九年级数学相似三角形的应用PPT优秀课件
《相似三角形的应用》课件
力学中杠杆原理和滑轮组设计原理
杠杆原理
杠杆是一种简单机械,通过力矩的平衡来实现力的传递和转 换。利用相似三角形原理,可以计算出杠杆两端的力和力臂 之间的关系。
滑轮组设计
滑轮组是由多个滑轮组成的复杂机械,可以实现力的方向和 大小的改变。利用相似三角形原理,可以分析出滑轮组中各 个滑轮之间的受力关系。
光学中镜像和折射现象分析
平面镜成像
当光线碰到平面镜时,会遵循“ 入射角等于反射角”的规律,形 成虚像。利用相似三角形原理, 可以计算出物体与镜像之间的距
离关系。
透镜折射
透镜可以改变光线的传播方向, 形成实像或虚像。利用相似三角 形原理,可以分析出光线在经过
透镜前后的路径变化。
凹面镜和凸面镜
凹面镜和凸面镜具有会聚和发散 光线的作用,其成像原理也涉及
回顾如何利用相似三角形证明线段比例、 角度相等等问题。
强调相似三角形在测量、建筑设计等领域的 应用,如利用相似三角形计算高度、距离等 。
学生自我评价报告分享
知识掌握情况
01
学生分享自己在本节课中对相似三角形相关知识的理解和掌握
情况。
学习方法与技巧
02
学生分享自己在学习相似三角形时采用的方法和技巧,如记忆
老师点评与总结
老师对学生的讨论和提问进行点评 和总结,强调相似三角形的重要性 和应用价值,鼓励学生继续深入学 习和探索。
感谢您的观看
THANKS
02
相似三角形在几何问题中 应用
利用相似三角形解决线段比例问题
通过相似三角形的性 质,确定线段之间的 比例关系
应用实例:利用相似 三角形解决建筑物高 度测量问题
利用比例关系,求解 未知线段的长度
25.6 相似三角形的应用课件(共22张PPT)
求不能直接测量物体的宽度的实际问题,同样可以构造两个相似直角三角形,通过相似三角形的性质求解.
1.A字型.
2.X字型.
1.在某一时刻,测得一根长为1.8 m的竹竿的影长为3 m,同时测得一栋高楼的影长为90 m,这栋高楼的高度为多少?
解得x = 54,
即这栋高楼的高度为54 m.
随堂练习
如图,在学校操场上,高高耸立的旗杆上悬挂着五星红旗.你一定想知道学校操场上旗杆的高度,那么怎样测量和计算旗杆的高呢?(1)请设计一个测量旗杆高度的方案,说明理由,并与大家交流.(2)思考下面“大刚设计的方案”是否可行.如果可行,请说明其中的道理.若标杆CD=2 m,标杆影子BD=3 m,旗杆影子BO=12 m,求旗杆的高.
探究二
知识点2 利用相似三角形求距离
1.如图25-6-5,在一条小河的北岸A处有一古塔,南岸C处有一观景台.为求古塔和观景台之间的距离,请你设计测量方案,并给出计算结果.2.如图25-6-6,小明给出的测量方案是否可行?若可行,请按他的测量方案和所得数据求出结果.
解:构造相似三角形求解.
例2 如图,△ABC为一块铁板余料.已知BC=120 mm,高AD=80 mm.要用这块余料裁出一个正方形材料,且使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形的边长应为多少毫米?
解:∵ ∠PQR=∠PST=90°,∠P=∠P,∴△PQR∽△PST. ∴ ,即 , ,PQ×90=(PQ+45)×60.
解得PQ=90(m).因此河宽大约为 90 m.
已测得 QS = 45 m,ST = 90 m,QR = 60 m,请根据这些数据,计算河宽 PQ.
第 二十五章 图形的相似能运用三角形相似知识解决不能直接测量物体的高度和距离等实际问题.
数学九年级上相似三角形的应用ppt课件
相似
B’
C’
AA’BB’=
BC B’C’
=
AC A’C’
△ABC∽ △A’B’C’
回顾:相似三角形的性质?
1.相似三角形的对应边成比例,对应角相等
2.相似三角形的对应高、对应角平分线、 对应中线的比等于相似比 3.相似三角形的周长比等于相似比
4.相似三角形的面积比等于相似比的平方
2.已知:梯形ABCD中,AD∥BC,
解:∵ OA:OC=OB:OD=n 且∠AOB=∠COD ∴△AOB∽△COD
∵ OA:OC=AB:CD=n 又∵CD=b
∵AB=CD ·n = nb
又∵x = ( a - AB )÷2 = ( a - nb )÷2
D bC
x
Ox
AB. A
B
D
C
E
2.为了测量一池塘的宽AB,在岸边找到
了一点C,使AC⊥AB,在AC上找到一点D,
在BC上找到一点E,使ED⊥AC,测出
AD=35m,DC=35m,DE=30m,那么你
能算出池塘的宽AB吗?
A
B
D
E
C
如图,屋架跨度的一半OP=5m,高度
OQ=2.25m,现要在屋顶上开一个天窗,
天窗高度AC=1.20m,AB在水平位置.求
AB的长度(结果保留3个有效数字)。
解:由题意得,AB∥PO ∴∠ABC=∠OPQ
Q
∵∠CAB=∠POQ=Rt∠ ∴△ABC∽△OPQ ∴AB/OP=AC/OQ
AB
∴AB=OP×AC/OQ=5×1.2/2.25≈2.67m 答:AB的长约为2.67m。
C
P O
146.59米,但由于经过几千年的风吹雨打,顶端被风
九年级数学下册272《相似三角形》PPT课件
3. 解等式求出三角形的面积。
注意事项:在解题过程中,要确保已知的三边长度是准 确的,避免因为数据不准确而导致错误。同时,要注意 选择合适的公式或方法进行计算。
典型例题四:综合应用举例
• 解题思路:综合运用相似三角形的性质和判定方法,解决 复杂的实际问题。
典型例题四:综合应用举例
解题步骤 1. 分析问题,确定需要使用的相似三角形的性质和判定方法;
利用相似三角形的面积比等于相似比的平 方性质,求解面积问题 通过已知三角形的面积和相似比,计算另 一个三角形的面积 结合图形变换和面积公式,利用相似三角 形解决复杂面积问题
利用相似三角形解决综合问题
综合运用相似三角形 的性质,解决涉及线 段、角度和面积的复 杂问题
结合多种数学方法, 如代数运算、方程求 解等,提高解决问题 的效率
通过分析问题的条件 ,选择合适的相似三 角形性质和定理进行 求解
04
典型例题分析与解题思路展示
典型例题一:已知两边求第三边长度
解题思路:利用相似三角形的性质, 即对应边成比例,可以通过已知的两
边长度求出第三边的长度。
解题步骤
2. 利用相似三角形的性质列出比例式 ;
3. 解比例式求出第三边的长度。
1. 确定已知的两边和夹角;
注意事项:在解题过程中,要确保已 知的两边和夹角是对应的,避免因为 数据不对应而导致错误。
典型例题二:已知两角求第三角大小
01
解题思路:根据三角形内角和为180°的性质,可以通过 已知的两角求出第三角的大小。
04
2. 利用三角形内角和为180°的性质列出等式;
02
解题步骤
对应角相等,对应边成比例的两 个三角形叫做相似三角形。
《相似三角形应用举例》相似PPT免费课件
探究新知
考点 2 利用相似三角形测物体的宽
如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,
在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着
在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q
且垂直PS的直线b的交点R.如果测得QS=45m,
ST=90m,QR=60m,求河的宽度PQ.
求旗杆的高度.
E
C
FD
B
G
课堂检测
解:由题意可得:△DEF∽△DCA,
则 DE EF .
DC CA
∵DE=0.5米,EF=0.25米,DG=1.5米,DC=20米,
∴ 0.5 0.25,
20 CA
A
解得:AC = 10,
AB = AC + BC = 10 + 1.5 = 11.5 (m).
答:旗杆的高度为 11.5 m.
D E
B
C
课堂小结
相似 三角 形的 应用 举例
利用相似三角形测量高度 利用相似三角形测量宽度 利用相似解决有遮挡物问题
人教版 数学 九年级 下册
27.2 相似三角形
27.2.3 相似三角形应用举例
导入新知
1. 在前面,我们学过哪些判定三角形相似的方法?相似三角 形的性质是什么? 2. 观察下列图片,你会利用相似三角形知识解决一些不能直 接测量的物体(如塔高、河宽等)的长度或高度的问题吗?
导入新知
怎样测量 河宽?
相似三角形,来测量金字塔的高度.
如图,如果木杆EF长2m,它的影长FD为3m,测得OA为
201m,求金字塔的高度BO. 解:太阳光是平行光线,因此∠BAO=∠EDF.
怎样测出 OA的长?
人教版九年级下册数学27.2.3:相似三角形的应用 举例 测量(金字塔高度、河宽)问题 课件 (共12张PPT)
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
相似三角形的应用ppt课件
相似三角形的应用ppt课件contents •相似三角形基本概念与性质•相似三角形在几何问题中应用•相似三角形在三角函数中应用•相似三角形在物理问题中应用•相似三角形在建筑设计中应用•总结与展望目录01相似三角形基本概念与性质定义AAA 相似SAS 相似SSS 相似定义及判定方法01020304两个三角形如果它们的对应角相等,则称这两个三角形相似。
如果两个三角形的三组对应角分别相等,则这两个三角形相似。
如果两个三角形有两组对应边成比例且夹角相等,则这两个三角形相似。
如果两个三角形的三组对应边都成比例,则这两个三角形相似。
相似比与对应边长成比例关系相似比两个相似三角形的对应边之间的比值称为相似比。
对应边长成比例关系在相似三角形中,任意两边之间的比值等于其他两边之间的比值,即a/a'=b/b'=c/c',其中a、b、c和a'、b'、c'分别是两个相似三角形的对应边长。
相似三角形面积比关系面积比公式两个相似三角形的面积之比等于它们对应边长之比的平方,即(S1/S2)=(a/a')^2=(b/b')^2=(c/c')^2,其中S1和S2分别是两个相似三角形的面积,a、b、c和a'、b'、c'分别是它们的对应边长。
应用举例利用相似三角形的面积比关系可以解决一些实际问题,如测量高度、计算距离等。
02相似三角形在几何问题中应用利用相似三角形对应边成比例的性质,通过已知线段长度求解未知线段长度。
结合图形变换(如平移、旋转等)和相似三角形的性质,构造新的相似三角形,进而求解线段长度。
通过相似三角形的性质,建立比例关系,求解未知线段长度。
利用相似三角形求线段长度利用相似三角形证明角相等或互补通过相似三角形的性质,证明两个角相等或互补。
利用相似三角形对应角相等的性质,证明两个角相等。
结合图形变换和相似三角形的性质,构造新的相似三角形,证明两个角互补。
相似三角形的应用(公开课)优质课件PPT
C
E
A
┏
┏
D
B
(第2题)
2021/02/01
7
初显身手
3.
在晴天,给你一根标 杆,一把皮尺,一面平 面镜.你能利用所学 知识来测出旗杆的高 吗?如果能,请结合 示意图写出你的测量 方案。
标杆
皮尺
平面镜
一展才华
4.如图,要在底边BC=160cm,高AD=120cm的△ABC铁皮
余料上截取一个矩形EFGH,使点H在AB上,点G在AC上, 点E,F在BC上,AD交HG于点M,此时有AM/AD= HG/BC
点移动t秒(0<t<5)后, 四边形ABQP的面积为S平方米。
(1)分别求出面积S与时间t的关系式
A
D
P
B
2021/02/01
Q
C
10
锋芒毕露
(2)探究:在P、Q两点移动的过程中,四边形ABQP与 △CPQ的面积能否相等?若能,求出此时点P的位置; 若不能,请说明理由。
A
D
D
P
B
2021/02/01
Q
C
11
相似三角形的应用: 1、相似三角形的实际应用 2、相似三角形与其他知识的综合运用
2021/02/01
12
Thank you
感谢聆听 批评指导
汇报人:XXX 汇报日期:20XX年XX月XX日
感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为了 方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!
4、有一条直角边和斜边分别对应成比例 的两个直角三角形相似
2021/02/01
3
回顾
相似三角形的性质
相似三角形性质的应用PPT课件
通过相似三角形,可以将地球上的大范围区域缩小到地图上,方便人们理解和研究 地理分布和特征。
地图绘制中的比例尺就是利用相似三角形的原理,将实际距离按照一定比例缩小到 地图上。
在物理实验中的应用
在物理实验中,常常需要利用 相似三角形来测量和计算各种 物理量,例如力、速度、加速 度等。
面积比等于相似比的平方
两个相似三角形的面积比等于它们的相似比的平方,即 (AB/DE)^2=(BC/EF)^2=(CA/FD)^2。
相似三角形的判定方法
01
02
03
平行线判定法
如果一个三角形与另一个 三角形的一边平行且等于 这边上的一个线段,则这 两个三角形相似。
角角判定法
如果两个三角形有两个对 应的角相等,则这两个三 角形相似。
利用相似三角形解决长度问题
总结词
通过相似三角形的性质,可以解决一些长度问题,如求线段长度ຫໍສະໝຸດ 判断线段大小关系等。详细描述
利用相似三角形的对应边成比例性质,可以通过已知线段长度求解未知线段长度,或者判断线段的大小关系。例 如,在解题过程中,可以通过构建相似三角形,利用对应边成比例的特点,将未知线段长度转化为已知线段长度, 从而求解问题。
相似三角形与面积
相似三角形的面积比等于其对应边长的平方 比。
相似三角形与角平分线
角平分线将相对边分为两段,与角平分线所 形成的两个小三角形相似。
实际问题实例
测量问题
建筑设计
利用相似三角形的性质,可以方便地测量 无法直接到达的物体的高度或距离。
在建筑设计过程中,可以利用相似三角形 的性质来计算建筑物的尺寸和角度,以确 保建筑物的外观和稳定性。
相似三角形的应用课件初中数学PPT课件
相似三角形在现实生活中的应用
相似三角形在现实生活中有着广泛的应用,如建筑设计、地理测量、物理实验等。通过了解 这些应用,可以更好地理解相似三角形的重要性和实用性。
THANKS
感谢观看
构造相似三角形,通 过已知条件求解未知 边长。
利用相似三角形证明角相等
通过证明两个三角形相似,进 而证明对应角相等。
利用相似三角形的性质,通过 已知角求解未知角。
构造相似三角形,通过证明对 应角相等来证明两角相等。
利用相似三角形解决面积问题
通过已知相似三角形的边长比例, 利用面积公式求解未知面积。
构造相似三角形,通过已知条件 求解未知面积。
利用相似三角形的性质,通过已 知面积求解未知面积。
03 相似三角形在代 数问题中应用
利用相似三角形建立方程
通过相似三角形的性质,建立比例关 系,从而构建方程。
结合图形与代数方法,将几何问题转 化为代数问题。
利用已知边长和角度,通过相似三角 形对应边成比例的性质,列出方程。
通过比较两个三角形的对应角或对应边来判断它们是否相似。
相似三角形的应用
利用相似三角形可以解决一些实际问题,如测量高度、计算距离等。
易错难点剖析及注意事项提醒
易错点
在判断两个三角形是否相似时, 需要注意对应角和对应边的关系,
避免出现错误。
难点
在实际问题中,如何准确地找到相 似三角形并应用其性质进行求解是 一个难点。
结合相似三角形的性质, 解决一些综合性的问题。
04 相似三角形在三 角函数问题中应 用
利用相似三角形推导三角函数公式
通过相似三角形的性质,推导正弦、余弦、正切等基本三角函数公式。 引导学生理解三角函数公式与相似三角形之间的联系,加深对公式的理解和记忆。
相似三角形的应用PPT课件(华师大版)
E
F
∴ MF = 20(m). ∴ MN = MF + FN = 20 + 0.8 = 20.8(m).
课堂小结
解类似三角形实际问题的一般步骤: (1)审题. (2)构建图形. (3)利用类似解决问题.
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
教学反思
本节课以生活实例为情境,引导学生探究如 何建立类似的数学模型,构造类似三角形,把实 际问题转化为数学问题(类似)来解决,进一步 提高学生应用数学知识的能力.
新课导入
人们从很早开始,就懂得利用类似三角形的有 关性质来计算那些不能直接测量的物体高度和两地 距离.
推动新课
例6 古代一位数学家想出了一种测量金字
塔高度的方法:如图所示,为了测量金字塔的高度 OB,先竖一根已知长度的木棒 O′B′,比较木棒的 影长 A′B′ 与金字塔的影长 AB,即可近似算出金字 塔的高度 OB.如果 O′B′ = 1 米,A′B′ = 2 米,AB = 274 米,求金字塔的高度 OB .
解 ∵ 太阳光线是平行光线, ∴ ∠OAB = ∠O′A′B′. ∵ ∠ABO = ∠A′B′O′ = 90°. ∴ △OAB∽△O′A′B′ (两角分别相等的两个 三角形类似),
OB = AB .
O'B' A'B'
OB = AB O'B' = 2741 = 137(米).
A'B'
2
答:金字塔的高度 OB 为 137 米.
分析:先由实际问题建立类似的数学模型,可先 证得 △ABE∽△ACD,再根据对应线段成比例可求
出河宽,即线段 BC 的长. 24m
2024版相似三角形ppt初中数学PPT课件
相似三角形ppt初中数学PPT课件目录CONTENCT •相似三角形基本概念与性质•相似三角形在几何图形中应用•相似三角形在解决实际问题中应用•相似三角形证明方法探讨•典型例题解析与练习•课堂小结与拓展延伸01相似三角形基本概念与性质01020304定义AAA 相似SAS 相似SSS 相似定义及判定方法如果两个三角形有两组对应边成比例且夹角相等,则这两个三角形相似。
如果两个三角形的三组对应角分别相等,则这两个三角形相似。
两个三角形如果它们的对应角相等,则称这两个三角形相似。
如果两个三角形的三组对应边成比例,则这两个三角形相似。
相似比与对应角关系相似比两个相似三角形的对应边之间的比值称为相似比。
相等角两个相似三角形的对应角相等。
补角两个相似三角形的非对应角互为补角。
两个相似三角形的对应边之间的比值相等。
对应边成比例两个相似三角形的对应高、中线、角平分线之间的比值也相等,且等于相似比。
对应高、中线、角平分线成比例两个相似三角形的面积之比等于相似比的平方。
面积比等于相似比的平方两个相似三角形的周长之比等于相似比。
周长比等于相似比性质总结02相似三角形在几何图形中应用平行线间距离问题利用相似三角形性质求解平行线间距离通过构造相似三角形,利用对应边成比例的性质,可以求解平行线间的距离。
平行线间距离与相似三角形关系平行线间距离与相似三角形的对应高成比例,因此可以通过相似三角形性质求解平行线间距离。
角度平分线问题利用相似三角形性质求解角度平分线问题通过构造相似三角形,利用对应角相等的性质,可以求解角度平分线问题。
角度平分线与相似三角形关系角度平分线将相邻两边按照相同比例分割,因此可以通过相似三角形性质求解角度平分线问题。
直角三角形中特殊应用利用相似三角形性质求解直角三角形中特殊应用在直角三角形中,通过构造相似三角形,利用对应边成比例的性质,可以求解一些特殊问题,如勾股定理、射影定理等。
直角三角形中特殊应用与相似三角形关系在直角三角形中,一些特殊应用可以通过构造相似三角形进行求解,这些应用与相似三角形的性质密切相关。
初中九年级数学下册人教版27.2.2相似三角形的应用ppt课件
2. 如图,测得BD=120m,DC=60m,EC=50m,求河宽AB.
解: ∵ AB∥CE ∴△ABD∽△ECD
BD AB DC EC
120 AB 60 50
AB=100m. 答:河宽AB为100m.
A
C
B
D
E
课堂小结
本节课我们学习了利用相似三角形来测量高度和宽度的
解:太阳光是平行的光线, 因此:∠BAO=∠EDF. 又 ∠AOB=∠DFE=900.
∴△ABO∽△DEF.
因此金字塔的高为134m.
一题多解
E
┐ F △ABO∽△AEF
还可以有其他方法测量吗? B
平面镜
A
OB
OA
EF = AF
┐ O
OB =
OA ·EF AF
例4.如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸 取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直 的直线a上选择适当的点T,确定PT与点Q且垂直PS的直线b的交点R.如果测 得QS=45m,ST=90m,QR=60m,求河的宽度PQ.
A
∠ABC=∠ECD=90°, 所以 △ABD∽△ECD,
那么 AB = BD EC DC
解得AB = ?(米)
B
D
C
E
答: 两岸间的大致距离为?米.
例5 、已知左、右并排的两棵大树的高分别是AB=6m和CD=12m,两树的根部的距离BD =5m.一个身高1.6m的人沿着正对这两棵树的一条水平直路L从左向右前进,当他与左 边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?
交于点E。设正方形PQMN的边长为x毫米。
4.3 相似三角形 课件(共25张PPT)2023-2024学年浙教版九年级上册数学
(1)求∠ACB,∠ACD的度数.
(2)写出△ABC与△ACD的对应边成比例的比例式,并说出
相似比.
A
D
C
B
如图,D是AB上的一点,△ABC∽△ACD,且
AD∶AC=2∶3,∠ADC=65°,∠B=37°.
A
(1)求∠ACB,∠ACD的度数.
D
解:∵△ABC∽△ACD,
A
D
B
E
C
证明:∵D,E分别是AB,AC的中点,
∴DE∥BC,DE= BC.
A
∴∠ADE=∠B,∠AED=∠C.
D
在△ADE和△ABC中,
∠ADE=∠B,∠AED=∠C,∠A=∠A
ቋ
=
=
=
⇒△ADE∽△ABC(相似三角形的定义).
B
E
C
例2 如图,D,E分别是△ABC的AB,AC边上的点,
B
例3 如果两个三角形都与第三个三角形相似,那么这两个三角
形相似吗?为什么?
解:相似. 理由如下:
设△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2.
由△ABC∽△A1B1C1,得∠A=∠A1,∠B=∠B1,
∠C=∠C1,
=
=
.
由△A1B1C1∽△A2B2C2,得∠A1=∠A2,
边是对应边;
④相似三角形对应边所对的角是对应角,两条对应边所夹的
角是对应角.
两个全等三角形是不是相似三角形?如果是,那么它
们的相似比是多少?
九年级数学《相似三角形性质应用》课件
文字语言: 相似三角形对应线段的比值等于相似比
B
D C 符号语言
A′
∵ AD、 A′D′ 分别是锐角△ABC和锐角 △A′B′C′的对应线段,且△ABC∽ △A′B′C′,
B′ D′ C′
∴ AD:A’D’=AB:A’B’.
4。如图所示,有一块三角形余料△ABC, 它的边BC=80cm,高AD=60cm.现在要把它 加工成长与宽的比为2:1的矩形零件PQMN, 要求一条长边在边BC上,其余两个顶点分 别在边AB,AC上.求矩形的长和宽.
1,本节课我有什么收获? 2,通过本节课的学习我有什么感想? 3,你对自己今天的表现满意吗?
创设情景 复习导入
问题情境:在如图所示的相似四边形中,求未知边x、 y的长度和角度α的大小。答:x=______,y=______, α=______度。
问题:相似三角形还具备那些性质?
导新定向
1、理解掌握相似三角形对应线段(高、 中线、角平分线)的比与相似比之间的 关系 2.运用性质解决实际问题
变式:如图所示,有一块三角形余料△ABC, 它的边BC=80cm,高AD=60cm.现在要把它 加工成矩形零件PQMN,要求一条长边在边 BC上,其余两个顶点分别在边AB,AC上. (1)矩形PQMN的边MN为何值时矩形面积 最大
(2)若矩形PQMN是正方形则求正方形的边 长
当堂检测
我反思 我进步
学教新课
自学思考题: 1.相似三角形对应线段的比与相似比之间的 关系 2.如何证明上面的对应关系 3.如何理解相似三角形对应线段 4.完成下面的练习
疑探交流
根据上面的问题,结合自学效果,出现问题 首先小组对议,较难的问题小组组议
自学练习
小组展示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物高 :物高 = 影长 :影长
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
方法二
A
C
B
D
E
把一小镜子放在离树(AB)8米的点E处, 然后沿着直线BE后退到点D,这时恰好在镜子 里看到树梢顶点A,再用皮尺量得DE=2.8m,观 察者目高CD=1.6m。这时树高多少?你能解决 这个问题吗?
例题
B
?
O
201m
E
2m
D A(F) 3m
解:太阳光是平行线, 因此∠BAO= ∠EDF
?
┏
D
2. .(深圳市中考题) 小明在打网球时,使球恰好 能打过网,而且落在离网5米的位置上,求球拍击 球的高度h.(设网球是直线运动)
2.4m
C
E
A
┏ 0.8m
5m D 10m
?
┏
B
想一想
怎样利用相似三角形的有关知 识测量旗杆的高度?
测高是本课重点学习的内容
O
怎样测量旗 杆的高度呢?
O′
A
B
27.2.2相似三角形的应用(1)
测量高度
重点提示:图中找相似 相似得比例
A B A ´C
比例来计算 B ´
C´
计算求线段(高度,宽度等)
阿基米德:
给我一个支点我可以撬起整个地球!
1.如图,铁道口的栏杆短臂长1m,长臂长16m,当
短臂端点下降0.5m时,长臂端点升高 8 m。
B
16m C 0.5m ┛ 1mO A (第1题)
又 ∠AOB= ∠DFE=90°∴△ABO~△DEF
BO OA EF = FD NhomakorabeaBO=OA×EF = 201×2
FD
3
=134(m) 答-------
还可以这样测量…… 请列出比例式 DE:BC=AE:AC
D B
┐
┐
C
A
E
你说我说大家说
请你谈谈学习本节课 后的感受!
小结
测高的方法 测量不能到达顶部的物体的
c 2、人的高度与它的
影长组成什么三角形?
(
Rt△)A’B这’C个’
三角形有没有哪条边
可以直接测量?
8m
3、 △ABC与△A′B′ C ′ 有什么关系?试说明理由.
c′
1.6m
A
6m
B
A′ 1.2m B′
校园里有一棵大树,要测量树的高度,你有什么方法?
请设计出两种不同的方法
方法一
A
C
D
B
把长为2.40m的标杆CD直立在地面上,量出树的 影长为2.80m,标杆的影长为1.47m。这时树高多少? 你能解决这个问题吗?
A′
B′
求旗杆高度的方法:
因为旗杆的高度不能直 接测量,我们可以利用
旗杆的高度
人身高和
和影长组成 相似于 影长组成
的三角形
的三角形
再利用相似三角形对
应边成比例来求解.
温馨提示:
1、旗杆的高度是线 段 BC ;旗杆的高 度与它的影长组成什 么三角形?(Rt△ABC) 这个三角形有没有哪 条边可以直接测量?