最新解三角形高考真题

合集下载

三角函数与解三角形-新高考数学新情景、新文化问题(新高考地区专用)(解析版)

三角函数与解三角形-新高考数学新情景、新文化问题(新高考地区专用)(解析版)

三角函数与解三角形一、单选题1.(2021·云南昆明市·高三(文))东寺塔与西寺塔为“昆明八景”之一,两塔一西一东,遥遥相对,已有1100多年历史.东寺塔基座为正方形,塔身有13级,塔顶四角立有四只铜皮做成的鸟,俗称金鸡,所以也有“金鸡塔”之称.如图,在A 点测得:塔在北偏东30°的点D 处,塔顶C 的仰角为30°,且B 点在北偏东60°.AB 相距80(单位:m ),在B 点测得塔在北偏西60°,则塔的高度CD 约为( )mA .69B .40C .35D .23【答案】B 【分析】根据题意构造四面体C -ABD ,再运用线面位置关系及三角形相关知识求解出相应的线段长即可. 【详解】如图,根据题意,图中CD ⊥平面ABD ,30CAD ∠=︒,30,60,80BAD ABD AB ∠=︒∠=︒=ABD 中,30,60BAD ABD ∠=︒∠=︒, 90ADB ∴∠=︒cos 80?cos30AD AB BAD ∴=∠=︒=又CD ⊥平面ABD ,ACD ∴是直角三角形Rt ACD中,30,90,CAD ADC AD ∠=︒∠=︒=·tan 3040CD AD ∴=︒==,选项B 正确,选项ACD 错误 故选:B.2.(2021·山东枣庄八中高一期中)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五“三斜求积"中提出了已知三角形三边a ,b ,c 求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S =现在有周长为10+ABC满足sin :sin :sin 2:A B C =,则用以上给出的公式求得ABC 的面积为( ) A.B.C.D .12【答案】A 【分析】利用正弦定理结合三角形的周长可求得ABC 的三边边长,利用题中公式可求得ABC 的面积. 【详解】由题意结合正弦定理可得:::sin :sin :sin 2:a b c A B C ==ABC周长为10+10a b c ++=+4a ∴=,6b =,c =所以S == 故选:A.3.(2021·安徽淮北一中高一月考)“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图),若大、小正方形的面积分别为25和1,直角三角形中较大的锐角为θ,则cos2θ等于( )A .725B .725-C .925D .925-【答案】B 【分析】根据题意可得出1sin cos 5θθ-=,平方可得24sin 225θ=,即可求出.【详解】因为大正方形的面积为25,小正方形的面积为1,所以大正方形的边长为5,小正方形的边长为1, 所以5sin 5cos 1θθ-=,即1sin cos 5θθ-=,两边平方得11sin 225θ-=,即24sin 225θ=. 因为θ是直角三角形中较大的锐角,所以42ππθ<<,所以22πθπ<<,所以7cos 225θ==-. 故选:B.4.(2021·蚌埠铁路中学高三开学考试(文))勒洛三角形是一种特殊三角形,指分别以正三角形的三个顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形.勒洛三角形的特点是:在任何方向上都有相同的宽度,即能在距离等于其圆弧半径(等于正三角形的边长)的两条平行线间自由转动,并且始终保持与两直线都接触.机械加工业上利用这个性质,把钻头的横截面做成勒洛三角形的形状,就能在零件上钻出正方形的孔来.如在勒洛三角形ABC 内随机选取一点,则该点位于正三角形ABC 内的概率为( )AB C D 【答案】A 【分析】由题意可得曲边三角形的面积为一个扇形加两个拱形的面积,或者3个扇形面积减去2个三角形的面积,然后由几何概型的概率公式求出概率. 【详解】解:由题意可得正三角形的边长为半径的三段圆弧组成的曲边三角形的面积S 曲=S 扇形CAB +2S 拱=123π⋅⋅22+2(S 扇形﹣S △ABC )=23π⋅3﹣2⋅22=2π﹣三角形ABC 的面积S △ABC 22所以由几何概型的概率公式可得:所求概率=ABCS S ∆曲 故选:A .5.(2021·江苏高一期中)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了“黄金分割”.“黄金分割”是工艺美术、建筑、摄影等许多艺术门类中审美的要素之一,它表现了恰到好处的和谐,0.618≈,这一比值也可以表示为2sin18m =︒,若228m n +=,=( ) A.2 B .4 C .D .【答案】C 【分析】由题知28cos 18n =,再根据二倍角公式化简整理即可得答案. 【详解】解:因为2sin18m =︒,228m n +=, 所以2228288sin 188cos 18n m =-=-=,2sin1822cos1822sin 3622cos54cos54⨯===故选:C6.(2021·贵州贵阳·高三开学考试(文))水车(如图1),又称孔明车,是我国最古老的农业灌溉工具,主要利用水流的动力灌溉农作物,是先人们在征服世界的过程中创造出来的高超劳动技艺,是珍贵的历史文化遗产,相传为汉灵帝时毕岚造出雏形,经三国时孔明改造完善后在蜀国推广使用,隋唐时广泛用于农业灌溉,有1700余年历史.下图2是一个水车的示意图,它的直径为3m ,其中心(即圆心)O 距水面0.75m .如果水车每4min 逆时针转3圈,在水车轮边缘上取一点P ,我们知道在水车匀速转动时,P 点距水面的高度h(单位:m )是一个变量,它是时间t (单位:s )的函数.为了方便,不妨从P 点位于水车与水面交点Q 时开始记时()0t =,则我们可以建立函数关系式()()sin h t A t k ωϕ=++(其中0A >,0>ω,2πϕ<)来反映h 随t 变化的周期规律.下面关于函数()h t 的描述,正确的是( )A .最小正周期为80πB .一个单调递减区间为[]30,70C .()y h t =的最小正周期为40D .图像的一条对称轴方程为403t =- 【答案】D 【分析】首先求得()33sin 24064h t t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞,然后结合选项由三角函数的图象和性质判断即可.【详解】依题意可知,水车转动的角速度32(rad /s)46040ππω⨯==⨯, 3324A k +=+,3324A k -+=-+,解得32A =,34k =,由()330sin sin 024h A k ϕϕ=+=+=得1sin 2ϕ=-,又2πϕ<,则6πϕ=-,所以()33sin 24064h t t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞.对于选项A :函数()h t 的最小正周期为2=8040ππ,故A 错误;对于选项B :当[]30,70t ∈时,719,4061212t ππππ⎡⎤-∈⎢⎥⎣⎦,因为3719,21212πππ⎡⎤∈⎢⎥⎣⎦, 所以函数()h t 在[]30,70上不具有单调性,故B 错误; 对于选项C :()()353340sin 02642h h π=+=≠,所以C 错误;对于选项D :40333sin 32244h π⎛⎫⎛⎫-=-+=- ⎪ ⎪⎝⎭⎝⎭(最小值),所以D 正确.故选:D.7.(2021·江苏南京市·高一期中)托勒密(C .Ptolemy ,约90-168),古希腊人,是天文学家、地理学家、地图学家、数学家,所著《天文集》第一卷中载有弦表.在弦表基础上,后人制作了正弦和余弦表(部分如下图所示),该表便于查出0°~90°间许多角的正弦值和余弦值,避免了冗长的计算.例如,依据该表,角2°12′的正弦值为0.0384,角30°0′的正弦值为0.5000,则角34°36′的正弦值为( )A .0.0017B .0.0454C .0.5678D .0.5736【答案】C 【分析】先看左边列找34︒,再往右找对第一行的36'即可. 【详解】由题意查表可得3436︒'的正弦值为0.5678. 故选:C .8.(2021·江苏镇江·高一期中)今年是伟大、光荣、正确的中国共产党成立100周年.“红星闪闪放光彩”,正五角星是一个非常优美的几何图形,庄严美丽的国旗和国徽上的大五角星是中国共产党的象征,如图为一个正五角星图形,由一个正五边形的五条对角线连结而成,已知C ,D 为AB 的两个黄金分割点,即AC BD AB AB =.则cos DEC ∠=( )ABCD【答案】A 【分析】根据图形和已知条件表示出,,CE DE CD ,然后用余弦定理求解即可 【详解】由正五角星的对称性知:BC CE DE AD ===, 不妨设BC CE DE AD x ====,则CD AC AD =-, 又AC BC AC AD AB +=+=,AB AC ==则AC AD AC +=,所以AD =,AC AD AD ==,CD AC AD x x =-=-=22222224cos 122x DE CE CDDEC DE CEx +-∠===⨯ 故选:A二、多选题9.(2021·河北唐山·高三开学考试)声音是由物体振动产生的波,每一个音都是由纯音合成的.已知纯音的数学模型是函数sin y A t ω=.我们平常听到的乐音是许多音的结合,称为复合音.若一个复合音的数学模型是函数()1sin sin 22f x x x =+,则( )A .()f x 的最大值为32B .2π为()f x 的最小正周期C .π2x =为()y f x =曲线的对称轴 D .()π,0为曲线()y f x =的对称中心【答案】BD 【分析】分析函数sin y x =与1sin 22y x =不能同时取得最大值可判断A ;由sin y x =的最小正周期是2π,1sin 22y x=的最小正周期是2ππ2=可判断B ;计算ππ22f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭是否成立可判断C ;计算()()2π0f x f x +-=是否成立可判断D ;进而可得正确选项. 【详解】对于A :若()f x 的最大值为32,则sin y x =与1sin 22y x =同时取得最大值,当sin y x =取得最大值1时,cos 0x =,可得1sin 2sin cos 02y x x x ===取不到12,若1sin 22y x =取得最大值12时,sin 21x =,此时()ππZ 4x k k =+∈,而πsin sin π4y x k ⎛⎫==+= ⎪⎝⎭1,所以sin y x =与1sin 22y x =不可能同时取得最大值,故选项A 不正确;对于B :因为sin y x =的最小正周期是2π,1sin 22y x =的最小正周期是2ππ2=, 且()()()()112πsin 2πsin 22πsin sin 222f x x x x x f x +=+++=+=,()()()()11πsin πsin 2πsin sin 222f x x x x x f x +=+++=-+≠所以2π为()f x 的最小正周期,故选项B 正确;对于C :ππ1π1sin sin 2cos sin 222222f x x x x x ⎛⎫⎛⎫⎛⎫+=+++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,ππ1π1sin sin 2cos sin 222222f x x x x x ⎛⎫⎛⎫⎛⎫-=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以ππ22f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭不恒成立,即ππ22f x f x ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭,所以π2x =不是曲线()y f x =的对称轴,故选项C 不正确;对于D :()()()112πsin 2πsin 22πsin sin 222f x x x x x -=-+-=--,所以()()2π0f x f x +-=对于任意的x 恒成立,所以()π,0为曲线()y f x =的对称中心,故选项D 正确; 故选:BD.10.(2021·江苏)由倍角公式2cos 22cos 1x x =-,可知cos2x 可以表示为cos x 的二次多项式.一般地,存在一个n (n *∈N )次多项式()12012n n n n n P t a t a ta t a --=+++⋅⋅⋅+(012,,,n a a a a ⋅⋅⋅∈R ),使得()cos cos n nx P x =,这些多项式()n P t 称为切比雪夫(P .L .Tschebyscheff )多项式.运用探究切比雪夫多项式的方法可得( )A .()3343P t t t =-+ B .()424881P t t t =-+C .sin18︒=D .cos18︒=【答案】BC 【分析】通过求cos3,cos 4,cos5x x x ,来判断出正确选项. 【详解】()cos3cos 2cos2cos sin 2sin =+=-x x x x x x x()222cos 1cos 2sin cos x x x x =-- ()()222cos 1cos 21cos cos x x x x =--- 34cos 3cos x x =-,所以()3343P t t t =-,A 错误.()()222222cos 4cos 22cos 2sin 22cos 14sin cos x x x x x x x =⋅=-=--()42224cos 4cos 141cos cos x x x x =-+--428cos 8cos 1x x =-+,所以()424881P t t t =-+,B 正确.()cos5cos 4cos4cos sin 4sin x x x x x x x =+=- ()428cos 8cos 1cos 2sin 2cos2sin x x x x x x =-+- ()53228cos 8cos cos 4sin 2cos 1cos x x x x x x =-+--()()53228cos 8cos cos 41cos 2cos 1cos x x x x x x =-+--- 5316cos 20cos 5cos x x x =-+.所以()53cos90cos 51816cos 1820cos 185cos180︒=⨯︒=︒-︒+︒=,由于cos180︒≠,所以4216cos 1820cos 1850︒-︒+=,由于cos18cos30︒>︒,所以223cos 18cos 304︒>︒=,所以由4216cos 1820cos 1850︒-︒+=解得2cos 18︒=,所以sin18︒=,C正确. 2=≠⎝⎭,所以D 错误. 故选:BC 【点睛】三角函数化简求值问题,关键是根据题意,利用三角恒等变换的公式进行化简.11.(2021·全国)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后,在落潮时返回海洋.一艘货船的吃水深度(船底到水面的距离)为4m.安全条例规定至少要有2.25m 的安全间隙(船底到海底的距离),下表给出了某港口在某季节每天几个时刻的水深.若选用一个三角函数()f x 来近似描述这个港口的水深与时间的函数关系,则下列说法中正确的有( ) A .() 2.5cos 56x x f π⎛⎫=+⎪⎝⎭B .() 2.5sin 56f x x π⎛⎫=+⎪⎝⎭C .该货船在2:00至4:00期间可以进港D .该货船在13:00至17:00期间可以进港 【答案】BCD 【分析】依据题中所给表格,写出()f x 的表达式而判断选项A ,B ;再根据船进港的条件列出不等式,求解即可判断选项C ,D. 【详解】依据表格中数据知,可设函数为()sin f x A x k ω=+,由已知数据求得 2.5A =,5k =,周期12T =,所以26T ππω==﹐ 所以有() 2.5sin 56f x x π⎛⎫=+⎪⎝⎭,选项A 错误;选项B 正确; 由于船进港水深至少要6.25,所以 2. 5sin 5 6.256x π⎛⎫+ ⎪⎝⎭≥,得1sin 62x π⎛⎫⎪⎝⎭≥, 又024046x x ππ≤≤⇒≤≤,则有5666x πππ≤≤或1317666x πππ≤≤,从而有1 5 x ≤≤或1317x ≤≤,选项C ,D 都正确. 故选:BCD 【点睛】解三角不等式sin()(||1)x m m ωϕ+≥<关键在于:找准不等式中的函数值m 所对角; 长为一个周期的区间内相位x ωϕ+所在范围.12.(2020·全国高三月考)斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD AB BC ⎛= ⎝⎭中作正方形ABFE ,以F 为圆心,AB 长为半径作弧BE ;然后在黄金矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作弧EG ;;如此继续下去,这些弧就连接成了斐波那契螺线.记弧BE ,EG ,GI 的长度分别为l ,m ,n ,则下列结论正确的是( )A .l m n =+B .2m l n =⋅C .2m l n =+D .111m l n=+ 【答案】AB 【分析】设1AB =,则2BC =,再由14圆弧分别求得l ,m ,n ,然后再逐项判断.【详解】不妨设1AB =,则2BC =,所以121)4l π=⨯⨯=.因为3ED =所以12(34m π=⨯⨯=.同理可得124)4n π=⨯⨯=所以l m n =+,2m l n =⋅,2m l n ≠+,111m l n≠+,所以A ,B 正确,C ,D 错误. 故选:AB三、填空题13.(2021·安徽高三开学考试(理))正割(secant )及余割(cosecant )这两个符号是荷兰数学家基拉德在《三角学》中首先使用,后经欧拉采用得以通行.在三角中,定义正割1sec cos αα=,余割1csc sin αα=.已知0t >,且22sec csc 16x t x +≥对任意的实数,2k x x k Z π⎛⎫≠∈ ⎪⎝⎭均成立,则t 的最小值为__________. 【答案】9 【分析】根据正余割的定义,得到和为1,结合基本不等式1的代入即可求解 【详解】 由题得:22111sec csc x x+=, 所以()22222211sec csc sec csc 16sec csc x t x x t x x x ⎛⎫+=++≥ ⎪⎝⎭即:2222csc sec 11sec csc t x xt x x t ≥+++++116t ++5-3,所以9t ≥故答案为:914.(2021·江苏仪征中学高一月考)赵爽是我国古代数学家,大约在公元222年,赵爽在为《周髀算经》,作序时,介绍了“勾股圆方图”,亦称为“赵爽弦图”.可类似地构造如图所示的图形,由三个全等的三角形与中间的一个小等边三角形拼成一个大的等边三角形,设2DF FA =,若AB =ABD △的面积为____________.【答案】【分析】设BD x =,可得出3AD x =,23ADB π∠=,利用余弦定理求出x 的值,再利用三角形的面积公式可求得ABD △的面积. 【详解】设BD x =,则3AD x =,因为DEF 为等边三角形,则3ADE π∠=,故23ADB π∠=, 在ABD △中,由余弦定理得()222252323cos3AB x x x x π==+-⨯⨯⨯,解得2x =,故6AD =,2BD =,因此,ABD △的面积为1226sin23ABD S π=⨯⨯⨯=△故答案为:15.(2021·安徽阜阳·高一期末)筒车是一种水利灌溉工具(如图1所示),筒车上的每一个盛水筒都做逆时针匀速圆周运动,筒车转轮的中心为O ,筒车的半径为r ,筒车转动的周期为24s ,如图2所示,盛水桶M在0P 处距水面的距离为0h .4s 后盛水桶M 在1P 处距水面的距离为1h ,若10h h -=,则直线0OP 与水面的夹角为______.【答案】π12【分析】根据题意构建平面几何模型,在借助三角函数求解答案. 【详解】如图,过O 作直线l 与水面平行,过0P 作0P A l ⊥于A ,过1P 作1PB l ⊥于B . 设0AOP α∠=,1BOP β∠=,则,4π2π243βα-=⨯=,π3βα∴=+由图知,0sin P A r α=,1sin PB r β=,0101sin sin P A h h PB r r r βα--=-==,所以πsin sin 3αα⎛⎫+-= ⎪⎝⎭πsin 3α⎛⎫-= ⎪⎝⎭,则ππ34α-=-,即π12α=.故答案为:π12. 16.(2021·广东深圳·高三)著名的费马问题是法国数学家皮埃尔德费马(1601-1665)于1643年提出的平面几何极值问题:“已知一个三角形,求作一点,使其与此三角形的三个顶点的距离之和最小.”费马问题中的所求点称为费马点,已知对于每个给定的三角形,都存在唯一的费马点,当ABC 的三个内角均小于120︒时,则使得120APB BPC CPA ∠=∠=∠=︒的点P 即为费马点.已知点P 为ABC 的费马点,且AC BC ⊥,若||||||PA PB PC λ+=,则实数λ的最小值为_________.【答案】2 【分析】根据题意120APB BPC CPA ∠=∠=∠=︒,不妨设PCB α∠=,故,,326CBP ACP CAP πππααα∠=-∠=-∠=-,进而得,63ππα⎛⎫∈ ⎪⎝⎭,所以在BCP 和ACP △中,由正弦定理得sin sin 3BP PC απα=⎛⎫- ⎪⎝⎭,sin 2sin 6PA PC παπα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭,故sin sin 2sin sin 36πααλππαα⎛⎫- ⎪⎝⎭=+⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,在结合三角恒等变换化简整理求函数最值即可.【详解】根据题意, 点P 为ABC 的费马点,ABC 的三个内角均小于120︒, 所以120APB BPC CPA ∠=∠=∠=︒,设PCB α∠=,所以在BCP 和ACP △中,,,3236CBP ACP CAP ACP ππππααα∠=-∠=-∠=-∠=-,且均为锐角,所以,63ππα⎛⎫∈ ⎪⎝⎭所以由正弦定理得:sin sin 3BPPC παα=⎛⎫- ⎪⎝⎭,sin sin 26PA PCππαα=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,所以sin sin 3BP PC απα=⎛⎫- ⎪⎝⎭,sin 2sin 6PA PC παπα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭, 因为||||||PA PB PC λ+=所以sin cos sin sin cos sin 2sin sin 36πααααααλππαα⎛⎛⎫- - ⎪⎝⎭=+==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭11==,因为,63ππα⎛⎫∈ ⎪⎝⎭,所以22,33ππα⎛⎫∈ ⎪⎝⎭,所以(2sin 20,2α,)12,⎡∈+∞⎣故实数λ的最小值为2.故答案为:2【点睛】本题考查数学文化背景下的解三角形,三角恒等变换解决三角函数取值范围问题,考查运算求解能力,数学建模能力,化归转化思想,是难题.本题解题的关键在于根据题目背景,通过设PCB α∠=,进而建立解三角形的模型,再根据正弦定理及三角恒等变换化简求最值即可.四、解答题17.(2021·海安市南莫中学高一期中)下图所示的毕达格拉斯树画是由图(i )利用几何画板或者动态几何画板Geogebra 做出来的图片,其中四边形ABCD ,AEFG ,PQBE 都是正方形.如果改变图(i )中EAB ∠的大小会得到更多不同的“树形”.(1)在图(i )中,21AB ,AE ==,且AE AB ⊥,求AQ ;(2)在图(ii )中,21AB ,AE ==,设(0)EAB θθπ∠=<<,求AQ 的最大值.【答案】(1(2)9. 【分析】(1)由已知条件结合诱导公式求得cos ABQ ∠,在ABQ △中,利用余弦定理,即可求解;(2)由已知条件结合余弦定理,求得BE ,再利用正弦定理、余弦定理及三角函数的性质,即可求解. 【详解】(1)当AE AB ⊥时,BE BQ ==则()cos cos2ABQ ABE π∠=+∠sin AE ABE BE =-∠=-=在ABQ △中,由余弦定理可得2222cos 45413AQ AB BQ AB BQ ABQ =+-⋅∠=++=,所以AQ =(2)在ABE △中,由余弦定理知,2222cos 54cos BE AB AE AB AE θθ⋅=-⋅=+-,所以BE BQ ==在ABE △中,由正弦定理知sin sin AE BEABE θ=∠,可得sin ABE ∠=在ABQ △中,由余弦定理可得2222cos()2AQ AB BQ AB BQ ABE π=+-⋅⋅+∠454cos 4θ=+-+4(sin cos )994πθθθ⎛⎫=-+=-+ ⎪⎝⎭,所以当3(0,)4πθπ=∈时,AQ 的取最大值9.答:(1)AQ =(2)AQ 的最大值为9.18.(2021·昆明·云南师大附中高一期中)仰望星空,时有流星划过天际,令我们感叹生命的短暂,又深深震撼我们凡俗的心灵.流星是什么?从古至今,人们作过无数种猜测.古希腊亚里士多德说,那是地球上的蒸发物,近代有人进一步认为,那是地球上磷火升空后的燃烧现象.10世纪波斯著名数学家、天文学家阿尔·库希设计出一种方案,通过两个观测者异地同时观察同一颗流星,来测定其发射点的高度.如图,假设地球是一个标准的球体,O 为地球的球心,AB 为地平线,有两个观测者在地球上的A ,B 两地同时观测到一颗流星S ,观测的仰角分别为SAD α∠=,SBD β∠=,其中,90DAO DBO ∠=∠=︒,为了方便计算,我们考虑一种理想状态,假设两个观测者在地球上的A ,B 两点测得30α=︒,15β=︒,地球半径为R 公里,两个观测者的距离3RAB π=. 1.73 1.5≈)(1)求流星S 发射点近似高度ES ;(2)在古希腊,科学不发达,人们看到流星以为这是地球水分蒸发后凝结的固体,已知对流层高度大约在18公里左右,若地球半径6370R ≈公里,请你据此判断该流星S 是地球蒸发物还是“天外来客”?并说明理由.【答案】(1)0.5ES R =公里;(2)该流星不是地球蒸发物,而是“天外来客”,理由见解析. 【分析】(1)由已知条件在ASB △中利用正弦定理求出1)AS R =,在SAC 中再利用余弦定理求出OS ,从而可得ES OS R =-;(2)由(1)求出的值可得流星S 发射点近似高度为3185公里,远远大于对流层最高近似高度18公里,从而可得结论 【详解】 (1)因为3AB R π=,则60AOB ∠=︒,所以AOB 为等边角形,所以AB R =.又因为90DAO DBO ∠=∠=︒,所以30∠=∠=︒DAB DBA ,所以30∠=∠=︒DAB DBA ,所以60SAB ∠=︒,45SBA ∠=︒,75ASB ∠=︒.在ASB △中,由正弦定理:sin 75sin 45AB AS =︒︒,得()sin 4530sin 45R AS ︒=︒+︒, 解得1)AS R =,在SAC 中,由余弦定理:2222222212cos 1)1)(42OS SA OA SA OA SAO R R R R ⎛⎫=+-⋅∠=+-⨯-= ⎪⎝⎭.所以 1.5OS R =≈≈,所以0.5ES OS R R =-=公里.(2)0.53185ES R ≈≈公里,所以流星S 发射点近似高度为3185公里,远远大于对流层最高近似高度18公里,所以该流星不是地球蒸发物,而是“天外来客”.(言之有理即可).19.(2021·奉新县第一中学高一月考)重庆是我国著名的“火炉”城市之一,如图,重庆某避暑山庄O 为吸引游客,准备在门前两条小路OA 和OB 之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知π6AOB ∠=,弓形花园的弦长AB =M ,π6MAB MBA ∠=∠=,设OBA θ∠=.(1)将OA 、OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何设计OA 、OB 的长度,才使得喷泉M 与山庄O 的距离的值最大?【答案】(1)OA θ=,6OB πθ⎛⎫=+ ⎪⎝⎭;(2)当OA OB =OM 取最大值4+ 【分析】(1)本题可通过正弦定理得出OA θ=、6OB πθ⎛⎫=+ ⎪⎝⎭;(2)本题首先可根据题意得出2AM BM ==,然后通过余弦定理得出2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅⋅⋅+ ⎪⎝⎭,通过转化得出222283OM πθ⎛⎫=-++ ⎪⎝⎭,最后通过50,6πθ⎛⎫∈ ⎪⎝⎭以及正弦函数的性质即可求出最值.【详解】(1)因为sin sin sin OA OB AB OAB AOBθ==∠∠,π6AOB ∠=,AB =所以56OAB πθ∠=-,OA θ=,566OB ππθθ⎛⎫⎛⎫=-=+⎪ ⎪⎝⎭⎝⎭.(2)因为AB =π6MAB MBA ∠=∠=,所以2AM BM ==, 在OMB △中,由余弦定理易知2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅⋅⋅+ ⎪⎝⎭,即2248sin 4cos 666OM πππθθθ⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭248sin 2428224cos 22286333ππππθθθθ⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+=-+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭122sin 2282283233πππθθθ⎤⎛⎫⎛⎫⎛⎫=-++++=-++⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦,因为50,6πθ⎛⎫∈ ⎪⎝⎭,所以2272,333πππθ⎛⎫+∈ ⎪⎝⎭,2sin 23πθ⎡⎛⎫+∈-⎢⎪⎝⎭⎣⎭, 当2sin 213πθ⎛⎫+=- ⎪⎝⎭,即512πθ=时, 2OM 取最大值28+OM 取最大值4+此时51264OA πππ⎛⎫==+= ⎪⎝⎭ 512643OB ππππ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭故当OA OB =时,OM 取最大值4+ 【点睛】关键点点睛:本题考查解三角形的实际应用,考查正弦定理与余弦定理的应用,考查三角恒等变换,考查根据正弦函数的性质求最值,考查化归与转化思想,体现了综合性,是难题.20.(2021·江苏省镇江中学)古希腊数学家普洛克拉斯曾说:“哪里有数学,哪里就有美,哪里就有发现……”,对称美是数学美的一个重要组成部分,比如圆,正多边形……,请解决以下问题:(1)魏晋时期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”,割圆术可以视为将一个圆内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,求sin3︒的近似值(结果保留π).(2)正n 边形的边长为a ,内切圆的半径为r ,外接圆的半径为R ,求证:2tan2a R r nπ+=.【答案】(1)60π;(2)详见解析.【分析】(1)将一个单位圆分成120个扇形,每个扇形的圆心角为3︒,再根据120个等腰三角形的面积之和近似等于圆的面积求解;(2)设O 为内切圆的圆心,OA ,OB 分别为外接圆和内切圆的半径R ,r ,易知 1,2AB a nπθ==,然后在Rt OAB 中,利用三角函数的定义求得R ,r ,利用三角恒等变换证明.【详解】(1)将一个单位圆分成120个扇形,每个扇形的圆心角为3︒, 因为这120个等腰三角形的面积之和近似等于圆的面积, 所以11211sin 32π⨯⨯⨯⨯≈ sin 360π≈;(2)设O 为内切圆的圆心,OA ,OB 分别为外接圆和内切圆的半径R ,r ,则,OA R OB r ==, 如图所示:所以1,2AB a nπθ==, 在Rt OAB 中,sin AB OAθ=,即12sin an Rπ=,所以2sin a R n π=, cos OB OA θ=,即cos r n Rπ=,所以coscos 2sin a n r R n nπππ==, 所以1cos cos2sin 2sin 2sina a a n n R r n n nπππππ⎛⎫+ ⎪⎝⎭+=+=, 22cos 24sincos2tan222a a nnnnππππ==.21.(2021·上海徐汇·高一期末)主动降噪耳机工作的原理是:先通过微型麦克风采集周国的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的声波来抵消噪声(如图所示).已知某噪声的声波曲线f(x)=Asin (2π3x +φ)(A >0,0≤φ<π),其中的振幅为2,且经过点(1,-2)(1)求该噪声声波曲线的解析式f(x)以及降噪芯片生成的降噪声波曲线的解析式g(x); (2)证明:g(x)+g(x +1)+g(x +2)为定值. 【答案】(1)f(x)=2sin (2π3x +5π6), g(x)=−2sin (2π3x +5π6);(2)证明见解析.【分析】(1)首先根据振幅为2求出A ,将点(1,-2)代入解析式即可解得; (2)由(1),结合诱导公式和两角和差的余弦公式化简即可证明.【详解】(1)∵振幅为2,A >0,∴A =2,f(x)=2sin (2π3x +φ),将点(1,-2)代入得:−2=2sin (2π3+φ)⇒sin (2π3+φ)=−1,∵0≤φ<π,∴2π3+φ∈[2π3,5π3),∴2π3+φ=3π2⇒φ=5π6,∴f(x)=2sin (2π3x +5π6),易知g(x)与f(x)关于x 轴对称,所以g(x)=−2sin (2π3x +5π6).(2)由(1)g(x)=−2sin (2π3x +5π6)=−2sin (2π3x +π3+π2)=−2cos (2π3x +π3)g(x)+g(x +1)+g(x +2)=−2cos (2π3x +π3)−2cos (2π3x +π)−2cos (2π3x +2π3+π)=−2cos (2π3x +π3)+2cos2π3x +2cos (2π3x +2π3)=−2(cos2π3x ⋅12−sin2π3x ⋅√32)+2cos2π3x +2[cos2π3x ⋅(−12)−sin2π3x ⋅√32]=0.即定值为0.22.(2021·合肥市第六中学高一期末)合肥逍遥津公园是三国古战场,也是合肥最重要的文化和城市地标,是休闲游乐场,更是几代合肥人美好记忆的承载地.2020年8月启动改造升级工作,欲对该公园内一个平面凸四边形ABCD 的区域进行改造,如图所示,其中4DC a =米,2DA a =米,ABC 为正三角形.改造后BCD △将作为人们旅游观光、休闲娱乐的区域,ABD △将作为对三国历史文化的介绍区域.(1)当3ADC π∠=时,求旅游观光、休闲娱乐的区域BCD △的面积;(2)求旅游观光、休闲娱乐的区域BCD △的面积的最大值.【答案】(1)()22m ;(2)(()224m a +.【分析】(1)由余弦定理求得AC ,再由正弦定理求得ACD ∠,求出BC BC ⊥,易得面积;(2)不妨设ADC θ∠=,ACD α∠=,用余弦定理表示出2AC ,用正弦定理表示出sin α,再用余弦定理表示出cos α,然后表示出BCD △的面积,利用两角和的正弦公式展开代入2sin ,cos ,AC αα,再利用两角差的正弦公式化简,然后利用正弦函数性质得最大值. 【详解】解析:(1)2222cos3AC AD DC AD DC π=+-⋅⋅,∴AC =,又sin sin3ACADACD π=∠,∴1sin 2ACD ∠=,易知ACD ∠是锐角,所以6π∠=ACD ,∴2BCD π∠=,()2214m 2BCD S a =⨯⨯=△,(2)不妨设ADC θ∠=,ACD α∠=,于是由余弦定理得()222016cos AC a θ=-①,22sin sin sin sin AC a a ACθαθα=⇒=②, 22222124168cos cos 8AC a a AC a aAC a a aAC+=+-⋅⇒=③, ∴14sin 23BCDS a AC πα⎛⎫=⨯⨯⋅+ ⎪⎝⎭△2(sin cos cos sin )33a AC ππαα=⋅+2222sin 128a AC a AC AC AC θ⎡⎤+=⋅⎢⎥⎣⎦((2222sin 4sin 43a a a πθθθ⎛⎛⎫=-+=-++ ⎪ ⎝⎝≤⎭,当且仅当5 326πππθθ-=⇒=时取等号,∴BCD S △最大值为(()224m a +.【点睛】本题考查解三角形的应用,解题关键是选用一个角为参数,然后把其他量表示为参数的三角函数,这里注意正弦定理和余弦定理的应用,然后利用三角函数恒等变换公式化简变形,最后利用正弦函数性质求得最值.。

完整版)高考解三角形大题(30道)

完整版)高考解三角形大题(30道)

完整版)高考解三角形大题(30道)1.在三角形ABC中,已知内角A,B,C的对边分别为a,b,c,且有以下等式:frac{\cos A - 2\cos C}{2c-a} = \frac{\cos B b}{\sin C}$$求该等式右侧的值,以及:2)若$\cos B=\frac{1}{4}$,$b=2$,求三角形ABC的面积S。

2.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\sin C+\cos C=1$,求:1)$\sin C$的值;2)若$a+b=4a-8$,求边c的值。

3.在三角形ABC中,角A,B,C的对边分别为a,b,c。

1)若$\sin(A+\frac{2}{3}\pi)=2\cos A$,求角A的值;2)若$\cos A=\frac{3}{c}$,求$\sin C$的值。

4.在三角形ABC中,D为边BC上的一点,且$BD=\frac{3}{3}$,$\sin B=\frac{5}{3}$,$\cos\angleADC=\frac{\sqrt{3}}{5}$,求AD。

5.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$a=1$,$b=2$,$\cos C=-\frac{1}{4}$,求:1)三角形ABC的周长;2)$\cos(A-C)$的值。

6.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\sin A+\sin C=\frac{1}{2}\sin B$,且$ac=\frac{1}{2}b$。

1)求a,c的值;2)若角B为锐角,求p的取值范围,其中$p=\frac{1}{5}$,$b=1$。

7.在三角形ABC中,角A,B,C的对边分别为a,b,c,且$2a\sin A=(2b+c)\sin B+(2c+b)\sin C$。

1)求角A的值;2)求$\sin B+\sin C$的最大值。

8.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\cos 2C=-\frac{1}{4}$。

通用版五年高考2024_2025高考数学真题专题归纳专题15三角函数与解三角形综合含解析理

通用版五年高考2024_2025高考数学真题专题归纳专题15三角函数与解三角形综合含解析理

专题15 三角函数与解三角形综合【2024年】1.(2024·新课标Ⅱ)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+【点睛】本题考查解三角形的相关学问,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.2.(2024·北京卷)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:假如选择条件①和条件②分别解答,按第一个解答计分. 【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S = 选择条件②(Ⅰ)6(Ⅱ)sin C =, S =. 【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 7A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 27a c C A C C ==∴=11sin (118)822S ba C ==-⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====由正弦定理得:6sin sin 816a b a A B ===(Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解实力,属中档题.3.(2024·山东卷)在①ac sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin AB ,6C π=,________?注:假如选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】解法一:由sin 3sin AB 可得:ab=不妨设(),0a b m m =>,则:2222222cos 322c a b ab C m m m m =+-=+-⨯⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯==1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==,此时:sin 3c A m ==,则:c m ==选择条件③的解析: 可得1c mb m==,c b =,与条件=c 冲突,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+⎪⎝⎭,()1?2sinA A C =+= ,∴sinA =,∴tanA =23A π=,∴6B C π==,若选①,ac =,∵a ==2=若选②,3csinA =,3=,c =;若选③,与条件=c 冲突.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采纳到正弦定理,出现边的二次式一般采纳到余弦定理.应用正、余弦定理时,留意公式变式的应用.解决三角形问题时,留意角的限制范围. 4.(2024·天津卷)在ABC 中,角,,A B C 所对的边分别为,,a b c.已知5,a b c ===(Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.【答案】(Ⅰ)4C π;(Ⅱ)sin A =(Ⅲ)sin 2426A π⎛⎫+= ⎪⎝⎭.【解析】(Ⅰ)在ABC中,由5,a b c ===222cos 22a b c C ab +-===, 又因为(0,)C π∈,所以4C π;(Ⅱ)在ABC 中,由4Cπ,a c ==sin sin a C A c===13; (Ⅲ)由a c <知角A为锐角,由sin 13A =,可得cos A=13,进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin444132132A A A πππ+=+=⨯+⨯=26. 【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算实力,是一道简单题.5.(2024·浙江卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin b A =. (I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II)13,22⎛⎤⎥ ⎝⎦ 【解析】(I)由2sin b A =结合正弦定理可得:2sin sin ,sin 2B A A B =∴= △ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 32A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,113sin ,2232A π⎛⎤⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.【2024年】1.【2024年高考全国Ⅰ卷】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-()sin 1202sin A C C ︒+-=,即1sin 2sin 222C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 2.【2024年高考全国Ⅲ卷】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2).【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2C c Aa CC︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭. 3.【2024年高考北京卷】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值. 【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯-⎪⎝⎭. 解得5c =. 所以7b =.(2)由1cos 2B =-得sin B =.由正弦定理得sin sin 14c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin 7B C B C B C -=-=. 4.【2024年高考天津卷】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin 4B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭. 5.【2024年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)3c =;(2)5.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭6.【2024年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型马路l ,湖上有桥AB (AB 是圆O 的直径).规划在马路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的全部点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+321(百米). 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满意规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满意规划要求. 综上,P 和Q 均不能选在D 处. (3)先探讨点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上随意一点F ,OF ≥OB ,即线段PB 上全部点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再探讨点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上全部点到点O 的距离均不小于圆O的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满意规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满意规划要求. 综上,P 和Q 均不能选在D 处. (3)先探讨点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上随意一点F ,OF ≥OB ,即线段PB 上全部点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再探讨点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q(a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上全部点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+因此,d 最小时,P ,Q 两点间的距离为17+. 7.【2024年高考浙江卷】设函数()sin ,f x x x =∈R . (1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)33[1,1]22-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对随意实数x 都有sin()sin()x x θθ+=-+,即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ ππ1cos 21cos 2133621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭ 3π1cos 223x ⎛⎫=-+ ⎪⎝⎭. 因此,函数的值域是33[1,1]22-+. 【2024年】1. (2024年浙江卷)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ().(Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满意sin (α+β)=,求cos β的值. 【答案】(Ⅰ) , (Ⅱ)或【解析】(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.2. (2024年天津卷)在中,内角A,B,C所对的边分别为a,b,c.已知. (I)求角B的大小;(II)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,3. (2024年北京卷)在△ABC中,a=7,b=8,cos B= –.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【答案】(1) ∠A=(2) AC边上的高为【解析】(Ⅰ)在△ABC中,∵cos B=–,∴B∈(,π),∴sin B=.由正弦定理得=,∴sin A=.∵B∈(,π),∴A∈(0,),∴∠A=.(Ⅱ)在△ABC中,∵sin C=sin(A+B)=sin A cos B+sin B cos A==.如图所示,在△ABC中,∵sin C=,∴h==,∴AC边上的高为.4. (2024年江苏卷)已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.5. (2024年全国I卷理数)在平面四边形中,,,,. (1)求;(2)若,求.【答案】 (1) .(2).【解析】 (1)在中,由正弦定理得. 由题设知,,所以.由题设知,,所以.(2)由题设及(1)知,.在中,由余弦定理得,所以.【2024年】1.【2024课标1,理17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【答案】(1)23.(2)333【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A =.由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-. 所以23B C π+=,故3A π=. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得33b c +=故△ABC 的周长为333+.2.【2024课标II ,理17】ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知()2sin 8sin 2BA C +=, (1)求cosB ;(2)若6a c +=,ABC ∆的面积为2,求b 。

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ­ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。

2024年高考数学总复习第四章《三角函数解三角形》复习试卷及答案解析

2024年高考数学总复习第四章《三角函数解三角形》复习试卷及答案解析

2024年高考数学总复习第四章《三角函数、解三角形》复习试卷及答案解析一、选择题1.sin215°-cos215°等于()A.-12B.12C.-32D.32答案C解析sin215°-cos215°=-(cos215°-sin215°)=-cos30°=-32.故选C.2.若sinα=45,则-22cosα等于()A.225B.-225C.425D.-425答案A解析-22 cosα=sinαcos π4+cosαsinπ4-22cosα=45×22=225.3.已知sinα=-45α是第四象限角,则sin()A.52 10B.325C.7210D.425答案C解析由同角三角函数基本关系可得cosα=1-sin2α==35,结合两角差的正弦公式可得sin π4cosα-cosπ4sinα=7210.故选C. 4.函数f(x)=sin x的最大值为()A.3B.2C.23D.4答案A解析函数f(x)=sin x=12sin x +32cos x +sin x =32sin x +32cos xx +12cos=3sin ≤3.故f (x )的最大值为3.故选A.5.已知函数f (x )=2cos(ωx +φ)->0,|φ|y =1相邻两个交点的距离为4π3,若f (x )>0对x -π8,φ的取值范围是()A.-π12,0-π8,-π24C.-π12,D.0,π12答案B解析由已知得函数f (x )的最小正周期为4π3,则ω=32,当x -π8,时,32x +φ-3π16+φ,3π8+因为f (x )>0,即+>12,φ≥-π3+2k π,≤π3+2k π(k ∈Z ),解得-7π48+2k π≤φ≤-π24+2k π(k ∈Z ),又|φ|<π8,所以-π8<φ≤-π24,故选B.6.(2019·山师大附中模拟)设函数f (x )=sin(2x +φ)(0<φ<π)在x =π6时取得最大值,则函数g (x )=cos(2x +φ)的图象()AB C .关于直线x =π6对称D .关于直线x =π3对称答案A解析因为当x =π6时,f (x )=sin(2x +φ)(0<φ<π)取得最大值,所以φ=π6,即g (x )=x+π6,k ∈Z ,对称轴x =k π2-π12,k ∈Z ,故选A.7.(2019·沈阳东北育才学校模拟)如图平面直角坐标系中,角α-π2<β边分别交单位圆于A ,B 两点,若B 点的纵坐标为-513,且满足S △AOB =34,则sinα2·α2-sin +12的值为()A .-513 B.1213C .-1213D.513答案B解析由图易知∠xOA =α,∠xOB =-β.由题可知,sin β=-513.由S △AOB =34知∠AOB =π3,即α-β=π3,即α=π3+β.则sinα2-sin +12=3sin α2cos α2-sin 2α2+12=32sin α-12(1-cos α)+12=32sin α+12cos α=β=cos β=1-sin 2β=1213.故选B.8.(2019·重庆铜梁一中月考)已知函数f (x )=2sin(ωx +φ)(ω>0),x ∈-π12,2π3的图象如图,若f (x 1)=f (x 2),且x 1≠x 2,则f (x 1+x 2)的值为()A.3B.2C .1D .0答案C解析由图象得3T 4=2π3--π12∴T =π,ω=2πT=2,由2sin π6×2+φ=2sin π3+φ=2,得π3+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),由x 1+x 2=π6×2=π3,得f (x 1+x 2)=f π3=2sin 2×π3+π6+2k π1,故选C.9.(2019·重庆巴蜀中学期中)已知f (x )=sin(ωx +θ)其中ω>0,θ∈0,π2f ′(x 1)=f ′(x 2)=0,|x 1-x 2|的最小值为π2,f (x )=f π3-x 将f (x )的图象向左平移π6个单位长度得g (x ),则g (x )的单调递减区间是()A.k π,k π+π2(k ∈Z )B.k π+π6,k π+2π3(k ∈Z )C.k π+π3,k π+5π6(k ∈Z )D.k π+π12,k π+7π12(k ∈Z )答案A解析∵f (x )=sin(ωx +θ)其中ω>0,θ∈0,π2,由f ′(x 1)=f ′(x 2)=0可得x 1,x 2是函数的极值点,∵|x 1-x 2|的最小值为π2,∴12T =πω=π2,∴ω=2,∴f (x )=sin(2x +θ),又f (x )=f π3-x ∴f (x )的图象的对称轴为x =π6,∴2×π6+θ=k π+π2,k ∈Z ,又θ∈0,π2∴θ=π6,∴f (x )=x 将f (x )的图象向左平移π6个单位长度得g (x )=sin 2+π6=cos 2x 的图象,令2k π≤2x ≤2k π+π,k ∈Z ,∴k π≤x ≤k π+π2,k ∈Z ,则g (x )=cos 2x 的单调递减区间是k π,k π+π2(k ∈Z ),故选A.10.(2019·成都七中诊断)已知函数f (x )=sin(ωx +φ)(其中ω>0)的最小正周期为π,函数g (x )=+3f (x ),若对∀x ∈R ,都有g (x )≤|,则φ的最小正值为()A.π3B.2π3C.4π3D.5π3答案B解析由函数f (x )的最小正周期为π,可求得ω=2,∴f (x )=sin(2x +φ),g (x )=+3f (x )=sin 2φ+3sin(2x +φ)=cos(2x +φ)+3sin(2x +φ)=x +φ∴g (x )=x +φ又g (x )≤|,∴x =π3是g (x )的一条对称轴,代入2x +φ+π6中,有2×π3+φ+π6=π2+k π(k ∈Z ),解得φ=-π3+k π(k ∈Z ),当k =1时,φ=2π3,故选B.11.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于()A .27B .4C .23D .33答案C 解析∵a cos B +b cos Ac=2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C ,∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3,∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6=2,=4=4,=2,c 2=a 2+b 2-2ab cos C =4+16-8=12,∴c =23,故选C.12.(2019·河北衡水中学调研)若函数f (x )=(ω>0)在区间(π,2π)内没有最值,则ω的取值范围是(),112∪14,23,16∪13,23C.14,23 D.13,23答案B解析易知函数y =sin x 的单调区间为k π+π2,k π+3π2,k ∈Z .由k π+π2≤ωx +π6≤k π+3π2,k ∈Z ,得k π+π3ω≤x ≤k π+4π3ω,k ∈Z .因为函数f(x )=ω>0)在区间(π,2π)内没有最值,所以f (x )在区间(π,2π)内单调,所以(π,2π)⊆k π+π3ω,k π+4π3ω,k ∈Z ,所以π,2π,k ∈Z ,解得k +13ω≤k 2+23,k ∈Z .由k +13≤k 2+23,k ∈Z ,得k ≤23,k ∈Z .当k =0时,得13≤ω≤23;当k =-1时,得-23≤ω≤16.又ω>0,所以0<ω≤16.综上,得ω,16∪13,23.故选B.二、填空题13.(2019·陕西四校联考)已知sin α=2cos α,则cos 2α=________.答案-35解析由已知得tan α=2,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=1-44+1=-35.14.(2019·山师大附中模拟)已知=14,则x ________.答案78解析根据三角函数诱导公式,得=14,x x 2cos 1=78.15.(2019·武汉示范高中联考)函数y =sin x +cos x +2sin x cos x 的最大值为________.答案2+1解析令t =sin x +cos x ,则t =sin x +cos x=2sin t ∈[-2,2],则t 2=1+2sinx cos x ,所以sin x cos x =t 2-12,所以y =t 2+t -1-54,对称轴为t =-12,因为t ∈[-2,2],所以当t =2时取得最大值,为2+1.16.(2019·银川一中月考)已知函数f (x )=cos x sin x (x ∈R ),则下列四个命题中正确的是________.(写出所有正确命题的序号)①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间-π4,π4上是增函数;④f (x )的图象关于直线x =3π4对称.答案③④解析f (x 1)=-f (x 2),即12sin 2x 1=-12sin 2x 2,由f (x )图象(图略)可知,①错误;由周期公式可得T =2π2=π,②错误;由f (x )的图象可知,③正确;=12sin 3π2=-12④正确.故填③④.三、解答题17.(2019·抚州七校联考)已知函数f (x )=cos(ωx +φ>0,|φ的距离为π2,且f (x )的图象与y =sin x 的图象有一个横坐标为π4的交点.(1)求f (x )的解析式;(2)当x ∈0,7π8时,求f (x )的最小值,并求使f (x )取得最小值的x 的值.解(1)由题可知,T =π=2πω,ω=2,又×π4+sin π4,|φ|<π2,得φ=-π4.所以f (x )=x (2)因为x ∈0,7π8,所以2x -π4∈-π4,3π2,当2x -π4=π,即x =5π8时,f (x )取得最小值.f (x )min = 1.18.(2019·福建闽侯五校期中联考)已知向量a =(3sin x ,cos x ),b =(cos x ,-cos x ),f (x )=a ·b .(1)求f (x )的最小正周期和单调递增区间;(2)若x a ·b =-54,求cos 2x 的值.解(1)f (x )=a ·b =3sin x cos x -cos 2x=32sin 2x -cos 2x +12=x -12,∴f (x )的最小正周期是π.令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),∴k π-π6≤x ≤k π+π3(k ∈Z ),∴f (x )的单调递增区间为k π-π6,k π+π3(k ∈Z ).(2)∵a ·b =x -12=-54,∴x =-34.∵x∴2x -π6∈,∴x =-74,∴cos 2x =x +π6=x cos π6-x sinπ6=-74×32-×12=3-218.。

(完整版)解三角形高考大题-带答案

(完整版)解三角形高考大题-带答案

解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以6cos cos(4530)4CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE =-+.故2sin 30cos15AE=124⨯== 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。

(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。

高三数学解三角形试题答案及解析

高三数学解三角形试题答案及解析

高三数学解三角形试题答案及解析1.已知的内角,面积满足所对的边,则下列不等式一定成立的是A.B.C.D.【答案】A【解析】由题设得:(1)由三角形面积公式及正弦定理得:所以又因为,所以所以恒成立,所以故选A.【考点】1、两角和与差的三角函数;2、正弦定理;3、三角形的面积公式.2.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶,假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.=10,此时v==30【答案】(1)当t=时,Smin(2)航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.【解析】解:(1)设相遇时小艇航行的距离为S海里,则S===.=10,此时v==30.故当t=时,Smin答:小艇以30海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B处相遇,如图,则v2t2=400+900t2-2·20·30t·cos(90°-30°),故v2=900-+.∵0<v≤30,∴900-+≤900,即-≤0,解得t≥.又t=时,v=30.故v=30时,t取最小值,且最小值等于.此时,在△OAB中,有OA=OB=AB=20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.3.(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB (p∈R).且ac=b2.(1)当p=,b=1时,求a,c的值;(2)若角B为锐角,求p的取值范围.【答案】(1)a=1,c=或a=,c=1 (2)<p<【解析】(1)解:由题设并利用正弦定理得故可知a,c为方程x2﹣x+=0的两根,进而求得a=1,c=或a=,c=1(2)解:由余弦定理得b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2accosB=p2b2﹣b2cosB﹣,即p2=+cosB,因为0<cosB<1,所以p2∈(,2),由题设知p∈R,所以<p<或﹣<p<﹣又由sinA+sinC=psinB知,p是正数故<p<即为所求4.E,F是等腰直角斜边AB上的三等分点,则tan ECF=( )A.B.C.D.【答案】D【解析】作CD⊥AB于D,则D为EF的中点.令CB=CA=3,则AB=6,CD=3,∴ED=FD=1∴tan ECF=∴tan ECF==5.已知点是的重心,且,则实数的值为( )A.B.C.D.【答案】B【解析】由已知得,,延长分别交于点,由重心的性质,设,,则,,,代入得,【考点】1、重心的性质;2、勾股定理;3、正弦定理和余弦定理.6.在△ABC中,若0<tan A·tan B<1,那么△ABC一定是( )A.锐角三角形B.钝角三角形C.直角三角形D.形状不确定【答案】B【解析】由0<tan A·tan B<1,可知tan A>0,tan B>0,即A,B为锐角,tan(A+B)=>0,即tan(π-C)=-tan C>0,所以tan C<0,所以C为钝角,所以△ABC为钝角三角形.故选B7.线段AB外有一点C,∠ABC=60°,AB=200km,汽车以80km/h的速度由A向B行驶,同时摩托车以50km/h的速度由B向C行驶,则运动开始几小时后,两车的距离最小()A.B.1C.D.2【答案】C【解析】如图所示,设过xh后两车距离为ykm,则BD=200-80x,BE=50x,∴y2=(200-80x)2+(50x)2-2×(200-80x)·50x·cos 60°,整理得y2=12900x2-42000x+40000(0≤x≤2.5),∴当x=时y2最小,即y最小.8.若△ABC的三个内角满足sin A∶sin B∶sin C=4∶5∶7,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形【答案】C【解析】由正弦定理可设a=4k,b=5k,c=7k,则cos C=<0,因此三角形为钝角三角形.9.某旅游景点有一处山峰,游客需从景点入口A处向下沿坡角为α的一条小路行进a百米后到达山脚B处,然后沿坡角为β的山路向上行进b百米后到达山腰C处,这时回头望向景点入口A处俯角为θ,由于山势变陡到达山峰D坡角为γ,然后继续向上行进c百米终于到达山峰D处,游览风景后,此游客打算乘坐由山峰D直达入口A的缆车下山结束行程,如图所示,假设A,B,C,D四个点在同一竖直平面.(1)求B,D两点的海拔落差h;(2)求AD的长【答案】(1)b sin β+c sin γ(2)【解析】(1)h=b sin β+c sin γ.(2)方法一:联结AC.在△ABC中,由余弦定理得AC2=a2+b2+2ab cos(α+β),在△ACD中,由余弦定理得AD2=AC2+c2-2cAC cos(π-γ+θ),所以AD=.方法二:联结AC.在△ABC中,由正弦定理得,所以AC=,以下同方法一.10.在△中,所对边分别为、、.若,则.【答案】【解析】三角形中问题在解决时要注意边角的互化,本题求角,可能把边化为角比较方便,同时把正切化为正弦余弦,由正弦定理可得,,所以有,即,在三角形中,于是有,,.【考点】解三角形.11.在△ABC中,边角,过作,且,则.【答案】【解析】依题意,,由余弦定理得,,由三角形的面积公式得,即,,又,,,即,又点、、三点共线,则,解方程组,解得,.【考点】余弦定理,三角形的面积公式,向量的数量积.12.设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.(Ⅰ)求B;(Ⅱ)若sinAsinC=,求C.【答案】(I);(II)或.【解析】(I)已知等式右边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出,将关系式代入求出的值,由为三角形的内角,利用特殊角的三角函数值即可求出的度数;(II)由(I)得的度数,;利用利用两角和与差的余弦函数公式化简,变形后将及的值代入求出的值,利用特殊三角函数的值求出的值,与的值联立即可求出的度数.试题解析:(I)为三角形的内角(II)由(I)得:或或【考点】1.余弦定理;2.两角的和差公式.13.在中,,.(Ⅰ)求的值;(Ⅱ)求的值.【答案】(Ⅰ).(Ⅱ).【解析】(Ⅰ)根据已知条件,建立的方程组即可得解.(Ⅱ)应用余弦定理可首先.进一步应用正弦定理即得.试题解析:(Ⅰ)由和可得, 2分所以, 3分又所以. 5分(Ⅱ)因为,,由余弦定理可得 7分,即. 9分由正弦定理可得 11分, 12分所以. 13分【考点】正弦定理、余弦定理的应用,三角形面积.14.在中,已知(1)求;(2)若,的面积是,求.【答案】(1);(2)2.【解析】(1)用三角形三内角和定理及特殊角的三角函数值求解;(2)利用余弦定理与三角形的面积公式,得到关于、的方程组,解出即得.(1)在中,,,,.(2)由余弦定理,则,又的面积是,则,即,,即,.【考点】三角形三内角和定理,余弦定理,三角形的面积.15.在中,角的对边分别为,且满足(1)求证:;(2)若的面积,,的值.【答案】(1)详见解析,(2)【解析】(1)转化三角形问题中的边角关系式,首先要选择定理.由正弦定理,将等式中的边化为对应角的正弦,由内角和定理,得,再利用诱导公式、两角和差的正弦公式得,在三角形中即证;(2)解三角形问题应灵活应用边角的计算公式.在(1)的条件下,;由三角形的面积公式及余弦定理可求.试题解析:(1)由,根据正弦定理,得: 2分又在△ABC中,,则,所以即 4分所以,即又为三角形内角,所以。

新高考数学大题专项训练(一)解三角形(考点1 三角函数的图象与性质及三角恒等变换)(解析版)

新高考数学大题专项训练(一)解三角形(考点1 三角函数的图象与性质及三角恒等变换)(解析版)

专项一解三角形考点1 三角函数的图象与性质及三角恒等变换大题拆解技巧【母题】(2020年天津卷)在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13.(1)求角C的大小;(2)求sin A的值;(3)求sin (2A+π4)的值.【拆解1】在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13,求角C的大小.【解析】在△ABC中,由a=2√2,b=5,c=√13及余弦定理,得cosC=a 2+b2-c22ab=2×2√2×5=√22,又因为C∈(0,π),所以C=π4.【拆解2】在△ABC中,已知C=π4,a=2√2,c=√13,求sin A的值.【解析】在△ABC 中,由C=π4,a=2√2,c=√13及正弦定理,可得sinA=asinC c=2√2×√22√13=2√1313.【拆解3】在△ABC 中,已知a<c,sin A=2√1313,求sin 2A,cos 2A 的值.【解析】由a<c 知角A 为锐角,由sin A=2√1313,可得cosA=√1-sin 2A =3√1313, 所以sin 2A=2sin Acos A=1213,cos 2A=2cos2A-1=513.【拆解4】已知sin 2A=1213,cos 2A=513,求sin (2A+π4)的值.【解析】因为sin 2A=1213,cos 2A=513,所以sin (2A+π4)=sin 2Acos π4+cos 2Asin π4=1213×√22+513×√22=17√226.小做 变式训练设函数f(x)=2sin 2x-sin(2x-π6).(1)当x∈[0,π2]时,求f(x)的值域;(2)若函数f(x)的图象向右平移π6个单位长度后得到g(x)的图象,且存在x 0∈[-π2,0],使g(x 0)=23,求cos 2x 0的值.【拆解1】已知函数f(x)=2sin 2x-sin(2x-π6).化简该函数解析式.【解析】f(x)=1-cos 2x-(√32sin 2x-12cos 2x)=1-sin (2x+π6).【拆解2】已知函数f(x)=1-sin(2x+π6),当x∈[0,π2]时,求f(x)的值域. 【解析】已知函数f(x)=1-sin(2x+π6),∵x∈[0,π2],∴2x+π6∈[π6,7π6],∴sin(2x+π6)∈[-12,1],∴f(x)的值域为[0,32].【拆解3】已知函数f(x)=1-sin(2x+π6),若函数f(x)的图象向右平移π6个单位长度后得到g(x)的图象,求g(x)的解析式. 【解析】g(x)=f(x-π6)=1-sin[2(x-π6)+π6]=1-sin(2x-π6).【拆解4】已知函数g(x)=1-sin(2x-π6),且存在x 0∈[-π2,0],使g(x 0)=23,求cos 2x 0的值.【解析】∵g(x0)=1-sin(2x0-π6)=23,∴sin(2x0-π6)=13.又x0∈[-π2,0],sin(2x0-π6)>0,∴2x0-π6∈[-7π6,-π),∴cos(2x0-π6)=-2√23,∴cos 2x0=cos[(2x0-π6)+π6]=cos(2x0-π6)cosπ6-sin(2x0-π6)sinπ6=-2√23×√32-13×12=-2√6+16.通法 技巧归纳1.求解三角函数的值域(最值)常见的三种类型:(1)形如y=asin x+bcos x+c 的三角函数化为y=Asin(ωx+φ)+c 的形式,再求值域(最值);(2)形如y=asin 2x+bsin x+c 的三角函数,可先设sin x=t,化为关于t 的二次函数求值域(最值);(3)形如y=asin xcos x+b(sin x±cos x)+c 的三角函数,可先设t=sin x±cos x,化为关于t 的二次函数求值域(最值).2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的变换.突破 实战训练 <基础过关>1.已知函数f(x)=1-2cos 2x+2√3sin xcos x(x∈R). (1)求f(2π3)的值;(2)求f(x)的最小正周期及单调递增区间.【解析】(1)f(x)=-cos 2x+√3sin 2x=2(-12cos 2x+√32sin 2x)=2sin(2x-π6),则f(2π3)=2sin(2×2π3-π6)=-1.(2)最小正周期T=2π2=π,令-π2+2kπ≤2x -π6≤π2+2kπ,k∈Z,解得-π6+kπ≤x≤π3+kπ,k∈Z,即单调递增区间为[-π6+kπ,π3+kπ],k∈Z.2.已知函数f(x)=(sin x-1)·(cos x+1). (1)若sin α-cos α=12,求f(α);(2)求f(x)的值域.【解析】(1)因为sin α-cos α=12,所以1-2sin αcos α=14,即sin αcos α=38.从而f(α)=(sin α-1)(cos α+1)=sin αcos α+sin α-cos α-1=-18.(2)令t=sin x-cos x,则sin xcos x=1-t 22,其中t∈[-√2,√2],则原问题转化为求y=-t 22+t-12在[-√2,√2]上的值域. 因为y=-t 22+t-12=-12(t-1)2,所以y∈[-32-√2,0].故f(x)的值域为[-32-√2,0].3.已知函数f(x)=sin 2x+√3sin xcos x. (1)求函数y=f(x)图象的对称中心; (2)若f(α2-π24)=1310,求sin 2α.【解析】(1)由二倍角公式得f(x)=√32sin 2x-12cos 2x+12,故f(x)=sin(2x-π6)+12,令2x-π6=kπ,k∈Z,解得x=12kπ+π12,k∈Z,所以函数y=f(x)图象的对称中心是(π12+12kπ,12),k∈Z.(2)由f(α2-π24)=1310,得sin(α-π4)+12=1310,所以sin(α-π4)=45,故sin 2α=cos(2α-π2)=1-2sin2(α-π4)=-725.4.设向量a=(√3sin x,sin x),b=(cos x,sin x),x∈[0,π2].(1)若|a|=|b|,求实数x 的值; (2)设函数f(x)=a·b,求f(x)的最大值. 【解析】(1)|a|2=(√3sin x)2+sin2x=4sin2x,|b|2=cos2x+sin2x=1,根据|a|=|b|,得4sin2x=1,又x∈[0,π2],从而sinx=12,∴x=π6.(2)f(x)=a·b=√3sin x·cos x+sin2x=√32sin 2x-12cos 2x+12=sin(2x-π6)+12,∵x∈[0,π2],∴2x -π6∈[-π6,5π6],∴当2x-π6=π2,即x=π3时,f(x)max=f(π3)=32,∴f(x)的最大值为32.<能力拔高>5.已知函数f(x)=sin 2(x -π3)-12(cos 2x-1).(1)求f(x)的单调递增区间;(2)若y=g(x)的图象是由y=f(x)的图象向右平移π6个单位长度得到的,则当x∈[-π2,π2]时,求满足g(x)≤54的实数x 的集合.【解析】(1)f(x)=sin2(x -π3)-12(cos 2x-1)=1-cos(2x -2π3)2-12cos 2x+12=12-12(-12cos2x +√32sin2x)-12cos 2x+12 =14cos 2x-√34sin 2x-12cos 2x+1=-√34sin 2x-14cos 2x+1=-12sin (2x +π6)+1. 令2x+π6∈[π2+2kπ,3π2+2kπ],k∈Z,则x∈[π6+kπ,2π3+kπ],k∈Z,所以f(x)的单调递增区间为x∈[π6+kπ,2π3+kπ],k∈Z.(2)由题可知g(x)=-12sin [2(x -π6)+π6]+1=-12sin (2x -π6)+1,由g(x)≤54,得sin (2x -π6)≥-12,由x∈[-π2,π2],得2x-π6∈[-7π6,5π6],由正弦函数的图象与性质可知2x-π6∈[-7π6,-5π6]∪[-π6,5π6],则x∈[-π2,-π3]∪[0,π2],即所求实数x 的取值集合为{x|-π2≤x ≤-π3或0≤x ≤π2}.6.已知θ∈(0,π3)且满足sin θ+sin (θ+π3)=4√35. (1)求cos(2θ+π3)的值;(2)已知函数f(x)=sin xcos(θ+π6)+cos xsin(θ+π6),若方程f(x)=a 在区间[0,π2]内有两个不同的解,求实数a 的取值范围. 【解析】(1)由sin θ+sin (θ+π3)=4√35,得32sin θ+√32cos θ=4√35,即sin(θ+π6)=45,则cos(2θ+π3)=cos (2θ+π6)=1-2sin 2(θ+π6)=1-2×(45)2=-725.(2)由θ∈(0,π3),令φ=θ+π6,则φ∈(π6,π2),得cos(θ+π6)=35,f(x)=sin xcos φ+cos xsin φ=sin(x+φ),当0≤x≤π2时,φ≤x+φ≤π2+φ,当x+φ=π2,即x=π2-φ时,f(x)max =1,当0≤x≤π2-φ时,f(x)是单调递增的,函数值从sin φ=45增到1,当π2-φ≤x≤π2时,f(x)是单调递减的,函数值从1减到sin(π2+φ)=cos φ=35,方程f(x)=a 在区间[0,π2]内有两个不同的解,即f(x)图象与直线y=a 有两个不同的公共点,则45≤a<1,所以实数a 的取值范围是[45,1).<拓展延伸>7.设函数f(x)=asin x+bcos x,其中a,b 为常数.(1)当x=2π3时,函数f(x)取最大值2,求函数f(x)在[π2,π]上的最小值;(2)设g(x)=-asinx,当b=-1时,不等式f(x)>g(x)对x∈(0,π)恒成立,求实数a 的取值范围.【解析】(1)由题意得{√a 2+b 2=2,√32a -12b =2,解得{a =√3,b =-1,∴f(x)=√3sin x-cos x=2sin (x -π6).当x∈[π2,π]时,x-π6∈[π3,5π6],∴f(x)min=2sin 5π6=1.(2)∵f(x)>g(x),∴asin x -cos x>-asinx.当x∈(0,π)时,sin x∈(0,1],∴asin2x -sin xcos x>-a,即a(1-cos 2x)-sin 2x>-2a,整理得3a>sin 2x+acos 2x.又sin 2x+acos 2x=√a 2+1sin(2x+φ),其中tan φ=a,∴(sin 2x+acos 2x)max=√a 2+1,∴3a>√a 2+1,解得a>√24,∴不等式f(x)>g(x)对x∈(0,π)恒成立时,a∈(√24,+∞).8.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,-π2<φ<π2)的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2). (1)求函数f(x)的解析式;(2)将函数f(x)的图象向左平移a(a∈(0,2π))个单位长度后,得到函数g(x)的图象,若g(x)是奇函数,求实数a 的值.新高考数学 大题专项训练 学科精品资源11 / 11【解析】(1)由题意得A=2,T 2=x0+2π-x0=2π, 即T=2πω=4π,解得ω=12, ∴f(0)=2cos (12×0+φ)=1,即cos φ=12. ∵-π2<φ<π2,∴φ=-π3或φ=π3, 若φ=π3,当x>0时,函数先取得最小值,后取得最大值,不符合图象, ∴φ=-π3, ∴函数f(x)的解析式为f(x)=2cos (12x -π3). (2)由题意得g(x)=2cos [12(x +a )-π3]. ∵y=g(x)是奇函数,∴g(0)=2cos (a 2-π3)=0, ∴a 2-π3=kπ-π2(k∈Z),即a=2kπ-π3(k∈Z). 又a∈(0,2π),∴a=5π3. 当a=5π3时,g(x)=2cos [12(x +5π3)-π3]=2cos (12x +π2)=-2sin 12x, 此时有g(-x)=-g(x),即函数g(x)为奇函数,故a=5π3.。

(完整版)高考解三角形大题(30道)

(完整版)高考解三角形大题(30道)

专题精选习题——--解三角形1.在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知bac B C A -=-2cos cos 2cos . (1)求ACsin sin 的值; (2)若2,41cos ==b B ,求ABC ∆的面积S 。

2.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知2sin 1cos sin C C C -=+。

(1)求C sin 的值;(2)若8)(422-+=+b a b a ,求边c 的值.3.在ABC ∆中,角C B A ,,的对边分别是c b a ,,。

(1)若A A cos 2)6sin(=+π,求A 的值;(2)若c b A 3,31cos ==,求C sin 的值.4。

ABC ∆中,D 为边BC 上的一点,53cos ,135sin ,33=∠==ADC B BD ,求AD 。

5。

在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知41cos ,2,1===C b a 。

(1)求ABC ∆的周长; (2)求)cos(C A -的值.6.在ABC ∆中,角C B A ,,的对边分别是c b a ,,.已知)(sin sin sin R p B p C A ∈=+,且241b ac =. (1)当1,45==b p 时,求c a ,的值; (2)若角B 为锐角,求p 的取值范围。

7.在ABC ∆中,角C B A ,,的对边分别是c b a ,,。

且C b c B c b A a sin )2(sin )2(sin 2+++=。

(1)求A 的值;(2)求C B sin sin +的最大值。

8.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知412cos -=C 。

(1)求C sin 的值;(2)当C A a sin sin 2,2==时,求c b ,的长。

ABC ∆b c C a =+21cos 9.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足3,5522cos =⋅=AC AB A . (1)求ABC ∆的面积;(2)若6=+c b ,求a 的值.10.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,22)4cos()4cos(=-++ππC C . (1)求角C 的大小;(2)若32=c ,B A sin 2sin =,求b a ,.11.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且. (1)求角A 的大小;(2)若1=a ,求ABC ∆的周长l 的取值范围.12.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足0cos cos )2(=--C a A c b 。

近三年解三角形高考真题(带解析)

近三年解三角形高考真题(带解析)

近三年解三角形高考真题(带解析)1.(2022·北京·统考高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.2.(2022·天津·统考高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.3.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin 3A C =,求b . 4.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+5.(2022·全国·统考高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 6.(2022·浙江·统考高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.7.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.8.(2021·全国·统考高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.9.(2021·全国·统考高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.10.(2020·浙江·统考高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.11.(2020·全国·统考高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值.12.(2020·全国·统考高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若b c -=,证明:△ABC 是直角三角形.参考答案:1.(1)6π (2)663【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.【详解】(1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABCS ab C a ===,解得a =由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC的周长为6a b c ++=.2.(1)1c =(2)sin B =(3)sin(2)A B -=【分析】(1)根据余弦定理2222cos a b c bc A =+-以及2b c =解方程组即可求出; (2)由(1)可求出2b =,再根据正弦定理即可解出;(3)先根据二倍角公式求出sin 2,cos 2A A ,再根据两角差的正弦公式即可求出.【详解】(1)因为2222cos a b c bc A =+-,即22162b c bc =++,而2b c =,代入得22264c c c =++,解得:1c =.(2)由(1)可求出2b =,而0πA <<,所以sin A =sin sin a b A B =,所以2sin sin b A B a===.(3)因为1cos 4A =-,所以ππ2A <<,故π02B <<,又sin A ==所以1sin 22sin cos 24A A A ⎛⎫==⨯-= ⎪⎝⎭,217cos 22cos 121168A A =-=⨯-=-,而sin B =cos B ==故7sin(2)sin 2cos cos 2sin 8A B A B A B ⎛-=-=+= ⎝⎭. 3.(2)12【分析】(1)先表示出123,,S S S,再由123S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可; (2)由正弦定理得22sin sin sin b ac B A C=,即可求解.【详解】(1)由题意得22221231,,2S a S S =⋅==,则222123S S S -+==即2222a c b +-=,由余弦定理得222cos 2a c b B ac+-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos B1cos ac B ==1sin 2ABCS ac B ==(2)由正弦定理得:sin sin sin b a cB A C==,则229sin sin sin sin sin 4b a c ac B A C A C =⋅===,则3sin 2b B =,31sin 22b B ==.4.(1)5π8; (2)证明见解析.【分析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出.【详解】(1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a cb bc a b c a a b c +--+-=+--+-,化简得: 2222a b c =+,故原等式成立.5.(1)见解析 (2)14【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. 【详解】(1)证明:因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-, 所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅,即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+; (2)解:因为255,cos 31a A ==, 由(1)得2250bc +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=. 6.(2)22.【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【详解】(1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin A C ==(2)因为4a =,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.7.(1)π6;(2)5.【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出;(2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出.【详解】(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-,所以30,,,424B C πππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-== ()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-≥=.当且仅当2cos B =222a b c +的最小值为5.8.(1(2)存在,且2a =. 【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果;(2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值. 【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c Cab,所以,C 为锐角,则sin C ==因此,11sin 4522ABC S ab C ==⨯⨯△ (2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++, 解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈,故2a =. 9.(1)证明见解析;(2)7cos 12ABC ∠=. 【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论. (2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理, 得sin sin ,22b cR ABC C R==∠, 因为sin sin BD ABC a C ∠=,所以22b cBD a R R⋅=⋅,即BD b ac ⋅=. 又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+-=,①在BCD △中,222()3cos 23ba b b a C +-=⋅.② 由①②得2222223()3b a b c a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3ca =或32c a =,当22,33c c a b ac ===时,33c ca b c +=<(舍去). 当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠. 所以7cos 12ABC ∠=. [方法二]:等面积法和三角形相似如图,已知2AD DC =,则23ABD ABC S S =△△, 即21221sin sin 2332b ac AD A B BC ⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠, 故有ADB ABC ∠=∠,从而ABD C ∠=∠. 由2b ac =,即b ca b =,即CA BA CB BD=,即ACB ABD ∽, 故AD ABAB AC=,即23bc c b =,又2b ac =,所以23c a =, 则2227cos 212c a b ABC ac +-==∠. [方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==.在ADB 中,由正弦定理得sin sin AD BDABD A=∠.又ABD C ∠=∠,所以s 3sin n 2i C b A b=,化简得2sin sin 3C A =. 在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =. 在ABC 中,由余弦定理,得222222242793cos 221223a a a a c b ABC ac a +--⨯∠+===. 故7cos 12ABC ∠=. [方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a aDE EC BE ===.在BED 中,2222()()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c+-=∠.因为cos cos ABC BED ∠=-∠,所以2222222()()3322233a c ba cb ac ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=, 即3ca =或32a c =. 下同解法1.[方法五]:平面向量基本定理 因为2AD DC =,所以2AD DC =. 以向量,BA BC 为基底,有2133BD BC BA =+. 所以222441999BD BC BA BC BA =+⋅+, 即222441cos 999b ac c ABC a ∠=++, 又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③ 由余弦定理得2222cos b a c ac ABC =+-∠, 所以222cos ac a c ac ABC =+-∠④ 联立③④,得2261130a ac c -+=.所以32a c =或13a c =. 下同解法1.[方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动.设()(),33B x y x -<<,则229x y +=.⑤由2b ac =知,2BA BC AC ⋅=, 2222(2)(1)9x y x y ++-+.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =, 代入⑥式得36||||6,3a BC c BA b =====, 由余弦定理得2227cos 212a cb ABC ac +-∠==. 【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.10.(I )3B π=;(II )32⎤⎥⎝⎦【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I )[方法一]:余弦定理由2sin b A =,得22223sin 4a A b ==⎝⎭,即22231cos 4a A b -=. 结合余弦定222cos 2b c a A bc+-=, ∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭, 即224442222222242223b c b c a b c b a c a a c ----++=,即444222222220a b c a c a b b c +++--=,即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=, ∵ABC 为锐角三角形,∴2220a c b +->,∴222a c b ac +-=, 所以2221cos 22a cb B ac +-==, 又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin b A =,结合正弦定理可得:2sin sin ,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II ) [方法一]:余弦定理基本不等式因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-. 结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知a c b+=而ABC为锐角三角形,所以a c b+>由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++, 222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+ ⎪⎝⎭故cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦. [方法二]【最优解】:恒等变换三角函数性质结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++ 1sin 62A π⎛⎫=++ ⎪⎝⎭. 由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,13sin 622A π⎤⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦. 【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.11.(1)23π;(2)3+【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅, ()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=,即()29AC AB AC AB +-⋅=. 22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法) 设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b c A B C===以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+[方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c.令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()b c +=所以ABC 周长的最大值为3+【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.12.(1)3A π=;(2)证明见解析【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出;(2)根据余弦定理可得222b c a bc +-=,将b c -代入可找到,,a b c 关系, 再根据勾股定理或正弦定理即可证出. 【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=, 即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②, 将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.。

专题08 解三角形-2023年高考数学真题题源解密(新高考)(解析版)

专题08  解三角形-2023年高考数学真题题源解密(新高考)(解析版)

专题08 解三角形目录一览2023真题展现考向一 三角形中的几何运算考向二 正弦定理真题考查解读近年真题对比考向一 正弦定理考向二 解三角形命题规律解密名校模拟探源易错易混速记/二级结论速记考向一 三角形中的几何运算1.(2023•新高考Ⅱ•第17题)记△的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC D 为BC 的中点,且AD =1.(1)若∠ADC =π3,求tan B ;(2)若b 2+c 2=8,求b ,c .解:(1)D 为BC 中点,S ΔABC =S ΔACD =过A 作AE ⊥BC ,垂足为E ,如图所示:△ADE 中,DE =12,AE =S ΔACD =12=CD =2,∴BD =2,BE =52,故tanB =AEBE252(2)→AD =12(→AB +→AC ),→AD 2=14(c 2+b 2+2bc cos A),AD =1,b 2+c 2=8,则1=14(8+2bc cos A),∴bc cos A =﹣2①,S ΔABC =12bc sin A =bcsinA =,由①②解得 tanA =A =2π3,∴bc =4,又b 2+c 2=8,∴b =c =2.考向二 正弦定理2.(2023•新高考Ⅰ•第17题)已知在△ABC 中,A +B =3C ,2sin (A ﹣C )=sin B .(1)求sin A ;(2)设AB =5,求AB 边上的高.【答案】(12)6.解:(1)∵A +B =3C ,A +B +C =π,∴4C =π,∴C =π4,∵2sin (A ﹣C )=sin B ,∴2sin (A ﹣C )=sin[π﹣(A +C )]=sin (A +C ),∴2sin A cos C ﹣2cos A sin C =sin A cos C +cos A sin C ,∴sin A cos C =3cos A sin C ,A =3A ,∴sin A =3cos A ,即cos A =13sin A ,又∵sin 2A +cos 2A =1,∴si n 2A +19sin 2A =1,解得sin 2A =910,又∵A ∈(0,π),∴sin A >0,∴sin A(2)由(1)可知sin A cos A =13sin A =∴sin B =sin (A +C )=sin A cos C +cos A sin C∴ABsin C=AC sin B=BC sin A=5sin π4=∴AC =B ==BC =sin A =设AB 边上的高为h ,则12AB ⋅ℎ=12×AC ×BC ×sin C ,∴52ℎ=12×h =6,即AB 边上的高为6.【命题意图】考查正弦定理、余弦定理、三角形面积公式、用正余弦定理解三角形、三角恒等变换等.【考查要点】解三角形是高考必考内容.考查正余弦定理和三角形面积公式.借助正余弦定理和三角形面积公式以及恒等变形公式进行边角转换和化简,求边长、角度、面积等.【得分要点】1.正弦定理和余弦定理2.(1)S =12a •h a (h a 表示边a 上的高).(2)S =12ab sin C =12ac sin B =12bc sin A .(3)S =12r (a +b +c )(r 为内切圆半径).3.解三角形常用结论射影定理a cos B +b cos A =c a cos C +c cos A =b b cos C +c cos B =a面积公式S △=12ah a =12bh b =12ch cS △=12ab sin C =12ac sin B =12bc sin AS △=12(a +b +c )r (r 为△ABC 内切圆半径)sin A =2S △bc sin B =2S △ac sin C =2S △ab考向一 正弦定理3.(2021•新高考Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD =b ;(2)若AD =2DC ,求cos ∠ABC .解:(1)证明:由正弦定理知,,∴b =2R sin ∠ABC ,c =2R sin ∠ACB ,∵b 2=ac ,∴b •2R sin ∠ABC =a •2R sin ∠ACB ,即b sin ∠ABC =a sin C ,∵BD sin ∠ABC =a sin C ,∴BD =b ;(2)法一:由(1)知BD =b ,∵AD =2DC ,∴AD =,DC =,在△ABD 中,由余弦定理知,cos ∠BDA ===,在△CBD 中,由余弦定理知,cos ∠BDC ===,∵∠BDA +∠BDC =π,∴cos ∠BDA +cos ∠BDC =0,即=0,得11b2=3c2+6a2,∵b2=ac,∴3c2﹣11ac+6a2=0,∴c=3a或c=,在△ABC中,由余弦定理知,cos∠ABC==,当c=3a时,cos∠ABC=>1(舍);当c=时,cos∠ABC=;综上所述,cos∠ABC=.法二:∵点D在边AC上且AD=2DC,∴,∴,而由(1)知BD=b,∴,即3b=c•cos∠ABD+2a•cos∠CBD,由余弦定理知:,∴11b2=3c2+6a2,∵b2=ac,∴3c2﹣11ac+6a2=0,∴c=3a或c=,在△ABC中,由余弦定理知,cos∠ABC==,当c=3a时,cos∠ABC=>1(舍);当c=时,cos∠ABC=;综上所述,cos∠ABC=.法三:在△BCD中,由正弦定理可知a sin C=BD sin∠BDC=b sin∠BDC,而由题意可知ac=b²⇒a sin C=b sin∠ABC,于是sin∠BDC=sin∠ABC,从而∠BDC=∠ABC或∠BDC+∠ABC=π.若∠BDC=∠ABC,则△CBD∽△CAB,于是CB²=CD•CA⇒a²=⇒a:b:c=1::3,无法构成三角形,不合题意.若∠BDC+∠ABC=π,则∠ADB=∠ABC⇒△ABD∽△ACB,于是AB²=AD•AC⇒c²=⇒a:b:c=3::2,满足题意,因此由余弦定理可得cos∠ABC==.4.(2021•新高考Ⅱ)在△ABC中,角A,B,C所对的边长为a,b,c,b=a+1,c=a+2.(1)若2sin C=3sin A,求△ABC的面积;(2)是否存在正整数a,使得△ABC为钝角三角形?若存在,求出a的值;若不存在,说明理由.解:(1)∵2sin C=3sin A,∴根据正弦定理可得2c=3a,∵b=a+1,c=a+2,∴a=4,b=5,c=6,在△ABC中,运用余弦定理可得,∵sin2C+cos2C=1,∴sin C=,∴=.(2)∵c>b>a,∴△ABC为钝角三角形时,角C必为钝角,=,∴a2﹣2a﹣3<0,∵a>0,∴0<a<3,∵三角形的任意两边之和大于第三边,∴a+b>c,即a+a+1>a+2,即a>1,∴1<a<3,∵a为正整数,∴a=2.考向二解三角形5.(2022•新高考Ⅰ)记△ABC的内角A,B,C的对边分别为a,b,c,已知=.(1)若C=,求B;(2)求的最小值.解:(1)∵=,1+cos2B=2cos2B≠0,cos B≠0.∴==,化为:cos A cos B=sin A sin B+sin B,∴cos(B+A)=sin B,∴﹣cos C=sin B,C=,∴sin B=,∵0<B<,∴B=.(2)由(1)可得:﹣cos C=sin B>0,∴cos C<0,C∈(,π),∴C为钝角,B,A都为锐角,B=C﹣.sin A=sin(B+C)=sin(2C﹣)=﹣cos2C,=====+4sin2C﹣5≥2﹣5=4﹣5,当且仅当sin C=时取等号.∴的最小值为4﹣5.6.(2022•新高考Ⅱ)记△ABC的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为S1,S2,S3.已知S1﹣S2+S3=,sin B=.(1)求△ABC的面积;(2)若sin A sin C=,求b.解:(1)S1=a2sin60°=a2,S2=b2sin60°=b2,S3=c2sin60°=c2,∵S1﹣S2+S3=a2﹣b2+c2=,解得:a2﹣b2+c2=2,∵sin B=,a2﹣b2+c2=2>0,即cos B>0,∴cos B=,∴cos B==,解得:ac=,S=ac sin B=.△ABC∴△ABC的面积为.(2)由正弦定理得:==,∴a=,c=,由(1)得ac=,∴ac=•=已知,sin B=,sin A sin C=,解得:b=.本专题是高考常考内容,结合往年命题规律,解三角形的题目多以解答题的形式出现,分值为10分。

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =.(1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c .4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123123S S S B -+==. (1)求ABC 的面积;(2)若sin sin 3A C =,求b . 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC C . 9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.2.(2023∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别是,,a b c .已知2,120a b A ==∠= . (1)求sin B 的值; (2)求c 的值; (3)求()sin B C -的值.3.(2022∙天津∙高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.4.(2021∙天津∙高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =. (I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.5.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.6.(2020∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知 5,a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.7.(2020∙浙江∙高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.8.(2020∙江苏∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.考点04 求三角形的高、中线、角平分线及其他线段长1.(2023∙全国新Ⅰ卷∙高考真题)已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.考点05 三角形中的证明问题1.(2022∙全国乙卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ; (2)证明:2222a b c =+2.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.参考答案考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积. 条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分. 【答案】(1)2π3A =; (2)选择①无解;选择②和③△ABC【详细分析】(1)利用正弦定理即可求出答案; (2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【答案详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角, 则cos 0B ≠,则2sin 7B b =,则7sin sin sin b a BA A ===,解得sin 2A =, 因为A 为钝角,则2π3A =. (2)选择①7b =,则sin 7B ===2π3A =,则B 为锐角,则3B π=, 此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin 14B ==,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B ⎛⎫=+=+=+ ⎪⎝⎭131********⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯=选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C ,解得sin C =,因为C 为三角形内角,则11cos 14C ==, 则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭11121421414⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7522144ABC S ac B ==⨯⨯⨯=△ 2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)4【详细分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【答案详解】(1)因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc Abc A A+-===,解得:1bc =.(2)由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A Ba Bb Ac A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B BA B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以sin 2A =,故ABC的面积为11sin 122ABC S bc A ==⨯△.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积. 【答案】(1)14;【详细分析】(1)首先由余弦定理求得边长BC的值为BCcos 14B =,最后由同角三角函数基本关系可得sin 14B =; (2)由题意可得4ABDACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积. 【答案详解】(1)由余弦定理可得:22222cos BC a b c bc A ==+-41221cos1207=+-⨯⨯⨯= ,则BC =222cos 214a c b B ac +-===,sin ABC ∠==(2)由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则11121sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯=⎪⎝⎭△△. 4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积. 【答案】;(2)22.【详细分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab +-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【答案详解】(1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin 45A C ==. (2)因为4a ,由余弦定理,得2222221612111355cos 22225a a aa b c C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.5.(2019∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2). 【详细分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅ ,又根据正弦定理和1c =得到ABC S 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C 的值域.【答案详解】(1)[方法一]【最优解:利用三角形内角和为π结合正弦定理求角度】 由三角形的内角和定理得222A C Bπ+=-, 此时sinsin 2A C a b A +=就变为sin sin 22B a b A π⎛⎫-= ⎪⎝⎭. 由诱导公式得sin cos 222B B π⎛⎫-= ⎪⎝⎭,所以cos sin 2B a b A =.在ABC 中,由正弦定理知2sin ,2sin a R A b R B ==, 此时就有sin cossin sin 2BA AB =,即cos sin 2B B =,再由二倍角的正弦公式得cos2sin cos 222B B B=,解得3B π=. [方法二]【利用正弦定理解方程求得cos B 的值可得B ∠的值】 由解法1得sin sin 2A CB +=, 两边平方得22sinsin 2A CB +=,即21cos()sin 2A CB -+=. 又180A BC ++=︒,即cos()cos A C B +=-,所以21cos 2sin B B +=, 进一步整理得22cos cos 10B B +-=, 解得1cos 2B =,因此3B π=. [方法三]【利用正弦定理结合三角形内角和为π求得,,A BC 的比例关系】 根据题意sinsin 2A Ca b A +=,由正弦定理得sin sin sin sin 2A C A B A +=, 因为0A π<<,故sin 0A >, 消去sin A 得sin sin 2A CB +=. 0<B π<,02A C π+<<,因为故2A C B +=或者2A CB π++=, 而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=, 又因为A BC π++=,代入得3B π=,所以3B π=.(2)[方法一]【最优解:利用锐角三角形求得C 的范围,然后由面积函数求面积的取值范围】 因为ABC 是锐角三角形,又3B π=,所以,6262A C ππππ<<<<, 则1sin 2ABCS ac B ==V 22sin 1sin 3sin 24sin 4sin C a A c B c C Cπ⎛⎫- ⎪⎝⎭⋅⋅=⋅=⋅=22sincos cos sin 333sin 8tan C CC C ππ-=. 因为,62C ππ⎛⎫∈ ⎪⎝⎭,所以tan C ⎫∈+∞⎪⎪⎝⎭,则1tan C ∈,从而ABC S ⎝⎭∈ ,故ABC面积的取值范围是82⎫⎪⎪⎝⎭. [方法二]【由题意求得边a 的取值范围,然后结合面积公式求面积的取值范围】 由题设及(1)知ABC的面积4ABC S a =△. 因为ABC 为锐角三角形,且1,3c B π==,所以22221cos 0,21cos 0,2b a A bb a C ab ⎧+-=>⎪⎪⎨+-⎪=>⎪⎩即22221010.b a b a ⎧+->⎨+->⎩, 又由余弦定理得221b a a =+-,所以220,20,a a a ->⎧⎨->⎩即122a <<,所以82ABC S << ,故ABC面积的取值范围是⎝⎭. [方法三]【数形结合,利用极限的思想求解三角形面积的取值范围】如图,在ABC 中,过点A 作1AC BC ⊥,垂足为1C ,作2AC AB ⊥与BC 交于点2C . 由题设及(1)知ABC的面积ABC S =△,因为ABC 为锐角三角形,且1,3c B π==,所以点C 位于在线段12C C 上且不含端点,从而cos cos cc B a B⋅<<, 即1cos3cos 3a ππ<<,即122a <<,所以82ABC S << , 故ABC面积的取值范围是82⎛⎫⎪ ⎪⎝⎭.【整体点评】(1)方法一:正弦定理是解三角形的核心定理,与三角形内角和相结合是常用的方法; 方法二:方程思想是解题的关键,解三角形的问题可以利用余弦值确定角度值; 方法三:由正弦定理结合角度关系可得内角的比例关系,从而确定角的大小. (2)方法一:由题意结合角度的范围求解面积的范围是常规的做法;方法二:将面积问题转化为边长的问题,然后求解边长的范围可得面积的范围;方法三:极限思想和数形结合体现了思维的灵活性,要求学生对几何有深刻的认识和灵活的应用.6.(2017∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积. 【答案】(1)23π,4;(2【答案详解】试题详细分析:(1)先根据同角的三角函数的关系求出tan A = 从而可得A 的值,再根据余弦定理列方程即可求出边长c 的值;(2)先根据余弦定理求出cos C ,求出CD 的长,可得12CD BC =,从而得到12ABD ABC S S ∆∆=,进而可得结果. 试题解析:(1)sin 0,tan A A A =∴= 20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =. (2)2222cos c b a ab C =+-Q,1628422cos C ∴=+-⨯⨯,2cos 2cos AC C CD C ∴=∴===12CD BC ∴=,1142222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=12ABD ABC S S ∆∆∴==7.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=. (1)求角C ;(2)若c =2ABC S ∆=,求ABC ∆的周长. 【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C (2)11sin 6222∆=⇒=⇒=ABC S ab C ab ab又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.8.(2015∙浙江∙高考真题)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan()24A π+=.(1)求2sin 2sin 2cos AA A+的值;(2)若,34B a π==,求ABC ∆的面积. 【答案】(1)25;(2)9 【答案详解】(1)利用两角和与差的正切公式,得到1tan 3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan()24A π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin 5C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=. 考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.9.(2015∙全国∙高考真题)已知,,a b c 分别是ABC ∆内角,,A B C 的对边, 2sin 2sin sin B A C =. (1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积. 【答案】(1)14;(2)1 【答案详解】试题详细分析:(1)由2sin 2sin sin B A C =,结合正弦定理可得:22b ac =,再利用余弦定理即可得出cos ;B(2)利用(1)及勾股定理可得c ,再利用三角形面积计算公式即可得出 试题解析:(1)由题设及正弦定理可得22b ac = 又a b =,可得2,2b c a c ==由余弦定理可得2221cos 24a c b B ac +-==(2)由(1)知22b ac =因为90B = ,由勾股定理得222a c b += 故222a c ac +=,得c a == 所以的面积为1考点:正弦定理,余弦定理解三角形10.(2015∙山东∙高考真题)设()2sin cos cos 4f x x x x π⎛⎫=-+ ⎪⎝⎭.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.【答案】(Ⅰ)单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(Ⅱ)ABC ∆【答案详解】试题详细分析:(Ⅰ)首先利用二倍角公式化简函数()f x 的解析式,再利用正弦函数的单调性求其单调区间;(Ⅱ)首先由02A f ⎛⎫= ⎪⎝⎭结合(Ⅰ)的结果,确定角A 的值,然后结合余弦定理求出三角形ABC ∆面积的最大值. 试题解析:解:(Ⅰ)由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=-sin 21sin 21sin 2222x x x -=-=- 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (Ⅱ)由1sin 0,22A f A ⎛⎫=-= ⎪⎝⎭得1sin 2A =由题意知A 为锐角,所以cos 2A =由余弦定理:2222cos a b c bc A =+-可得:2212b c bc =+≥即:2bc ≤ 当且仅当b c =时等号成立.因此1sin 2bc A ≤所以ABC ∆面积的最大值为24考点:1、诱导公式;2、三角函数的二倍角公式;3、余弦定理;4、基本不等式.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长. 【答案】(1)π6A =(2)2+【详细分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决; (2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长. 【答案详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 12A A =,即sin()1π3A +=,由于ππ4π(0,π)(,333A A ∈⇒+∈,故ππ32A +=,解得π6A = 方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=⇔=,解得cos A = 又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A '==,即tan A = 又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A == ,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==, 则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=, 又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21t A A t ==+整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-, 又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=, 由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412b c==,解得b c == 故ABC的周长为2+2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3c . 【答案】(1)π3B =(2)【详细分析】(1)由余弦定理、平方关系依次求出cos ,sin C C,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【答案详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===, 因为()0,πC ∈,所以sin 0C >,从而sin 2C ===,又因为sin C B =,即1cos 2B =, 注意到()0,πB ∈, 所以π3B =. (2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而1,4222a cbc +====, 由三角形面积公式可知,ABC 的面积可表示为21113sin 222228ABC S ab C c c ==⋅⋅= , 由已知ABC的面积为323=所以c =3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =. (1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c . 【答案】(2)2b c ==.【详细分析】(1)方法1,利用三角形面积公式求出a ,再利用余弦定理求解作答;方法2,利用三角形面积公式求出a ,作出BC 边上的高,利用直角三角形求解作答.(2)方法1,利用余弦定理求出a ,再利用三角形面积公式求出ADC ∠即可求解作答;方法2,利用向量运算律建立关系求出a ,再利用三角形面积公式求出ADC ∠即可求解作答. 【答案详解】(1)方法1:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ABD △中,2π3ADB ∠=,由余弦定理得2222cos c BD AD BD AD ADB =+-⋅∠, 即2141221()72c =+-⨯⨯⨯-=,解得c =cos 14B ==,sin B ===,所以sin tan cos 5B B B ==. 方法2:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ACD 中,由余弦定理得2222cos b CD AD CD AD ADC =+-⋅∠,即214122132b =+-⨯⨯⨯=,解得b =,有2224AC AD CD +==,则π2CAD ∠=,π6C =,过A 作AE BC ⊥于E,于是3cos ,sin 2CE AC C AE AC C ====,52BE =,所以tan 5AE B BE ==. (2)方法1:在ABD △与ACD 中,由余弦定理得222211121cos(π)4211121cos 42c a a ADC b a a ADC ⎧=+-⨯⨯⨯-∠⎪⎪⎨⎪=+-⨯⨯⨯∠⎪⎩,整理得222122a b c +=+,而228b c +=,则a =,又11sin 22ADC S ADC =⨯∠=,解得sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.方法2:在ABC 中,因为D 为BC 中点,则2AD AB AC =+ ,又CB AB AC =-,于是2222224()()2()16AD CB AB AC AB AC b c +=++-=+= ,即2416a +=,解得a =,又11sin 2ADC S ADC =⨯∠ sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S,已知123123S S S B -+==. (1)求ABC 的面积; (2)若sin sin 3A C =,求b . 【答案】(2)12【详细分析】(1)先表示出123,,S S S,再由1232S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB AC =,即可求解.【答案详解】(1)由题意得22221231,,22444S a a S b S c =⋅⋅===,则222123S S S -+==, 即2222a c b +-=,由余弦定理得222cos 2a c b B ac +-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos 3B ==,1cos 4ac B ==,则1sin 28ABC S ac B == ; (2)由正弦定理得:sin sin sin b a c B A C ==,则229sin sin sin sin sin 43b ac ac B A C A C =⋅==,则3sin 2b B =,31sin 22b B ==. 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 【答案】(1)见解析 (2)14【详细分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. 【答案详解】(1)证明:因为()()sin sin sin sin C A B B C A -=-, 所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+;(2)解:因为255,cos 31a A ==, 由(1)得2250bc +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长. 【答案】(1)6π(2)6+【详细分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.【答案详解】(1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos 2C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABC S ab C a === ,解得a =.由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC 的周长为6a b c ++=.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.【答案】(1)π6;(2)5.【详细分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. 【答案详解】(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-,所以30,,,424B C πππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以222222222sin sin cos 21cos sin cos a b A B B Bc C B +++-==()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-≥=.当且仅当2cos B =222a b c +的最小值为5. 8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC =2,求C . 【答案】(1(2)15︒.【详细分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论;(2)方法一 :将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【答案详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B == (2)[方法一]:多角换一角 30A C +=︒ ,sin sin(30)A C C C ∴=︒-1cos sin(30)22C C C ==+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒. [方法二]:正弦角化边由正弦定理及150B =︒得22sin sin sin ====a c bR b A C B.故sin ,sin 22==a c A C b b .由sin 2A C =,得a +=.又由余弦定理得22222cos =+-⋅=+b a c ac B a 2+c ,所以()222()2=++a a c ,解得a c =.所以15=︒C .【整体点评】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.其中第二问法一主要考查三角恒等变换解三角形,法二则是通过余弦定理找到三边的关系,进而求角.9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【详细分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【答案详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b cA B C===,所以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤,当且仅当0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭,易知当6C π=时,max ()b c +=所以ABC周长的最大值为3+【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.10.(2018∙全国∙高考真题)在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠; (2)若DC =,求BC . 【答案】(1)5;(2)5. 【详细分析】(1)方法一:根据正弦定理得到sin sin BD AB A ADB =∠∠,求得sin 5ADB ∠=,结合角的范围,利用同角三角函数关系式,求得cos 5ADB ∠==;(2)方法一:根据第一问的结论可以求得cos sin 5BDC ADB ∠=∠=,在BCD △中,根据余弦定理即可求出.【答案详解】(1)[方法1]:正弦定理+平方关系在ABD △中,由正弦定理得sin sin BD AB A ADB =∠∠,代入数值并解得sin 5ADB ∠=.又因为BD AB >,所以A ADB ∠>∠,即ADB ∠为锐角,所以cos 5ADB ∠=. [方法2]:余弦定理在ABD △中,2222cos 45BD AB AD AB AD =+-⋅ ,即2254222AD AD =+-⨯⨯⨯,解得:AD =所以,2254cos5ADB +-∠==. [方法3]:【最优解】利用平面几何知识如图,过B 点作BE AD ⊥,垂足为E ,BF CD ⊥,垂足为F .在Rt AEB 中,因为45A ∠=︒,=2AB ,所以AE BE ==.在Rt BED △中,因为5BD =,则DE ===.所以cos ADB ∠=[方法4]:坐标法以D 为坐标原点,DC 为x 轴,DA为y 轴正方向,建立平面直角坐标系(图略).设BDC α∠=,则(5cos ,5sin )B αα.因为45A ∠=︒,所以(0,5sin A α.从而2AB ==,又α是锐角,所以cos 5α=,cos sin ADB α∠===(2)[方法1]:【通性通法】余弦定理在BCD △,由(1)得,cos 5ADB ∠=,()2222cos 90BC BD DC BD DC ADB︒=+-⋅-∠2252525ADB =+-⨯⨯∠=,所以=5BC .[方法2]:【最优解】利用平面几何知识作BF DC ⊥,垂足为F ,易求,BF =FC =,由勾股定理得=5BC .【整体点评】(1)方法一:根据题目条件已知两边和一边对角,利用正弦定理和平方关系解三角形,属于通性通法;方法二:根据题目条件已知两边和一边对角,利用余弦定理解三角形,也属于通性通法; 方法三:根据题意利用几何知识,解直角三角形,简单易算.方法四:建立坐标系,通过两点间的距离公式,将几何问题转化为代数问题,这是解析思想的体现. (2)方法一:已知两边及夹角,利用余弦定理解三角形,是通性通法. 方法二:利用几何知识,解直角三角形,简单易算.11.(2017∙全国∙高考真题)△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2) 3【答案详解】试题详细分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC 的周长为3+试题解析:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =. 故2sin sin 3B C =. (2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +故ABC 的周长为3+点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.12.(2017∙山东∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .【答案】34A π=,a =【答案详解】试题详细分析:先由数量积公式及三角形面积公式得3cos 613sin 32c A c A =-⎧⎪⎨⨯=⎪⎩,由此求A ,再利用余弦定理求a .试题解析:因为6AB AC ⋅=-, 所以cos 6bc A =-, 又3ABC S =△, 所以sin 6bc A =,因此tan 1A =-,又0πA <<, 所以3π4A =, 又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(a =+-⨯⨯,所以a = 【考点】解三角形【名师点评】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.13.(2017∙全国∙高考真题)△ABC 的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin2B AC +=.(1)求cos B ;(2)若6a c +=,△ABC 的面积为2,求b . 【答案】(1)1517;(2)2. 【答案详解】试题详细分析:(1)利用三角形的内角和定理可知A C B π+=-,再利用诱导公式化简()sin A C +,利用降幂公式化简28sin 2B,结合22sin cos 1B B +=,求出cos B ;(2)由(1)可知8sin 17B =,利用三角形面积公式求出ac ,再利用余弦定理即可求出b . 试题解析:(1)()2sin 8sin2BA C +=,∴()sin 41cosB B =-,∵22sin cos 1B B +=, ∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =; (2)由(1)可知8sin 17B =, ∵1sin 22ABC S ac B =⋅=,∴172ac =, ∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=, ∴2b =.14.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =ABC S ∆=ABC ∆的周长.【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 622∆=⇒=⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.15.(2015∙浙江∙高考真题)在ABC ∆中,内角 A ,B , C 所对的边分别为a , b ,c ,已知 4A π=,22b a -=122c .(1)求tan C 的值;(2)若ABC ∆的面积为3,求 b 的值. 【答案】(1)2;(2)3b =.【答案详解】(1)根据正弦定理可将条件中的边之间的关系转化为角之间满足的关系,再将式 子作三角恒等变形即可求解;(2)根据条件首先求得sin B 的值,再结合正弦定理以及三角 形面积的计算公式即可求解.试题解析:(1)由22212b a c -=及正弦定理得2211sin sin 22B C -=, ∴2cos 2sin B C -=,又由4A π=,即34B C π+=,得cos 2sin 22sin cos B C C C -==,解得tan 2C =;(2)由tan 2C =,(0,)C π∈得sin 5C =,cos 5C =,又∵sin sin()sin()4B A C C π=+=+,∴sin B =3c b =,又∵4A π=,1sin 32bc A =,∴bc =3b =. 考点:1.三角恒等变形;2.正弦定理.16.(2015∙山东∙高考真题)ABC 中,角A B C ,,所对的边分别为,,a b c .已知cos ()39B A B ac =+==求sin A 和c 的值.【答案】,1.3【详细分析】由条件先求得sin sin C A ,,再由正弦定理即可求解.【答案详解】在ABC 中,由cos 3B =,得sin 3B =.因为A B C π++=,所以sin sin()9C A B =+=,因为sin sin C B <,所以C B <,C 为锐角,cos 9C =,因此sin sin()sin cos cos sin A B C B C B C =+=+39393=⨯+⨯=.由sin sin a c A C =,可得sin sin 9cc A a C ===,又ac =1c =.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.【答案】(1)4(2)4 (3)5764【详细分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【答案详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍); 则4,6a c ==.(2)法一:因为B为三角形内角,所以sin B ===再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭, 由(2)法一知sin 16B =,。

高中解三角形试题及答案

高中解三角形试题及答案

高中解三角形试题及答案一、选择题1. 若三角形ABC的三个内角A、B、C满足sinA = 2sinBcosC,则三角形ABC是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形答案:A2. 在三角形ABC中,若a = 3, b = 4, c = 5,则三角形ABC的面积S是()A. 3√3B. 4√3C. 5√3D. 6√3答案:B二、填空题3. 已知三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数为______。

答案:75°4. 若三角形ABC的三边长分别为a = 2, b = 3, c = 4,则三角形ABC的外接圆半径R为______。

答案:√10/2三、解答题5. 已知三角形ABC的三边长分别为a = 5, b = 12, c = 13,求三角形ABC的面积。

答案:根据余弦定理,可得cosA = (b² + c² - a²) / (2bc) = (144 + 169 - 25) / (2 × 12 × 13) = 1/2,因此∠A = 60°。

根据正弦定理,S = 1/2 × b × c ×sinA = 1/2 × 12 × 13 × √3/2 = 39√3。

6. 已知三角形ABC中,∠A = 30°,∠B = 45°,求边长b和c的关系。

答案:根据三角形内角和定理,可得∠C = 180° - 30° - 45° = 105°。

设边长b = x,则根据正弦定理,有a/sinA = b/sinB,即a/sin30° = x/sin45°,解得a = x√2/2。

再根据正弦定理,有a/sinA = c/sinC,即x√2/2 / sin30° = c/sin105°,解得c = x√2/2 × (√6 + √2) / 2。

高三数学解三角形试题答案及解析

高三数学解三角形试题答案及解析

高三数学解三角形试题答案及解析1.在△ABC中,,,则△ABC的面积为()A.3B.4C.6D.【答案】A【解析】由已知,所以,,三角形的面积为,故选.【考点】1.平面向量的数量积;2.三角形的面积.2.在中,角所对的边为,已知,.(1)求的值;(2)若的面积为,求的值.【答案】(1);(2)或.【解析】(1)利用正弦定理对已知条件化简可求sinB,利用三角形的大边对大角可求B;(2)利用余弦定理可求a,b之间的关系,进而结合三角形的面积可ac,再把a,b的关系代入可求a,b的值.试题解析:(1),,或,,所以 4分(2)由解得或①又②③由①②③或 9分【考点】1.正弦定理;2.余弦定理.3.在平行四边形ABCD中,对角线AC=,BD=,周长为18,则这个平行四边形的面积为()A.16B.C.18D.32【答案】A【解析】如图,设AB=CD=a,AD=BC=b,则即解得,或∴cos∠BAD==,∴sin∠BAD=,从而SABCD=4×5×=16.▱4.△ABC中内角A,B,C的对边分别为a,b,c,已知a=b cos C+c sin B.(1)求B;(2)若b=2,求△ABC面积的最大值.【答案】(1)(2)+1【解析】(1)由已知及正弦定理,得sin A=sin B cos C+sin C sin B,①又A=π-(B+C),故sin A=sin(B+C)=sin B cos C+cos B sin C.②由①,②和C∈(0,π)得sin B=cos B.又B∈(0,π),所以B=.(2)△ABC的面积S= ac sin B= ac.由已知及余弦定理,得4=a2+c2-2ac cos .又a2+c2≥2ac,故ac≤,当且仅当a=c时,等号成立.因此△ABC面积的最大值为+1.5.在中,若,,,则的长度为 .【答案】【解析】∵,∴,又∵,,∴由余弦定理得:,∴,即的长度为.【考点】1.正弦定理;2.余弦定理.6.设的内角所对的边长分别为,且满足(Ⅰ)求角的大小;(Ⅱ)若,边上的中线的长为,求的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求角的大小,由于三角形的三边满足,含有平方关系,可考虑利用余弦定理来解,由余弦定理得,把代入,可求得,从而可得角的值;(Ⅱ)由于,关系式中,即含有边,又含有角,需要进行边角互化,由于,故利用正弦定理把边化成角,通过三角恒等变换求出,得三角形为等腰三角形,由于边上的中线的长为,可考虑利用余弦定理来求的长,由于的长与的长相等,又因为,从而可求出的面积.试题解析:(Ⅰ)因为,由余弦定理有,故有,又,即: 5分(Ⅱ)由正弦定理: 6分可知:9分,设 10分由余弦定理可知: 11分. 12分【考点】解三角形,求三角形的面积.7.在锐角中,,(Ⅰ)求角的大小;(Ⅱ)当时,求面积的最大值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)本小题考查正弦定理的边角转化,可求得,因为为锐角三角形,所以;(Ⅱ)本小题首先利用余弦定理建立边角关系,然后利用基本不等式得到,代入面积公式中可得面积的最大值为.试题解析:(Ⅰ),, 2分,故, 5分因为为锐角三角形,所以 7分(Ⅱ)设角所对的边分别为.由题意知,由余弦定理得 9分又,11分, 13分当且且当为等边三角形时取等号,所以面积的最大值为. 14分【考点】1.正弦定理;2.余弦定理;3.面积公式.8.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足 (a-c)cosB=bcosC.(1)求角B的大小;(2)若b=,求△ABC面积的最大值.【答案】(1);(2)面积的最大值为.【解析】(1)首先利用正弦定理将式子边化为角,化为只含有角的式子再利用三角形内角和定理及诱导公式即可求得角的大小(可以利用余弦定理把角化为边来求得角的大小);(2) 根据余弦定理可得.由基本不等式可得的范围,再利用三角形面积公式即可求得面积的最大值.试题解析:(1) 根据正弦定理有即.即.(可以利用余弦定理把角化为边也可酌情给分)(2)根据余弦定理可得.由基本不等式可知,即,故的面积,即当时,的最大值为.(另解:可利用圆内接三角形,底边一定,当高经过圆心时面积最大).【考点】1.利用正弦定理、余弦定理解三角形;2.求三角形的面积;3.均值不等式的应用.9.在中,角、、所对的边分别为、、,若,,则()A.B.C.D.【答案】B【解析】,所以,由余弦定理得,,,故选B.【考点】1.边角互化;2.余弦定理10.在中,分别为角所对的三边,,(Ⅰ)求角;(Ⅱ)若,角等于,周长为,求函数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据题目条件,容易联想到余弦定理,求出角; (Ⅱ)求函数的取值范围,这是一个函数的值域问题,需先找出函数关系式,因此要先把各边长求出来,或用表示出来,方法是利用正弦定理来沟通三角形的边角关系,求出函数关系式后,不要忘记求函数的定义域,根据函数定义域去求函数的值域,这显然又是一个三角函数的值域问题,可化为的类型求解.试题解析:(Ⅰ)由,得,3分又, 6分(Ⅱ)同理: 9分故,,. 12分【考点】正弦定理、余弦定理、三角函数的值域.11.在△ABC中,角A,B,C的对边分别为a,b,c.已知2cos(B-C)+1=4cosBcosC.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为2,求b+c.【答案】(Ⅰ);(Ⅱ)6.【解析】(Ⅰ) 对于2cos(B-C)+1=4cosBcosC通过三角恒等变换,再结合角的范围即可得;(Ⅱ)利用余弦定理、面积公式可求.试题解析:(Ⅰ) 由2cos(B-C)+1=4cosBcosC,得2(cosBcosC+sinBsinC)+1=4cosBcosC,即2(cosBcosC-sinBsinC)=1,亦即2cos(B+C)=1,∴cos(B+C)=.∵0<B+C<π,∴B+C=.∵A+B+C=π,∴A=. 6分(Ⅱ)由(Ⅰ),得A=.=2,得bcsin=2,∴bc=8.①由S△ABC由余弦定理a2=b2+c2-2bccosA,得(2)2=b2+c2-2bccos,即b2+c2+bc=28,∴(b+c)2-bc=28.②将①代入②,得(b+c)2-8=28,∴b+c=6. 12分【考点】解三角形,正、余弦定理,面积公式12.在中,角所对的边分别为满足,,,则的取值范围是 .【答案】【解析】由得,得为钝角,故,由正弦定理可知:,,所以.【考点】正余弦定理,辅助角公式.13.已知A、B、C为的三个内角且向量与共线.(Ⅰ)求角C的大小;(Ⅱ)设角的对边分别是,且满足,试判断的形状.【答案】(Ⅰ);(Ⅱ)等边三角形.【解析】(Ⅰ)利用共线向量的坐标运算,二倍角公式,辅助角公式变形求得;(Ⅱ)根据余弦定理及已知条件求出边、的关系,再结合判断出结论.试题解析:(Ⅰ)∵与共线,∴3分得,∴. 6分(Ⅱ)方法1:由已知(1)根据余弦定理可得:(2) 8分(1)、(2)联立解得:,又. ,所以△为等边三角形, 12分方法2:由正弦定理得:,∴, 10分∴,∴在△中∠又. ,所以△为等边三角形, 12分方法3:由(Ⅰ)知,又由题设得:,在中根据射影定理得:, 10分,又,所以△为等边三角形, 12分【考点】共线向量的坐标运算,二倍角公式,余弦定理,正弦定理.14.在中,边、、分别是角、、的对边,且满足.(Ⅰ)求;(Ⅱ)若,,求边,的值.【答案】(1)(2)或【解析】(1)由正弦定理和,得, 2分化简,得即, 4分故.所以. 6分(2)因为,所以所以,即. (1) 8分又因为,整理得,. (2) 10分联立(1)(2),解得或. 12分【考点】正弦定理和余弦定理点评:主要是考查了正弦定理和余弦定理的运用,属于基础题。

(完整版)解三角形高考大题-带答案

(完整版)解三角形高考大题-带答案

解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以6cos cos(4530)4CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE =-+.故2sin 30cos15AE=124⨯== 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。

(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017高考真题解三角形汇编
1.(2017北京高考题)(本小题13分)
在△ABC 中,A ∠ =60°,c =37
a . (Ⅰ)求sin C 的值;
(Ⅱ)若a =7,求△ABC 的面积. (15)(共13分)
解:(Ⅰ)在△ABC 中,因为60A ∠=︒,37c a =,
所以由正弦定理得sin 3sin 7c A C a =
==
. (Ⅱ)因为7a =,所以3
737
c =⨯=.
由余弦定理2222cos a b c bc A =+-得222173232
b b =+-⨯⨯, 解得8b =或5b =-(舍).
所以△ABC 的面积11sin 8322S bc A ==⨯⨯=2.(2017全国卷1理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面
积为2
3sin a A
(1)求sin B sin C ;
(2)若6cos B cos C =1,a =3,求△ABC 的周长.
17.解:(1)由题设得21sin 23sin a ac B A =,即1sin 23sin a
c B A
=.
由正弦定理得
1sin sin sin 23sin A
C B A =
. 故2
sin sin 3
B C =.
(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即1cos()2
B C +=-. 所以2π3B C +=
,故π3
A =. 由题设得2
1sin 23sin a bc A A
=,即8bc =.
由余弦定理得22
9b c bc +-=,即2()39b c bc +-=,得b c +=.
故ABC △
的周长为33.(2017全国卷1文科)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

已知
sin sin (sin cos )0B A C C +-=,a =2,c
C =B
A .
π12
B .
π6
C .
π4
D .
π3
4.(2016全国卷2理科)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知
2
sin()8sin 2
B A
C +=. (1)求cos B
(2)若6a c += , ABC ∆面积为2,求.b (1)由题设及2
sin 8sin
2
A B C B π
π++==得,故
sin 4-cosB B =(1)
上式两边平方,整理得 2
17cos B-32cosB+15=0 解得 15
cosB=cosB 17
1(舍去),= (2)由158cosB sin B 1717==
得,故14a sin 217
ABC S c B ac ∆== 又17
=22
ABC S ac ∆=,则
由余弦定理学 科&网及a 6c +=得
2222
b 2cos a 2(1cosB)
1715
362(1)
217
4
a c ac B
ac =+-=-+=-⨯⨯+=(+c ) 所以b=2.
5.(2017全国卷2文科16)△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=
3
π
6.(2017全国卷3理科)△ABC 的内角A ,B ,C 的(百度搜索“童老师高中数学”,快速提分课程)对边分别为a ,b ,c ,已知sin A
cos A =0,a
,b =2.
(1)求c ;
(2)设D 为BC 边上一点,且AD ⊥ AC,求△ABD 的面积. 17.解:
(1)由已知得
tanA=π
2A=3
在 △ABC 中,由余弦定理得
2222844cos
+2-24=0
3
c 6c c c c c π
=+-=-,即解得(舍去),=4 (2)有题设可得π
π
∠∠=∠-∠=
=
,所以2
6
CAD BAD BAC CAD
故△ABD 面积与△ACD 面积的比值为π
=1sin 261
1
2
AB AD AC AD 又△ABC
的面积为⨯⨯∠=∆1
42sin 2
BAC ABD
7.(2017全国卷3文科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。

已知C =60°,b
,c =3,则A =_________。

75°
8.(2017山东高考题理科)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是( )A
(A )2a b = (B )2b a = (C )2A =B (D )2B =A
9.(2017山东高考题文科)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .
10.(2017天津高考题理科)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,
5,6a c ==,3
sin 5
B =
. (Ⅰ)求b 和sin A 的值;
(Ⅱ)求π
sin(2)4
A +
的值. 15.(Ⅰ)解:在ABC △中,因为a b >,故由3sin 5B =,可得4
cos 5
B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=
,所以b =.
由正弦定理sin sin a b
A B
=
,
得sin sin a B A b ==.
所以,b
sin A
的值为
13
. 11.(2017天津高考题文科)在ABC △中,内角,,A B C 所对的边(百度搜索“童老师高中
数学”,快速提分课程)分别为,,a b c .已知sin 4sin a A b B =
,222
)ac a b c =--.
(I )求cos A 的值;
(II )求sin(2)B A -的值.
(15)(Ⅰ)解:由sin 4sin a A b B =,及sin sin a b
A B
=
,得2a b =.
由222
)ac a b c =--
,及余弦定理,得2
2
2
5cos 2ac
b c a
A bc
ac -
+-=
=
=(Ⅱ)解:由(Ⅰ),
可得sin 5A =,代入sin 4sin a A b B =,
得sin sin 45
a A B
b ==.
由(Ⅰ)知,A
为钝角,所以cos B ==
.于是4
sin 22sin cos 5
B B B ==, 23
cos 212sin 5
B B =-=,故
43sin(2)sin 2cos cos 2sin (55B A B A B A -=-=⨯-=.
12.(2017浙江高考题)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,
BD=2,连结CD ,则△BDC 的面积是___________,cos ∠BDC =__________.
24
13.在锐角ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若3
2
2sin =
A ,3=a ,22=∆ABC S ,则=b 2或3。

相关文档
最新文档