(舍),所以π6A =,所以π12B =,sin 4B =由正弦定理得,sin sin a c C A =,sin sin b c C B=,所以22sin sin sin abc C A B=,由(1)ab =所以22c=+即c =7.(2024高三一模宝山18)在ABC ∆中,角C B A 、、的对边分别为c b a 、、.(1)若2sin a B =,求角A 的大小;(2)若BC 边上的高等于2a,求c b b c +的最大值.【答案】(1)323ππ或=A ;(2)22【解析】(1)根据正弦定理得2sin sin A B B =,所以23sin =A ,所以323ππ或=A .(2)由三角形面积公式得A bc a a sin 212121=⋅,即A bc a sin 22=,又由余弦定理A bc c b a cos 2222-+=,得A bc c b A bc cos 2sin 222-+=,解得()A A bc c b cos sin 222+=+,从而()⎪⎭⎫ ⎝⎛+=+=+4sin 22cos sin 222πA A A bc c b .当24ππ=+A 即4π=A 时bc c b 22+有最大值22,即cbb c +的最大值为22.8.(2024高三一模崇明18)在ABC ∆中,5a =,6b =.(1)若4cos 5B =-,求A 和ABC ∆外接圆半径R 的值;(2)若ABC ∆的面积4S =,求c 的值.【答案】(1)6A π=,5R =;(2)4c =或c =【解析】(1)因为4cos 5B =-,()0,B π∈,所以3sin 5B ==,由正弦定理,得2sin sin a bR A B==,即5623sin 5R A ==,所以1sin 2A =,5R =,因为a b <,所以0,2A π⎛⎫∈ ⎪⎝⎭,因此6A π=,5R =(2)由1sin 2ABC S ab C =△得224sin 564ABC S C ab ===⨯△,于是3cos 4C ==±,当3cos 4C =时,由余弦定理,得222356256164c =+-⨯⨯⨯=当3cos 4C =-时,由余弦定理,得2223562561064c ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭.所以,4c =或c =.9.(2024高三一模闵行18)在ABC △中,角A B C 、、所对边的边长分别为a b c 、、,且2cos a c B c -=.(1)若1cos 3B =,3c =,求b 的值;(2)若ABC △为锐角三角形,求sin C 的取值范围.【答案】(1)b =;(2)1sin (,)22C ∈【解析】(1)将1cos 3B =,3c =带入条件中可得5a =,由余弦定理2222cos b a c ac B =+-可得b =;(2)2cos a c B c -= ,由正弦定理可得sin 2sin cos sin A C B C -=,sin sin()sin cos cos sin A B C B C B C =+=+ ,sin cos sin cos sin B C C B C ∴-=,sin()sin B C C -=,(,),(0,)222B C C πππ-∈-∈ ,所以B C C -=,即2B C =,又因为ABC △为锐角三角形,(,)64C ππ∴∈,1sin (,22C ∈10.(2024高三一模青浦18)在△ABC 中,角,,A B C 所对的边分别为a ,b ,c ,且满足2220a c b ac -++=.(1)求角B 的大小;(2)若b =ABC 的周长的最大值.【答案】(1)120B ∠=︒;(2)4+【解析】(1)因为222a cb ac +-=-,由余弦定理得2221cos 22a c b B ac+-∠==-,120B ∠=︒.(2)由正弦定理得,a =4sin A ,c =4sin (600 −A ),所以,∆ABC 的周长为a +b +c =4sin A +4sin (600−A +)=4sin (A +600 +)200 <A <600当 A =300 时,∆ABC 的周长的最大值为4 +.三、三角函数及其性质1.(2024 高三一模嘉定 3)函数y =sin πx 的最小正周期为______.【答案】2【解析】22T ππ==.2.(2024高三一模普陀6)若函数tan 3y x =在区间,6m π⎛⎫⎪⎝⎭上是严格增函数,则实数m 的取值范围为______.【答案】,66ππ⎛⎫-⎪⎝⎭【解析】由题意,32666m m m ππππ⎧>-⎪⎪⇒-<<⎨⎪<⎪⎩.3.(2024高三一模闵行7)若将函数()()sin 20y x ϕϕπ=+<<的图像向右平移3π个单位,得到的图像所对应的函数为奇函数,则ϕ=______.【答案】23π【解析】函数向右平移3π个单位可以得到2sin 23y x πϕ⎛⎫=-+ ⎪⎝⎭,此时函数为奇函数,则有2sin 003πϕ⎛⎫-+= ⎪⎝⎭,则2,3k k πϕπ-=∈Z ,因为0ϕπ<<,所以23πϕ=.4.(2024高三一模虹口8)已知函数()()cos 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如右图所示,则()f x =______.(第8题图)【答案】cos 26x π⎛⎫- ⎪⎝⎭【解析】由题意知12243124T T πππππωω=-=⇒==⇒=,将,112π⎛⎫⎪⎝⎭代入,解得cos 21126ππϕϕ⎛⎫⨯+=⇒=- ⎪⎝⎭,则()cos 26f x x π⎛⎫=-⎪⎝⎭.5.(2024高三一模青浦8)若函数cos()y x ϕ=+是奇函数,则该函数的所有零点是.【答案】π,x k k =∈Z【解析】函数cos()y x ϕ=+是奇函数,则,2k k Z πϕπ=+∈,cos()sin y x x ϕ=+=±,所以函数零点为π,x k k =∈Z .6.(2024高三一模奉贤9)设函数()sin 0y x ωω=>在区间()0,2π上恰有三个极值点,则ω的取值范围为______.【答案】5744⎛⎤ ⎥⎝⎦,【解析】cos y x ωω'=,令0y '=,即cos 0x ω=,即,2x k k πωπ=+∈Z ,因为函数在区间()0,2π上恰有三个极值点,则2257244232ππωπωππωπ⎧>+⎪⎪⇒<≤⎨⎪≤+⎪⎩.7.(2024高三一模金山9)已知()()sin 0y x ωω=>在区间[]0,π上是严格增函数,且其图像关于()4,0π对称,则ω的值为______.【答案】14或12【解析】因为函数在区间[]0,π上是严格增函数,所以2πωπ≤,所以12ω≤,又图像关于()4,0π对称,所以4,k k πωπ=∈Z ,即,4k k ω=∈Z ,所以14k =或12.8.(2024高三一模黄浦10)若ϕ是一个三角形的内角,且函数()3sin 2y x ϕ=+在区间,46ππ⎡⎤-⎢⎥⎣⎦上是单调函数,则ϕ的取值范围是______.【答案】0,6π⎛⎤⎥⎝⎦【解析】由题意知()0,ϕπ∈,因为函数()3sin 2y x ϕ=+在区间,46ππ⎡⎤-⎢⎥⎣⎦上是单调函数,则2,23x ππϕϕϕ⎡⎤+∈-++⎢⎥⎣⎦,则220,632ππϕπϕππϕ⎧-+≥-⎪⎪⎡⎤⇒∈⎨⎢⎥⎣⎦⎪+≤⎪⎩,0,6πϕ⎛⎤∴∈ ⎥⎝⎦.9.(2024高三一模杨浦10)函数()()cos f x x ωϕ=+,()0,2ϕπ∈,在x ∈R 上是单调增函数,且函数关于原点对称,则满足条件的数对(),ωϕ=______.【答案】0,2π⎛⎫ ⎪⎝⎭或30,2π⎛⎫ ⎪⎝⎭【解析】当0ω≠时,函数在x ∈R 上显然不具备单调性,故0ω=,又函数关于原点对称,所以函数值为0,所以cos 0ϕ=,又()0,2ϕπ∈,所以2πϕ=或32π,因此满足条件的数对为0,2π⎛⎫ ⎪⎝⎭或30,2π⎛⎫ ⎪⎝⎭.10.(2024高三一模普陀10)设函数()sin 2y x ϕ=+02πϕ⎛<<⎫⎪⎝⎭的图像与直线y t =相交的连续的三个公共点从左到右依次记为A ,B ,C ,若2BC AB =,则正实数t 的值为______.【答案】12【解析】由题意可得T π=,函数与y t =()0t >相交图像如图所示,可知C A x x π-=,又2BC AB =,所以3B A x x π=+,()sin 2A t x ϕ=+,()2cos 21A x t ϕ+=-则()()2sin 2sin 2sin 23A B A x x x πϕϕϕ⎛⎫+=+=++⎪⎝⎭()()22sin 2coscos 2sin 33A A x x ππϕϕ=+++,即12t t =-+12t =或12t =-(舍),所以12t =.11.(2024高三一模浦东新区10)如图,已知函数()sin 0,0,02y A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的图像与y 轴的交点为()0,1,并已知其在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()0,2x 和()02,2x π+-.记()y f x =,则3f π⎛⎫= ⎪⎝⎭______.【解析】由题意2A =,()00222T x x ππ=+-=,所以2142T ππωω==⇒=,()02sin 16f πϕϕ==⇒=,所以()12sin 26f x x π⎛⎫=+ ⎪⎝⎭,所以2sin 366f πππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭.12.(2024高三一模长宁11)若函数()sin cos x a x f x =+在27,36ππ⎛⎫⎪⎝⎭上是严格单调函数,则实数a 的取值范围为______.【答案】3⎡-⎢⎣【解析】()cos sin x x a x f '=-,因为函数()sin cos x a x f x =+在27,36ππ⎛⎫⎪⎝⎭上是严格单调函数,所以()0f x '≥或()0f x '≤,当x π=时,()1f π'=-,则()0f x '≥不符合题意,由()0f x '≤,得sin cos a x x ≥,当2,3x ππ⎛⎫∈⎪⎝⎭时,sin 0x >,所以1tan a x ≥在2,3x ππ⎛⎫∈ ⎪⎝⎭上恒成立,即求max 1tan a x ⎛⎫≥ ⎪⎝⎭,因为2,3x ππ⎛⎫∈ ⎪⎝⎭,所以()tan x ∈,1,tan 3x ⎛∈-∞- ⎝⎭,所以33a ≥-;当7,6x ππ⎛⎫∈ ⎪⎝⎭时,sin 0x <,所以1tan a x ≤在7,6x ππ⎛⎫∈ ⎪⎝⎭上恒成立,即求min 1tan a x ⎛⎫≤ ⎪⎝⎭,因为7,6x ππ⎛⎫∈ ⎪⎝⎭,所以3tan 0,3x ⎛⎫∈ ⎪ ⎪⎝⎭,)1tan x ∈+∞,所以a ≤;综上,33a ⎡-⎢⎣∈.13.(2024高三一模静安17)记)(cos sin 32cos sin )(22R ∈++-=x x x x x x f λ,其中λ为实常数.(1)求函数)(x f y =的最小正周期;(2)若函数)(x f y =的图像经过点⎪⎭⎫ ⎝⎛0,2π,求该函数在区间⎥⎦⎤⎢⎣⎡π32,0上的最大值和最小值.【答案】(1)π;(2)最大值1,最小值2-【解析】(1)()cos 22f x x x =-+π2sin 26x ⎛⎫=- ⎪⎝⎭λ+.所以,函数)(x f y =的最小正周期π.(2) π102f λ⎛⎫=+=⎪⎝⎭,∴1λ=-.∴π()2sin 216f x x ⎛⎫=-- ⎪⎝⎭.令π26x t -=,则π7π,66t ⎡⎤∈-⎢⎥⎣⎦.当ππ266x -=-或7π6,即0x =或2π3时,min 2f =-.当ππ262x -=,即π3x =时,max 1f =.四、三角应用题1.(2024 高三一模奉贤 10)某林场为了及时发现火情,设立了两个观测点A 和B . 某日两个观测点的林场人员都观测到C 处出现火情. 在 A 处观测到火情发生在北偏西40方向,而在B 观测到火情在北偏西60方向. 已知B 在A 的正东方向10km 处(如图所示),则BC AC -=______km.(精确到0.1km )【答案】7.8【解析】由图可知130CAB ∠=,30ABC ∠=,20ACB ∠=2.(2024高三一模徐汇10)某建筑物内一个水平直角型过道如图所示,两过道的宽度均为3米,有一个水平截面为矩形的设备需要水平通过直角型过道.若该设备水平截面矩形的宽BC 为1米,则该设备能水平通过直角型过道的长AB 不超过______米.【答案】22-【解析】分别以,OB OA 所在直线为x ,y 轴建立平面直角坐标系如图所示,则()3,3M ,令()0,A b ,(),0B a ,()0,0a b >>,则直线AB 的方程为1x ya b+=,则点M 直线上方,且到AB 的距离为1,即22331331111a b a b a b ⎧+>⎪+-=⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,则2233111a b a b ⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭,整理可得223()a b a b ab +=+-,设AB r =,0,0,2OAB r πθθ⎛⎫⎡⎤∠=>∈ ⎪⎢⎥⎣⎦⎝⎭,则sin a r θ=,cos b r θ=,223()a b a b ab +=+-可化为23(sin cos )sin cos r r r θθθθ=+-,令sin cos 0,2t πθθθ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭,则224t πθ⎛⎫⎡=+∈ ⎪⎣⎝⎭,则223(sin cos )131121281sin cos (31)(31)999231t r t t t t θθθθ+--===⨯--+---188(31)231t t =--+-,由1,2t ⎡⎤∈⎣⎦,得312,321t⎡⎤-∈-⎣⎦,所以889(31)2321231321321t t --+≤--+=---,所以()1823218(31)231t t ≥---+-,当且仅当2t =时等号成立,该设备能水平通过直角型过道的长AB 不超过622-米.3.(2024高三一模长宁19)汽车转弯时遵循阿克曼转向几何原理,即转向时所有车轮中垂线交于一点,该点称为转向中心.如图1,某汽车四轮中心分别为A 、B 、C 、D ,向左转向,左前轮转向角为α,右前轮转向角为β,转向中心为O.设该汽车左右轮距AB 为w 米,前后轴距AD 为l 米.(1)试用w 、l 和α表示tan β;(2)如图2,有一直角弯道,M 为内直角顶点,EF 为上路边,路宽均为3.5米,汽车行驶其中,左轮A 、D 与路边FS 相距2米.试依据如下假设,对问题*做出判断,并说明理由.假设:①转向过程中,左前轮转向角α的值始终为30︒;②设转向中心O 到路边EF 的距离为d ,若OB d <且OM OD <,则汽车可以通过,否则不能通过;③ 1.570w =,2.680l =.问题*:可否选择恰当转向位置,使得汽车通过这一弯道?图1图2【答案】(1)tan tan llw βα=+;(2)选择恰当转向位置,汽车可以通过弯道【解析】(1)由已知AOD α∠=,tan BOC β∠=,所以tan l OD α=,tan lOC w α=+,进而tan tan llw βα=+.(2)以EF 和FS 分别为x 轴和y 轴建立坐标系,则()3.5, 3.5M --.3 4.642tan lOD l α===,()223 6.766OB l l w=++=,设(),O a b ()0,0a b <<,32 6.642a l =--=-,d b =-,()()()2223.5 3.59.872 3.5OM a b b =+++=++,由OM OD <,得()29.872 3.521.548b ++<,进而 6.9170.83b -<<-,由OB d <,得 6.766b <-,所以当 6.917 6.765b -<<时,OB d <且OM OD <,此时汽车可以通过弯道.答:选择恰当转向位置,汽车可以通过弯道.4.(2024高三一模杨浦19)某数学建模小组研究挡雨棚(图1),将它抽象为柱体(图2),底面ABC 与111A B C 全等且所在平面平行,ABC △与111A B C △各边表示挡雨棚支架,支架1AA 、1BB 、1CC 垂直于平面ABC .雨滴下落方向与外墙(所在平面)所成角为π6(即π6AOB ∠=),挡雨棚有效遮挡的区域为矩形11AA O O (O 、1O 分别在CA 、11C A 延长线上).(1)挡雨板(曲面11BB C C )的面积可以视为曲线段BC 与线段1BB 长的乘积.已知1.5OA =米,0.3AC =米,12AA =米,小组成员对曲线段BC 有两种假设,分别为:①其为直线段且π3ACB ∠=;②其为以O 为圆心的圆弧.请分别计算这两种假设下挡雨板的面积(精确到0.1平方米);(2)小组拟自制ABC △部分的支架用于测试(图3),其中0.6AC =米,π2ABC ∠=,CAB θ∠=,其中ππ62θ<<,求有效遮挡区域高OA 的最大值.【答案】(1)若选择①,挡雨板材料的面积为1.8平方米;若选择②,挡雨板材料的面积为图13π5平方米,约为1.9平方米;(2)OA 的最大值为0.3米【解析】(1)若选择①,结合π6AOB ∠=,得OBC △是直角三角形,10.92BC OC ==米,挡雨板材料的面积为1.8平方米.若选择②,则COB 是一个圆心角为π6的扇形,BC 弧长为π3π1.8610⨯=,挡雨板材料的面积为3π5平方米,约为1.9平方米.(2)在直角ABC △中,由cos AB AC θ=;在ABO △中,由正弦定理,ππsinsin 66AO ABθ=⎛⎫- ⎪⎝⎭,即π6π2sin sin cos 656AO AB θθθ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭2631sin cos cos 522θθθ⎛⎫=⋅-⋅ ⎪⎝⎭3311sin 2cos25222θθ⎛⎫=⋅-⋅- ⎪⎝⎭3π3sin 25610θ⎛⎫=-- ⎪⎝⎭,其中ππ62θ<<.当ππ262θ-=,即π3θ=时,AO 取得最大值310.综上所述,有效遮挡区域高OA 的最大值为0.3米.5.(2024高三一模浦东新区19)某街道规划建一座口袋公园.如图所示,公园由扇形AOC 区域和三角形COD 区域组成.其中A O D 、、三点共线,扇形半径OA 为30米.规划口袋公园建成后,扇形AOC 区域将作为花草展示区,三角形COD 区域作为亲水平台区,两个区域的所有边界修建休闲步道.(1)若π3AOC ∠=,2OD OA =,求休闲步道总长(精确到米);(2)若π6ODC ∠=,在前期民意调查时发现,绝大部分街道居民对亲水平台区更感兴趣.请你根据民意调查情况,从该区域面积最大或周长最长的视角出发,选择其中一个方案,设计三角形COD 的形状.【答案】(1)231米;(2)见解析【解析】(1)休闲步道总长为 2AC OA OD CD+++π301203=⨯++10π120=++231≈米.所以休闲步道总长为231米.(2)方案一:设5π,0,6COD θθ⎛⎫∠=∈ ⎪⎝⎭COD ∆中,由正弦定理得π5πsin sin sin 66OCOD CD θθ==⎛⎫- ⎪⎝⎭,得5π5π60sin ,60sin ,0,66OD CD θθθ⎛⎫⎛⎫=-=∈⎪ ⎪⎝⎭⎝⎭故COD ∆的面积15π5π3060sin sin 900sin sin 266S θθθθ⎛⎫⎛⎫=⨯⨯-⋅=-⋅ ⎪ ⎪⎝⎭⎝⎭π450sin 23θ⎛⎫=-+ ⎪⎝⎭因为5π0,6θ⎛⎫∈ ⎪⎝⎭,所以ππ4π2333θ⎛⎫-∈- ⎪⎝⎭,当ππ232θ-=,即5π12θ=时有max S 450=+平方米因此,当亲水平台区的面积最大时,COD ∆是以OC 为底边的等腰三角形.方案二:设5π,0,6COD θθ⎛⎫∠=∈ ⎪⎝⎭COD ∆中,由正弦定理得π5πsin sin sin 66OCOD CD θθ==⎛⎫- ⎪⎝⎭,得5π5π60sin ,60sin ,0,66OD CD θθθ⎛⎫⎛⎫=-=∈⎪ ⎪⎝⎭⎝⎭故COD ∆的周长5π60sin 60sin 306L θθ⎛⎫=+-+ ⎪⎝⎭(60sin 30cos 30θθ=+++π233012θ⎛⎫=+++ ⎪⎝⎭因为5π0,6θ⎛⎫∈ ⎪⎝⎭,所以ππ11π121212θ⎛⎫+∈ ⎪⎝⎭,当ππ122θ+=,即5π12θ=时有max L 60233030630230=+=+米因此,当亲水平台区的周长最长时,COD ∆是以OC 为底边的等腰三角形.(本题也可用余弦定理、均值不等式解决)6.(2024高三一模黄浦19)某公园的一个角形区域AOB 如图所示,其中23AOB π∠=.现拟用长度为100米的隔离档板(折线DCE )与部分围墙(折线DOE )围成一个花卉育苗区ODCE ,要求满足OD OC OE ==.(1)设333DOC πππαα⎛⎫∠=+-<< ⎪⎝⎭,试用α表示OD ;(2)为使花卉育苗区的面积最大,应如何设计?请说明理由.【答案】(1)50cos2OD α=;(2)当0α=时,花卉育苗区的面积最大,为12503平方米【解析】(1)由πππ()333DOC αα∠=+-<<,2π3AOB ∠=,可知π3COE α∠=-,作OF CD ⊥,垂足为F ,由OD OC =,可知CF DF =且1π262DOF DOC α∠=∠=+,在直角DOF △中,πsin()62DF OD α=+,故π2sin(62CD OD α=+,同理可得ππ2sin(2sin()6262EC OC OD αα=-=-,所以π2sin()62OD α++π2sin()10062OD α-=,可得OD =5050ππsin()sin()cos62622ααα=++-(米).(2)设花卉育苗区的面积为S 平方米,则221π1πsin()sin()2323S OD OD αα=++-22150ππ[sin()sin()]233cos 2ααα=++-.501]1cos1cos2Sα=α==-+α+α.当且仅当cos1α=且ππ33α-<<,即0α=时,S取最大值,此时50OD=米.故使π3DOC∠=,且50OD=米,可使花卉育苗区的面积最大.7.(2024高三一模金山19)网络购物行业日益发达,各销售平台通常会配备送货上门服务.小金正在配送客户购买的电冰箱,并获得了客户所在小区门户以及建筑转角处的平面设计示意图.图1图2第19题图(1)为避免冰箱内部制冷液逆流,要求运送过程中发生倾斜时,外包装的底面与地面的倾斜角α不能超过4π,且底面至少有两个顶点与地面接触.外包装看作长方体,如图1所示,记长方体的纵截面为矩形ABCD,0.8mAD=, 2.4mAB=,而客户家门高度为2.3米,其他过道高度足够.若以倾斜角4πα=的方式进客户家门,小金能否将冰箱运送入客户家中?计算并说明理由.(2)由于客户选择以旧换新服务,小金需要将客户长方体形状的旧冰箱进行回收.为了省力,小金选择将冰箱水平推运(冰箱背面水平放置于带滚轮的平板车上,平板车长宽均小于冰箱背面).推运过程中遇到一处直角过道,如图2所示,过道宽为1.8米.记此冰箱水平截面为矩形EFGH, 1.2mEH=.设PHGβ∠=,当冰箱被卡住时(即点H、G分别在射线PR、PQ上,点O在线段EF上),尝试用β表示冰箱高度EF的长,并求出EF的最小值,最后请帮助小金得出结论:按此种方式推运的旧冰箱,其高度的最大值是多少?(结果精确到0.1m)【答案】(1)能;(2)2.6m【解析】(1)当倾斜角π4α=时,冰箱倾斜后实际高度(即冰箱最高点到地面的距离)ππ820.8sin 2.4cos 2.3445h=+=<,故冰箱能够按要求运送入客户家中.(2)延长EF与直角走廊的边相交于M、N,则 1.8 1.8+sin cos MN OM ON =+=ββ, 1.2tan EM β=, 1.2tan FN β=,又EF MN ME NF =--,设()EF f β=,π0,2β⎛⎫∈ ⎪⎝⎭,则 1.8 1.81() 1.2(tan )sin cos tan f =+-+βββββ1.8(sin cos ) 1.2sin cos ββββ+-=,π0,2β⎛⎫∈ ⎪⎝⎭.2222332222221.8(cos sin )(sin cos )(1.8(sin cos ) 1.2)(cos s in )()sin cos 1.8(cos sin ) 1.2(cos sin ) 1.8(sin cos )(cos 1)(sin 1)sin cos sin cos f βββββββββββββββββββββββ--+--'=⋅--+----==⋅⋅求得驻点π4β=,作表格得βπ(0,)4π4ππ(,)42()f β'-0+()f β严格减极小值严格增所以()f β最小值π18212() 2.6945f -=≈.由实际意义需向下取整,此情况下能顺利通过过道的冰箱高度的最大值为2.6米.8.(2024高三一模徐汇19)2023年杭州亚运会首次启用机器狗搬运赛场上的运动装备.如图所示,在某项运动赛事扇形场地OAB 中,2AOB π∠=,500OA =米,点Q 是弧AB 的中点,P 为线段OQ 上一点(不与点O ,Q 重合).为方便机器狗运输装备,现需在场地中铺设三条轨道PO ,PA ,PB .记APQ θ∠=,三条轨道的总长度为y 米.(1)将y 表示成θ的函数,并写出θ的取值范围;(2)当三条轨道的总长度最小时,求轨道PO 的长.【答案】(1)2sin cos 52502,,sin 48y θθππθθ+-⎛⎫=⋅∈ ⎪⎝⎭;(2)()2503263PO =-【解析】(1)因为点Q 是弧AB 的中点,由对称性,知PA PB =,4AOP BOP π∠=∠=,又APO πθ∠=-,4OAP πθ∠=-,500OA =由正弦定理,得()sin sinsin 44APOAOPπππθθ==-⎛⎫- ⎪⎝⎭,所以500sin 25024,sin sin AP OP πθθθ⎛⎫- ⎪⎝⎭==.所以500sin 42sin y AP BP OP AP OP πθθ⎛⎫+- ⎪⎝⎭=++=+=2sin cos sin θθθ+-=,因为APQ AOP ∠>∠,所以4πθ>,13248AQO OAQ πππ⎛⎫∠=∠=-=⎪⎝⎭,所以5,48ππθ⎛⎫∈⎪⎝⎭.(2)法一:由(1)得:2cos sin y θθ-=,5,48ππθ⎛⎫∈ ⎪⎝⎭.记2cos sin t θθ-=,则sin cos 2t θθ+=,由辅助角公式可得:)2sin()1θϕθϕ+=⇒+=,解得tt 5sin()1,6348ππππθθ⎛⎫+=⇒=∈ ⎪⎝⎭,等号可以取得.故当3πθ=时,三条轨道的总长度最小,此时(2503OP =.法二:由(1)得:2cos sin y θθ-=+,5,48ππθ⎛⎫∈ ⎪⎝⎭.记2cos sin t θθ-=,tan tan ,tan 2816x θππ5⎛⎫=∈ ⎪⎝⎭,则由万能置换公式可得:2222123111132221x x x t x x x x x --+⎛⎫+===+≥= ⎪⎝⎭+,当且仅当33x =即3πθ=时等号成立.故当3πθ=,三条轨道的总长度最小,此时(2503OP =.法三:令()2sin cos sin f θθθθ+-=,5,48ππθ⎛⎫∈ ⎪⎝⎭.由()212cos '0sin f θθθ-==,解得3πθ=,则有θ43ππθ<<3πθ=538ππθ<<()'f θ0<0=0>()f θ严格减极小值严格增所以当3πθ=,即(2503OP =米时,()f θ有唯一的极小值,即是最小值,则()min 1f θ=+,三条轨道的最小值为+.故当3πθ=时,三条轨道的总长度最小,此时(2503OP =.。

三角函数及解三角形高考模拟考试题精选(含详细答案)

三角函数及解三角形高考模拟考试题精选(含详细答案)

三角函数与解三角形高考试题精选一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.4.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.6.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC 的面积为,求cosA与a的值.10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.14.△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.15.△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.21.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.25.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.27.在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值(2)若a=1,cosB+cosC=,求边c的值.29.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.30.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.三角函数与解三角形高考试题精选参考答案与试题解析一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.【解答】解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.【解答】(Ⅰ)解:由,得asinB=bsinA,又asinA=4bsinB,得4bsinB=asinA,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入asinA=4bsinB,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.4.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.【解答】解:(1)∵A为三角形的内角,cosA=,∴sinA==,又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,整理得:cosC=sinC,则tanC=;(2)由tanC=得:cosC====,∴sinC==,∴sinB=cosC=,∵a=,∴由正弦定理=得:c===,则S=acsinB=×××=.△ABC5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.6.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.因此sin2C=2sinCcosC=2×=.7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.【解答】解:(Ⅰ)在三角形ABC中,由cosA=﹣,可得sinA=,△ABC的面积为3,可得:,可得bc=24,又b﹣c=2,解得b=6,c=4,由a2=b2+c2﹣2bccosA,可得a=8,,解得sinC=;(Ⅱ)cos(2A+)=cos2Acos﹣sin2Asin==.8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.【解答】解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC 的面积为,求cosA与a的值.【解答】解:∵b=3,c=1,△ABC的面积为,∴=,∴sinA=,又∵sin2A+cos2A=1∴cosA=±,由余弦定理可得a==2或2.10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.【解答】解:(Ⅰ)设α=∠CED,在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD•DEcos∠CDE,即7=CD2+1+CD,则CD2+CD﹣6=0,解得CD=2或CD=﹣3,(舍去),在△CDE中,由正弦定理得,则sinα=,即sin∠CED=.(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,而∠AEB=,∴cos∠AEB=cos()=cos cosα+sin sinα=,在Rt△EAB中,cos∠AEB=,故BE=.11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.【解答】解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.或由A=,b2﹣a2=c2.可得:sin2B﹣sin2A=sin2C,∴sin2B﹣=sin2C,∴﹣cos2B=sin2C,∴﹣sin=sin2C,∴﹣sin=sin2C,∴sin2C=sin2C,∴tanC=2.(2)∵=×=3,解得c=2.∴=3.13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.14.△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.15.△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴a+c=2b,由正弦定理得:sinA+sinC=2sinB,∵sinB=sin[π﹣(A+C)]=sin(A+C),则sinA+sinC=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,将c=2a代入得:b2=2a2,即b=a,∴由余弦定理得:cosB===.16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.【解答】解:①因为△ABC中,角A,B,C所对的边分别为a,b,c已知cosB=,sin(A+B)=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=①,结合平方关系sin2A+cos2A=1②,由①②解得27sin2A﹣6sinA﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin(A+B)=sinC=,sinA=,所以a=2c,又ac=2,所以c=1.21.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.==1.∴S△ABC24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.25.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.【解答】解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.27.在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.【解答】解:(1)因为,所以sinA=,所以tanA=,所以A=60°(2)由及a2=b2+c2﹣2bccosA得a2=b2﹣c2故△ABC是直角三角形且B=所以sinC=cosA=28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值(2)若a=1,cosB+cosC=,求边c的值.【解答】解:(1)由余弦定理可知2accosB=a2+c2﹣b2;2abcosc=a2+b2﹣c2;代入3acosA=ccosB+bcosC;得cosA=;(2)∵cosA=∴sinA=cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣cosC+sinC ③又已知 cosB+cosC=代入③cosC+sinC=,与cos2C+sin2C=1联立解得 sinC=已知 a=1正弦定理:c===29.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.【解答】解:(1)∵bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,∵sinA≠0,∴sinB=cosB,B∈(0,π),可知:cosB≠0,否则矛盾.∴tanB=,∴B=.(2)∵sinC=2sinA,∴c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,∴9=a2+c2﹣ac,把c=2a代入上式化为:a2=3,解得a=,∴.30.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.【解答】解:(Ⅰ)由条件在△ABC中,a=3,,∠B=2∠A,利用正弦定理可得,即=.解得cosA=.(Ⅱ)由余弦定理可得 a2=b2+c2﹣2bc•cosA,即 9=+c2﹣2×2×c×,即 c2﹣8c+15=0.解方程求得 c=5,或 c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得B=90°,A=C=45°,△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.当c=5时,求得cosB==,cosA==,∴cos2A=2cos2A﹣1==cosB,∴B=2A,满足条件.综上,c=5.。

2020年山东新高考三角函数和解三角形精选模拟试题(含解析)

2020年山东新高考三角函数和解三角形精选模拟试题(含解析)

专题6 三角函数与解三角形1.近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.2.高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.预测2020年将突出考查恒等变换与三角函数图象和性质的结合、恒等变换与正弦定理和余弦定理的结合.一、单选题1.(2020届山东省高考模拟)若()sin 753α︒+=,则()cos 302α︒-=( ) A .49B .49-C .59D .59-2.(2020届山东省潍坊市高三下学期开学考试)设(0,),(0,22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) A .32παβ-=B .32παβ+=C .22παβ-=D .22παβ+=3.(2020届山东济宁市兖州区高三网络模拟考)直线:20l x y e -+=的倾斜角为α,则()sin sin 2ααπ⎛⎫π-+ ⎪⎝⎭的值为( )A .25-B .15-C .15D .254.(2020·2020届山东省烟台市高三模拟)刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,这n 个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到sin 2o 的近似值为( )A .π90B .π180C .π270D .π3605.(2020·山东高三模拟)设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在[0,2]π上有且仅有5个零点,则ω的取值范围为( ) A .1229,510⎡⎫⎪⎢⎣⎭B .1229,510⎛⎤⎥⎝⎦ C .1229,510⎛⎫⎪⎝⎭ D .1229,510⎡⎤⎢⎥⎣⎦ 6.(2020届山东省六地市部分学校高三3月线考)《九章算术》是我国古代数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步,问为田几何?”意思说:现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4.在此问题中,扇形的圆心角的弧度数是( ) A .415B .158C .154D .1207.(2020·山东高三下学期开学)函数2()cos 3f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为( ) A .4π B .2πC .2π D .π8.(2020·山东滕州市第一中学高三3月模拟)已知角α的终边经过点P(00sin 47,cos 47),则sin(013α-)=A .12B 3C .12-D .3 9.(2020·山东滕州市第一中学高三3月模拟)函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( ) A .4x π=B .3x π=C .56x π=D .1912x π=10.(2020届山东省六地市部分学校高三3月线考)泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45︒,沿点A 向北偏东30︒前进100 m 到达点B ,在点B 处测得“泉标”顶端的仰角为30︒,则“泉标”的高度为( ) A .50 m B .100 mC .120 mD .150 m二、多选题11.(2020届山东省高考模拟)已知函数sin ,4()cos ,4x x f x x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,则下列结论正确的是( )A .()f x 不是周期函数B .()f x 奇函数C .()f x 的图象关于直线4x π=对称D .()f x 在52x π=处取得最大值12.(2020届山东省烟台市高三模拟)在ABC V 中,D 在线段AB 上,且5,3AD BD ==若52,cos CB CD CDB =∠=,则( ) A .3sin 10CDB ∠=B .ABC V 的面积为8 C .ABC V 的周长为85+D .ABC V 为钝角三角形13.(2020届山东省济宁市高三3月月考)已知函数()()()2sin 20f x x ϕϕπ=+<<,若将函数()f x 的图象向右平移6π个单位长度后,所得图象关于y 轴对称,则下列结论中正确的是( ) A .56πϕ= B .,012π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心 C .()2fϕ=-D .6x π=-是()f x 图象的一条对称轴14.(2020届山东济宁市兖州区高三网络模拟考)已知向量(()2sin 3,cos ,cos m x n x x ==u r r,函数()231f x m n =⋅+u r r,下列命题,说法正确的选项是( )A .2()6f x f x π⎛⎫-=-⎪⎝⎭B .6f x π⎛⎫-⎪⎝⎭的图像关于4x π=对称C .若1202x x π<<<,则12()()f x f x <D .若123,,,32x x x ππ⎡⎤∈⎢⎥⎣⎦,则123()()()f x f x f x +>15.(2020届山东省菏泽一中高三2月月考)要得到cos 2y x =的图象1C ,只要将sin 23y x π⎛⎫=+ ⎪⎝⎭图象2C 怎样变化得到( ) A .将sin 23y x π⎛⎫=+⎪⎝⎭的图象2C 沿x 轴方向向左平移12π个单位B .将sin 23y x π⎛⎫=+⎪⎝⎭的图象2C 沿x 轴方向向右平移1112π个单位 C .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向右平移512π个单位 D .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向左平移12π个单位16.(2020届山东省潍坊市高三模拟一)已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( ) A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增 C .若()()122f x f x -=,则12x x -的最小值为3πD .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 17.(2020届山东省潍坊市高三模拟二)已知函数f (x )=|sinx ||cosx |,则下列说法正确的是( ) A .f (x )的图象关于直线2x π=对称B .f (x )的周期为2π C .(π,0)是f (x )的一个对称中心 D .f (x )在区间42,ππ⎡⎤⎢⎥⎣⎦上单调递增18.(2020届山东省济宁市第一中学高三二轮检测)将函数()213f x x π⎛⎫=+- ⎪⎝⎭的图象向左平移3π个单位长度,再向上平移1个单位长度,得到函数()g x 的图象,则下列关于函数()g x 的说法正确的是( )A ,图象关于直线12x π=对称B .图象关于y 轴对称C .最小正周期为πD .图象关于点,04π⎛⎫⎪⎝⎭对称 19.(2020届山东省济宁市第一中学高三一轮检测)已知函数2()sin 22sin 1f x x x =-+,给出下列四个结论,其中正确的结论是( ). A .函数()f x 的最小正周期是2π B .函数()f x 在区间5,88ππ⎡⎤⎢⎥⎣⎦上是减函数 C .函数()f x 的图象关于直线8x π=对称:D .函数()f x 的图象可由函数2y x =的图象向左平移4π个单位得到 20.(2020届山东省青岛市高三上期末)要得到cos 2y x =的图象1C ,只要将sin 23y x π⎛⎫=+ ⎪⎝⎭图象2C 怎样变化得到( ) A .将sin 23y x π⎛⎫=+⎪⎝⎭的图象2C 沿x 轴方向向左平移12π个单位B .将sin 23y x π⎛⎫=+⎪⎝⎭的图象2C 沿x 轴方向向右平移1112π个单位C .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向右平移512π个单位 D .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向左平移12π个单位21.(2020·山东曲阜一中高三3月月考)已知函数()()()2sin 20f x x ϕϕπ=+<<,若将函数()f x 的图象向右平移6π个单位长度后,所得图象关于y 轴对称,则下列结论中正确的是( ) A .56πϕ= B .,012π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心 C .()2fϕ=-D .6x π=-是()f x 图象的一条对称轴22.(2020届山东省泰安市肥城市一模)设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A .是偶函数B .在0,2π⎛⎫⎪⎝⎭单调递减 C .最大值为2 D .其图像关于直线2x π=对称23.(2020届山东省潍坊市高三下学期开学考试)关于函数()3sin 21()3f x x x R π⎛⎫=-+∈ ⎪⎝⎭,下列命题正确的是( )A .由()()121f x f x ==可得12x x -是π的整数倍B .()y f x =的表达式可改写成5()3cos 216f x x π⎛⎫=-+ ⎪⎝⎭C .()y f x =的图象关于点3,14π⎛⎫⎪⎝⎭对称 D .()y f x =的图象关于直线12x π=-对称三、填空题24.(2020·2020届山东省淄博市高三二模)在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .若sin sin b A a C =,1c =,则b =__,ABC ∆面积的最大值为___.25.(2020届山东省六地市部分学校高三3月线考)已知函数(),()f x x g x x ωω=,其中0>ω,,,A B C 是这两个函数图像的交点,且不共线.①当1ω=时,ABC ∆面积的最小值为___________;②若存在ABC ∆是等腰直角三角形,则ω的最小值为__________.26.(2020届山东省潍坊市高三模拟二)定义在R 上的偶函数f (x )满足f (e +x )=f (e ﹣x ),且f (0)=0,当x ∈(0,e ]时,f (x )=lnx 已知方程122f x sin x eπ=()在区间[﹣e ,3e ]上所有的实数根之和为3ea ,将函数2314g x sin x π=+()的图象向右平移a 个单位长度,得到函数h (x )的图象,,则h (7)=_____.四、解答题27.(2020·山东高三模拟)在ABC V 中,角,,A B C 的对边分别为,,a b c .已知c =sin 2C =. (1)若1a =,求sin A ; (2)求ABC V 的面积S 的最大值.28.(2020届山东省济宁市第一中学高三一轮检测)已知函数221()cos sin ,(0,)2f x x x x p =-+?. (1)求()f x 的单调递增区间;(2)设ABC V 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求ABC V 的面积. 29.(2020届山东省高考模拟) 在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,设ABC V 的面积为S ,()2223163c S b a +=-.(1)求tan B 的值;(2)若42S =,10a =,求b 的值.30.(2020届山东省菏泽一中高三2cos )sin b C a c B -=;②22cos a c b C +=;③sin sin2A Cb A += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,b =4a c +=,求ABC ∆的面积.31.(2020·山东滕州市第一中学高三3月模拟)在①()2223163c S b a +=-;②5cos 45b C c a +=,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,设ABC V 的面积为S ,已知________. (1)求tan B 的值;(2)若42,S =10a =,求b 的值.32.(2020届山东省泰安市肥城市一模)已知函数4()cos f x x =-42sin cos sin x x x -(1)求()f x 的单调递增区间; (2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值及取最小值时的x 的集合. 33.(2020届山东省济宁市第一中学高三二轮检测)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且22233423b c bc a +-=. (1)求sin A ; (2)若3sin 2sin c A a B =,ABC ∆的面积为2,求ABC ∆的周长34.(2020届山东省淄博市高三二模)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,满足3sin cos 0A A +=.有三个条件:①1a =;②3b =;③34ABC S ∆=.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题: (1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.35.(2020届山东省潍坊市高三下学期开学考试)已知ABC ∆中,角A ,B ,C 所对边分别为a ,b ,c ,sin 1cos sin 2cos A AB B+=- (1)求证:2a b c =+; (2)若4cos 5A =,6ABC S =V ,求a 的值. 36.(2020届山东省淄博市部分学校高三3月检测)已知分别在射线(不含端点)上运动,,在中,角所对的边分别是.(Ⅰ)若依次成等差数列,且公差为2.求的值; (Ⅱ)若,,试用表示的周长,并求周长的最大值37.(2020届山东省烟台市高三模拟)已知函数()2123sin cos 2cos f x x x x m =--+在R 上的最大值为3.(1)求m 的值及函数()f x 的单调递增区间;(2)若锐角ABC ∆中角、、A B C 所对的边分别为a b c 、、,且()0f A =,求b c的取值范围.38.(2020届山东省济宁市高三3月月考)现给出两个条件:①232cos c b a B -=,②()23cos 3cos b c A a C -=,从中选出一个条件补充在下面的问题中,并以此为依据求解问题:(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在ABC ∆中,,,a b c 分别为内角,,A B C 所对的边( ).(1)求A ;(2)若31a =-,求ABC ∆面积的最大值.39.(2020届山东省潍坊市高三模拟一)在平面四边形ABCD 中,ABD ∆中边BD 所对的角为A ,BCD ∆中边BD 所对的角为C ,已知2AB BC CD ===,23AD =.(13cos A C -是否是定值,若是定值请求出;若不是请说明理由;(2)记ABD ∆与BCD ∆的面积分别为1S 和2S ,求出2212S S +的最大值.40.(2020届山东省潍坊市高三模拟二)现在给出三个条件:①a =2;②B 4π=;③c 3=.试从中选出两个条件,补充在下面的问题中,使其能够确定△ABC ,并以此为依据,求△ABC 的面积.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且满足233b c cosA acosC =(),求△ABC 的面积(选出一种可行的方案解答,若选出多个方案分别解答,则按第一个解答记分)41.(2020届山东省六地市部分学校高三3月线考)在锐角ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin sin 3b A a B π⎛⎫=+ ⎪⎝⎭. (1)求角B 的大小;(2)求ca的取值范围 42.(2020届山东济宁市兖州区高三网络模拟考)如图,在四边形ABCD 中,645,105,,2,32ADB BAD AD BC AC ∠=︒∠=︒===(1)求cos ABC ∠的值;(2)若记ABC α∠=,求sin 23πα⎛⎫-⎪⎝⎭的值. 43.(2020·山东高三下学期开学)在①cos 2320B B +=,②2cos 2b C a c =-,③3sin b a A=三个条件中任选一个,补充在下面问题中,并加以解答.已知ABC ∆的内角A ,B ,C 所对的边分别是a ,b ,c ,若_____,且a ,b ,c 成等差数列,则ABC ∆是否为等边三角形?若是,写出证明;若不是,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分.一、单选题1.(2020届山东省高考模拟)若()sin 753α︒+=,则()cos 302α︒-=( ) A .49B .49-C .59D .59-【答案】D 【解析】令75αθ︒+=,则75αθ︒=- 由()sin 75α︒+=sin θ= ()()cos 302cos 30275θα︒︒︒---⎡⎤=⎣⎦()()2cos 1802cos 212sin θθθ︒=-=-=--251239⎡⎤⎛⎫⎢⎥=--⨯=- ⎪ ⎪⎢⎥⎝⎭⎣⎦ 故选D .2.(2020届山东省潍坊市高三下学期开学考试)设(0,),(0,22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) A .32παβ-=B .32παβ+=C .22παβ-=D .22παβ+=【答案】C 【解析】由已知得,sin 1sin tan cos cos αβααβ+==,去分母得,sin cos cos cos sin αβααβ=+,所以 sin cos cos sin cos ,sin()cos sin()2παβαβααβαα-=-==-,又因为22ππαβ-<-<,022ππα<-<,所以2παβα-=-,即22παβ-=,选C3.(2020届山东济宁市兖州区高三网络模拟考)直线:20l x y e -+=的倾斜角为α,则()sin sin 2ααπ⎛⎫π-+ ⎪⎝⎭的值为( )A .25-B .15-C .15D .25【答案】D 【解析】由已知得tan 2α=, 则()2222sin cos tan 22sin sin sin cos 2sin cos tan 1215ααααααααααπ⎛⎫π-+===== ⎪+++⎝⎭. 故选:D.4.(2020·2020届山东省烟台市高三模拟)刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,这n 个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到sin 2o 的近似值为( )A .π90B .π180C .π270D .π360【答案】A 【解析】由割圆术可知当n 变得很大时,这n 个等腰三角形的面积之和近似等于圆的面积,设圆的半径为r ,每个等腰三角形的顶角为360n︒, 所以每个等腰三角形的面积为21360sin2r n ︒, 所以圆的面积为221360sin2r n r n π︒=⋅,即3602sin n n π︒=, 所以当180n =时,可得3602sin sin 218018090ππ︒=︒==, 故选:A5.(2020·山东高三模拟)设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在[0,2]π上有且仅有5个零点,则ω的取值范围为( )A .1229,510⎡⎫⎪⎢⎣⎭B .1229,510⎛⎤⎥⎝⎦C .1229,510⎛⎫⎪⎝⎭D .1229,510⎡⎤⎢⎥⎣⎦【答案】A 【解析】当[0,2]x πÎ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦, ∵()f x 在[]0,2π上有且仅有5个零点, ∴5265ππωππ≤+<,∴1229510ω≤<. 故选:A.6.(2020届山东省六地市部分学校高三3月线考)《九章算术》是我国古代数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步,问为田几何?”意思说:现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4.在此问题中,扇形的圆心角的弧度数是( ) A .415B .158C .154D .120【答案】C 【解析】由题意,根据给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4, 再由扇形的弧长公式,可得扇形的圆心角301584l r α===(弧度),故选C. 7.(2020·山东高三下学期开学)函数2()cos 3f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为( ) A .4π B .2πC .2π D .π【答案】D 【解析】因为22cos 211213()cos cos 232232x f x x x πππ⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭=+==++ ⎪ ⎪⎝⎭⎝⎭,所以最小正周期为π.故选:D8.(2020·山东滕州市第一中学高三3月模拟)已知角α的终边经过点P(00sin 47,cos 47),则sin(013α-)=A .12BC .12-D. 【答案】A 【解析】由题意可得三角函数的定义可知:22cos 47sin cos 47sin 47cos 47α==+o o o o ,22sin 47cos sin 47sin 47cos 47α==+o oo o,则: ()()sin 13sin cos13cos sin13cos 47cos13sin 47sin131cos 4713cos 60.2ααα-=-=-=+==o o o o o o o o o o本题选择A 选项.9.(2020·山东滕州市第一中学高三3月模拟)函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( ) A .4x π=B .3x π=C .56x π=D .1912x π=【答案】D 【解析】函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则函数2()4sin 33f x x π⎛⎫=+ ⎪⎝⎭,经过平移后得到函数解析式为2244sin 4sin 36339y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由24()392x k k πππ+=+∈Z , 得3()212x k k ππ=+∈Z ,当1k =时,1912x π=. 故选D.10.(2020届山东省六地市部分学校高三3月线考)泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45︒,沿点A 向北偏东30︒前进100 m 到达点B ,在点B 处测得“泉标”顶端的仰角为30︒,则“泉标”的高度为( )A .50 mB .100 mC .120 mD .150 m【答案】A 【解析】如图,CD 为“泉标”高度,设高为h 米,由题意,CD ⊥平面ABD ,100AB =米,60BAD ︒∠=,,4530CAD CBD ︒∠=∠=o.在CBD V 中,BD 3h =,在CAD V中,AD h =, 在ABD △中,3,BD h AD h ==,,100AB =,60BAD ︒∠=,由余弦定理可得223100002100cos 60(50)(100)0h h h h h ︒=+-⨯∴-+=, 解得50h =或100h =- (舍去), 故选:B. 二、多选题11.(2020届山东省高考模拟)已知函数sin ,4()cos ,4x x f x x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,则下列结论正确的是( )A .()f x 不是周期函数B .()f x 奇函数C .()f x 的图象关于直线4x π=对称D .()f x 在52x π=处取得最大值 【答案】AC 【解析】作出函数()f x 的图象如图:则由图象知函数()f x 不是周期函数,故A 正确; 不是奇函数,故B 错误,若0x >,2()cos()cos cos sin sin (cos sin )4444f x x x x x x ππππ+=+=-=-,2()sin()sin cos cos sin (cos sin )44442f x x x x x x ππππ-=-=-=-, 此时()()44f x f x ππ+=-,若0x …,2()sin()sin cos cos sin (cos sin )4444f x x x x x x ππππ+=+=+=+,2()cos()cos cos sin sin (cos sin )44442f x x x x x x ππππ-=-=+=+,此时()()44f x f x ππ+=-, 综上恒有()()44f x f x ππ+=-,即图象关于直线4x π=对称,故C 正确,()f x 在52x π=处55()()cos022f x f ππ===不是最大值,故D 错误, 故选:A C .12.(2020届山东省烟台市高三模拟)在ABC V 中,D 在线段AB 上,且5,3AD BD ==若52,cos CB CD CDB =∠=,则( ) A .3sin 10CDB ∠=B .ABC V 的面积为8 C .ABC V 的周长为85+D .ABC V 为钝角三角形【答案】BCD 【解析】 因为5cos CDB ∠=,所以225sin 1cos CDB CDB ∠=-∠=,故A 错误; 设CD a =,则2BC a =,在BCD V 中,2222cos BC CD BD BC CD CDB =+-⋅⋅∠,解得5a =,所以1125sin 35322DBC S BD CD CDB =⋅⋅∠=⨯=V ,所以3583ABC DBC S S +==V V ,故B 正确;因为ADC CDB π∠=-∠,所以()cos cos cos 5ADC CDB CDB π∠=-∠=-∠=,在ADC V 中,2222cos AC AD CD AD DC ADC =+-⋅⋅∠,解得AC =所以()358ABC C AB AC BC =++=++=+V 故C 正确;因为8AB =为最大边,所以2223cos 025BC AC AB C BC AC +-==-<⋅,即C ∠为钝角,所以ABC V 为钝角三角形,故D 正确. 故选:BCD13.(2020届山东省济宁市高三3月月考)已知函数()()()2sin 20f x x ϕϕπ=+<<,若将函数()f x 的图象向右平移6π个单位长度后,所得图象关于y 轴对称,则下列结论中正确的是( ) A .56πϕ= B .,012π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心 C .()2fϕ=-D .6x π=-是()f x 图象的一条对称轴【答案】ABD 【解析】由题意,()()2sin 2f x x ϕ=+向右平移6π, 得2sin 22sin 263y x x ππϕϕ⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 23y x πϕ⎛⎫=+- ⎪⎝⎭Q 的图象关于y 轴对称,所以32k ππϕπ-=+,k Z ∈6k k Z πϕπ5∴=+∈,,又0ϕπ<< 506k πϕ∴==,即()52sin 26x x f π⎛⎫+⎝=⎪⎭50221266f ff πππ⎛⎫⎛⎫⎛⎫∴=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, 则,012π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心,6x π=-是()f x 图象的一条对称轴而()2fϕ=,则C 错,A,B,D 正确故选:ABD14.(2020届山东济宁市兖州区高三网络模拟考)已知向量(()2sin ,cos ,cos m x n x x ==u r r,函数()21f x m n =⋅+u r r,下列命题,说法正确的选项是( )A .2()6f x f x π⎛⎫-=-⎪⎝⎭B .6f x π⎛⎫-⎪⎝⎭的图像关于4x π=对称C .若1202x x π<<<,则12()()f x f x <D .若123,,,32x x x ππ⎡⎤∈⎢⎥⎣⎦,则123()()()f x f x f x +>【答案】BD 【解析】函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,A :当0x =时,166f x f ππ⎛⎫⎛⎫-==⎪ ⎪⎝⎭⎝⎭,()()2201f x f -=-=+A 错; B :()2sin 216f x x π⎛⎫-=-+⎪⎝⎭,当4x π=时,对应的函数值取得最小值为1-,所以B 正确;C :0,2x π⎛⎫∈ ⎪⎝⎭时,23x π-2,33ππ⎛⎫∈- ⎪⎝⎭ ,所以函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭在0,2π⎛⎫⎪⎝⎭不单调,故C 错;D :因为,32x ππ⎡⎤∈⎢⎥⎣⎦,所以23x π-()2,1,333f x ππ⎡⎤⎤∈∴∈⎢⎥⎦⎣⎦,,又)213>,即2()()min max f x f x >()()()123123,,,32x x x f x f x f x ππ⎡⎤∈+>⎢⎥⎣⎦,恒成立,故D 对;故选:BD.15.(2020届山东省菏泽一中高三2月月考)要得到cos 2y x =的图象1C ,只要将sin 23y x π⎛⎫=+ ⎪⎝⎭图象2C 怎样变化得到( ) A .将sin 23y x π⎛⎫=+⎪⎝⎭的图象2C 沿x 轴方向向左平移12π个单位B .将sin 23y x π⎛⎫=+⎪⎝⎭的图象2C 沿x 轴方向向右平移1112π个单位 C .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向右平移512π个单位 D .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向左平移12π个单位【答案】ABC 【解析】对于A ,将sin 23y x π⎛⎫=+ ⎪⎝⎭图象2C 沿x 轴方向向左平移12π个单位,可得sin 2sin 2cos21232y x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象1C ,故选项A 正确;对于B ,将sin 23y x π⎛⎫=+⎪⎝⎭的图象2C 沿x 轴方向向右平移1112π个单位也可得到, 113sin 2sin 2cos 21232y x x x πππ⎡⎤⎛⎫⎛⎫=-+=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象1C ,故选项B 正确; 对于C ,先作2C 关于x 轴对称,得到sin 23y x π⎛⎫=-+⎪⎝⎭的图象3C ,再将图象3C 沿x 轴方向向右平移512π个单位,得到5sin 2sin 2cos 21232y x x x πππ⎡⎤⎛⎫⎛⎫=--+=--= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象1C ,故选项C 正确; 对于D ,先作2C 关于x 轴对称,得到sin 23y x π⎛⎫=-+⎪⎝⎭的图象3C ,再将图象3C 沿x 轴方向向左平移12π个单位,得到的sin 2sin 2cos 21232y x x x πππ⎡⎤⎛⎫⎛⎫=-++=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦图象,故选项D 不正确. 故选:ABC .16.(2020届山东省潍坊市高三模拟一)已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( ) A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增 C .若()()122f x f x -=,则12x x -的最小值为3πD .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 【答案】AC 【解析】因为直线4x π=是()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的对称轴,所以()342k k Z ππϕπ⨯+=+∈,则()4k k Z πϕπ=-+∈,当0k =时,4πϕ=-,则()sin 34f x x π⎛⎫=-⎪⎝⎭, 对于选项A,sin 3sin 312124f x x x πππ⎡⎤⎛⎫⎛⎫+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为()sin 3sin3x x -=-,所以12f x π⎛⎫+ ⎪⎝⎭为奇函数,故A 正确; 对于选项B,()232242k x k k Z πππππ-+<-<+∈,即()21212343k kx k Z ππππ-+<<+∈,当0k =时,()f x 在,124ππ⎡⎤-⎢⎥⎣⎦当单调递增,故B 错误; 对于选项C,若()()122f x f x -=,则12x x -最小为半个周期,即21323ππ⨯=,故C 正确;对于选项D,函数()f x 的图象向右平移4π个单位长度,即()sin 3sin 3sin 344x x x πππ⎡⎤⎛⎫--=-=- ⎪⎢⎥⎝⎭⎣⎦,故D错误 故选:AC17.(2020届山东省潍坊市高三模拟二)已知函数f (x )=|sinx ||cosx |,则下列说法正确的是( ) A .f (x )的图象关于直线2x π=对称B .f (x )的周期为2πC .(π,0)是f (x )的一个对称中心D .f (x )在区间42,ππ⎡⎤⎢⎥⎣⎦上单调递增【答案】AB 【解析】因为函数f (x )=|sinx ||cosx |=|sinxcosx |12=|sin 2x |, 画出函数图象,如图所示;由图可知,f (x )的对称轴是x 4k π=,k ∈Z ; 所以x 2π=是f (x )图象的一条对称轴, A 正确;f (x )的最小正周期是2π,所以B 正确; f (x )是偶函数,没有对称中心,C 错误; 由图可知,f (x )12=|sin 2x |在区间42ππ⎡⎤⎢⎥⎣⎦,上是单调减函数,D 错误. 故选:AB.18.(2020届山东省济宁市第一中学高三二轮检测)将函数()3213f x x π⎛⎫=+- ⎪⎝⎭的图象向左平移3π个单位长度,再向上平移1个单位长度,得到函数()g x 的图象,则下列关于函数()g x 的说法正确的是( )A ,图象关于直线12x π=对称B .图象关于y 轴对称C .最小正周期为πD .图象关于点,04π⎛⎫⎪⎝⎭对称 【答案】BCD 【解析】将函数()213f x x π⎛⎫=+- ⎪⎝⎭的图象向左平移3π个单位长度,得到()21212133y x x x πππ⎡⎤⎛⎫=++-=+-=- ⎪⎢⎥⎝⎭⎣⎦的图象;再向上平移1个单位长度,得到函数()g x x =的图象,对于函数()g x 于当12x π=时,()32g x =-,不是最值,故()g x 的图象不关于直线12x π=对称,故A 错误; 由于该函数为偶函数,故它的图象关于y 轴对称,故B 正确; 它的最小正周期为22ππ=,故C 正确; 当4x π=时,()0g x =,故函数()g x 的图象关于点,04π⎛⎫⎪⎝⎭对称,故D 正确. 故选:BCD19.(2020届山东省济宁市第一中学高三一轮检测)已知函数2()sin 22sin 1f x x x =-+,给出下列四个结论,其中正确的结论是( ). A .函数()f x 的最小正周期是2π B .函数()f x 在区间5,88ππ⎡⎤⎢⎥⎣⎦上是减函数 C .函数()f x 的图象关于直线8x π=对称:D .函数()f x 的图象可由函数2y x =的图象向左平移4π个单位得到 【答案】BC 【解析】2()sin 22sin 1sin 2cos 224f x x x x x x π⎛⎫=-+=+=+ ⎪⎝⎭A 选项,因为2ω=,则()f x 的最小正周期T π=,结论错误;B 选项,当5,88x ππ⎡⎤∈⎢⎥⎣⎦时,32,422x πππ⎡⎤+∈⎢⎥⎣⎦,则()f x 在区间5,88ππ⎡⎤⎢⎥⎣⎦上是减函数,结论正确;C 选项,因为8f π⎛⎫=⎪⎝⎭()f x 的最大值,则()f x 的图象关于直线8x π=对称,结论正确;D 选项,设()2g x x =n ,则()222442g x x x x f x πππ⎛⎫⎛⎫⎛⎫+=+=+=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n ,结论错误.故选:BC .20.(2020届山东省青岛市高三上期末)要得到cos 2y x =的图象1C ,只要将sin 23y x π⎛⎫=+ ⎪⎝⎭图象2C 怎样变化得到( ) A .将sin 23y x π⎛⎫=+⎪⎝⎭的图象2C 沿x 轴方向向左平移12π个单位 B .将sin 23y x π⎛⎫=+⎪⎝⎭的图象2C 沿x 轴方向向右平移1112π个单位 C .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向右平移512π个单位 D .先作2C 关于x 轴对称图象3C ,再将图象3C 沿x 轴方向向左平移12π个单位【答案】ABC 【解析】对于A ,将sin 23y x π⎛⎫=+⎪⎝⎭图象2C 沿x 轴方向向左平移12π个单位,可得sin 2sin 2cos21232y x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象1C ,故选项A 正确;对于B ,将sin 23y x π⎛⎫=+⎪⎝⎭的图象2C 沿x 轴方向向右平移1112π个单位也可得到, 113sin 2sin 2cos 21232y x x x πππ⎡⎤⎛⎫⎛⎫=-+=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象1C ,故选项B 正确; 对于C ,先作2C 关于x 轴对称,得到sin 23y x π⎛⎫=-+⎪⎝⎭的图象3C ,再将图象3C 沿x 轴方向向右平移512π个单位,得到5sin 2sin 2cos 21232y x x x πππ⎡⎤⎛⎫⎛⎫=--+=--= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象1C ,故选项C 正确; 对于D ,先作2C 关于x 轴对称,得到sin 23y x π⎛⎫=-+⎪⎝⎭的图象3C ,再将图象3C 沿x 轴方向向左平移12π个单位,得到的sin 2sin 2cos 21232y x x x πππ⎡⎤⎛⎫⎛⎫=-++=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦图象,故选项D 不正确. 故选:ABC .21.(2020·山东曲阜一中高三3月月考)已知函数()()()2sin 20f x x ϕϕπ=+<<,若将函数()f x 的图象向右平移6π个单位长度后,所得图象关于y 轴对称,则下列结论中正确的是( ) A .56πϕ= B .,012π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心 C .()2fϕ=-D .6x π=-是()f x 图象的一条对称轴【答案】ABD 【解析】由题意,()()2sin 2f x x ϕ=+向右平移6π, 得2sin 22sin 263y x x ππϕϕ⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 23y x πϕ⎛⎫=+- ⎪⎝⎭Q 的图象关于y 轴对称,所以32k ππϕπ-=+,k Z ∈6k k Z πϕπ5∴=+∈,,又0ϕπ<< 506k πϕ∴==, 即()52sin 26x x f π⎛⎫+⎝=⎪⎭50221266f ff πππ⎛⎫⎛⎫⎛⎫∴=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, 则,012π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心,6x π=-是()f x 图象的一条对称轴而()2fϕ=,则C 错,A,B,D 正确故选:ABD22.(2020届山东省泰安市肥城市一模)设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A .是偶函数B .在0,2π⎛⎫⎪⎝⎭单调递减 C .最大值为2 D .其图像关于直线2x π=对称【答案】ABD 【解析】()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.选项A :()2))()f x x x f x -=-==,它是偶函数,本说法正确;选项B :0,2x π⎛⎫∈ ⎪⎝⎭,所以()20,x π∈,因此()f x 是单调递减,本说法正确;选项C :()2f x x =,本说法不正确;选项D :当2x π=时,()22f x π=⨯=因此当2x π=时,函数有最小值,因此函数图象关于2x π=对称,本说法正确. 故选:ABD23.(2020届山东省潍坊市高三下学期开学考试)关于函数()3sin 21()3f x x x R π⎛⎫=-+∈ ⎪⎝⎭,下列命题正确的是( )A .由()()121f x f x ==可得12x x -是π的整数倍B .()y f x =的表达式可改写成5()3cos 216f x x π⎛⎫=-+ ⎪⎝⎭C .()y f x =的图象关于点3,14π⎛⎫⎪⎝⎭对称 D .()y f x =的图象关于直线12x π=-对称【答案】BD 【解析】函数()3sin 21()3f x x x R π⎛⎫=-+∈ ⎪⎝⎭, 周期22T ππ==, 对于A :当16x π=,223x π=时,满足()()121f x f x ==,但是不满足12x x -是π的整数倍,故A 错误;对于B :由诱导公式,53sin 213cos 213cos 213623x x x ππππ⎛⎫⎛⎫⎛⎫-+=--+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎡⎤⎢⎝⎥⎭⎣⎦⎭,故B 正确; 对于C :令34x π=,可得33153213144322f sin πππ⎛⎫⎛⎫⎛⎫=⨯-+=⨯--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误; 对于D :当12x π=-时,可得3sin 113121263f πππ⎛⎫⎛⎫-=--+=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,()f x 的图象关于直线12x π=-对称;故选:BD . 三、填空题24.(2020·2020届山东省淄博市高三二模)在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .若sin sin b A a C =,1c =,则b =__,ABC ∆面积的最大值为___.【答案】112【解析】因为sin sin b A a C =,所以由正弦定理可得ba ac =,所以1b c ==;所以111S 222ABC bcsinA sinA ∆==≤,当1sinA =,即90A =︒时,三角形面积最大. 故答案为(1). 1 (2). 1225.(2020届山东省六地市部分学校高三3月线考)已知函数()2sin ,()2cos f x x g x x ωω==,其中0>ω,,,A B C 是这两个函数图像的交点,且不共线.①当1ω=时,ABC ∆面积的最小值为___________;②若存在ABC ∆是等腰直角三角形,则ω的最小值为__________.【答案】2π 2π【解析】函数()2sin ,()2cos f x x g x x ωω==,其中0>ω,,,A B C 是这两个函数图象的交点, 当1ω=时,()2sin ,()2cos f x x g x x ωω==.所以函数的交点间的距离为一个周期2π,高为22 222⋅+⋅=. 所以:()121122ABC S ππ∆⋅⋅+==. 如图所示:①当1ω=时,ABC ∆面积的最小值为2π;②若存在ABC ∆是等腰直角三角形,利用直角三角形斜边的中线等于斜边的一半,则22222222πω⎫⎪⎪⎭⋅=, 解得ω的最小值为 2π. 故答案为:2π, 2π.26.(2020届山东省潍坊市高三模拟二)定义在R 上的偶函数f (x )满足f (e +x )=f (e ﹣x ),且f (0)=0,当x ∈(0,e ]时,f (x )=lnx 已知方程122f x sin x eπ=()在区间[﹣e ,3e ]上所有的实数根之和为3ea ,将函数2314g x sin x π=+()的图象向右平移a 个单位长度,得到函数h (x )的图象,,则h (7)=_____.【答案】33104+ 【解析】因为f (e +x )=f (e ﹣x ),所以f (x )关于x =e 对称,又因为偶函数f (x ), 所以f (x )的周期为2e .当x ∈(0,e ]时,f (x )=lnx ,于是可作出函数f (x )在[﹣e ,3e ]上的图象如图所示, 方程1()22f x sin x e π=的实数根是函数y =f (x )与函数122y sin x eπ=的交点的横坐标, 由图象的对称性可知,两个函数在[﹣e ,3e ]上有4个交点,且4个交点的横坐标之和为4e ,所以4e =3ea ,故a 43=, 因为235()314222g x sin x cos x ππ=+=-+, 所以345325()()()22322232h x cos x cos x πππ=--+=--+, 故3253310(7)232h sin π+=+=. 故答案为:3310+.四、解答题27.(2020·山东高三模拟)在ABC V 中,角,,A B C 的对边分别为,,a b c .已知42c =25sin 25C =. (1)若1a =,求sin A ; (2)求ABC V 的面积S 的最大值.【答案】(1)sin A =(2)4 【解析】(1)∵23cos 12sin25C C =-=-,∴4sin 5C =,由正弦定理sin sin a c A C =得sin sin a C A c ==(2)由(1)知3cos 5C =-,2222266162cos 2555c b a b a C b a ba ab ba ba =+-⋅⋅=++≥+=, 所以16325ba ≥,10ba ≥,114sin 104225S ba C =≤⨯⨯=, 当且仅当a b =时,ABC V 的面积S 有最大值4.28.(2020届山东省济宁市第一中学高三一轮检测)已知函数221()cos sin ,(0,)2f x x x x p =-+?. (1)求()f x 的单调递增区间;(2)设ABC V 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求ABC V 的面积.【答案】(1),2p p 轹÷ê÷÷êøë;(2 【解析】(1)依题意()()2211()cos sin cos 20,π22f x x x x x =-+=+?,由2ππ22πk x k -≤≤得πππ2k x k -≤≤,令1k =得ππ2x ≤≤.所以()f x 的单调递增区间,2p p 轹÷ê÷÷êøë. (2)由于a b <,所以A 为锐角,即π0,02π2A A <<<<.由()0f A =,得11cos 20,cos 222A A +==-,所以2ππ2,33A A ==. 由余弦定理得2222cos a b c bc A =+-⋅,2560c c -+=,解得2c =或3c =.当2c =时,222cos 02a c b B ac +-==<,则B 为钝角,与已知三角形ABC 为锐角三角形矛盾.所以3c =.所以三角形ABC 的面积为11sin 5322bc A =⨯⨯=29.(2020届山东省高考模拟) 在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,设ABC V 的面积为S ,()2223163c S b a +=-.(1)求tan B 的值;(2)若42S =,10a =,求b 的值.【答案】(1)34;(2)b =【解析】(1)在ABC V 中, 由三角形面积公式得,1sin 2S ac B =, 由余弦定理得,222cos 2c a b B ac +-=,Q ()2223163c S b a +=-, ∴()222316S c a b =+-, 整理可得()22233sin cos 84c a b B B ac+-==, 又()0,B π∈,∴sin 0B >,故cos 0B >,∴sin 3tan cos 4B B B ==. (2)由(1)得3tan 4B =, Q ()0,B π∈, ∴3sin 5B =, Q 42S =,10a =, ∴113sin 10342225S ac B c c ==⨯⋅==, 解得14c =,Q ()2223163c S b a +=-,∴b ===.30.(2020届山东省菏泽一中高三2cos )sin b C a c B -=;②22cos a c b C +=;③sin sin2A Cb A += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,b =4a c +=,求ABC ∆的面积.【解析】在横线上填写cos )sin b C a c B -=”.cos sin )sin sin B C A C B -=. 由sin sin()sin cos cos sin A B C B C B C =+=+,得sin sin sin B C C B =. 由0C π<<,得sin 0C ≠.所以sin B B =.又cos 0B ≠(若cos 0B =,则sin 0,B =22sin cos 0B B +=这与22sin cos 1B B +=矛盾),所以tan B =又0B π<<,得23B π=.由余弦定理及b =得22222cos3a c ac π=+-, 即212()a c ac =+-.将4a c +=代入,解得4ac =.所以1sin 2ABC S ac B =△142=⨯=在横线上填写“22cos a c b C +=”. 解:由22cos a c b C +=及正弦定理,得2sin sin 2sin cos A C B C ++=.又sin sin()sin cos cos sin A B C B C B C =+=+, 所以有2cos sin sin 0B C C +=.因为(0,)C π∈,所以sin 0C ≠. 从而有1cos 2B =-.又(0,)B π∈, 所以23B π=由余弦定理及b =得22222cos3a c ac π=+- 即212()a c ac =+-.将4a c +=代入, 解得4ac =.所以11sin 422ABC S ac B ==⨯=V在横线上填写“sin sin2A Cb A +=”解:由正弦定理,得sin sin sin 2BB A A π-=.由0A π<<,得sin A θ≠,所以sin 2B B =由二倍角公式,得2sincos 222B B B =.由022B π<<,得cos 02B ≠,所以sin 22B =. 所以23B π=,即23B π=.由余弦定理及b =得22222cos3a c ac π=+-. 即212()a c ac =+-.将4a c +=代入, 解得4ac =.所以1sin 2ABC S ac B =△1422=⨯⨯=31.(2020·山东滕州市第一中学高三3月模拟)在①()2223163c S b a +=-;②5cos 45b C c a +=,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,设ABC V 的面积为S ,已知________. (1)求tan B 的值;(2)若42,S =10a =,求b 的值.【答案】(1)34;(2) 【解析】(1)选择条件①.()2223163c S b a +=-,所以()2221316sin 32⨯+=-c ac B b a , 整理得:()2228sin 3ac B a c b=+-.即2224sin 32a c b B ac+-=⋅. 整理可得3cos 4sin B B =,又sin 0B >.所以cos 0B >,所以sin 3tan cos 4B B B ==. 选择条件②.因为5cos 45bC c a +=,由正弦定理得,5sin cos 4sin 5sin B C C A +=,5sin cos 4sin 5sin()B C C B C +=+,即sin (45cos )0C B -=, 在ABC V 中,sin 0C ≠,所以cos 45B =,3sin 5B ==,所以3tan 4B =. (2)由3tan 4B =,得3sin 5B =,又42,S =10a =,则113acsin 1042225S B c ==⨯⨯=,解得14c =.将42,S =10,a =14c =代入()222261636c S c a =++-中,得()2222614164231410b ⨯=⨯++-,解得b =32.(2020届山东省泰安市肥城市一模)已知函数4()cos f x x =-42sin cos sin x x x -(1)求()f x 的单调递增区间;。

高考数学复习专题训练—三角函数与解三角形解答题(含解析)

高考数学复习专题训练—三角函数与解三角形解答题(含解析)

高考数学复习专题训练—三角函数与解三角形解答题1.(2021·山东滨州期中)已知向量a=(cos x,sin x),b=(4√3sin x,4sin x),若f(x)=a·(a+b).(1)求f(x)的单调递减区间;]上的最值.(2)求f(x)在区间[0,π22.(2021·北京丰台区模拟)如图,△ABC中,∠B=45°,N是AC边的中点,点M在AB边上,且MN⊥AC,BC=√6,MN=√3.(1)求∠A;(2)求BM.3.(2021·山东潍坊二模)如图,D为△ABC中BC边上一点,∠B=60°,AB=4,AC=4√3.给出如下三种数值方案:①AD=√5;②AD=√15;③AD=2√7.判断上述三种方案所对应的△ABD的个数,并求△ABD唯一时,BD的长.4.(2021·海南海口月考)在△ABC中,已知a,b,c分别是角A,B,C的对边,b cos C+c cos B=4,B=π.请再在下4列三个条件:①(a+b+c)(sin A+sin B-sin C)=3a sin B;②b=4√2;③√3c sin B=b cos C中,任意选择一个,添加到题目的条件中,求△ABC的面积.5.(2021·辽宁大连一模)如图,有一底部不可到达的建筑物,A为建筑物的最高点.某学习小组准备了三种工具:测角仪(可测量仰角与俯角)、米尺(可测量长度)、量角器(可测量平面角度).(1)请你利用准备好的工具(可不全使用),设计一种测量建筑物高度AB的方法,并给出测量报告;注:测量报告中包括你使用的工具,测量方法的文字说明与图形说明,所使用的字母和符号均需要解释说明,并给出你最后的计算公式.(2)该学习小组利用你的测量方案进行了实地测量,并将计算结果汇报给老师,发现计算结果与该建筑物实际的高度有误差,请你针对误差情况进行说明.6.(2021·湖北武汉3月质检)在△ABC中,它的内角A,B,C的对边分别为a,b,c,且B=2π3,b=√6.(1)若cos A cos C=23,求△ABC的面积;(2)试问1a +1c=1能否成立?若能成立,求此时△ABC的周长;若不能成立,请说明理由.7.(2021·湖南长沙模拟)在△ABC中,内角A,B,C所对的边分别为a,b,c,且(b-c)sinCb+a=sin B-sin A.(1)求角A;(2)若a=2,求1tanB +1tanC的最小值.8.(2021·江苏南京期中)如图,某景区内有一半圆形花圃,其直径AB为6,O是圆心,且OC⊥AB.在OC上有一座观赏亭Q,其中∠AQC=2π3.计划在BC⏜上再建一座观赏亭P,记∠POB=θ(0<θ<π2).(1)当θ=π3时,求∠OPQ的大小;(2)当∠OPQ越大时,游客在观赏亭P处的观赏效果越佳,当游客在观赏亭P处的观赏效果最佳时,求sin θ的值.答案与解析1.解由于f(x)=a·(a+b)=|a|2+a·b=1+4√3sin x cos x+4sin2x=1+2√3sin 2x+4·1-cos2x2=2√3sin 2x-2cos 2x+3=4sin(2x-π6)+3.(1)由π2+2kπ≤2x-π6≤3π2+2kπ(k∈Z),解得π3+kπ≤x≤5π6+kπ(k∈Z),所以f(x)的单调递减区间是[π3+kπ,5π6+kπ](k∈Z).(2)由于x∈[0,π2],所以2x-π6∈[-π6,5π6],故当2x-π6=π2即x=π3时,函数f(x)取最大值7;当2x-π6=-π6即x=0时,函数f(x)取最小值1.2.解(1)如图,连接MC,因为N是AC边的中点,且MN⊥AC, 所以MC=MA.在Rt△AMN中,MA=MNsinA=√3sinA,所以MC=√3sinA.在△MBC中,由正弦定理可得MCsinB=BCsin∠BMC,而∠BMC=2∠A,所以√3sinA·sin45°=√6sin2A,即√3sinA·√22=√62sinAcosA,所以cos A=12,故∠A=60°.(2)由(1)知MC=MA=√3sin60°=2,∠BMC=2∠A=120°.在△BCM中,由余弦定理得BC2=BM2+MC2-2BM·MC·cos∠BMC,所以(√6)2=BM2+22-2BM·2·cos 120°,解得BM=√3-1(负值舍去).3.解过点A作AE⊥BC,垂足为点E(图略),则AE=4·sin 60°=2√3,当AD=√5时,AD<AE,所以方案①对应△ABD无解,当AD=√15时,AE<AD<AB<AC ,所以方案②对应△ABD 有两解, 当AD=2√7时,AB<AD<AC ,所以方案③对应△ABD 只有一解. 由方案③知AD=2√7,设BD=x (x>0),所以在△ABD 中由余弦定理得(2√7)2=42+x 2-2×4×x×cos 60°,即x 2-4x-12=0,解得x=6或x=-2(舍去).又因为在△ABC 中易得BC=8,BD=6<BC ,符合题意, 所以BD 的长为6.4.解 若选择条件①,则(a+b+c )(sin A+sin B-sin C )=3a sin B ,由正弦定理可得(a+b+c )(a+b-c )=3ab ,所以(a+b )2-c 2=3ab ,整理得a 2+b 2-c 2=ab ,所以cos C=12,故C=π3.又B=π4,所以A=π-π3−π4=5π12. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,即a=4.由正弦定理可得asinA =bsinB , 所以b=asinB sinA=4sin π4sin 5π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π3=4(3-√3). 若选择条件②,则b=4√2. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b22ac =4,即a=4.又B=π4,所以由正弦定理可得asinA =bsinB , 所以sin A=asinBb=4sin π44√2=12,所以A=π6或A=5π6.由于b>a ,所以B>A ,因此A=5π6不合题意舍去,故A=π6,从而C=π-π6−π4=7π12. 故△ABC 的面积S=12ab sin C=12×4×4√2×sin 7π12=4(√3+1). 若选择条件③,因为b cos C+c cos B=4, 所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,所以a=4.因为√3c sin B=b cos C ,所以√3sin C sin B=sin B cos C ,所以tan C=√33,于是C=π6,从而A=π-π6−π4=7π12,所以由正弦定理可得a sinA =bsinB , 所以b=asinB sinA=4sin π4sin 7π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π6=4(√3-1). 5.解 (1)选用测角仪和米尺,如图所示.①选择一条水平基线HG ,使H ,G ,B 三点在同一条直线上;②在H ,G 两点用测角仪测得A 的仰角分别为α,β,HG=a ,即CD=a.测得测角仪器的高是h ;③(方法一)在△ACD 中,由正弦定理,得ACsinα=CDsin (β-α), 所以AC=CDsinαsin (β-α)=asinαsin (β-α),在Rt △ACE 中,有AE=AC sin β=asinαsinβsin (β-α), 所以建筑物的高度AB=AE+h=asinαsinβsin (β-α)+h. (方法二)在Rt △ADE 中,DE=AEtanα, 在Rt △ACE 中,CE=AEtanβ, 所以CD=DE-CE=AEtanα−AEtanβ=AE (tanβ-tanα)tanαtanβ,所以AE=atanαtanβtanβ-tanα,所以建筑物的高度AB=AE+h=atanαtanβtanβ-tanα+h. (2)①测量工具问题;②两次测量时位置的间距差; ③用身高代替测角仪的高度.6.解 (1)由B=2π3,得A+C=π3,cos(A+C )=cos A cos C-sin A sin C ,即12=cos A cos C-sin A sin C.因为cos A cos C=23,所以sin A sin C=16.因为a sinA =c sinC =√6√32=2√2,所以a=2√2sin A ,c=2√2sin C.所以S △ABC =12·2√2sin A·2√2sin C·sin B=4sin A·sin B sin C=4×16×√32=√33. (2)假设1a +1c =1能成立,所以a+c=ac.由余弦定理,得b 2=a 2+c 2-2ac cos B ,所以6=a 2+c 2+ac.所以(a+c )2-ac=6,所以(ac )2-ac-6=0,所以ac=3或ac=-2(舍去),此时a+c=ac=3. 不满足a+c ≥2√ac ,所以1a +1c =1不成立.7.解 (1)由(b -c )sinCb+a =sin B-sin A ,可得(b-c )sin C=(sin B-sin A )(b+a ),由正弦定理得(b-c )c=(b-a )(b+a ),即b 2+c 2-a 2=bc , 由余弦定理,得cos A=b 2+c 2-a 22bc=12,因为0<A<π,可得A=π3.(2)由(1)知A=π3,设△ABC 的外接圆的半径为R (R>0),可得2R=asinA =4√33, 由余弦定理得a 2=b 2+c 2-2bc cos A=b 2+c 2-bc ≥bc , 即bc ≤a 2=4,当且仅当b=c=2时取等号, 又1tanB +1tanC =cosBsinB +cosCsinC =cosBsinC+sinBcosCsinBsinC =sin (B+C )sinBsinC =sinAsinBsinC =2R ·2RsinA 2RsinB ·2RsinC=2R ·abc =8√33bc ≥8√33×4=2√33,所以1tanB +1tanC 的最小值为2√33.8.解 (1)在△POQ 中,因为∠AQC=2π3,所以∠AQO=π3.又OA=OB=3,所以OQ=√3. 设∠OPQ=α,则∠PQO=π2-α+θ. 由正弦定理,得3sin (π2-α+θ)=√3sinα,即√3sin α=cos(α-θ), 整理得tan α=√3-sinθ,其中θ∈(0,π2).当θ=π3时,tan α=√33.因为α∈(0,π2),所以α=π6. 故当θ=π3时,∠OPQ=π6.(2)设f(θ)=√3-sinθ,θ∈(0,π2),则f'(θ)=-sinθ(√3-sinθ)+cos 2θ(√3-sinθ)2=1-√3sinθ(√3-sinθ)2.令f'(θ)=0,得sin θ=√33,记锐角θ0满足sin θ0=√33,当0<θ<θ0时,f'(θ)>0;当θ0<θ<π2时,f'(θ)<0, 所以f(θ)在θ=θ0处取得极大值亦即最大值.由(1)可知tan α=f(θ)>0,则α∈(0,π2),又y=tan α单调递增,则当tan α取最大值时,α也取得最大值.故游客在观赏亭P处的观赏效果最佳时,sin θ=√33 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数与解三角形高考试题精选一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.2.在△ABC中,角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.3.△ABC的角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.4.在△ABC中,角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.6.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.7.在△ABC中,角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.8.△ABC的角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.9.设△ABC的角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.11.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.12.在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.13.在△ABC中,角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.14.△ABC的角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.15.△ABC的角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.16.四边形ABCD的角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.17.△ABC的角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.19.设△ABC的角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值围.20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.21.设△ABC的角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.已知a,b,c分别是△ABC角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.25.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.27.在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值(2)若a=1,cosB+cosC=,求边c的值.29.在△ABC中,角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.30.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.三角函数与解三角形高考试题精选参考答案与试题解析一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.【解答】解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.2.在△ABC中,角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.【解答】(Ⅰ)解:由,得asinB=bsinA,又asinA=4bsinB,得4bsinB=asinA,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入asinA=4bsinB,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.3.△ABC的角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.4.在△ABC中,角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.【解答】解:(1)∵A为三角形的角,cosA=,∴sinA==,又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,整理得:cosC=sinC,则tanC=;(2)由tanC=得:cosC====,∴sinC==,∴sinB=cosC=,∵a=,∴由正弦定理=得:c===,则S△ABC=acsinB=×××=.5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.6.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.因此sin2C=2sinCcosC=2×=.7.在△ABC中,角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.【解答】解:(Ⅰ)在三角形ABC中,由cosA=﹣,可得sinA=,△ABC的面积为3,可得:,可得bc=24,又b﹣c=2,解得b=6,c=4,由a2=b2+c2﹣2bccosA,可得a=8,,解得sinC=;(Ⅱ)cos(2A+)=cos2Acos﹣sin2Asin==.8.△ABC的角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.【解答】解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB ≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.9.设△ABC的角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.【解答】解:∵b=3,c=1,△ABC的面积为,∴=,∴sinA=,又∵sin2A+cos2A=1∴cosA=±,由余弦定理可得a==2或2.10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.【解答】解:(Ⅰ)设α=∠CED,在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD•DEcos∠CDE,即7=CD2+1+CD,则CD2+CD﹣6=0,解得CD=2或CD=﹣3,(舍去),在△CDE中,由正弦定理得,则sinα=,即sin∠CED=.(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,而∠AEB=,∴cos∠AEB=cos()=cos cosα+sin sinα=,在Rt△EAB中,cos∠AEB=,故BE=.11.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.12.在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.【解答】解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.或由A=,b2﹣a2=c2.可得:sin2B﹣sin2A=sin2C,∴sin2B﹣=sin2C,∴﹣cos2B=sin2C,∴﹣sin=sin2C,∴﹣sin=sin2C,∴sin2C=sin2C,∴tanC=2.(2)∵=×=3,解得c=2.∴=3.13.在△ABC中,角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.14.△ABC的角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.15.△ABC的角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴a+c=2b,由正弦定理得:sinA+sinC=2sinB,∵sinB=sin[π﹣(A+C)]=sin(A+C),则sinA+sinC=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,将c=2a代入得:b2=2a2,即b=a,∴由余弦定理得:cosB===.16.四边形ABCD的角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.17.△ABC的角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S△ABC=ac•sinB=2,∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.19.设△ABC的角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值围为(,]20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.【解答】解:①因为△ABC中,角A,B,C所对的边分别为a,b,c已知cosB=,sin(A+B)=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=①,结合平方关系sin2A+cos2A=1②,由①②解得27sin2A﹣6sinA﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin(A+B)=sinC=,sinA=,所以a=2c,又ac=2,所以c=1.21.设△ABC的角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.23.已知a,b,c分别是△ABC角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S△ABC==1.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.25.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.【解答】解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.27.在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.【解答】解:(1)因为,所以sinA=,所以tanA=,所以A=60°(2)由及a2=b2+c2﹣2bccosA得a2=b2﹣c2故△ABC是直角三角形且B=所以sinC=cosA=28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值(2)若a=1,cosB+cosC=,求边c的值.【解答】解:(1)由余弦定理可知2accosB=a2+c2﹣b2;2abcosc=a2+b2﹣c2;代入3acosA=ccosB+bcosC;得cosA=;(2)∵cosA=∴sinA=cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣cosC+sinC ③又已知cosB+cosC=代入③cosC+sinC=,与cos2C+sin2C=1联立解得sinC=已知a=1正弦定理:c===29.在△ABC中,角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.【解答】解:(1)∵bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,∵sinA≠0,∴sinB=cosB,B∈(0,π),可知:cosB≠0,否则矛盾.∴tanB=,∴B=.(2)∵sinC=2sinA,∴c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,∴9=a2+c2﹣ac,把c=2a代入上式化为:a2=3,解得a=,∴.30.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.【解答】解:(Ⅰ)由条件在△ABC中,a=3,,∠B=2∠A,利用正弦定理可得,即=.解得cosA=.(Ⅱ)由余弦定理可得a2=b2+c2﹣2bc•cosA,即9=+c2﹣2×2×c×,即c2﹣8c+15=0.解方程求得c=5,或c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得B=90°,A=C=45°,△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.当c=5时,求得cosB==,cosA==,∴cos2A=2cos2A﹣1==cosB,∴B=2A,满足条件.综上,c=5.。

相关文档
最新文档