解三角形高考真题汇总
完整版)高考解三角形大题(30道)

完整版)高考解三角形大题(30道)1.在三角形ABC中,已知内角A,B,C的对边分别为a,b,c,且有以下等式:frac{\cos A - 2\cos C}{2c-a} = \frac{\cos B b}{\sin C}$$求该等式右侧的值,以及:2)若$\cos B=\frac{1}{4}$,$b=2$,求三角形ABC的面积S。
2.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\sin C+\cos C=1$,求:1)$\sin C$的值;2)若$a+b=4a-8$,求边c的值。
3.在三角形ABC中,角A,B,C的对边分别为a,b,c。
1)若$\sin(A+\frac{2}{3}\pi)=2\cos A$,求角A的值;2)若$\cos A=\frac{3}{c}$,求$\sin C$的值。
4.在三角形ABC中,D为边BC上的一点,且$BD=\frac{3}{3}$,$\sin B=\frac{5}{3}$,$\cos\angleADC=\frac{\sqrt{3}}{5}$,求AD。
5.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$a=1$,$b=2$,$\cos C=-\frac{1}{4}$,求:1)三角形ABC的周长;2)$\cos(A-C)$的值。
6.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\sin A+\sin C=\frac{1}{2}\sin B$,且$ac=\frac{1}{2}b$。
1)求a,c的值;2)若角B为锐角,求p的取值范围,其中$p=\frac{1}{5}$,$b=1$。
7.在三角形ABC中,角A,B,C的对边分别为a,b,c,且$2a\sin A=(2b+c)\sin B+(2c+b)\sin C$。
1)求角A的值;2)求$\sin B+\sin C$的最大值。
8.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知$\cos 2C=-\frac{1}{4}$。
高考中三角函数和解三角形的真题(常见的题型)汇总

三角函数类型一:角度的概念、弧长和三角函数的概念1已知角q 的顶点为坐标原点,始边为x 轴的正半轴,若),4(y P 是角q 终边上的一点,且552sin -=q ,则y的值的值2已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是,则这个圆心角所对的弧长是 3若0cos sin <q q ,则角q 在第在第___________________________象限角。
象限角。
象限角。
4 4 已知已知q 为第二象限角;则2q可能为第可能为第_____________________象限角。
象限角。
象限角。
5已知q 为第二象限角;则24a p +所在的象限是所在的象限是_____________________。
6已知角a 的终边过点)60cos 6,8(--m P ,且54cos -=a ,则m 的值为的值为7在平面直角坐标系中,若角a 的顶点在坐标原点,始边在x 轴的非负半轴上,终点经过点)4,3(a a P -)0(<a ,则a a cos sin +的值为的值为8 8 已知角已知角a 的终边经过点)3,4(-,则a cos 等于等于答案:1 -8-8;;21sin 2;3 二或四;4 一或三;5 一或三;6 21;7 51;8 54-。
类型二:同角三角函数的求值与化解(a a a a a cos tan sin ,1cos sin 22×==+)1求300sin =_______=_______。
2已知3cos sin cos sin =-+xx x x ,则x tan 的值是的值是________________________。
3若点)9,(a 在函数xy 3=的图像上,则6tanpa 的值为的值为 4已知a 是第二象限角,135sin =a ,则a cos 的值的值5已知51)25sin(=+a p ,那么a cos 的值的值6已知21tan -=a ,则1cos 22sin 2--a a 等于等于7)1410tan(-的值的值8 8 记记cos(80)k -°=,那么tan100°= 9已知11-tan tan -=a a,则2cos sin sin 2++a a a = 10 已知角)2,0(p Îx ,21cos 22££-x 的解集是_____。
解三角形(学生版)--2024年高考真题和模拟题数学好题汇编

解三角形一、单选题1(全国甲卷数学(理)(文))在△ABC 中内角A ,B ,C 所对边分别为a ,b ,c ,若B =π3,b 2=94ac ,则sin A +sin C =()A.32B.2C.72D.32二、填空题2(新高考上海卷)已知点B 在点C 正北方向,点D 在点C 的正东方向,BC =CD ,存在点A 满足∠BAC =16.5°,∠DAC =37°,则∠BCA =(精确到0.1度)三、解答题3(新课标全国Ⅰ卷)记△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C =2cos B ,a 2+b 2-c 2=2ab (1)求B ;(2)若△ABC 的面积为3+3,求c .4(新课标全国Ⅱ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =2.(1)求A .(2)若a =2,2b sin C =c sin2B ,求△ABC 的周长.5(新高考北京卷)在△ABC 中,a =7,A 为钝角,sin2B =37b cos B .(1)求∠A ;(2)从条件①、条件②和条件③这三个条件中选择一个作为已知,求△ABC 的面积.①b =7;②cos B =1314;③c sin A =523.注:如果选择条件①、条件②和条件③分别解答,按第一个解答计分.6(新高考天津卷)在△ABC中,cos B=916,b=5,ac=23.(1)求a;(2)求sin A;(3)求cos B-2A.一、单选题1(2024·江西赣州·二模)记△ABC的内角A,B,C的对边分别为a,b,c,若b=1,a2-1=c c-1,则A=()A.π3B.2π3C.π6D.5π62(2024·山西太原·三模)已知△ABC中,A=120°,D是BC的中点,且AD=1,则△ABC面积的最大值()A.3B.23C.1D.23(2024·贵州遵义·三模)在△ABC中,角A,B,C的对边分别为a,b,c,D为AC的中点,已知c=2,BD =72,且a cos B+b cos A=-2c cos B,则△ABC的面积为()A.23B.32C.3 D.3324(2024·宁夏银川·三模)△ABC的内角A,B,C的对边分别为a,b,c,且a=4,sin C=14,若△ABC有两解,则c的取值可能为()A.3B.4C.5D.65(2024·河北秦皇岛·二模)在△ABC中,内角A,B,C的对边分别为a,b,c,若cos Aa+cos Bb=sin Cc,13b2+13c2=10bc+13a2,则tan B的值为()A.712B.34C.127D.436(2024·北京东城·二模)在△ABC中,A=π4,C=7π12,b=2,则a=()A.1B.2C.3D.27(2024·海南海口·二模)记△ABC的内角A,B,C的对边分别为a,b,c,若a2=b2-3c2,则tan A tan B=()A.32B.-12C.23D.-28(2024·河南·三模)在△ABC中,角A,B,C的对边分别为a,b,c,若ba+c=1-sin Csin A+sin B,a=3,b=22,则sin B的值为()A.12B.35C.32D.639(2024·青海·二模)在△ABC中,角A,B,C的对边分别是a,b,c,若a cos B+b sin A=c,a=210,a2 +b2-c2=ab sin C,则()A.tan C=1B.A=π3C.b=62D.△ABC的面积为12210(2024·安徽合肥·二模)记△ABC的内角A,B,C的对边分别为a,b,c,已知c=2,1tan A+1tan B+1tan A tan B=1.则△ABC面积的最大值为()A.1+2B.1+3C.22D.2311(2024·广东韶关·二模)在△ABC中,tan A=14,tan B=35.若△ABC的最长边的长为17.则最短边的长为()A.2B.3C.2D.512(2024·湖北黄石·三模)若△ABC的三个内角A,B,C所对的边分别为a,b,c,B+C=60°,a=3,则sin A+sin B-sin Ca+b-c=()A.23B.36C.16D.6二、多选题13(2022·广东佛山·一模)在△ABC中,A,B,C所对的边为a,b,c,设BC边上的中点为M,△ABC的面积为S,其中a=23,b2+c2=24,下列选项正确的是()A.若A=π3,则S=33 B.S的最大值为33C.AM=3D.角A的最小值为π314(2024·广东广州·二模)在梯形ABCD中,AB⎳CD,AB=1,CD=3,cos∠DAC=24,cos∠ACD=34,则()A.AD=322B.cos∠BAD=-24C.BA⋅AD=-34D.AC⊥BD15(2024·浙江·三模)已知△ABC的内角A,B,C的对边分别为a,b,c,且23a⋅sin2A+C2=b⋅sin A,下列结论正确的是()A.B=π3B.若a=4,b=5,则△ABC有两解C.当a-c=33b时,△ABC为直角三角形D.若△ABC为锐角三角形,则cos A+cos C的取值范围是32,116(2024·贵州黔南·二模)已知锐角△ABC的三个内角A,B,C的对边分别是a,b,c,且△ABC的面积为34a2+c2-b2.则下列说法正确的是()A.B=π3B.A的取值范围为π6,π2C.若b=3,则△ABC的外接圆的半径为2D.若a=3,则△ABC的面积的取值范围为338,33 217(2024·新疆·二模)如图,在锐角△ABC中,内角A,B,C的对边分别为a,b,c,若sin A=sin B,且3a cos B+b cos A=2c sin C,D是△ABC外一点且B、D在直线AC异侧,DC=2,DA=6,则下列说法正确的是()A.△ABC是等边三角形B.若AC=213,则A,B,C,D四点共圆C.四边形ABCD面积的最小值为103-12D.四边形ABCD面积的最大值为103+1218(2024·河北·三模)已知△ABC内角A、B、C的对边分别是a、b、c,A=2B,则()A.a 2=c b +cB.b c +a 2b 2的最小值为3C.若△ABC 为锐角三角形,则cb∈1,2 D.若a =26,b =3,则c =5三、填空题19(2024·湖南长沙·三模)在△ABC ,已知2AB ⋅AC =3AB AC =3BC2,∠B <∠C .则sin ∠C =.20(2024·四川雅安·三模)已知四边形ABCD 中,AB =BC =CD =2,DA =23,设△ABD 与△BCD 的面积分别为S 1,S 2,则S 21+S 22的最大值为.21(2024·江西·二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且3a sin B =b 2+cos A ,若△ABC 的面积等于43,则△ABC 的周长的最小值为.22(2024·河南·三模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,C =60°,c =7,若a -b =3,D 为AB 中点,则CD =.23(2024·四川成都·三模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=2ac 且sin C =2sin A ,则cos A 的值为24(2024·江苏·二模)设钝角△ABC 三个内角A ,B ,C 所对应的边分别为a ,b ,c ,若a =2,b sin A =3,c =3,则b =.四、解答题25(2024·北京·三模)在△ABC 中,b a =105,cos A =1010.(1)求证△ABC 为等腰三角形;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使△ABC 存在且唯一,求b 的值.条件①:∠B =π6; 条件②:△ABC 的面积为152;条件③:AB 边上的高为3.26(2024·湖南衡阳·三模)在△ABC中,角A,B,C的对边分别为a、b、c,且c cos B+2a cos A+b cos C=0.(1)求A;(2)如图所示,D为平面上一点,与△ABC构成一个四边形ABDC,且∠BDC=π3,若c=b=2,求AD的最大值.27(2024·天津·二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且cos B c cos B+b cos C+1 2 a=0.(1)求角B的大小;(2)若b=7,a+c=8,a<c,①求a,c的值:②求sin2A+C的值.28(2024·湖南长沙·三模)记△ABC的内角A,B,C的对边分别为a,b,c,已知a=2,b=4.(1)若cos B+2cos A=c cos C,求C的值;(2)若D是边AB上的一点,且CD平分∠ACB,cos∠ACB=-19,求CD的长.29(2024·湖北武汉·二模)在△ABC中,角A,B,C的对边分别为a,b,c,已知2a-ccos B-b cos C= 0.(1)求B;(2)已知b=3,求12a+2c的最大值.30(2024·福建漳州·三模)记△ABC的内角A,B,C的对边分别为a,b,c,已知B=π3,b=23.(1)若a,b,c成等差数列,求△ABC的面积;(2)若sin A-sin C=312b,求a.31(2024·黑龙江齐齐哈尔·三模)已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为1 2a c sin C+b sin B-a sin A.(1)求A;(2)若a=2,且△ABC的周长为5,设D为边BC中点,求AD.32(2024·河北保定·二模)在△ABC中,角A、B、C的对边分别为a,b,c,已知a cos B-b cos A=-a-c.(1)求B;(2)若a=2,b=27,D为AC边的中点,求BD的长.33(2024·江苏南通·三模)在△ABC中,角A,B,C的对边分别为a,b,c,2b-ccos A=a cos C.(1)求A;(2)若△ABC的面积为3,BC边上的高为1,求△ABC的周长.34(2024·江西鹰潭·二模)△ABC的内角A,B,C的对边分别为a,b,c,满足1-sin Acos A=sin Bcos B.(1)求证:A+2B=π2;(2)求a2+b2c2的最小值.。
(完整版)解三角形高考大题-带答案

解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以6cos cos(4530)4CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE =-+.故2sin 30cos15AE=124⨯== 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。
(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。
2024年高考数学复习大题全题型专练:专题07 解三角形(解析版)

专题7解三角形一、解答题1.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A .(1)证明:2222a b c ;(2)若255,cos 31a A ,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c ,即可得解.(1)证明:因为 sin sin sin sin C A B B C A ,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C ,所以2222222222222a c b b c a a b c ac bc ab ac bc ab,即22222222222a c b a b c b c a ,所以2222a b c ;(2)解:因为255,cos 31a A,由(1)得2250b c ,由余弦定理可得2222cos a b c bc A ,则50502531bc ,所以312bc,故 2222503181b c b c bc ,所以9b c ,所以ABC 的周长为14a b c .2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B.(1)若23C ,求B ;(2)求222a b c 的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos 2A B A B 化成 cos sin A B B ,再结合π02B ,即可求出;(2)由(1)知,π2C B ,π22A B ,再利用正弦定理以及二倍角公式将222a b c 化成2224cos 5cos B B ,然后利用基本不等式即可解出.(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ,即 1sin cos cos sin sin cos cos 2B A B A B A BC ,而π02B ,所以π6B ;(2)由(1)知,sin cos 0BC ,所以πππ,022C B ,而πsin cos sin 2B C C,所以π2C B ,即有π22A B .所以222222222sin sin cos 21cos sin cos a b A B B B c C B2222222cos 11cos 24cos 555cos cos B B B BB .当且仅当22cos 2B 时取等号,所以222a b c的最小值为5.3.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C .(1)求sin A 的值;(2)若11b ,求ABC 的面积.【答案】(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab以及4a 可解出a ,即可由三角形面积公式in 12s S ab C 求出面积.(1)由于3cos 5C ,0πC ,则4sin 5C.因为4a ,由正弦定理知4sin A C,则sin 45A C .(2)因为4a ,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a ,即26550a a ,解得5a ,而4sin 5C ,11b ,所以ABC 的面积114sin 51122225S ab C .4.(2022·北京·高考真题)在ABC 中,sin 2C C.(1)求C ;(2)若6b ,且ABC 的面积为ABC 的周长.【答案】(1)6 (2)6+【解析】【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.(1)解:因为 0,C ,则sin 0C2sin cos C C C ,可得cos 2C ,因此,6C .(2)解:由三角形的面积公式可得13sin 22ABC S ab C a,解得a .由余弦定理可得2222cos 48362612c a b ab C ,c所以,ABC 的周长为6a b c .5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B.(1)求ABC 的面积;(2)若sin sin A C,求b .【答案】(2)12【解析】【分析】(1)先表示出123,,S S S ,再由123S S S2222a c b ,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b ac B A C,即可求解.(1)由题意得22221231,,2S a S S,则222123S S S a b c 即2222a c b ,由余弦定理得222cos 2a c b B ac ,整理得cos 1ac B ,则cos 0B ,又1sin 3B ,则22cos 3B ,1cos 4ac B ,则12sin 28ABC S ac B ;(2)由正弦定理得:sin sin sin b a c B A C,则229sin sin sin sin sin 423b a c ac B A C A C ,则3sin 2b B ,31sin 22b B .6.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sin sin sin sin C A B B C A .(1)若2A B ,求C ;(2)证明:2222a b c 【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得, sin sin C C A ,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得 sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再根据正弦定理,余弦定理化简即可证出.(1)由2A B , sin sin sin sin C A B B C A 可得, sin sin sin sin C B B C A ,而π02B ,所以 sin 0,1B ,即有 sin sin 0C C A ,而0π,0πC C A ,显然C C A ,所以,πC C A ,而2A B ,πA B C ,所以5π8C.(2)由 sin sin sin sin C A B B C A 可得,sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C ,然后根据余弦定理可知,22222222222211112222a cb bc a b c a a b c ,化简得:2222a b c ,故原等式成立.7.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB m ,15AD m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20 ,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)【答案】(1)23.3m(2)当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.14【解析】【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD ,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值.(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD 则AE EH ,所以直角ADE 与直角HED △全等所以20ADE HDE在直角HED △中,tan 2015tan 20EH DH90250HDF ADE在直角FHD △中,tan 5015tan 50HF ADsin 20sin 5015tan 20tan 5015cos 20cos50EF EH HFsin 2050sin 20cos50cos 20sin 501515cos 20cos50cos 20cos50sin 70151523.3cos 20cos50cos50(2)设ADE ,902HDF ,则15tan AE ,15tan 902FH 115151515tan 15tan 90215tan 222tan 2EFD S EF DHV 11515tan 22ADE S AD AE V 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADE DEF S S S22512253tan 4tan 42当且当13tan tan ,即tan 时取得等号,此时15tan 158.73AE即当tan 3 时,梯形AEFD 的面积取得最小值2则此时梯形FEBC 的面积有最大值1530255.142所以当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.148.(2022·全国·模拟预测)在 ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,且 sin sin sin 6b a b c A B C S .(1)求角B 的大小;(2)若1a b ,2c b ,求cos A ,cos C 的值.【答案】(1)3(2)17,1114【解析】【分析】(1)由三角形的面积公式结合正弦余弦定理化简即可得到答案;(2)由余弦定理计算即可.(1)由in 12s S ab C ,又 sin sin sin 3sin b a b c A B C ab C ,由0b ,则 sin sin sin 3sin a b c A B C a C .由正弦定理得 3a b c a b c ac ,所以222a c b ac .由余弦定理得2221cos 222a cb ac B ac ac ,因为0B ,所以3B .(2)因为222a c b ac ,1a b ,2c b ,所以 2221212b b b b b ,解得7b ,所以8a ,5c .所以2222227581cos 2707b c a A bc ,22222287511cos 211214a b c C ab .9.(2022·全国·模拟预测)在ABC 中,角A B C ,,的对边长分别为a b c ,,,ABC 的面积为S ,且24cos cos tan S a B ab A B.(1)求角B 的大小;(2)若322AB BC ,,点D 在边AC 上,______,求BD 的长.请在①AD DC ;②DBC DBA ;③BD AC 这三个条件中选择一个,补充在上面的横线上,并完成解答.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)π3B (2)答案不唯一,具体见解析【解析】【分析】(1)根据面积公式可得2cos cos cos c B a B b A ,利用正弦定理以及和角关系可得1cos 2B ,进而可求.(2)根据余弦定理可求出AC ,然后在ABD △和在DBC △中分别用余弦定理即可求①.根据面积公式即可求解②③.(1)因为24cos cos tan S a B ab A B ,所以214sin 2cos cos sin cos ac B a B ab A B B,所以22cos cos cos ac B a B ab A ,即2cos cos cos c B a B b A .由正弦定理,得2sin cos sin cos sin cos C B A B B A ,所以 2sin cos sin sin C B A B C .因为 0,πC ,所以sin 0C ,所以1cos 2B.又 0,πB ,所以π3B.(2)若选①.法一:在ABC 中,由余弦定理,得2222233π132cos 222cos 2234AC AB BC AB BC B ,所以ACAD DC 在ABD △中,由余弦定理,得2222cos AB BD DA BD DA ADB ,即2134cos 16BD BD ADB .在DBC △中,由余弦定理,得2222cos BC BD DC BD DC CDB ,即2913cos 416BD CDB .又πADB CDB ,所以cos cos 0ADB CDB .所以29134248BD ,所以374BD .法二:因为AD DC ,所以D 为AC 的中点,所以 12BD BA BC ,所以222124BD BA BC BA BC 19337422cos6044216.所以BD BD 若选②.在ABC 中,ABC ABD CBD S S S ,即1π1π1πsin sin sin 232626BA BC BA BD BD BC ,即1311131222222222BD BD ,解得BD 若选③.在ABC 中,由余弦定理,得2222cos AC AB BC AB BC B2233π13222cos 2234 ,所以AC .因为1sin 2ABC S BA BC B △12ABC S BD AC △,BD 10.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C A B C ,a b .(1)求角B ;(2)若3a ,7b ,D 为AC 边的中点,求BCD △的面积.【答案】(1)23B (2)1538【解析】【分析】(1)根据同角三角函数的关系,结合两角和差的正余弦公式化简即可(2)由余弦定理可得5c ,再根据BCD △的面积为ABC 面积的一半,结合三角形的面积公式求解即可(1)由cos 2cos tan sin C A B C,有tan sin cos 2cos B C C A ,两边同乘cos B 得sin sin cos cos 2cos cos B C B C A B ,故 cos 2cos cos B C A B ,即cos 2cos cos A A B .因为a b ,所以A 为锐角,cos 0A ,所以1cos 2B .又因为 0,B ,所以23B .(2)在ABC 中,由余弦定理2221cos 22a c b B ac ,即2949162c c ,故23400c c ,解得5c 或8c 舍).故11235sin 223BCD ABC S S △△11.(2022·福建·三明一中模拟预测)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且22cos c b a C .(1)求角A ;(2)若M 为BC 的中点,AM ABC 面积的最大值.【答案】(1)π3A 【解析】【分析】(1)解法一:根据正弦定理边化角求解即可;解法二:利用余弦定理将cos C 用边表示再化简即可;(2)解法一:根据基底向量的方法得1()2AM AB AC ,两边平方化简后可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可;解法二:设BM MC m ,再分别在ABM ,ACM △和ABC 中用余弦定理,结合cos cos 0AMB AMC 可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可(1)解法一:因为22cos c b a C ,由正弦定理得:sin 2sin 2sin cos C B A C ,所以sin 2sin()2sin cos C A C A C 2sin cos 2cos sin 2sin cos 2cos sin A C A C A C A C ,因为sin 0C ,所以12cos 1,cos 2A A,为0πA ,所以π3A .解法二:因为22cos c b a C ,由余弦定理得:222222a b c c b a ab,整理得222bc b c a ,即222a b c bc ,又由余弦定理得2222cos a b c bc A所以12cos 1,cos 2A A,因为0πA ,所以π3A .(2)解法一:因为M 为BC 的中点,所以1()2AM AB AC ,所以222124AM AB AB AC AC ,即22132cos 43c b bc ,即2212b c bc ,而222b c bc ,所以122bc bc 即4bc ,当且仅当2b c 时等号成立所以ABC 的面积为113sin 4222ABC S bc A △即ABC 解法二:设BM MC m ,在ABM 中,由余弦定理得2232cos c m AMB ,①在ACM △中,由余弦定理得2232cos b m AMC ,②因为πAMB AMC ,所以cos cos 0AMB AMC 所以①+②式得22262b c m .③在ABC 中,由余弦定理得22242cos m b c bc A ,而π3A ,所以2224m b c bc ,④联立③④得:22222212b c b c bc ,即2212b c bc ,而222b c bc ,所以122bc bc ,即4bc ,当且仅当2b c 时等号成立.所以ABC 的面积为11sin 4222ABC S bc A △ABC 12.(2022·北京市第十二中学三模)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin a B A .(1)求角B 的大小;(2)从以下4个条件中选择2个作为已知条件,使三角形存在且唯一确定,并求ABC 的面积.条件①:3a ;条件②:b ;条件③:2cos 3C ;条件④:2c .【答案】(1)6B(2)答案不唯一,见解析【解析】【分析】(1)由正弦定理化简可得出tan B 的值,结合角B 的取值范围可求得角B 的值;(2)选①②,利用余弦定理可判断ABC 不唯一;选①③或②③或③④,利用三角形的内角和定理可判断ABC 唯一,利用正弦定理结合三角形的面积可判断ABC 的面积;选①④,直接判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积;选②④,利用余弦定理可判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积.(1)解:由cos sin a B A 及正弦定理可得sin cos sin A B A B ,A ∵、 0,B ,则sin 0A ,cos 0 B B ,tanB 6B .(2)解:若选①②,由余弦定理可得2222cos b a c ac B ,即210c ,解得 c ,此时,ABC 不唯一;若选①③,已知3a ,6B,21cos 32C ,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A C B C C由正弦定理sin sin b a B A 可得 92sin sin 11a B b A,所以, 9211sin 32211ABC S ab C △;若选①④,已知3a ,6B,2c ,此时ABC 唯一,1322sin ABC S ac B;若选②③,已知b 6B ,21cos 32C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A CBC C 由正弦定理sin sin b c B C 可得sin 410sin 3b C c B ,所以,120385sin 29ABC S bc A △;若选②④,已知b 6B,2c ,由余弦定理可得2222cos b a c ac B ,可得240a ,0a ∵,解得a ABC 唯一,1sin2ABC S ac B △若选③④,已知6B ,2c ,231cos 322C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,5sin 3C, 152sin sin sin cos cos sin 666A CBC C ,由正弦定理sin sin b c B C 可得sin sin 5c B b C ,1sin 210ABC S bc A △.13.(2022·内蒙古·海拉尔第二中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为,,a b c ,且sin cos (cos )sin .232B BC C (1)当π3B,求sin sin C A 的值(2)求B 的最大值.【答案】(1)sin C +sin A =1(2)2π3【解析】【分析】(1)代入π3B ,解得313sin cos 223C C ,对sin sin C A 变形得到1sin sin sin cos 12C A C C ,求出答案;(2)对题干条件两边同乘以2cos2B ,变形得到sin sin sin C A B ,利用正弦定理得到a c ,利用余弦定理和基本不等式求出B 的最大值.(1)由题意得:ππsin coscos )sin 66C C ,1cos 2C C则π31sin sin sin sin sin cos sin cos 1322C A C C C C C C(2)sin cos cos )sin 22B B C C ,两边同乘以2cos 2B 得:22sin cos cos )2sin cos 222B B B C C ,即 sin 1cos cos )sin C B C B ,整理得:sin sin sin C A B ,由正弦定理得:3a cb ,由余弦定理得: 2222222cos 1226ac b ac a c b b B ac ac ac,因为 22143a c acb ,当且仅当ac 时等号成立,此时21cos 162b B ac ,由于 0,πB ,而cos y x 在 0,π上单调递减,故B 的最大值为2π314.(2022·广东·大埔县虎山中学模拟预测)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且222ab a b c .(1)求角C ;(2)若△ABC 的面积534S ,且c △ABC 的周长.【答案】(1)π3(2)6【解析】【分析】(1)利用余弦定理求得cos C 的值,进而求得角C 的值;(2)依据题给条件得到关于a b ,的方程组,求得+a b 的值,进而求得△ABC 的周长.(1)因为222ab a b c ,由余弦定理,得到2221cos 22a b c C ab ,又0πC ,所以π3C ;(2)因为△ABC 的面积4S ,且c π3C所以有221sin 212S ab C ab a b ,联立22526ab a b ,则6a b ,所以△ABC 的周长为6a b c 15.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan tan tan 0B C B C .(1)求角A 的大小;(2)若2B D D C ,2AD ,且AD 平分BAC ,求ABC 的面积.【答案】(1)60A (2)332【解析】【分析】(1)由两角和的正切公式化简后求解(2)由AD 是角平分线得到2c b ,再利用面积公式求解(1)tan tantan tan tan tan 0tan()1tan tan B C B C B C B C B C故tan A 60A ;(2)设BC 边的高为h ,所以11sin 22ABD S AB AD BAD BD h ,11sin 22ABC S AC AD DAC CD h 又AD 是角平分线,所以BAD DAC所以AB BD AC DC,即2c b ,又ABC ABD ACD S S S ,则111sin 602sin 302sin 30222bc c b ,解得b c ,133sin 6022ABC S bc △.16.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,3a ,2b ,sin A m .(1)若ABC 唯一确定,求m 的值;(2)设I 是ABC 的内切圆圆心,r 是ABC 内切圆半径,证明:当21c r 时,IC IA IB .【答案】(1)1(2)证明见解析【解析】【分析】(1)若01m ,根据sin A m ,b a ,可知A 可以为锐角,也可以为钝角,ABC 有两种情况,若1m ,则三角形为直角三角形,ABC 有唯一解.(2)由21c r 可推导出ABC 为直角三角形,故可计算出,,IC IA IB 的值,即得证.(1)设AB 边上的高为c h ,则sin 20c h b A m .当1m 时,由勾股定理,若A 为锐角,则c A 为钝角,则c ABC 存在两种情况,不能被唯一确定.当1m 时,ABC 为直角三角形,其中A 为直角顶点,c 可以唯一确定,即ABC 唯一确定,故m 的值为1.(2)当21c r 时,由余弦定理,22223cos 23a b c r r C ab ,故由同角三角函数的关系可得sin C所以ABC 的面积1sin 2S ab C另一方面, 132S a b c r r r3r r ,两边平方可得 213r r r r ,解得r ,21c r ABC 是以A 为直角顶点的直角三角形.因此有222112922IC,IC22211322IA 2IA ;22211322IB ,IB 所以有IC IA IB 成立.17.(2022·上海市光明中学模拟预测)已知在三角形ABC 中,2a b ,三角形的面积12S .(1)若4b ,求 tan A B ;(2)若3sin 5C ,求sin sin A B ,.【答案】(1)(2)25sin 5A ,sin B 或6205sin 205A ,sin B 【解析】【分析】(1)根据面积公式及4b ,得到3sin 4C ,分C 为锐角和C 为钝角时,求出cos C ,进而求出tan C ,求出 tan A B ;(2)由面积公式求出b a ,分C 为锐角和C 为钝角,由余弦定理和正弦定理求出答案.(1)∵2113sin 2sin 16sin 12sin 224S ab C b C C C 而sin tan()tan(π)tan cos CA B C C C分情况讨论,当C 为锐角时,cos 0cos C C∴tan()A B当C 为钝角时,cos 0cos C Ctan()A B (2)22113sin 2sin 12225S ab C b C b ,因为0b ,所以b a分情况讨论,当C 为锐角时,4cos 0cos 5C C由余弦定理,222cos 366c a b ab C c由正弦定理,10sin sin sin sin sin sin 5a b c A A B C A B ,sin 5B当C 为钝角时,4cos 0cos 5C C ,由余弦定理,222cos 164c a b ab C c由正弦定理,sin sin sin sin a b c A A B C,sin B 18.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c,已知cos sin B b C .(1)求C 的大小;(2)若ABC为锐角三角形且c 22a b 的取值范围.【答案】(1)3C(2)(5,6]【解析】【分析】(1)利用正弦定理边化角,再分析求解即可;(2)22224sin 4sin 3a b A A,再利用三角函数求值域即可.(1)cos sin B b C及正弦定理可得sin sin sin )B C B C A B Ccos sin B C B C ,所以sin sin cos B C B C ,因为B 、(0,)C ,则sin 0Bsin 0C C,则tan C 3C.(2)依题意,ABC为锐角三角形且c2sin sin sin a b c A B C ,所以2sin a A ,2sin 2sin()2sin 3b B A C A,所以222221cos 21cos 234sin 4sin 44322A A a b A A142cos 2222cos 222c 2cos 2222os 23A A A A A2c 42co os 242sin 246s 2cos 2sin 2A A A A A A,由于23A B ,所以022032A A,解得62A ,所以23A ,52666A ,所以푠� 2�∈12,1,所以2sin 2(1,2]6A ,所以2sin 24(5,6]6A.所以22a b 的取值范围是(5,6].19.(2022·辽宁实验中学模拟预测)在① sin sin sin sin A C a b c B C ,② 2222cos 2a b c a c B a,③ sin cos 6a B C B b这三个条件中选一个,补充在下面问题中,并解答.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且__________.(1)求B(2)若b ABC 的平分线交AC 于点D ,且5BD,求ABC 的面积.【答案】(1)=3B【解析】【分析】(1)若选条件①,先用正弦定理将角转化为边的关系,再利用余弦定理即可;若选条件②,先用余弦定理将边转化为角的关系,再利用正弦定理即可;若选条件③,先用三角形的内角之和为 ,再利用正弦定理即可;(2)利用角平分线的性质得到ABC ABD BCD S S S △△△,结合余弦定理和三角形的面积公式即可(1)选择条件①:根据正弦定理,可得:a c abc b c 可得:222a c b ac 根据余弦定理,可得:2221cos 22a cb B ac 0,,=3B B 选择条件②:根据余弦定理,可得:2cos (2)cos =cos 2abC a c B b C a根据正弦定理,可得:(2sin sin )cos sin cos A C B B C整理可得:2sin cos sin()sin A B B C A可得:1cos 2B 0,,=3B B选择条件③:易知:A B C可得:sin cos()6a A B b根据正弦定理,可得:sin sin cos(sin 6A A B B可得:1sin cos()sin 62B B B B整理可得:tan B 0,,=3B B(2)根据题意,可得:ABC ABD BCDS S S △△△可得:1143143sin sin sin 23256256ac a 整理可得:54a c ac 根据余弦定理,可得:2222cosb ac ac ABC可得:2213=a c ac ,即2()313a c ac 可得:225()482080ac ac 解得:4ac 或5225ac (舍)故1=sin 23ABC S ac △20.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos 2B C B C A .(1)求角A 的大小;(2)若a 2bc 的最大值.【答案】(1)3A (2)【解析】【分析】(1)利用两角和的余弦公式、二倍角的余弦公式可得出关于cos A 的方程,结合1cos 1A 可求得cos A 的值,再结合角A 的取值范围可求得角A 的值;(2)由正弦定理结合三角恒等变换化简得出 2b c B ,结合正弦型函数的有界性可求得2b c 的最大值.(1)解:由已知可得 cos 25cos cos sin sin cos 25cos A B C B C A B C 2cos 25cos 2cos 5cos 13A A A A ,即22cos 5cos 20A A ,0A ∵,则1cos 1A ,解得1cos 2A ,因此,3A .(2)解:由正弦定理可得2sin sin sin b c aBC A,所以, 24sin 2sin 4sin 2sin 4sin 2sin 3b c B C B B A B B 4sin sin 5sin B B B B B B,其中 为锐角,且tan,因为3A ,则203B ,23B ,所以,当2B 时,即当2B 时,2b c 取得最大值。
近三年解三角形高考真题(带解析)

近三年解三角形高考真题(带解析)1.(2022·北京·统考高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.2.(2022·天津·统考高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.3.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin 3A C =,求b . 4.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+5.(2022·全国·统考高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 6.(2022·浙江·统考高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.7.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.8.(2021·全国·统考高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.9.(2021·全国·统考高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.10.(2020·浙江·统考高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.11.(2020·全国·统考高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值.12.(2020·全国·统考高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若b c -=,证明:△ABC 是直角三角形.参考答案:1.(1)6π (2)663【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.【详解】(1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABCS ab C a ===,解得a =由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC的周长为6a b c ++=.2.(1)1c =(2)sin B =(3)sin(2)A B -=【分析】(1)根据余弦定理2222cos a b c bc A =+-以及2b c =解方程组即可求出; (2)由(1)可求出2b =,再根据正弦定理即可解出;(3)先根据二倍角公式求出sin 2,cos 2A A ,再根据两角差的正弦公式即可求出.【详解】(1)因为2222cos a b c bc A =+-,即22162b c bc =++,而2b c =,代入得22264c c c =++,解得:1c =.(2)由(1)可求出2b =,而0πA <<,所以sin A =sin sin a b A B =,所以2sin sin b A B a===.(3)因为1cos 4A =-,所以ππ2A <<,故π02B <<,又sin A ==所以1sin 22sin cos 24A A A ⎛⎫==⨯-= ⎪⎝⎭,217cos 22cos 121168A A =-=⨯-=-,而sin B =cos B ==故7sin(2)sin 2cos cos 2sin 8A B A B A B ⎛-=-=+= ⎝⎭. 3.(2)12【分析】(1)先表示出123,,S S S,再由123S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可; (2)由正弦定理得22sin sin sin b ac B A C=,即可求解.【详解】(1)由题意得22221231,,2S a S S =⋅==,则222123S S S -+==即2222a c b +-=,由余弦定理得222cos 2a c b B ac+-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos B1cos ac B ==1sin 2ABCS ac B ==(2)由正弦定理得:sin sin sin b a cB A C==,则229sin sin sin sin sin 4b a c ac B A C A C =⋅===,则3sin 2b B =,31sin 22b B ==.4.(1)5π8; (2)证明见解析.【分析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出.【详解】(1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a cb bc a b c a a b c +--+-=+--+-,化简得: 2222a b c =+,故原等式成立.5.(1)见解析 (2)14【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. 【详解】(1)证明:因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-, 所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅,即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+; (2)解:因为255,cos 31a A ==, 由(1)得2250bc +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=. 6.(2)22.【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【详解】(1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin A C ==(2)因为4a =,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.7.(1)π6;(2)5.【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出;(2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出.【详解】(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-,所以30,,,424B C πππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-== ()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-≥=.当且仅当2cos B =222a b c +的最小值为5.8.(1(2)存在,且2a =. 【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果;(2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值. 【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c Cab,所以,C 为锐角,则sin C ==因此,11sin 4522ABC S ab C ==⨯⨯△ (2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++, 解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈,故2a =. 9.(1)证明见解析;(2)7cos 12ABC ∠=. 【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论. (2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理, 得sin sin ,22b cR ABC C R==∠, 因为sin sin BD ABC a C ∠=,所以22b cBD a R R⋅=⋅,即BD b ac ⋅=. 又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+-=,①在BCD △中,222()3cos 23ba b b a C +-=⋅.② 由①②得2222223()3b a b c a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3ca =或32c a =,当22,33c c a b ac ===时,33c ca b c +=<(舍去). 当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠. 所以7cos 12ABC ∠=. [方法二]:等面积法和三角形相似如图,已知2AD DC =,则23ABD ABC S S =△△, 即21221sin sin 2332b ac AD A B BC ⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠, 故有ADB ABC ∠=∠,从而ABD C ∠=∠. 由2b ac =,即b ca b =,即CA BA CB BD=,即ACB ABD ∽, 故AD ABAB AC=,即23bc c b =,又2b ac =,所以23c a =, 则2227cos 212c a b ABC ac +-==∠. [方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==.在ADB 中,由正弦定理得sin sin AD BDABD A=∠.又ABD C ∠=∠,所以s 3sin n 2i C b A b=,化简得2sin sin 3C A =. 在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =. 在ABC 中,由余弦定理,得222222242793cos 221223a a a a c b ABC ac a +--⨯∠+===. 故7cos 12ABC ∠=. [方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a aDE EC BE ===.在BED 中,2222()()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c+-=∠.因为cos cos ABC BED ∠=-∠,所以2222222()()3322233a c ba cb ac ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=, 即3ca =或32a c =. 下同解法1.[方法五]:平面向量基本定理 因为2AD DC =,所以2AD DC =. 以向量,BA BC 为基底,有2133BD BC BA =+. 所以222441999BD BC BA BC BA =+⋅+, 即222441cos 999b ac c ABC a ∠=++, 又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③ 由余弦定理得2222cos b a c ac ABC =+-∠, 所以222cos ac a c ac ABC =+-∠④ 联立③④,得2261130a ac c -+=.所以32a c =或13a c =. 下同解法1.[方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动.设()(),33B x y x -<<,则229x y +=.⑤由2b ac =知,2BA BC AC ⋅=, 2222(2)(1)9x y x y ++-+.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =, 代入⑥式得36||||6,3a BC c BA b =====, 由余弦定理得2227cos 212a cb ABC ac +-∠==. 【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.10.(I )3B π=;(II )32⎤⎥⎝⎦【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I )[方法一]:余弦定理由2sin b A =,得22223sin 4a A b ==⎝⎭,即22231cos 4a A b -=. 结合余弦定222cos 2b c a A bc+-=, ∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭, 即224442222222242223b c b c a b c b a c a a c ----++=,即444222222220a b c a c a b b c +++--=,即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=, ∵ABC 为锐角三角形,∴2220a c b +->,∴222a c b ac +-=, 所以2221cos 22a cb B ac +-==, 又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin b A =,结合正弦定理可得:2sin sin ,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II ) [方法一]:余弦定理基本不等式因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-. 结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知a c b+=而ABC为锐角三角形,所以a c b+>由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++, 222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+ ⎪⎝⎭故cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦. [方法二]【最优解】:恒等变换三角函数性质结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++ 1sin 62A π⎛⎫=++ ⎪⎝⎭. 由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,13sin 622A π⎤⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦. 【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.11.(1)23π;(2)3+【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅, ()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=,即()29AC AB AC AB +-⋅=. 22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法) 设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b c A B C===以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+[方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c.令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()b c +=所以ABC 周长的最大值为3+【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.12.(1)3A π=;(2)证明见解析【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出;(2)根据余弦定理可得222b c a bc +-=,将b c -代入可找到,,a b c 关系, 再根据勾股定理或正弦定理即可证出. 【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=, 即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②, 将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.。
解三角形大题全国卷高考题汇总

解三角形大题全国卷高考题汇总(11-19)(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--解三角形全国高考题汇总一全国1卷(19年1卷)17.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C . 【分析】(1)利用正弦定理化简已知边角关系式可得:222b c a bc +-=,从而可整理出cos A ,根据()0,A π∈可求得结果;(2)利用正弦定理可得sin 2sin A B C +=,利用()sin sinB AC =+、两角和差正弦公式可得关于sin C 和cos C 的方程,结合同角三角函数关系解方程可求得结果.【详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=- 即:222sin sin sin sin sin B C A B C +-= 由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,A π∈ 3A π∴=(2)22a b c +=sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1sin 2sin 2C C C ++=整理可得:3sin C C -=22sin cos 1C C += (()223sin 31sin C C ∴-=-解得:sin C =因为6sin 2sin 2sin 2sin 02B C A C =-=->所以6sin 4C >,故62sin 4C +=. (2)法二:22a b c +=,由正弦定理得:2sin sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=3312cos sin 2sin 222C C C ∴⨯++= 整理可得:3sin 63cos C C -=,即3sin 3cos 23sin 66C C C π⎛⎫-=-= ⎪⎝⎭2sin 62C π⎛⎫∴-= ⎪⎝⎭由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+ 62sin sin()464C ππ+=+=.(2018全国新课标Ⅰ理)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠; (2)若22DC =,求BC .(1)在ABD ∆中,由正弦定理得:52sin 45sin ADB =∠,∴2sin 5ADB ∠=, ∵90ADB ∠<,∴223cos 1sin ADB ADB ∠=-∠=(2)2ADB BDC π∠+∠=,∴cos cos()sin 2BDC ADB ADB π∠=-∠=∠, ∴cos cos()sin 2BDC ADB ADB π∠=-∠=∠,∴222cos 2DC BD BC BDC BD DC+-∠=⋅⋅, ∴2282552522BC +-=⋅⋅.∴5BC =.【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【解析】(1)面积.且,,,由正弦定理得,由得.(2)由(1)得,,,,又,,,,由余弦定理得①由正弦定理得,, ②由①②得,,即周长为.【2016,17】的内角的对边分别为,已知.(Ⅰ)求;(Ⅱ)若,的面积为,求的周长.【解析】⑴,由正弦定理得:,∵,,∴∵,∴∴,,⑵由余弦定理得:,,∴,∴,,∴周长为【2013,17】如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求P A;(2)若∠APB=150°,求tan∠PBA.解:(1)由已知得∠PBC=60°,所以∠PBA=30°.在△PBA中,由余弦定理得P A2=,故P A=.(2)设∠PBA=α,由已知得PB=sin α,在△PBA中,由正弦定理得,化简得cos α=4sin α,所以tan α=,即tan∠PBA=.【2012,17】已知,,分别为△ABC三个内角A,B,C的对边,.(1)求A;(2)若,△ABC的面积为,求,.【解析】(1)根据正弦定理,得,,,因为,所以,即,(1)由三角形内角和定理,得,代入(1)式得,化简得,因为,所以,即,而,,从而,解得.(2)若,△ABC的面积为,又由(1)得,则,化简得,从而解得,.二.全国2卷(2017·17)的内角的对边分别为 ,已知.(1)求;(2)若 , 面积为2,求.(2015·17)在∆ABC中,D是BC上的点,AD平分∠BAC,∆ABD面积是∆ADC 面积的2倍.(Ⅰ)求;(Ⅱ)若AD=1,DC=,求BD和AC的长.(2013·17)在△ABC内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.(2012·17)已知a,b,c分别为△ABC三个内角A,B,C的对边,.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编8.三角函数与解三角形(逐题解析版)一、选择题(2016·7)B解析:平移后图像表达式为,令,得对称轴方程:,故选B.(2016·9)D解析:∵,,故选D.(2014·4)B解析:∵,即:,∴,即或.又∵,∴或5,又∵为钝角三角形,∴,即:.(2012·9)A解析:由得,,.(2011·5)B解析:由题知,,故选B.(2011·11)A解析:的最小正周期为π,所以,又,∴f (x)为偶函数,,,故选A.二、填空题(2017·14)【解析】∵,,∴,设,,∴,函数对称轴为,∴.(2016·13)解析:∵,,∴,,,由正弦定理得:,解得.(2014·14)1 解析:∵∵,∴的最大值为1.(2013·15)解析:由,得tan θ=,即sin θ=cos θ. 将其代入sin2θ+cos2θ=1,得. 因为θ为第二象限角,所以cos θ=,sin θ=,sin θ+cos θ=.(2011·16)解析:,,,,,故最大值是.三、解答题(2017·17)的内角的对边分别为 ,已知.(1)求;(2)若 , 面积为2,求.解析:(Ⅰ)【解法1】由题设及,故,上式两边平方,整理得,解得.【解法2】由题设及,所以,又,所以,. (Ⅱ)由,故,又,由余弦定理及得,所以b=2.(2015·17)在∆ABC中,D是BC上的点,AD平分∠BAC,∆ABD面积是∆ADC 面积的2倍.(Ⅰ)求;(Ⅱ)若AD=1,DC=,求BD和AC的长.解析:(Ⅰ),,因为,,所以,由正弦定理可得.(Ⅱ)因为,,所以,在和中,由余弦定理知,,,故,由(Ⅰ)知,所以.(2013·17)在△ABC内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.解析:(Ⅰ)由已知及正弦定理得sin A=sin B cos C+sin C sin B ①,又A=π-(B+C),故sin A=sin(B+C)=sin B cos C+cos B sin C ②,由①,②和C∈(0,π)得sin B=cos B,又B∈(0,π),所以.(Ⅱ)△ABC的面积. 由已知及余弦定理得. 又a2+c2≥2ac,故,当且仅当a=c时,等号成立.因此△ABC面积的最大值为.(2012·17)已知a,b,c分别为△ABC三个内角A,B,C的对边,.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c.解析:(Ⅰ)由及正弦定理可得,,,,,,,,,,.(Ⅱ),,,,,,解得.三.全国3卷(17年)17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 30A A =,27a =,2b =. (1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】(1)由sin 30A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A +=,得2π3A =. 由余弦定理2222cos a b c bc A =+-⋅.又∵127,2,cos 2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,27,4AC BC AB ===, 由余弦定理22227cos 2a b c C ab +-==. ∵AC AD ⊥,即ACD △为直角三角形, 则cos AC CD C =⋅,得7CD =由勾股定理223AD CD AC -=又2π3A =,则2πππ326DAB ∠=-=, 1πsin 26ABDS AD AB =⋅⋅=△。
解三角形高考题精选

解三角形高考题精选一.选择题。
1.(06全国I )ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =( )A .14 B .34 C 2.(06山东)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =3π,a =3,b =1,则c =( ) (A) 1 (B )2 (C )3—1 (D )33.(07重庆)在ABC △中,AB =45A =,75C =,则BC =( )A.3C.2D.34.(08陕西)ABC △的内角A B C ,,的对边分别为a b c ,,,若120c b B ==,则a 等于( )AB .2CD5. (08福建)在△ABC 中,角ABC 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B ,则角B 的值为( )A.6π B.3π C.6π或56πD.3π或23π6. (08海南)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( )A. 5/18B. 3/4 D. 7/8二.填空题。
7.(06北京)在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是____________. 8.(06江苏)在△ABC 中,已知BC =12,A =60°,B =45°,则AC = 9.(07北京)在ABC △中,若1tan 3A =,150C =,1BC =,则AB = 10.(07湖南)在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b c =B = .11.(07湖南文)在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,c =π3C =,则A = . 12.(07重庆文)在△ABC 中,AB =1, B C =2, B =60°,则AC =13. (08江苏)若,则ABC S ∆的最大值 .14. (08湖北)在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===,则cos cos cos bc A ca B ab C ++的值为 .15. (08浙江)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b c o s c o s3=-,则=A cos _________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017高考真题解三角形汇编
1.(2017北京高考题)在△ABC 中,A ∠ =60°,c =37
a . (Ⅰ)求sin C 的值;
(Ⅱ)若a =7,求△ABC 的面积.
2.(2017全国卷1理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△
ABC 的面积为2
3sin a A
(1)求sin B sin C ;
(2)若6cos B cos C =1,a =3,求△ABC 的周长.
3.(2017全国卷1文科)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
已知
sin sin (sin cos )0B A C C +-=,a =2,c
,则C =B
A .π
12
B .π6
C .π4
D .π3
4.(2016全国卷2理科)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知
2
sin()8sin 2
B A
C +=. (1)求cos B
(2)若6a c += , ABC ∆面积为2,求.b
5.(2017全国卷2文科16)△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=
6.(2017全国卷3理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A
cos A =0,a
b =2.
(1)求c ;(2)设D 为BC 边上一点,且AD ⊥ AC,求△ABD 的面积.
7.(2017全国卷3文科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。
已知
C =60°,b
c =3,则A =_________。
8.(2017山东高考题理科)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若
C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,
则下列等式成立的是( )
(A )2a b = (B )2b a = (C )2A =B (D )2B =A 9.(2017山东高考题文科)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知
b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .
10.(2017天津高考题理科)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3
sin 5
B =.(Ⅰ)求b 和sin A 的值; (Ⅱ)求π
sin(2)4
A +
的值. 11.(2017天津高考题文科)在ABC △中,内角,,A B C 所对的边分别为,,a b c .
已知sin 4sin a A b B =
,222
)ac a b c =--.
(I )求cos A 的值; (II )求sin(2)B A -的值.
12.(2017浙江高考题)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长
线上一点,BD=2,连结CD ,则△BDC 的面积是___________,
cos ∠BDC =__________.
13.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若
).(R k k BC BA AC AB ∈=⋅=⋅
(Ⅰ)判断△ABC 的形状; (Ⅱ)若k c 求,2=的值.
14.设ABC ∆是锐角三角形,,,a b c 分别是内角,,A B C 所对边长,并且
22sin sin() sin() sin 33
A B B B ππ
=+-+。
(Ⅰ)求角A 的值; (Ⅱ)若12,AB AC a ==求,b c (其中b c <)。
15.在ABC ∆中,A C AC BC sin 2sin ,3,5===
(Ⅰ)求AB 的值。
(Ⅱ)求)4
2sin(π
-
A 的值。