浙江省金华市2019年中考数学试题(解析版)

合集下载

2019年浙江金华中考数学真题--含解析

2019年浙江金华中考数学真题--含解析

2019浙江金华中考试题解析(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分) 1.(2019浙江省金华市,1,3分)实数4的相反数是( ) A.14- B. -4 C.14D.4【答案】B .【解析】由a 的相反数是-a ,得实数4的相反数是-4,故选B . 【知识点】相反数 2.(2019浙江省金华市,2,3分)计算a 6÷a 3,正确的结果是( ) A.2 B.3a C. a 2 D. a 3 【答案】D .【解析】根据同底数幂的除法法则,有a 6÷a 3=a 3.故选D . 【知识点】同底数幂的除法 3.(2019浙江省金华市,3,3分)若长度分别为a ,3,5的三条线段能组成一个三角形,则a 的值可以是( )A.1B. 2C.3D. 8 【答案】C .【解析】根据三角形的三边关系,得2<a <8,故选C . 【知识点】三角形的三边关系 4.(2019浙江省金华市,4,3分)某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是( )A. 星期一B.星期二C.星期三D.星期四【答案】C . 【解析】温差=最高气温-最低气温.故选C .【知识点】温差 5.(2019浙江省金华市,5,3分)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同. 搅匀后任意摸出一个球,是白球..的概率为( ) A. 12B. 310C. 15D. 710 【答案】A .【解析】白球..的概率为5235++=12.故选A .【知识点】概率 6.(2019浙江省金华市,6,3分)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A 的星期 一 二 三 四最高气温10C ︒ 12C ︒ 11C ︒ 9C ︒最低气温3C ︒ 0C ︒ -2C ︒ -3C ︒位置表述正确的是( )A. 在南偏东75°方向处B. 在5km 处C. 在南偏东15°方向5km 处D. 在南偏东75°方向5km 处(第6题图)【答案】D .【解析】目标A 的位置表述正确的是在南偏东75°方向5km 处,故选B . 【知识点】确定位置 7.(2019浙江省金华市,7,3分)用配方法解方程x 2-6x -8=0时,配方结果正确的是( ) A. 2(3)17x -= B. 2(3)14x -= C. 2(6)44x -= D. 2(3)1x -=【答案】A .【解析】解方程x 2-6x -8=0,配方,得(x -3)2=17,故选A . 【知识点】配方法解一元二次方程 8.(2019浙江省金华市,8,3分)如图,矩形ABCD 的对角线交于点O ,已知AB =m ,∠BAC =∠α,下列结论错误的是( )A. ∠BDC =∠αB. BC = m ·tan αC. AO =2sin m α D. BD =cos mα【答案】C .【解析】由锐角三角函数的定义,得sin α=2BC OA,∴AO =2sin BC α ,故选C .【知识点】锐角三角函数9.(2019浙江省金华市,9,3分)如图,物体由两个圆锥组成,其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A.2B. 3C. 32D. 2A2442531135270°0°180°90°αm ODB C A(第9题图) 【答案】D .【解析】∵∠A =90°,∠ABC =105°,∴∠ABD =45°,∠CBD =60°,∴△ABD 是等腰直角三角形,△CBD 是等边三角形.设AB 长为R ,则BD 长为2R .∵上面圆锥的侧面积为1,即1=12lR ,∴l =2R ·∴下面圆锥的侧面积为12lR =12·2R·2R =2.故选D .【知识点】圆锥的侧面积 10.(2019浙江省金华市,10,3分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM 、GN 是折痕,若正方形EFGH 与五边形MCNGF 面积相等,则FMGF的值是( ) A.522- B.21- C.12D.22【答案】A .【解析】连接EG ,FH 交于点O ,由折叠得△OGF 是等腰直角三角形,OF =22GF .∵正方形EFGH 与五边形MCNGF 面积相等,∴(OF +FM )2=GF +14GF =54GF 2,∴22GF +FM =52GF ,∴FM =52GF -22GF ,∴FM GF=522-.故选A .【知识点】正方形;折叠;直接开平方法 ;等腰直角三角形的性质;特殊角的锐角三角函数值DCB A⑤④③②①HDG NC FM BAE x H D GN CF M BO AE二、填空题(本大题共6小题,每小题4分,共24分)11.(2019浙江省金华市,11,4分)不等式369x-≤的解是.【答案】x≤5.【解析】解不等式,得x≤5.【知识点】解不等式;12.(2019浙江省金华市,12,4分)数据3,4,10,7,6的中位数是.【答案】6.【解析】将数据按序排列为3,4,6,7,10,位于最中间的数6就是这组数据的中位数.【知识点】中位数13.(2019浙江省金华市,13,4分)当x=1, y=-13时,代数式x2+2xy+y2的值是.【答案】49【解析】当=1x,1=3y-时,x2+2xy+y2=(x+y)2=(23)2=49.【知识点】代数式求值;完全平方公式14.(2019浙江省金华市,14,4分)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪,量角器的0刻度线AB对准楼顶时,铅垂线对应的度数是50°,则此时观察楼顶的仰角度数是___________.【答案】40°.【解析】量角器的0刻度线AB对准楼顶时,铅垂线对应的度数是50°,则过AB中点的水平线对应的是140°,所以此时观察楼顶的仰角度数是40°.【知识点】仰角,平角,铅垂线,水平线15.(2019浙江省金华市,15,4分)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之”,如图是两匹马行走路程ts关于行走时间t的函数图象,则两图象交点P的坐标是__________.【答案】(32,4800).【解析】设良马t 日追之,根据题意,得240,150(12,s t s t =⎧⎨=+⎩)解得20,4800.t s =⎧⎨=⎩故答案为(32,4800).【知识点】一次函数的应用16.(2019浙江省金华市,16,4分)图2,图3是某公共汽车双开门的俯视示意图,ME 、EF 、FN 是门轴的滑动轨道,∠E =∠F =90°,两门AB 、CD 的门轴A 、B 、C 、D 都在滑动轨道上,两门关闭时(图2),A 、D 分别在E 、F 处,门缝忽略不计(即B 、C 重合);两门同时开启,A 、D 分别沿E →M ,F →N 的方向匀速滑动,带动B 、C 滑动;B 到达E 时,C 恰好到达F ,此时两门完全开启,已知AB =50cm ,CD =40cm.(1)如图3,当∠ABE =30°时,BC =_______cm.(2)在(1)的基础上,当A 向M 方向继续滑动15cm 时,四边形ABCD 的面积为_______cm 2.(第16题图)【答案】(1)(90-453);(2)2256.【解析】(1)利用直角三角形的性质先求得EB ,CF ,然后进行线段加减即可; (2)根据题意,得S 四边形ABCD =S 梯形AEFD -S △ABE -S △CDF ,计算可得. 解:(1)∵ AB =50,CD =40,∴AB +CD = EB +CF =EF =90. 在Rt △中,∵∠E =90°,∠ABE =30°,∴EB =253. 同理可得CF =203.∴BC =90-453(cm ).(2)根据题意,得AE =40, DF =32, EB =225040-=30,CF =224032-=24, ∴S 四边形ABCD =S 梯形AEFD -S △ABE -S △CDF=12(AE +DF )·EF -12AE ·EB -12CF ·DF=12(40+32)×90-12×40×30-12×24×32 =2256.t (日)s(里)P12O图3图2图1D AN B (C )NE (A )EF (D )MFM BC【知识点】勾股定理;锐角三角函数;相似三角形的判定与性质三、解答题(本大题共8小题,满分66分,各小题都必须写出解答过程)17.(2019浙江省金华市,17,6分)计算:|-3|-2tan60°+12+113-() 【思路分析】本题考查了实数的运算.先分别求出|-3|、tan60°、12、113-()的值,然后进行实数的运算即可.【解题过程】解:原式=3-23+23+3=6.【知识点】算术平方根;负整数指数幂的运算;特殊角的三角函数值;绝对值18.(2019浙江省金华市,18,6分)解方程组:34(2y)2 1.5x x x y ---==⎧⎨⎩,【思路分析】利用加减消元法解方程组..【解题过程】解:34(2y)2 1.5x x x y ---==⎧⎨⎩,①②由①,得-x +8y =5,③②+③,得6y =6,解得y =1.把y =1代入y =1,得x -2×1=1. 解得x =3.∴原方程组的解为31.x x ==⎧⎨⎩,.【知识点】解方程组 19.(2019浙江省金华市,19,6分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:(第19题图)(1)求m ,n 的值.(2)补全条形统计图.(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.类别人数(人)抽取的学生最喜欢课程内容的条形统计图抽取的学生最喜欢课程内容的扇形统计图E .思想方法D .生活应用C .实验探究B .数学史话A .趣味数学A BC D E121596E D 30%C n B mA 20%181512963【思路分析】(1)抽取的学生人数=喜欢“趣味数学”的学生人数.÷所对应的百分比;m =15÷总人数,n =9÷总人数.(2)最喜欢“生活应用”的学生数=总人数×所对应的百分比,图略; (3)1200×最喜欢“数学史话”的人数所占的百分比. 【解题过程】解:(1)抽取的学生人数为12÷20%=60(人),m =15÷60=25%,n =9÷60=15%. (2)最喜欢“生活应用”的学生数为60×30%=18(人). 条形统计图补全如下.(3)该校共有1200名学生,估计全校最喜欢“数学史话”的学生有1200×25%=300(人). 【知识点】条形统计图;扇形统计图 20.(2019浙江省金华市,20,8分)如图,在7×6的方格中,△ABC 的顶点均在格点上.试按要求画出线段EF (E ,F 均为格点),各画出一条即可.(第20题图)【思路分析】根据网格的特点,画出符合相应条件的图形即可.(1)利用平行四边形的对角线互相平分先定点E ,F ,再画线线EF ;(2)利用一线三直角先确定经过点A 垂直于AC 的垂线,再利用平行线的性质画线线EF ;(3)利用一线三直角先确定经过点A 垂直于AB 的垂线,再利用三角形中位线的性质画线线EF ;【解题过程】解:如图,【知识点】平行四边形的性质;三角形中位线的性质 21.(2019浙江省金华市,21,8分)如图,在Y OABC 中,以O 为圆心,OA 为半径的圆与BC 相切于点B ,与OC 相交于点D .类别人数(人)61891512ED C BA181512963图1:EF 平分BCACB图2:EF ⊥AC ACB图3:EF 垂直平分ABACB图3:EF 垂直平分AB图2:EF ⊥AC 图1:EF 平分BCAECFBEA CFBA CEFB(1)求»BD 的度数;(2)如图,点E 在⊙O 上,连结CE 与⊙O 交于点F .若EF =AB ,求∠OCE 的度数.(第21题图)【思路分析】本题考查了切线的性质;垂径定理;平行四边形的性质;等腰直角三角形的判定;勾股定理;特殊角的锐角三角函数的综合运用.(1)连结OB ,利用切线的性质;平行四边形的性质证△AOB 是等腰直角三角形得∠ABO =45°.利用平行线的性质得∠BOC =45°.由圆心角的弧度就是所对弧的度数得出结论.(2)连结OE ,作OH ⊥EC .设EH =t ,先利用垂径定理,平行四边形的性质证得CO =2t ,再利用等腰直角三角形的性质,勾股定理求得OH =t ,最后利用特殊角的锐角三角函数求出∠OCE 的度数. 【解题过程】解: 1)连结OB . ∵BC 是⊙O 的切线, ∴OB ⊥BC ,∵四边形OABC 是平行四边形 ∴OA ∥BC ,∴OB ⊥OA .∴△AOB 是等腰直角三角形. ∴∠ABO =45°. ∵OC ∥AB ,∴∠BOC =∠ABO =45°.∴»BD的的度数为45°;(2)连结OE ,过点O 作OH ⊥EC 于点H ,设EH =t ,∵OH ⊥EC ,∴EF =2HE =2t ,∵四边形OABC 是平行四边形 ∴AB =CO =EF =2t ,∵△AOB 是等腰直角三角形. ∴⊙O 的半径OA =2t .∴在R t △EHO 中,OH =22OE EH -=222t t -=tF D CO AB E HFD CO AB E在R t △OCH 中,∵OC =2OH ,∴∠OCE =30°.【知识点】切线的性质;垂径定理;平行四边形的性质;等腰直角三角形的判定;勾股定理;特殊角的锐角三角函数 22.(2019浙江省金华市,22,10分)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数y =k x(k >0,x >0)的图像上,边CD 在x 轴上,点B 在y 轴上,已知CD =2. (1)点A 是否在该反比例函数的图像上?请说明理由.(2)若该反比例函数图像与DE 交于点Q ,求点Q 的横坐标.(3)平移正六边形ABCDEF ,使其一边的两个端点恰好都落在该反比例函数的图像上,试描述平移过程.(第22题图)【思路分析】本题主要考查了反比例函数解析式,正六边形的性质及图形的平移.(1)根据正六边形的性质先求出点P 的坐标,进而求得反比例函数的表达式.由题意先求得点的坐标,进而判断是否在反比例函数图像上.(2)设点Q 的坐标为(b +3,3b ),根据点Q 在反比例函数图像上构建关于b 的方程,解方程可求得点Q 的横坐标.(3)平移正六边形ABCDEF ,并描述平移过程. 【解题过程】解:(1)连结PC ,过点P 作PH ⊥x 轴于点H , ∵在正六边形ABCDEF 中,点B 在y 轴上,∴△OBD 和△PCH 都含有30°角的直角三角形,BC =PC =CD =2. ∴OC =CH =1,PH =3. ∴点P 的坐标为(2,3) ∴k =23.∴反比例函数的表达式为y =23x(x >0). 连结AC ,过点B 作BG ⊥AC 于点G , ∵∠ABC =120°,AB =BC =2, ∴BG =1,AG =CG =3. ∴点A 的坐标为(1,23). 当x =1时,y =23,xyQ PE F A B DC O所以点A 该反比例函数的图像上.(2)过点Q 作QM ⊥x 轴于点M ,∵六边形ABCDEF 是正六边形,∴∠EDM =60°. 设DM =b ,则QM =3b .∴点Q 的坐标为(b +3,3b ). ∴3b (b +3)=23. 解得b 1=3172-+,b 2=3172--(舍去) ∴b +3=3172+. ∴点Q 的横坐标为3172+. (3)连结AP .∵AP =BC =EF ,AP ∥BC ∥EF ,∴平移过程:将正六边形ABCDEF 先向右平移1个单位,再向上平移3个单位,或将正六边形ABCDEF 向左平移2个单位.【知识点】反比例函数的表达式;正六边形的性质;图形的平移;含有30°角的直角三角形性质 23.(2019浙江省金华市,23,10分)如图,在平面直角坐标系中,正方形OABC 的边长为4,边OA ,OC 分别在x 轴,y 轴的正半轴上,把正方形OABC 的内部及边上,横、纵坐标均为整数的点称为好点.点P 为抛物线y =-(x -2)2+m +2的顶点.(1)当m =0时,求该抛物线下放(包括边界)的好点个数. (2)当m =3时,求该抛物线上的好点坐标.(3)若点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点,求m 的取值范围.(第23题图)xy H MG Q P E F A B D C Oxy PCBAO【思路分析】本题一道阅读理解题,解题的关键是认真审题,弄清题意,弄清好点的定义,正确画出图形.(1)根据m 的取值,求满足条件的好点个数.(2)根据m 的取值,求满足条件的好点坐标.(3)根据点P 在正方形中的位置,确定m 的取值范围,根据好点的个数确定抛物线的位置(抛物线与线段EF 有交点),进而讨论的m 取值范围.【解题过程】解:(1)当m =0时,二次函数的表达式为y =-x 2+2,画出函数图象(图1), ∵当x =0时,y =2;当x =1时,y =1;∴抛物线经过点(0,2)和(1,1).∴好点有:(0,0),(0,1),(0,2).(1,0)和(1,1)共5个.(2)当m =3时,二次函数的表达式为y =-(x -3)2+5,画出函数图象(图2), ∵当x =1时,y =1;当x =4时,y =4;∴抛物线上存在好点,坐标分别是(1,1)和(4,4).(3)∵抛物线顶点P 的坐标为(m ,m +2),∴点P 在直线y =x +2上.由于点P 在正方形内 ,则0<m <2.如图3,点E (2,1),F (2,2).∴当顶点P 在正方形OABC 内,且好点恰好存在8个时,抛物线与线段EF 有交点(点F 除外). 当抛物线经过点E (2,1)时,-( 2-m )2+m +2=1,解得m 1=5132-,m 2=5132+(舍去). 当抛物线经过点F (2,2)时,-( 2-m )2+m +2=2,解得m 1=1,m 2=4(舍去). ∴当5132-<m <1时,点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点. 【知识点】阅读理解题;二次函数的图象与性质;一次函数表达式;一元二次方程的解法;正方形的性质;24.(2019浙江省金华市,24,12分)如图,在等腰Rt △ABC 中,∠ACB =90°,AB =142,点D ,E 分别在边AB ,BC 上,将线段ED 绕点E 按逆时针方向旋转90°得到EF .(1)如图1,若AD =BD ,点E 与点C 重合,AF 与DC 相交于点O ,求证:BD =2DO .(2)已知点G 为AF 的中点.①如图2,若AD =BD ,CE =2,求DG 的长.②若AD =6BD ,是否存在点E ,使得△DEG 是直角三角形?若存在,求CE 的长;若不存在,试说明理由. xy图1PCB A O x y 图2C B A O P x y 图3F E P C B A O(第24题图)【思路分析】本题综合考查等腰直角三角形、全等三角形的判定与性质.(1)根据直角三角形斜边上的中线等于斜边的一半得CD =BD ,证△ADO ≌△FCO 得DO =CO ,等量代换得BD =CD =2 DO .(2)①由点D ,G 分别为AB ,AF 的中点,想到三角形中位线定理,于是连结BF .分别过点D ,F 作DN ⊥BC 于点N ,FM ⊥BC 于点M .证△DNE ≌△EMF ,得DN =EM .根据已知条件计算出线段BF 的长,进而可得DG 的长;②存在.分∠DEG =90°,DG ∥BC ,∠EDG =90°时三种情况讨论,并求得CE 的长.【解题过程】解:(1)由旋转的性质得:CD =CF ,∠DCF =90°,∵△ABC 是等腰直角三角形,AD =BD ,∴∠ADO =90°,CD =BD =AD .∴∠DCF =∠ADC .在△ADO 和△FCO 中AOD FOC ADO FCO AD FC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADO ≌△FCO .∴DO =CO .∴BD =CD =2 DO .(2)①如答图1,连结BF ,分别过点D ,F 作DN ⊥BC 于点N ,FM ⊥BC 于点M .∴∠DNE =∠EMF =90°.又∵∠NDE =∠MEF ,DE =EF ,∴△DNE ≌△EMF .∴DN =EM .又∵BD =72,∠ABC =45°,∴DN =EM =7,∴BM =BC ―ME ―EC =5,∴MF =NE =NC -EC =5.∴BF =52.∵点D ,G 分别为AB ,AF 的中点.∴DG =12BF =522. 图3图2图1G F A F A OF ABB BC (E)DC ED G C D E②过点D 作DH ⊥BC 于点H .∵AD =6BD ,AB =142,∴BD =22.Ⅰ)当∠DEG =90°时,有如答图2,3两种情况,设CE =t .∵∠DEF =90°,∠=DEG °,∴点E 在线段AF 上.∴BH =DH =2,BE =14-t ,HE =BE -BH =12-t .∵△DHE ∽△ECA ,∴DH EC =HE CA ,即2t =1214t ,解得t =6±22, ∴CE =6+22或CE =6-22.Ⅱ)当DG ∥BC 时,如答图4.过点F 作FK ⊥BC 于点K ,延长DG 交AC 于点N ,延长AC 并截取MN =NA ,连结FM .则NC =DH =2,MC =10.设GN =t ,则FM =2t ,BK =14-2t .∵△DHE ≌△EKF .∴KE =DH =2,∴KF =HE =14-2t .∵MC =FK ,∴14-2t =10,t =2.∵GN =EC =2,GN ∥EC ,∴四边形GECN 是平行四边形.而∠ACB =90°,∴四边形GECN 是矩形.∴∠EGN =90°.∴当EC =2时,有∠DGE =90°.答图1MN FAB CE DG答图2HG F A B C E D答图3H G F AB C E DⅢ)当∠EDG =90°时,如答图5.过点G ,F 分别作AC 的垂线,交射线AC 于点N ,M ,过点E 作EK ⊥FM 于点K ,过点D 作GN 的垂线,交NG 的延长线于点P .则PN =HC =BC -HB =12.设GN =t ,则FM =2t ,∴PG =PN -GN =12-t .由△DHE ≌△EKF 可得FK =2,∴CE =KM =2t -2.∴HE =HC -CE =12-(2t -2)=14-2t ,∴EK =HE =14-2t ,AM =AC +CM =AC +EK =14+14-2t =28-2t ,.∴MN =12AM =14-t ,NC =MN -CM =t .∴PD =t -2.由△GPD ∽△DHE 可得PG HD =PD HE ,即122t -=2142t t --, 解得t 1=10-14,t 2=10+14(舍去),∴CE =2t -2=18-214.所以,CE 的长为6+22,6-22,2或18-214.【知识点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形的性质;直角三角形斜边上的中线性质;旋转的性质;矩形的判定;分类讨论的思想答图4N M K H G FAB CE D答图5H PK MNG F AB CE D。

2019年浙江省中考数学分类汇编专题圆(解析版)

2019年浙江省中考数学分类汇编专题圆(解析版)

2019年浙江省中考数学分类汇编专题:圆(解析版)一、单选题1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.【答案】C【考点】弧长的计算【解析】【解答】解:把已知数导入弧长公式即可求得:。

故答案为:C。

【分析】求弧长,联想弧长公式,代入数字即可。

2.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A. 2B.C.D.【答案】B【考点】圆周角定理,切线的性质【解析】【解答】解:连接OA∵∠ABC=30°弧AC=弧AC∴∠AOC=2∠ABC=60°∵AP是圆O的切线,∴OA⊥AP∴∠OAP=90°∴AP=OAtan60°=1× =故答案为:B【分析】连接OA,利用圆周角定理可求出∠AOC的度数,再根据切线的性质,可证△AOP是直角三角形,然后利用解直角三角形求出PA的长。

3.如图,△ABC内接于⊙O,∠B=65°,∠C=70°,若BC=2 ,则的长为()A. πB. πC. 2πD. π【答案】A【考点】圆周角定理,弧长的计算【解析】【解答】解:连接OC、OB,∵∠A=180°-∠ABC-∠ACB∴∠A=180°-65°-70°=45°∵弧BC=弧BC∴∠BOC=2∠A=2×45°=90°∵OB=OC在Rt△OBC中,∠OBC=45°∴OC=BCsin45°= =2∴弧BC的长为:故答案为:A【分析】利用三角形内角和定理求出∠A,再根据圆周角定理,求出∠BOC的度数,就可证得△BOC是等腰直角三角形,利用解直角三角形求出OC的长,然后利用弧长公式计算可求出弧BC的长。

4.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A. 2B. 3C. 4D. 4-【答案】A【考点】切线的性质,解直角三角形的应用,切线长定理【解析】【解答】解:设AB、AC的切点分别为D、E,连结OD、OE,如图,∵AB、AC与⊙O相切于点D、E,∴AD=AE,∠ODB=∠OEC=90°,又∵△ABC是边长为8的等边三角形,∴AB=AC=BC=8,∠B=60°,∴BD=CE,∵OD=OE,∴△ODB≌△OEC(SAS),∴OB=OC= BC=4,在Rt△ODB中,∴sin60°= ,即OD=OBsin60°=4× =2 ,∴⊙O的半径为2 .故答案为:A.【分析】设AB、AC的切点分别为D、E,连结OD、OE,根据切线的性质和切线长定理得AD=AE,∠ODB=∠OEC=90°,由等边三角形性质得AB=AC=BC=8,∠B=60°,等量代换可得BD=CE,根据全等三角形判定SAS 得△ODB≌△OEC,再由全等三角形性质得OB=OC=4,在Rt△ODB中,根据锐角三角函数正弦定义即可求得答案.5.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm2【答案】B【考点】圆锥的计算【解析】【解答】解:设圆锥母线为R,圆锥底面半径为r,∵R=13cm,r=5cm,∴圆锥的侧面积S= ·2 r.R= ×2 ×5×13=65 (cm2).故答案为:B.【分析】根据圆锥侧面展开图为扇形,再由扇形面积计算即可求得答案.6.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A. 60°B. 70°C. 72°D. 144°【答案】C【考点】正多边形和圆【解析】【解答】解:∵五边形ABCDE为正五边形,∴∠ABC=∠C= (5−2)×180°=108°,∵CD=CB,∴∠CBD== (180°−108°)=36°,∴∠ABD=∠ABC-∠CBD=72°,故答案为:C.【分析】由正多边形的内角和公式可求得∠ABC和∠C的度数,又由等边对等角可知∠CBD=∠CDB,从而可求得∠CBD,进而求得∠ABD。

2019年浙江省杭州市中考数学试卷(附答案,解析)

2019年浙江省杭州市中考数学试卷(附答案,解析)

2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)(2019•杭州)计算下列各式,值最小的是()A.2019⨯+-B.2019+⨯-C.2019+-⨯D.2019++-2.(3分)(2019•杭州)在平面直角坐标系中,点(,2)A m与点(3,)B n关于y轴对称,则()A.3m=,2n=B.3m=-,2n=C.2m=,3n=D.2m=-,3n=-3.(3分)(2019•杭州)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若3PA=,则(PB= )A.2B.3C.4D.54.(3分)(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.23(72)30x x+-=B.32(72)30x x+-=C.23(30)72x x+-=D.32(30)72x x+-=5.(3分)(2019•杭州)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差6.(3分)(2019•杭州)如图,在ABC∆中,点D,E分别在AB和AC上,//DE BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.AD ANAN AE=B.BD MNMN CE=C.DN NEBM MC=D.DN NEMC BM=7.(3分)(2019•杭州)在ABC ∆中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30︒ B .必有一个内角等于45︒C .必有一个内角等于60︒D .必有一个内角等于90︒8.(3分)(2019•杭州)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .9.(3分)(2019•杭州)如图,一块矩形木板ABCD 斜靠在墙边(OC OB ⊥,点A ,B ,C ,D ,O 在同一平面内),已知AB a =,AD b =,BCO x ∠=,则点A 到OC 的距离等于( )A .sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +10.(3分)(2019•杭州)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则( ) A .1M N =-或1M N =+ B .1M n =-或2M N =+C .M N =或1M N =+D .M N =或1M N =-二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)(2019•杭州)因式分解:21x -= .12.(4分)(2019•杭州)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于 .13.(4分)(2019•杭州)一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 2cm (结果精确到个位).14.(4分)(2019•杭州)在直角三角形ABC 中,若2AB AC =,则cos C = .15.(4分)(2019•杭州)某函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 .16.(4分)(2019•杭州)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,△A EP '的面积为4,△D PH '的面积为1,则矩形ABCD 的面积等于 .三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)(2019•杭州)化简:242142x x x ---- 圆圆的解答如下:22242142(2)(4)242x x x x x x x x --=-+--=-+-- 圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)(2019•杭州)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号 数据 1 2 3 4 5甲组 4852 47 49 54 乙组2- 23-1-4(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x甲,x乙,写出x甲与x乙之间的等量关系.②甲,乙两组数据的方差分别为2S甲,2S乙,比较2S甲与2S乙的大小,并说明理由.19.(8分)(2019•杭州)如图,在ABC∆中,AC AB BC<<.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:2APC B∠=∠.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若3AQC B∠=∠,求B∠的度数.20.(10分)(2019•杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.(10分)(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为1S,点E在DC边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =. (1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD HG =.22.(12分)(2019•杭州)设二次函数121()()(y x x x x x =--,2x 是实数). (1)甲求得当0x =时,0y =;当1x =时,0y =;乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示).(3)已知二次函数的图象经过(0,)m 和(1,)n 两点(m ,n 是实数),当1201x x <<<时,求证:1016mn <<. 23.(12分)(2019•杭州)如图,已知锐角三角形ABC 内接于圆O ,OD BC ⊥于点D ,连接OA . (1)若60BAC ∠=︒, ①求证:12OD OA =.②当1OA =时,求ABC ∆面积的最大值.(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,n 是正数),若ABC ACB ∠<∠,求证:20m n -+=.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是()A.2019++-+-⨯D.2019⨯+-B.2019+⨯-C.2019【考点】1G:有理数的混合运算【分析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:.20198A⨯+-=-,B.20197+⨯-=-+-⨯=-C.20197D.20196++-=-,故选:A.2.(3分)在平面直角坐标系中,点(,2)A m与点(3,)B n关于y轴对称,则()A.3n=D.2m=,3n=-m=-,3m=-,2m=,2n=B.3n=C.2【考点】5P:关于x轴、y轴对称的点的坐标【分析】直接利用关于y轴对称点的性质得出答案.【解答】解:点(,2)A m与点(3,)B n关于y轴对称,∴=-,2n=.m3故选:B.3.(3分)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若3PB=)PA=,则(A.2B.3C.4D.5【考点】MC:切线的性质【分析】连接OA、OB、OP,根据切线的性质得出OA PA⊥,然后证得Rt AOP Rt BOP∆≅∆,⊥,OB PB即可求得3==.PB PA【解答】解:连接OA 、OB 、OP ,PA ,PB 分别切圆O 于A ,B 两点,OA PA ∴⊥,OB PB ⊥,在Rt AOP ∆和Rt BOP ∆中, OA OBOP OP=⎧⎨=⎩, Rt AOP Rt BOP(HL)∴∆≅∆, 3PB PA ∴==,故选:B .4.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( )A .23(72)30x x +-=B .32(72)30x x +-=C .23(30)72x x +-=D .32(30)72x x +-=【考点】89:由实际问题抽象出一元一次方程【分析】直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案. 【解答】解:设男生有x 人,则女生(30)x -人,根据题意可得: 32(30)72x x +-=.故选:D .5.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数B .中位数C .方差D .标准差【考点】1W :算术平均数;4W :中位数;7W :方差;8W :标准差 【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关. 故选:B .6.(3分)如图,在ABC ∆中,点D ,E 分别在AB 和AC 上,//DE BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则( )A.AD ANAN AE=B.BD MNMN CE=C.DN NEBM MC=D.DN NEMC BM=【考点】9S:相似三角形的判定与性质【分析】先证明ADN ABM∆∆∽得到DN ANBM AM=,再证明ANE AMC∆∆∽得到NE ANMC AM=,则DN NEBM MC=,从而可对各选项进行判断.【解答】解://DN BM,ADN ABM∴∆∆∽,∴DN AN BM AM=,//NE MC,ANE AMC∴∆∆∽,∴NE AN MC AM=,∴DN NE BM MC=.故选:C.7.(3分)在ABC∆中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30︒B.必有一个内角等于45︒C.必有一个内角等于60︒D.必有一个内角等于90︒【考点】7K:三角形内角和定理【分析】根据三角形内角和定理得出180A B C∠+∠+∠=︒,把C A B∠=∠+∠代入求出C∠即可.【解答】解:180A B C∠+∠+∠=︒,C A B∠=∠+∠,2180C∴∠=︒,90C∴∠=︒,ABC∴∆是直角三角形,故选:D.8.(3分)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .【考点】3F :一次函数的图象【分析】根据直线①判断出a 、b 的符号,然后根据a 、b 的符号判断出直线②经过的象限即可,做出判断.【解答】解:A 、由①可知:0a >,0b >.∴直线②经过一、二、三象限,故A 正确;B 、由①可知:0a <,0b >.∴直线②经过一、二、三象限,故B 错误;C 、由①可知:0a <,0b >.∴直线②经过一、二、四象限,交点不对,故C 错误;D 、由①可知:0a <,0b <,∴直线②经过二、三、四象限,故D 错误.故选:A .9.(3分)如图,一块矩形木板ABCD 斜靠在墙边(OC OB ⊥,点A ,B ,C ,D ,O 在同一平面内),已知AB a =,AD b =,BCO x ∠=,则点A 到OC 的距离等于( )A .sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +【考点】9T :解直角三角形的应用-坡度坡角问题;LB :矩形的性质【分析】根据题意,作出合适的辅助线,然后利用锐角三角函数即可表示出点A 到OC 的距离,本题得以解决.【解答】解:作AE OC ⊥于点E ,作AF OB ⊥于点F , 四边形ABCD 是矩形, 90ABC ∴∠=︒,ABC AEC ∠=∠,BCO x ∠=, EAB x ∴∠=, FBA x ∴∠=, AB a =,AD b =,cos sin FO FB BO a x b x ∴=+=+,故选:D .10.(3分)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则( )A .1M N =-或1M N =+B .1M n =-或2M N =+C .M N =或1M N =+D .M N =或1M N =-【考点】HA :抛物线与x 轴的交点【分析】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x 轴的交点个数,若一次函数,则与x 轴只有一个交点,据此解答. 【解答】解:2()()()1y x a x b x a b x =++=+++,∴△22()4()0a b ab a b =+-=->,∴函数()()y x a x b =++的图象与x 轴有2个交点,2M ∴=,函数2(1)(1)()1y ax bx abx a b x =++=+++,∴当0ab ≠时,△22()4()0a b ab a b =+-=->,函数(1)(1)y ax bx =++的图象与x 轴有2个交点,即2N =,此时M N =;当0ab =时,不妨令0a =,a b ≠,0b ∴≠,函数(1)(1)1y ax bx bx =++=+为一次函数,与x 轴有一个交点,即1N =,此时1M N =+; 综上可知,M N =或1M N =+. 故选:C .二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)因式分解:21x -= (1)(1)x x -+ . 【考点】54:因式分解-运用公式法【分析】根据平方差公式可以将题目中的式子进行因式分解. 【解答】解:21(1)(1)x x x -=-+, 故答案为:(1)(1)x x -+.12.(4分)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于 mx nym n++ . 【考点】2W :加权平均数【分析】直接利用已知表示出两组数据的总和,进而求出平均数.【解答】解:某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y , 则这m n +个数据的平均数等于:mx nym n ++. 故答案为:mx nym n++. 13.(4分)一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 113 2cm (结果精确到个位). 【考点】1H :近似数和有效数字;MP :圆锥的计算【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:这个冰淇淋外壳的侧面积21231236113()2cm ππ=⨯⨯⨯=≈.故答案为113.14.(4分)在直角三角形ABC 中,若2AB AC =,则cos C = 或 . 【考点】1T :锐角三角函数的定义【分析】讨论:若90B ∠=︒,设AB x =,则2AC x =,利用勾股定理计算出BC =,然后根据余弦的定义求cos C 的值;若90A ∠=︒,设AB x =,则2AC x =,利用勾股定理计算出BC =,然后根据余弦的定义求cos C 的值.【解答】解:若90B ∠=︒,设AB x =,则2AC x =,所以22(2)3BC x x x =-=,所以33cos 22BC x C AC x ===; 若90A ∠=︒,设AB x =,则2AC x =,所以22(2)5BC x x x =+=,所以225cos 55AC x C BC x===; 综上所述,cos C 的值为32或255. 故答案为32或255. 15.(4分)某函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 1y x =-+ .【考点】4G :反比例函数的性质;6F :正比例函数的性质;5F :一次函数的性质;3H :二次函数的性质【分析】根据题意写出一个一次函数即可. 【解答】解:设该函数的解析式为y kx b =+,函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =, ∴01k b b +=⎧⎨=⎩解得:11k b =-⎧⎨=⎩,所以函数的解析式为1y x =-+, 故答案为:1y x =-+.16.(4分)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,△A EP '的面积为4,△D PH '的面积为1,则矩形ABCD 的面积等于 2(535)+ .【考点】LB :矩形的性质;PB :翻折变换(折叠问题)【分析】设AB CD x ==,由翻折可知:PA AB x '==,PD CD x '==,因为△A EP '的面积为4,△D PH'的面积为1,推出4A E D H '=',设D H a '=,则4A E a '=,由△A EP '∽△D PH ',推出D H PD PA EA ''='',推出4a xx a=,可得2x a =,再利用三角形的面积公式求出a 即可解决问题. 【解答】解:四边形ABC 是矩形, AB CD ∴=,AD BC =,设AB CD x ==,由翻折可知:PA AB x '==,PD CD x '==, △A EP '的面积为4,△D PH '的面积为1,4A E D H ∴'=',设D H a '=,则4A E a '=,△A EP '∽△D PH ',∴D H PD PA EA ''='', ∴4a xx a=, 224x a ∴=,2x a ∴=或2a -(舍弃), 2PA PD a ∴'='=,1212a a =, 1a ∴=, 2x ∴=,2AB CD ∴==,PE =PH =,415AD ∴=+=+,∴矩形ABCD 的面积2(5=+.故答案为2(5+三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:242142x x x ---- 圆圆的解答如下:22242142(2)(4)242x x x x x x x x --=-+--=-+-- 圆圆的解答正确吗?如果不正确,写出正确的答案. 【考点】6B :分式的加减法【分析】直接将分式进行通分,进而化简得出答案.【解答】解:圆圆的解答错误, 正确解法:242142x x x ---- 42(2)(2)(2)(2)(2)(2)(2)(2)(2)x x x x x x x x x x +-+=---+-+-+ 24244(2)(2)x x x x x ---+=-+ 22(2)(2)x x x x -=-+ 2xx =-+. 18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号 数据 1 2 3 4 5甲组 4852 47 49 54 乙组2- 23-1-4(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系.②甲,乙两组数据的方差分别为2S 甲,2S 乙,比较2S 甲与2S 乙的大小,并说明理由.【考点】1W :算术平均数;VD :折线统计图;7W :方差 【分析】(1)利用描点法画出折线图即可. (2)利用方差公式计算即可判断.【解答】解:(1)乙组数据的折线统计图如图所示:(2)①50x x =+乙甲.②22S S =乙甲.理由:(2222221[(4850)(5250)(4750)(4950)5450) 6.85S ⎤=-+-+-+-+-=⎦甲. (2222221[(20)(20)(30)(10)40) 6.85S ⎤=--+-+--+--+-=⎦乙, 22S S ∴=乙甲.19.(8分)如图,在ABC ∆中,AC AB BC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:2APC B ∠=∠.(2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若3AQC B ∠=∠,求B ∠的度数.【考点】KG :线段垂直平分线的性质;KH :等腰三角形的性质【分析】(1)根据线段垂直平分线的性质可知PA PB=,根据等腰三角形的性质可得B BAP∠=∠,根据三角形的外角性质即可证得2APC B=∠;(2)根据题意可知BA BQ=,根据等腰三角形的性质可得BAQ BQA∠=∠,再根据三角形的内角和公式即可解答.【解答】解:(1)证明:线段AB的垂直平分线与BC边交于点P,PA PB∴=,B BAP∴∠=∠,APC B BAP∠=∠+∠,2APC B∴∠=∠;(2)根据题意可知BA BQ=,BAQ BQA∴∠=∠,3AQC B∠=∠,AQC B BAQ∠=∠+∠,2BQA B∴∠=∠,180BAQ BQA B∠+∠+∠=︒,5180B∴∠=︒,36B∴∠=︒.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.【考点】GA:反比例函数的应用【分析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为72小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.【解答】解:(1)480vt=,且全程速度限定为不超过120千米/小时,v ∴关于t 的函数表达式为:480v t=,(04)t . (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将6t =代入480v t =得80v =;将245t =代入480v t=得100v =. ∴小汽车行驶速度v 的范围为:80100v .②方方不能在当天11点30分前到达B 地.理由如下: 8点至11点30分时间长为72小时,将72t =代入480v t =得9601207v =>千米/小时,超速了. 故方方不能在当天11点30分前到达B 地.21.(10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =. (1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD HG =.【考点】LB :矩形的性质;LE :正方形的性质【分析】(1)设出正方形CEFG 的边长,然后根据12S S =,即可求得线段CE 的长;(2)根据(1)中的结果可以题目中的条件,可以分别计算出HD 和HG 的长,即可证明结论成立. 【解答】解:(1)设正方形CEFG 的边长为a , 正方形ABCD 的边长为1, 1DE a ∴=-, 12S S =,21(1)a a ∴=⨯-, 解得,1512a =-(舍去),2512a =-, 即线段CE 512-; (2)证明:点H 为BC 边的中点,1BC =, 0.5CH ∴=,25052DH ∴=,0.5CH =,12CG =,HG ∴ HD HG ∴=.22.(12分)设二次函数121()()(y x x x x x =--,2x 是实数). (1)甲求得当0x =时,0y =;当1x =时,0y =;乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示).(3)已知二次函数的图象经过(0,)m 和(1,)n 两点(m ,n 是实数),当1201x x <<<时,求证:1016mn <<. 【考点】HA :抛物线与x 轴的交点;3H :二次函数的性质;7H :二次函数的最值;5H :二次函数图象上点的坐标特征【分析】(1)将(0,0),(1,0)代入12()()y x x x x =--求出函数解析式即可求解; (2)对称轴为122x x x +=,当122x x x +=时,212()4x x y -=-是函数的最小值;(3)将已知两点代入求出12m x x =,12121n x x x x =--+,再表示出22121111[()][()]2424mn x x =--+--+,由已知1201x x <<<,可求出211110()244x --+,221110()244x --+,即可求解. 【解答】解:(1)当0x =时,0y =;当1x =时,0y =;∴二次函数经过点(0,0),(1,0),10x ∴=,21x =,2(1)y x x x x ∴==-=-, 当12x =时,14y =-, ∴乙说点的不对;(2)对称轴为122x x x +=, 当122x x x +=时,212()4x x y -=-是函数的最小值;(3)二次函数的图象经过(0,)m 和(1,)n 两点, 12m x x ∴=,12121n x x x x =--+,22121111[()][()]2424mn x x ∴=--+--+1201x x <<<,211110()244x ∴--+,221110()244x --+, 1016mn ∴<<. 23.(12分)如图,已知锐角三角形ABC 内接于圆O ,OD BC ⊥于点D ,连接OA . (1)若60BAC ∠=︒, ①求证:12OD OA =.②当1OA =时,求ABC ∆面积的最大值.(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,n 是正数),若ABC ACB ∠<∠,求证:20m n -+=.【考点】MR :圆的综合题【分析】(1)①连接OB 、OC ,则1602BOD BOC BAC ∠==∠=︒,即可求解;②BC 长度为定值,ABC ∆面积的最大值,要求BC 边上的高最大,即可求解; (2)11801802BAC ABC ACB mx nx BOC DOC∠=︒-∠-∠=︒--=∠=∠,而1802180AOD COD AOC mx nx mx mx nx ∠=∠+∠=︒--+=︒+-,即可求解.【解答】解:(1)①连接OB 、OC ,则1602BOD BOC BAC ∠==∠=︒,30OBC ∴∠=︒,1122OD OB OA ∴==;②BC 长度为定值,ABC ∴∆面积的最大值,要求BC 边上的高最大,当AD 过点O 时,AD 最大,即:32AD AO OD =+=, ABC ∆面积的最大值113332sin 602224BC AD OB =⨯⨯=⨯︒⨯=; (2)如图2,连接OC ,设:OED x ∠=,则ABC mx ∠=,ACB nx ∠=,则11801802BAC ABC ACB mx nx BOC DOC ∠=︒-∠-∠=︒--=∠=∠,22AOC ABC mx ∠=∠=,1802180AOD COD AOC mx nx mx mx nx ∴∠=∠+∠=︒--+=︒+-, OE OD =,1802AOD x ∴∠=︒-,即:1801802mx nx x ︒+-=︒-, 化简得:20m n -+=.考试小提示试卷一张一张,发的是希望;考试一场一场,考的是能力;笔尖一动一动,动的是梦想;问候一声一声,道的是真情;考试日,愿你们认真、细心做题,取得好成绩。

2019年浙江省金华市中考数学试卷(解析版)

2019年浙江省金华市中考数学试卷(解析版)

的是【 】
A. 点 A
B. 点 B
C. 点 C
【答案】B.
【考点】实数和数轴;估计无理数的大小;作差法的应用.
D. 点 D
【分析】∵1 < 3 < 4 1 < 3 < 2 2 < 3 < 1 ,∴ 3 在 2 : 1 .
又∵ 3 3 2 3 3 12 9 > 0 ,∴ 3 > 3 .
D. 3a2
【答案】B.
【考点】幂的乘方
【分析】根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则计算作出判断:
(a2 )3 a23 a6 .
故选 B.
2. (2019 年浙江金华 3 分)要使分式 1 有意义,则 x 的取值应满足【 】 x2
A. x 2
B. x 2
C. x 2
D. x 2
【答案】D.
【考点】分式有意义的条件. 【分析】根据分式分母不为 0 的条件,要使 1 在实数范围内有意义,必须 x 2 0 x 2 .
x2 故选 D.
3. (2019 年浙江金华 3 分) 点 P(4,3)所在的象限是【 】
A. 第一象限
B. 第二象限
C. 第三象限
15. (2019 年浙江金华 4 分)如图,在平面直角坐标系中,菱形 OBCD 的边 OB 在 x 轴正半轴上,
反比例函数 y k (x 0) 的图象经过该菱形对角线的交点 A,且与边 BC 交于点 F. 若点 D 的 x
坐标为(6,8),则点 F 的坐标是 ▲
【答案】
12,83

∵菱形的对角线的交点为点 A,∴点 A 的坐标为(8,4).

专题07二次函数--浙江省2019-2021年3年中考真题数学分项汇编(解析版)

专题07二次函数--浙江省2019-2021年3年中考真题数学分项汇编(解析版)

三年(2019-2021)中考真题数学分项汇编(浙江专用)专题07二次函数一.选择题(共15小题)1.(2021•绍兴)关于二次函数y =2(x ﹣4)2+6的最大值或最小值,下列说法正确的是( )A .有最大值4B .有最小值4C .有最大值6D .有最小值6【分析】根据题目中的函数解析式和二次函数的性质,可以得到该函数有最小值,最小值为6,然后即可判断哪个选项是正确的.【详解】解:∵二次函数y =2(x ﹣4)2+6,a =2>0,∴该函数图象开口向上,有最小值,当x =2取得最小值6,故选:D .2.(2021•杭州)在“探索函数y =ax 2+bx +c 的系数a ,b ,c 与图象的关系”活动中,老师给出了直角坐标系中的四个点:A (0,2),B (1,0),C (3,1),D (2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a 的值最大为( )A .52B .32C .56D .12 【分析】比较任意三个点组成的二次函数,比较开口方向,开口向下,则a <0,只需把开口向上的二次函数解析式求出即可.【详解】解:由图象知,A 、B 、D 组成的点开口向上,a >0;A 、B 、C 组成的二次函数开口向上,a >0;B 、C 、D 三点组成的二次函数开口向下,a <0;A 、D 、C 三点组成的二次函数开口向下,a <0;即只需比较A 、B 、D 组成的二次函数和A 、B 、C 组成的二次函数即可.设A 、B 、C 组成的二次函数为y 1=a 1x 2+b 1x +c 1,把A (0,2),B (1,0),C (3,1)代入上式得,{c 1=2a 1+b 1+c 1=09a 1+3b 1+c 1=1,解得a 1=56;设A 、B 、D 组成的二次函数为y =ax 2+bx +c ,把A (0,2),B (1,0),D (2,3)代入上式得,{c =2a +b +c =04a +2b +c =3,解得a =52,即a 最大的值为52, 故选:A .3.(2020•衢州)二次函数y =x 2的图象平移后经过点(2,0),则下列平移方法正确的是( )A .向左平移2个单位,向下平移2个单位B .向左平移1个单位,向上平移2个单位C .向右平移1个单位,向下平移1个单位D .向右平移2个单位,向上平移1个单位【分析】求出平移后的抛物线的解析式,利用待定系数法解决问题即可.【详解】解:A 、平移后的解析式为y =(x +2)2﹣2,当x =2时,y =14,本选项不符合题意.B 、平移后的解析式为y =(x +1)2+2,当x =2时,y =11,本选项不符合题意.C 、平移后的解析式为y =(x ﹣1)2﹣1,当x =2时,y =0,函数图象经过(2,0),本选项符合题意.D 、平移后的解析式为y =(x ﹣2)2+1,当x =2时,y =1,本选项不符合题意.故选:C .4.(2021•湖州)已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的交点为A (1,0)和B (3,0),点P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上不同于A ,B 的两个点,记△P 1AB 的面积为S 1,△P 2AB 的面积为S 2,有下列结论:①当x 1>x 2+2时,S 1>S 2;②当x 1<2﹣x 2时,S 1<S 2;③当|x 1﹣2|>|x 2﹣2|>1时,S 1>S 2;④当|x 1﹣2|>|x 2+2|>1时,S 1<S 2.其中正确结论的个数是( )A .1B .2C .3D .4 【分析】不妨假设a >0,利用图象法一一判断即可.【详解】解:不妨假设a >0.①如图1中,P 1,P 2满足x 1>x 2+2,∵P1P2∥AB,∴S1=S2,故①错误.②当x1=﹣2,x2=﹣1,满足x1<2﹣x2,则S1>S2,故②错误,③∵|x1﹣2|>|x2﹣2|>1,∴P1,P2在x轴的上方,且P1离x轴的距离比P2离x轴的距离大,∴S1>S2,故③正确,④如图1中,P1,P2满足|x1﹣2|>|x2+2|>1,但是S1=S2,故④错误.故选:A.5.(2020•宁波)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b >0,于是得到abc>0,故A错误;根据二次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2﹣4ac>0,求得4ac﹣b2<0,故B错误;根据对称轴方程得到b=2a,当x=﹣1时,y=a﹣b+c<0,于是得到c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,代入解析式得到y=ax2+bx+c=a(﹣n2﹣2)2+b(﹣n2﹣2)+c=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.【详解】解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以−b2a<0,所以b>0,∴abc>0,故A错误;∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵−b2a=−1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)2+b(﹣n2﹣2)+c=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.6.(2020•温州)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2【分析】求出抛物线的对称轴为直线x=﹣2,然后根据二次函数的增减性和对称性解答即可.【详解】解:抛物线的对称轴为直线x=−−122×(−3)=−2,∵a=﹣3<0,∴x=﹣2时,函数值最大,又∵﹣3到﹣2的距离比1到﹣2的距离小,∴y3<y1<y2.故选:B.7.(2020•嘉兴)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B .当n ﹣m =1时,b ﹣a 有最大值C .当b ﹣a =1时,n ﹣m 无最小值D .当b ﹣a =1时,n ﹣m 有最大值 【分析】方法1、①当b ﹣a =1时,当a ,b 同号时,先判断出四边形BCDE 是矩形,得出BC =DE =b ﹣a =1,CD =BE =m ,进而得出AC =n ﹣m ,即tan ∠ABC =n ﹣m ,再判断出45°≤∠ABC <90°,即可得出n ﹣m 的范围,当a ,b 异号时,m =0,当a =−12,b =12时,n 最小=14,即可得出n ﹣m 的范围; ②当n ﹣m =1时,当a ,b 同号时,同①的方法得出NH =PQ =b ﹣a ,HQ =PN =m ,进而得出MH =n ﹣m =1,而tan ∠MHN =1b−a ,再判断出45°≤∠MNH <90°,当a ,b 异号时,m =0,则n =1,即可求出a ,b ,即可得出结论.方法2、根据抛物线的性质判断,即可得出结论.【详解】解:方法1、①当b ﹣a =1时,当a ,b 同号时,如图1,过点B 作BC ⊥AD 于C ,∴∠BCD =90°,∵∠ADE =∠BED =90°,∴∠ADE =∠BCD =∠BED =90°,∴四边形BCDE 是矩形,∴BC =DE =b ﹣a =1,CD =BE =m ,∴AC =AD ﹣CD =n ﹣m ,在Rt △ACB 中,tan ∠ABC =AC BC =n ﹣m ,∵点A ,B 在抛物线y =x 2上,且a ,b 同号,∴45°≤∠ABC <90°,∴tan ∠ABC ≥1,∴n ﹣m ≥1,当a ,b 异号时,m =0,当a =−12,b =12时,n =14,此时,n ﹣m =14,∴14≤n ﹣m <1, 即n ﹣m ≥14,即n ﹣m 无最大值,有最小值,最小值为14,故选项C ,D 都错误;②当n ﹣m =1时,如图2,当a ,b 同号时,过点N 作NH ⊥MQ 于H ,同①的方法得,NH =PQ =b ﹣a ,HQ =PN =m ,∴MH =MQ ﹣HQ =n ﹣m =1,在Rt △MHN 中,tan ∠MNH =MH NH =1b−a, ∵点M ,N 在抛物线y =x 2上,∴m ≥0,当m =0时,n =1,∴点N (0,0),M (1,1),∴NH =1,此时,∠MNH =45°,∴45°≤∠MNH <90°,∴tan ∠MNH ≥1,∴1b−a ≥1,当a ,b 异号时,m =0,∴n =1,∴a =﹣1,b =1,即b ﹣a =2,∴b ﹣a 无最小值,有最大值,最大值为2,故选项A 错误;故选:B .方法2、当n ﹣m =1时,当a ,b 在y 轴同侧时,a ,b 都越大时,a ﹣b 越接近于0,但不能取0,即b ﹣a 没有最小值,当a ,b 异号时,当a =﹣1,b =1时,b ﹣a =2最大,当b ﹣a =1时,当a ,b 在y 轴同侧时,a ,b 离y 轴越远,n ﹣m 越大,但取不到最大,当a ,b 在y 轴两侧时,当a =−12,b =12时,n ﹣m 取到最小,最小值为14, 因此,只有选项B 正确,故选:B.8.(2020•杭州)在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c 是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0【分析】选项B正确,利用判别式的性质证明即可.【详解】解:A、错误.由M1=2,M2=2,可得a2﹣4>0,b2﹣8>0,取a=3,b2=12,则c=b2a=4,此时c2﹣16=0.故A错误.B、正确.理由:∵M1=1,M2=0,∴a2﹣4=0,b2﹣8<0,∵a,b,c是正实数,∴a=2,∵b2=ac,∴c=12b2,对于y3=x2+cx+4,则有△=c2﹣16=14b4﹣16=14(b4﹣64)=14(b2+8)(b2﹣8)<0,∴M3=0,∴选项B正确,C、错误.由M1=0,M2=2,可得a2﹣4<0,b2﹣8>0,取a=1,b2=18,则c=b2a=18,此时c2﹣16>0.故C错误.D、由M1=0,M2=0,可得a2﹣4<0,b2﹣8<0,取a=1,b2=4,则c=b2a=4,此时c2﹣16=0.故D错误.故选:B.9.(2020•杭州)设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>0【分析】当x=1时,y=1;当x=8时,y=8;代入函数式整理得a(9﹣2h)=1,将h的值分别代入即可得出结果.【详解】解:当x=1时,y=1;当x=8时,y=8;代入函数式得:{1=a(1−ℎ)2+k 8=a(8−ℎ)2+k,∴a(8﹣h)2﹣a(1﹣h)2=7,整理得:a(9﹣2h)=1,若h=4,则a=1,故A错误;若h=5,则a=﹣1,故B错误;若h=6,则a=−13,故C正确;若h=7,则a=−15,故D错误;故选:C.10.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A .B .C .D .【分析】根据二次函数y =ax 2+bx 与一次函数y =ax +b (a ≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a 、b 的正负情况,从而可以解答本题.【详解】解:{y =ax 2+bx y =ax +b 解得{x =−b a y =0或{x =1y =a +b . 故二次函数y =ax 2+bx 与一次函数y =ax +b (a ≠0)在同一平面直角坐标系中的交点在x 轴上为(−b a,0)或点(1,a +b ).在A 中,由一次函数图象可知a >0,b >0,二次函数图象可知,a >0,b >0,−b a <0,a +b >0,故选项A 有可能;在B 中,由一次函数图象可知a >0,b <0,二次函数图象可知,a >0,b <0,由|a |>|b |,则a +b >0,故选项B 有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.11.(2019•杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1【分析】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.【详解】解:∵y=(x+a)(x+b),a≠b,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.另一解法:∵a≠b,∴抛物线y=(x+a)(x+b)与x轴有两个交点,∴M=2,又∵函数y=(ax+1)(bx+1)的图象与x轴有N个交点,而y=(ax+1)(bx+1)=abx2+(a+b)x+1,它至多是一个二次函数,至多与x轴有两个交点,∴N≤2,∴N≤M,∴不可能有M=N﹣1,故排除A、B、D,故选:C .12.(2019•舟山)小飞研究二次函数y =﹣(x ﹣m )2﹣m +1(m 为常数)性质时得到如下结论: ①这个函数图象的顶点始终在直线y =﹣x +1上;②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2m ,则y 1<y 2;④当﹣1<x <2时,y 随x 的增大而增大,则m 的取值范围为m ≥2.其中错误结论的序号是( )A .①B .②C .③D .④【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【详解】解:二次函数y =﹣(x ﹣m )2﹣m +1(m 为常数)①∵顶点坐标为(m ,﹣m +1)且当x =m 时,y =﹣m +1∴这个函数图象的顶点始终在直线y =﹣x +1上故结论①正确;②假设存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形令y =0,得﹣(x ﹣m )2﹣m +1=0,其中m ≤1解得:x 1=m −√−m +1,x 2=m +√−m +1∵顶点坐标为(m ,﹣m +1),且顶点与x 轴的两个交点构成等腰直角三角形∴|﹣m +1|=|m ﹣(m −√−m +1)|解得:m =0或1,当m =1时,二次函数y =﹣(x ﹣1)2,此时顶点为(1,0),与x 轴的交点也为(1,0),不构成三角形,舍去;∴存在m =0,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形故结论②正确;③∵x 1+x 2>2m∴x 1+x 22>m∵二次函数y =﹣(x ﹣m )2﹣m +1(m 为常数)的对称轴为直线x =m∴点A 离对称轴的距离小于点B 离对称轴的距离∵x 1<x 2,且a =﹣1<0∴y 1>y 2故结论③错误;④当﹣1<x<2时,y随x的增大而增大,且a=﹣1<0∴m的取值范围为m≥2.故结论④正确.故选:C.13.(2019•绍兴)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16).y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5),故选:B.14.(2019•温州)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【详解】解:∵y=x2﹣4x+2=(x﹣2)2﹣2,∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,当x=﹣1时,有最大值为y=9﹣2=7.故选:D.15.(2019•衢州)二次函数y=(x﹣1)2+3图象的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【分析】由抛物线顶点式可求得答案.【详解】解:∵y=(x﹣1)2+3,∴顶点坐标为(1,3),故选:A .二.填空题(共3小题)16.(2021•湖州)已知在平面直角坐标系xOy 中,点A 的坐标为(3,4),M 是抛物线y =ax 2+bx +2(a ≠0)对称轴上的一个动点.小明经探究发现:当b a 的值确定时,抛物线的对称轴上能使△AOM 为直角三角形的点M 的个数也随之确定,若抛物线y =ax 2+bx +2(a ≠0)的对称轴上存在3个不同的点M ,使△AOM 为直角三角形,则b a 的值是 2或﹣8 . 【分析】由题意△AOM 是直角三角形,当对称轴x ≠0或x ≠3时,可知一定存在两个以A ,O 为直角顶点的直角三角形,当对称轴x =0或x =3时,不存在满足条件的点M ,当以OA 为直径的圆与抛物线的对称轴x =−b 2a相切时,对称轴上存在1个以点M 为直角顶点的直角三角形,此时对称轴上存在3个不同的点M ,使△AOM 为直角三角形,利用图象法求解即可.【详解】解:∵△AOM 是直角三角形,∴当对称轴x ≠0或x ≠3时,一定存在两个以A ,O 为直角顶点的直角三角形,且点M 在对称轴上的直角三角形,当对称轴x =0或x =3时,不存在满足条件的点M ,∴当以OA 为直径的圆与抛物线的对称轴x =−b 2a相切时,对称轴上存在1个以M 为直角顶点的直角三角形,此时对称轴上存在3个不同的点M ,使△AOM 为直角三角形(如图所示).观察图象可知,−b 2a =−1或4,∴b a =2或﹣8, 故答案为:2或﹣8.17.(2021•温州)图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2),则图1中所标注的d的值为6﹣2√3;记图1中小正方形的中心为点A,B,C,图2中的对应点为点A′,B′,C′.以大正方形的中心O为圆心作圆,则当点A′,B′,C′在圆内或圆上时,圆的最小面积为(16﹣8√3)π.【分析】如图,连接FW,由题意可知点A′,O,C′在线段FW上,连接OB′,B′C′,过点O作OH⊥B′C′于H.证明∠EGF=30°,解直角三角形求出JK,OH,B′H,再求出OB′2,可得结论.【详解】解:如图,连接FH,由题意可知点A′,O,C′在线段FW上,连接OB′,B′C′,过点O作OH⊥B′C′于H.∵大正方形的面积=12,∴FG=GW=2√3,∵EF=WK=2,∴在Rt△EFG中,tan∠EGF=EFFG=2√3=√33,∴∠EGF=30°,∵JK∥FG,∴∠KJG=∠EGF=30°,∴d=JK=√3GK=√3(2√3−2)=6﹣2√3,∵OF=OW=12FW=√6,C′W=√2,∴OC′=√6−√2,∵B′C′∥QW,B′C′=2,∴∠OC′H=∠FWQ=45°,∴OH=HC′=√3−1,∴HB′=2﹣(√3−1)=3−√3,∴OB′2=OH2+B′H2=(√3−1)2+(3−√3)2=16﹣8√3,∵OA′=OC′<OB′,∴当点A′,B′,C′在圆内或圆上时,圆的最小面积为(16﹣8√3)π.故答案为:6﹣2√3,(16﹣8√3)π.18.(2021•台州)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt﹣4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=√2.【分析】利用h=vt﹣4.9t2,求出t1,t2,再根据h1=2h2,求出v1=√2v2,可得结论.【详解】解:由题意,t1=v14.9,t2=v24.9,h1=−v12−4×4.9=v124×4.9,h2=−v22−4×4.9=v224×4.9,∵h1=2h2,∴v1=√2v2,∴t1:t2=v1:v2=√2,故答案为:√2.三.解答题(共7小题)19.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.【分析】(1)根据抛物线解析式得到抛物线与x 轴的交点横坐标,结合抛物线的轴对称性质求得a 的值即可.(2)将a 的值代入,结合抛物线解析式求平移后图象所对应的二次函数的表达式.【详解】解:(1)由二次函数y =(x ﹣1)(x ﹣a )(a 为常数)知,该抛物线与x 轴的交点坐标是(1,0)和(a ,0).∵对称轴为直线x =2,∴1+a 2=2.解得a =3;(2)由(1)知,a =3,则该抛物线解析式是:y =x ²﹣4x +3.∴抛物线向下平移3个单位后经过原点.∴平移后图象所对应的二次函数的表达式是y =x ²﹣4x .20.(2021•金华)某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y =−16(x ﹣5)2+6.(1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,OE =10m ,EF =1.8m ,EF ⊥OD .问:顶部F 是否会碰到水柱?请通过计算说明.【分析】(1)利用二次函数图象上点的坐标特征可求出点A 的坐标,进而可得出雕塑高OA 的值;(2)利用二次函数图象上点的坐标特征可求出点D 的坐标,进而可得出OD 的长度,由喷出的水柱为抛物线且形状相同,可得出OC 的长,结合CD =OC +OD 即可求出落水点C ,D 之间的距离;(3)代入x =10求出y 值,进而可得出点(10,116)在抛物线y =−16(x ﹣5)2+6上,将116与1.8比较后即可得出顶部F 不会碰到水柱. 【详解】解:(1)当x =0时,y =−16(0﹣5)2+6=116, ∴点A 的坐标为(0,116), ∴雕塑高116m .(2)当y =0时,−16(x ﹣5)2+6=0,解得:x 1=﹣1(舍去),x 2=11,∴点D 的坐标为(11,0),∴OD =11m .∵从A 点向四周喷水,喷出的水柱为抛物线,且形状相同,∴OC =OD =11m ,∴CD =OC +OD =22m .(3)当x =10时,y =−16(10﹣5)2+6=116,∴点(10,116)在抛物线y =−16(x ﹣5)2+6上. 又∵116≈1.83>1.8,∴顶部F 不会碰到水柱.21.(2021•湖州)如图,已知经过原点的抛物线y =2x 2+mx 与x 轴交于另一点A (2,0).(1)求m 的值和抛物线顶点M 的坐标;(2)求直线AM 的解析式.【分析】(1)将A (2,0)代入抛物线解析式即可求出m 的值,然后将关系式化为顶点式即可得出顶点坐标;(2)设直线AM 的解析式为y =kx +b (k ≠0),将点A ,M 的坐标代入即可.【详解】解:(1)∵抛物线y =2x 2+mx 与x 轴交于另一点A (2,0),∴2×22+2m =0,∴m =﹣4,∴y =2x 2﹣4x=2(x ﹣1)2﹣2,∴顶点M 的坐标为(1,﹣2),(2)设直线AM 的解析式为y =kx +b (k ≠0),∵图象过A (2,0),M (1,﹣2),∴{2k +b =0k +b =−2, 解得{k =2b =−4, ∴直线AM 的解析式为y =2x ﹣4.22.(2020•温州)已知抛物线y =ax 2+bx +1经过点(1,﹣2),(﹣2,13).(1)求a ,b 的值.(2)若(5,y 1),(m ,y 2)是抛物线上不同的两点,且y 2=12﹣y 1,求m 的值.【分析】(1)把点(1,﹣2),(﹣2,13)代入y =ax 2+bx +1解方程组即可得到结论;(2)把x =5代入y =x 2﹣4x +1得到y 1=6,于是得到y 1=y 2,即可得到结论.【详解】解:(1)把点(1,﹣2),(﹣2,13)代入y =ax 2+bx +1得,{−2=a +b +113=4a −2b +1, 解得:{a =1b =−4; (2)由(1)得函数解析式为y =x 2﹣4x +1,把x =5代入y =x 2﹣4x +1得,y 1=6,∴y 2=12﹣y 1=6,∵y 1=y 2,且对称轴为直线x =2,∴m =4﹣5=﹣1.23.(2020•宁波)如图,在平面直角坐标系中,二次函数y =ax 2+4x ﹣3图象的顶点是A ,与x 轴交于B ,C 两点,与y 轴交于点D .点B 的坐标是(1,0).(1)求A ,C 两点的坐标,并根据图象直接写出当y >0时x 的取值范围.(2)平移该二次函数的图象,使点D 恰好落在点A 的位置上,求平移后图象所对应的二次函数的表达式.【分析】(1)利用待定系数法求出a,再求出点C的坐标即可解决问题.(2)由题意点D平移到A,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.【详解】解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴为直线x=2,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移到点A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.24.(2019•宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.【分析】(1)把点P(﹣2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由点Q到y轴的距离小于2,可得﹣2<m<2,在此范围内求n即可;【详解】解:(1)把点P(﹣2,3)代入y=x2+ax+3中,∴a=2,∴y=x2+2x+3=(x+1)2+2,∴顶点坐标为(﹣1,2);(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴﹣2<m<2,∴2≤n<11;25.(2019•湖州)已知抛物线y=2x2﹣4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2﹣4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.【分析】(1)由二次函数与x轴交点情况,可知△>0;(2)求出抛物线对称轴为直线x=1,由于A(2,m)和点B(3,n)都在对称轴的右侧,即可求解;【详解】解:(1)∵抛物线y=2x2﹣4x+c与x轴有两个不同的交点,∴△=b2﹣4ac=16﹣8c>0,∴c<2;(2)抛物线y=2x2﹣4x+c的对称轴为直线x=1,∴A(2,m)和点B(3,n)都在对称轴的右侧,当x≥1时,y随x的增大而增大,∴m<n;。

浙江省金华市2019年中考数学真题试题(含解析)

浙江省金华市2019年中考数学真题试题(含解析)

浙江省金华市2019年中考数学试卷一、选择题目(本题有10小题,每小题3分,共30分)1.初数4的相反数是()A. B. -4 C. D. 4【答案】 B【考点】相反数及有理数的相反数【解析】【解答】∵4的相反数是-4.故答案为:B.【分析】反数:数值相同,符号相反的两个数,由此即可得出答案.2.计算a6÷a3,正确的结果是()A. 2B. 3aC. a2D. a3【答案】 D【考点】同底数幂的除法【解析】【解答】解:a6÷a3=a6-3=a3故答案为:D.【分析】同底数幂除法:底数不变,指数相减,由此计算即可得出答案.3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 8【答案】 C【考点】三角形三边关系【解析】【解答】解:∵三角形三边长分别为:a,3,5,∴a的取值范围为:2<a<8,∴a的所有可能取值为:3,4,5,6,7.故答案为:C.【分析】三角形三边的关系:两边之和大于第三边,两边之差小于第三边,由此得出a的取值范围,从而可得答案.4.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】 C【考点】极差、标准差【解析】【解答】解:依题可得:星期一:10-3=7(℃),星期二:12-0=12(℃),星期三:11-(-2)=13(℃),星期四:9-(-3)=12(℃),∵7<12<13,∴这四天中温差最大的是星期三.故答案为:C.【分析】根据表中数据分别计算出每天的温差,再比较大小,从而可得出答案.5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.【答案】 A【考点】等可能事件的概率【解析】【解答】解:依题可得:布袋中一共有球:2+3+5=10(个),∴搅匀后任意摸出一个球,是白球的概率P= .故答案为:A.【分析】结合题意求得布袋中球的总个数,再根据概率公式即可求得答案.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南75°方向5km处【答案】 D【考点】钟面角、方位角【解析】【解答】解:依题可得:90°÷6=15°,∴15°×5=75°,∴目标A的位置为:南偏东75°方向5km处.故答案为:D.【分析】根据题意求出角的度数,再由图中数据和方位角的概念即可得出答案.7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=1【答案】 A【考点】配方法解一元二次方程【解析】【解答】解:∵x2-6x-8=0,∴x2-6x+9=8+9,∴(x-3)2=17.故答案为:A.【分析】根据配方法的原则:①二次项系数需为1,②加上一次项系数一半的平方,再根据完全平方公式即可得出答案.8.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A. ∠BDC=∠αB. BC=m·tanαC. AO=D. BD=【答案】 C【考点】锐角三角函数的定义【解析】【解答】解:A.∵矩形ABCD,∴AB=DC,∠ABC=∠DCB=90°,又∵BC=CB,∴△ABC≌△DCB(SAS),∴∠BDC=∠BAC=α,故正确,A不符合题意;B.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴tanα= ,∴BC=AB·tanα=mtanα,故正确,B不符合题意;C.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴cosα= ,∴AC= = ,∴AO= AC=故错误,C符合题意;D.∵矩形ABCD,∴AC=BD,由C知AC= = ,∴BD=AC= ,故正确,D不符合题意;故答案为:C.【分析】A.由矩形性质和全等三角形判定SAS可得△ABC≌△DCB,根据全等三角形性质可得∠BDC=∠BAC=α,故A正确;B.由矩形性质得∠ABC=90°,在Rt△ABC中,根据正切函数定义可得BC=AB·tanα=mtanα,故正确;C.由矩形性质得∠ABC=90°,在Rt△ABC中,根据余弦函数定义可得AC= = ,再由AO= AC即可求得AO长,故错误;D.由矩形性质得AC=BD,由C知AC= = ,从而可得BD长,故正确;9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.【答案】 D【考点】圆锥的计算【解析】【解答】解:设BD=2r,∵∠A=90°,∴AB=AD= r,∠ABD=45°,∵上面圆锥的侧面积S= ·2πr· r=1,∴r2= ,又∵∠ABC=105°,∴∠CBD=60°,又∵CB=CD,∴△CBD是边长为2r的等边三角形,∴下面圆锥的侧面积S= ·2πr·2r=2πr2=2π× = .故答案为:D.【分析】设BD=2r,根据勾股定理得AB=AD= r,∠ABD=45°,由圆锥侧面积公式得·2πr· r=1,求得r2= ,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. -1 C. D.【答案】 A【考点】剪纸问题【解析】【解答】解:设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,如图,依题可得:NM= a,FM=GN= ,∴NO= = ,∴GO= = ,∵正方形EFGH与五边形MCNGF的面积相等,∴x2= + a2,∴a= x,∴= = .故答案为:A.【分析】设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,根据题意可得,NM= a,FM=GN= ,NO= = ,根据勾股定理得GO= ,由题意建立方程x2= + a2,解之可得a= x,由,将a= x代入即可得出答案.二、填空题目(本题有6小题,每小题4分,共24分)11.不等式3x-6≤9的解是________.【答案】x≤5【考点】解一元一次不等式【解析】【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.12.数据3,4,10,7,6的中位数是________.【答案】 6【考点】中位数【解析】【解答】解:将这组数据从小到大排列为:3,4,6,7,10,∴这组数据的中位数为:6.故答案为:6.【分析】中位数:将一组数据从小到大排列或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;由此即可得出答案.13.当x=1,y= 时,代数式x2+2xy+y2的值是________.【答案】【考点】代数式求值【解析】【解答】解:∵x=1,y=- ,∴x2+2xy+y2=(x+y)2=(1- )2= .故答案为:.【分析】先利用完全平方公式合并,再将x、y值代入、计算即可得出答案.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。

2019年浙江省金华市中考数学试卷及答案

2019年浙江省金华市中考数学试卷及答案
A 趣味数学的人数为12人,所占百分比为20%,
(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标。
(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程。
23.如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横,纵坐标均为整数的点称为好点,点P为抛物线y=-(x-m)2+m+2的顶点。
(1)求m,n的值。 (2)补全条形统计图。
(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数。
20.如图,在7×6的方格中,△ABC的顶点均在格点上,试按要求画出线段EF(E,F均为格点),各画出一条即可。
21.如图,在 OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D.
A. ∠BDC=∠α B. BC=m·tanα C. AO= D. BD=
9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )
A. 2 B. C. D.
10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则 的值是( )
(1)如图3,当∠ABE=30°时,BC=________ cm.
(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为________cm2.
三、解答题(本题有8小题,共66分)
17.计算:|-3|-2tan60°+ +( )-1
18.解方程组:
19.某校根据课程设置要求,开设了数学类拓展性课程。为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(生人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整),请根据图中信息回答问题。

2019年浙江省中考数学试卷(附答案与解析)

2019年浙江省中考数学试卷(附答案与解析)

第2页(共24页)123如图的几何体由六个相同的小正方体搭成,它的主视图是()4C .0.42D .0.15,C ,量得170∠︒=,2100∠︒=,那么木条a ,b 所在()第5题图C .30︒D .70︒10)在同一直线上,则a 的值等于()C .3D .4()()53x x +-=经变换后得到抛物线(3)(5)y x x =+-,()B .向右平移2个单位D .向右平移8个单位65︒=,70C ∠︒=.若BC =则»BC的长为()第8题图C .2πD .E ,以EC 为边作矩形ECFG ,且边FG 过点D .在ECFG 的面积()第9题图B .先变小后变大毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3第4页(共24页)C .一直变大D .10.如图1,长、宽均为3,高为8面高为6意图,则图2中水面高度为图1第10题图A .245B .325C卷Ⅱ二、填空题(本大题有6小题,每小题5分,共3011.因式分解:21x -=.12.不等式324x-≥的解为.13.所表示的数是.第13题图14.如图,在直线AP 上方有一个正方形ABCD ,∠半径作弧,与AP 交于点A ,M ,分别以点A ,M 交于点E ,连结ED ,则ADE ∠的度数为.题14题图C 都在曲线ky x =(常数0k >,0x >)上,若顶点D的函数表达式是.第15题图分割成如图的四块,其中点O 为正方形的中心,点.用这四块纸片拼成与此正方形不全等的四边形MNPQ ,则四边形MNPQ 的周长是.第16题图17~20小题每小题8分,第21小题10分,第22,14分,共80分.解答需写出必要的文字说明、演算212-⎛⎫--- ⎪⎝⎭21x +,41x +的值相等?数学试卷第5页(共第6页(共24页)18.路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为0150x ≤≤时,求1(2)当150200x ≤≤时,求y 关于x 蓄电池的剩余电量.19.小明、小聪参加了100 m 跑的5期集训,时间、测试成绩绘制成如下两个统计图.第19题图根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5(2底座的高AB 为5cm ,长度均为20cm 的连杆.BCD 成平角,150ABC ∠︒=,如图2,求连杆端点D C 逆时针旋转,使165BCD ∠︒=,如图3,问此时0.1cm ,参考数据:2 1.41≈,3 1.73≈)图2图3第20题图AB 的长为2,过点C 的切线交AB 的延长线于点D ..30D ∠︒=,求AD 的长.请你解答.AD 的长30A ∠︒=,连结OC ,就可以证明ACB V 与DCO V ,并解答.第21题图-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第7第8页(共24页)22.有一块形状如图的五边形余料ABCDE ,AB =135C ∠︒=,90E ∠︒>并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE (2)能否截出比(1最大值;如果不能,说明理由.23.(12分)如图1是实验室中的一种摆动装置,BC 的等腰直角三角形,摆动臂AD 可绕点A 旋转,10DM =.(1)在旋转过程中,①当A ,D ,M 三点在同一直线上时,求AM ②当A ,D ,M (2)若摆动臂AD 顺时针旋转90°,点D 2D 处,连结12D D ,如图2,此时2135AD C ∠︒=,260CD =,求2BD 的长.图1a ,BCb =,点M ,N 分别在边AB ,CD 上,点E ,FEF 交于点P ,记k MN EF =:.EF ⊥时,求k 的值..60MPE ∠︒=,3MP EF PE ==时,求:a b 第24题图数学试卷第9页(共第10页(共24页)浙江省绍兴市2019卷Ⅰ一、选择题1.【答案】A【解析】根据绝对值的性质求解.解:根据负数的绝对值等于它的相反数,得|5|5-=.故选:A.【考点】绝对值2.【答案】B【解析】科学记数法的表示形式为10na ⨯值时,要看把原数变成a 数相同.当原数绝对值1>时,n 解:数字126000000科学记数法可表示为81.2610⨯故选:B.【考点】科学计数法3.【答案】A个正方形,故A 符合题意,故选:A.【考点】三视图4.【答案】D【解析】先计算出样本中身高不低于180 cm 解:样本中身高不低于180 cm 的频率150.15100==,所以估计他的身高不低于180 cm 的概率是0.15.故选:D.【考点】统计,等可能事件的概率,根据三角形内角和定理计算,得到答案.1801007010︒︒︒︒=--=,180°再将点(,10)a 代入解析式即可;y kx b +=,;.,顶点坐标是(1,16)--.(1,16)-.2个单位长度得到抛物线(3)(5)y x x =+-,数学试卷第1112页(共24页)8.【答案】A【解析】连接OB ,OC .首先证明OBC △解:连接OB ,OC .∵180180657045A ABC ACB ∠=-∠-∠=-︒-︒=︒︒︒∴90BOC ︒∠=∴BC =∴2OB OC ==∴»BC的长为2902360ππ⋅⋅=,故选:A.【考点】三角形内角和,圆周角,圆心角,弧长公式9.【答案】D【解析】由BCE FCD △∽△,即可得矩形ECFG 与正方形ABCD 的面积相等.解:∵正方形ABCD 和矩形ECFG 中,90DCB FCE ︒∠=∠=,90F B ︒∠=∠=,∴DCF ECB ∠=∠,∴BCE FCD △∽△,∴CF CDCB CE=,∴CF CE CB CD ⋅⋅=,∴矩形ECFG 与正方形ABCD 的面积相等.故选:D.【考点】正方形,矩形,相似三角形10.【答案】A【解析】设DE x =,则8AD x -=,BG 于F ,由CDE BCF △∽△的比例线段5=,数学试卷第13页(共第14页(共24页)解:原式(1)(1)x x =+-.故答案为:(1)(1)x x +-.【考点】因式分解,平方差公式12.【答案】2x ≥【解析】先移项,再合并同类项,把x 的系数化为1解:移项得,342x +≥,合并同类项得,36x ≥,把x 的系数化为1得,2x ≥.故答案为:2x ≥.【考点】一元一次不等式13.【答案】4【解析】根据“解:根据“上的三个数之和都等于15,∴第一列第三个数为:15258--=,∴15834m =--=.故答案为:4【考点】一元一次方程14.【答案】15°或45°【解析】分点E 与正方形ABCD 的直线AP 解:∵四边形ABCD 是正方形,∴AD AE =,90DAE ∠=︒,∴180903060BAM ∠=︒-︒-︒=︒,AD AB =,当点E 与正方形ABCD 的直线AP ∴45ADE ∠=︒,当点E 与正方形ABCD 的直线AP ∴AE M '△为等边三角形,∴60E AM ∠'=︒,︒,,33k A ⎛⎫ ⎪⎝⎭,5,5k C ⎛⎫ ⎪⎝⎭,BD 的解析式.,35n k n +=+=,解得350m n ⎧=⎪⎨⎪=⎩,数学试卷第15第16页(共24页)16.【答案】6+或10或8+解:如图所示:图1的周长为1236+++=+;图2的周长为141410+++=;图3的周长为358++=+故四边形MNPQ 的周长是6+或10或8+故答案为:6+或10或8+三、解答题17.【答案】解:(1)原式341432=⨯+--=-.(2)2141x x +=+,240x x -=,(4)0x x -=,10x =,24x =.【解析】(1)根据实数运算法则解答;(2)利用题意得到2141x x +=+因式分解18.【答案】解:(115066035=-千米;,(200,10)代入,20=,0.5110y x =-+,当汽车已行驶180千米时,蓄.35千瓦时时汽车已行驶了150千米,据x 的函数表达式,再把180x =代入即可求出当汽车已.5710142056++++=(天),11.7611.6111.5311.62)511.68++++÷=(秒),5次测试的平均成绩是11.68秒;4期出现,建议集训时间定为14天.5期的集训共有多少天和小聪5次测试的平均.DE ⊥于O .数学试卷第17页(共第18页(共24页)图2∵90OEA BOE BAE∠=∠=∠=︒,∴四边形ABOE是矩形,∴90OBA=︒∠,∴1509060DBO∠=︒-︒=︒,∴sin60OD BD︒=⋅=,∴539.6(cm)DF OD OE OD AB=+=+=≈.(2)作DF l⊥于F,CP DF⊥于P,BG DF⊥于是矩形,图3∵60CBH∠=︒,90CHB∠=︒,∴30BCH∠=︒,∵165BCD∠=︒,45DCP∠=︒,∴sin60CH BC︒=⋅=,sin45DP CD︒=⋅∴DF DP PG GF DP CH AB=++=++=5 3.2(cm)-=.DE于O.解直角三角形求出OD即可解决问题.P,BG DF⊥于G,CH BG⊥于H.则四边形PCHG-DE即可解决问题.90DCB+∠=︒90OCD∠=︒,再根据含30度的直角2,然后计算OA OD+即可;的长,利用圆周角定理得到90ACB∠=︒,再证明数学试卷第19第20页(共24页)30A DCB∠=∠=︒,然后根据含3022.【答案】(1)①若所截矩形材料的一条边是BC 过点C 作CF AE ⊥于F ,16530S AB BC =⋅=⨯=;②若所截矩形材料的一条边是AE ,如图2所示:过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过点则四边形AEFG 为矩形,四边形BCHG 为矩形,∵135C ∠=︒,∴45FCH ∠=︒,∴CHF △为等腰直角三角形,∴6AE FG ==,5HG BC ==,BG CH FH ==,∴651BG CH FH FG HG ===-=-=,∴615AG AB BG =-=-=,∴*26530S AE AG ==⨯=;(2)能;理由如下:在CD 上取点F ,过点F 作FM AB ⊥于M ,FN ⊥则四边形ANFM 为矩形,四边形BCGM 为矩形,∵135C ∠=︒,∴45FCG ∠=︒,∴CGF △为等腰直角三角形,∴5MG BC ==,BM CG =,FG DG =,设AM x =,则6BM x =-,∴11FM GM FG GM CG BC BM x =+=+=+=-,∴22(11)11( 5.5)S AM FM x x x x x =⨯=-=-+=-+∴当 5.5x =时,S 的最大值为30.25.图1图2图3BC ,过点C 作CF AE ⊥于F ,得出,过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过AEFG 为矩形,四边形BCHG 为矩形,证出CHF △6FG ==,5HG BC ==,BG CH FH ==,求出1=,5AG AB BG =-=,得出26530S AE AG =⋅=⨯=;FM AB ⊥于M ,FN AE ⊥于N ,过点C 作CG FM⊥四边形BCGM 为矩形,证出CGF △为等腰三角形,CG ,FG DG =,设AM x =,则6BM x =-,11BC BM x=+=-,得出211x x +,由二次函数的性质即可得出结果.40DM +=,或20.AM AD DM =-=22223010800DM -=-=,.22230101000DM +=+=,.或.数学试卷第21页(共第22页(共24页)由题意:1290D AD ∠=︒,1230AD AD ==,∴2145AD D ︒∠=,12302D D =,∵2135AD C ︒∠=,∴1290CD D ︒∠=,∴221212306CD CD D D =+=∵2190BAC A AD ∠=∠=︒,∴2212BAC CAD D AD CAD ∠-∠=∠-∠,∴12BAD CAD ∠=∠,∵AB AC =,21AD AD =,∴21()BAD CAD SAS V V ≌,∴21306BD CD ==【解析】(1)①分两种情形分别求解即可.②显然MAD ∠不能为直角.当AMD ∠为直角时,根据222AM AD DM =-,计算即可,当90ADM ∠=︒时,根据222AM AD DM =+,计算即可.(2)连接CD .首先利用勾股定理求出1CD ,再利用全等三角形的性质证明21BD CD =即可.【考点】线段、角的和差,勾股定理,等腰直角三角形,全等三角24.【答案】(1)如图1中,Q ,设EF 交MN 于点O .1+80CEO ∠=︒, ,k 的值最大,最大值,k 的值最小,最小值为5.第24页(共24页)∴3MN EFPM PE==,∴2PN PFPM PE==,∵FPN EPM∠=∠,∴PNF PMEV V∽,∴2NF PNME PM==,//NFME设2PE m=,则4PF m=,6MP m=,12NP m=,①如图2中,当点N与点D重合时,点M恰好与B图2∵60MPE FPH∠=∠=︒,∴2PH m=,FH=,10PH m=,∴35a AB FHb AD HD===②如图3中,当点N与C重合,作EH MN⊥于H.图3∴13HC PH PC m=+=,∴tan13MB HEHCEBC HC∠=--,∵ME FC∥,∴MEB FCB CFD∠=∠=∠,MQ CD⊥于Q,设EF交MN于点O.证明.,当MN的长取最大时,EF取最短,此的最短时,EF的值取最大,此时k的值最小,3PE=,推出=3MN EFPM PE-,推出2PN PFPM PE==,2PNPM==,ME NF∥,设2PE m=,则4PF m=,2中,当点N与点D重合时,点N与C重合,分别求解即可.数学试卷第23。

浙江杭州2019中考试题数学卷(解析版)

浙江杭州2019中考试题数学卷(解析版)

一、选择题1. =( )A .2B .3C .4D .5 【答案】B【解析】试题分析:算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.依此即可求解考点:算术平方根2.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若21 BC AB ,则EFDE =( )A .B .C .32 D .1 【答案】B考点:平行线分线段成比例3.下列选项中,如图所示的圆柱的三视图画法正确的是( )A .B .C .D .【答案】A【解析】试题分析:根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.该圆柱体的主视图、俯视图均为矩形,左视图为圆,考点:简单几何体的三视图4.如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A .14℃,14℃B .15℃,15℃C .14℃,15℃D .15℃,14℃【答案】A【解析】考点:(1)、众数;(2)、条形统计图;(3)、中位数5.下列各式变形中,正确的是( )A .x 2•x 3=x 6B .=|x| C .(x 2﹣)÷x=x ﹣1 D .x 2﹣x+1=(x ﹣)2+41 【答案】B【解析】试题分析:直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.A 、x 2•x 3=x 5,故此选项错误;B 、=|x|,正确;C 、(x 2﹣)÷x=x ﹣,故此选项错误;D 、x 2﹣x+1=(x ﹣)2+,故此选项错误;考点:(1)、二次根式的性质与化简;(2)、同底数幂的乘法;(3)、多项式乘多项式;(4)、分式的混合运算6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A .518=2B .518﹣x=2×106C .518﹣x=2D .518+x=2 【答案】C【解析】试题分析:设从甲煤场运煤x 吨到乙煤场,根据题意列出方程解答即可.设从甲煤场运煤x 吨到乙煤场,可得:518﹣x=2,考点:由实际问题抽象出一元一次方程7.设函数y=x k(k ≠0,x >0)的图象如图所示,若z=y1,则z 关于x 的函数图象可能为( )A.B.C.D.【答案】D【解析】考点:反比例函数的图象8.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB【答案】D【解析】考点:圆周角定理9.已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【答案】C【解析】试题分析:如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解m2+m2=(n﹣m)2, 2m2=n2﹣2mn+m2, m2+2mn﹣n2=0.考点:(1)、等腰直角三角形;(2)、等腰三角形的性质10.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③【答案】C【解析】试题分析:根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.考点:(1)、因式分解的应用;(2)、整式的混合运算;(3)、二次函数的最值二、填空题(每题4分)11.tan60°= .【答案】【解析】试题分析:根据特殊角的三角函数值直接得出答案即可考点:特殊角的三角函数值12.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .【答案】21 【解析】试题分析:先求出棕色所占的百分比,再根据概率公式列式计算即可得解.棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%, 所以,P (绿色或棕色)=30%+20%=50%=21. 考点: (1)、概率公式;(2)、扇形统计图13.若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 (写出一个即可).【答案】-1【解析】试题分析:令k=﹣1,使其能利用平方差公式分解即可.令k=﹣1,整式为x2﹣y2=(x+y)(x ﹣y),考点:因式分解-运用公式法14.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.【答案】105°或45°【解析】考点:(1)、菱形的性质;(2)、等腰三角形的性质15.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.【答案】(﹣5,﹣3)【解析】试题分析:直接利用平行四边形的性质得出D点坐标,进而利用关于原点对称点的性质得出答案.如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).考点:(1)、关于原点对称的点的坐标;(2)、平行四边形的判定与性质16.已知关于x 的方程=m 的解满足(0<n <3),若y >1,则m 的取值范围是 . 【答案】52<m <32 【解析】考点:(1)、分式方程的解;(2)、二元一次方程组的解;(3)、解一元一次不等式三、解答题17.计算6÷(﹣3121 ),方方同学的计算过程如下,原式=6÷(-21)+6÷31=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】试题分析:根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可 试题解析:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣21+)=6÷(﹣)=6×(﹣6)=﹣36. 考点:有理数的除法18.某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【答案】(1)、3000辆;(2)、说法不对,理由见解析【解析】考点:折线统计图19.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【答案】(1)、证明过程见解析;(2)、1.【解析】考点:相似三角形的判定与性质20.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式h=20t ﹣5t 2(0≤t ≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t ;(3)若存在实数t 1,t 2(t 1≠t 2)当t=t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.【答案】(1)、15米;(2)、t=2+2或t=2-2;(3)、0≤m <20【解析】试题分析:(1)、将t=3代入解析式可得;(2)、根据h=10可得关于t 的一元二次方程,解方程即可;(3)、由题意可得方程20t ﹣t 2=m 的两个不相等的实数根,由根的判别式即可得m 的范围.试题解析:(1)、当t=3时,h=20t ﹣5t 2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)、∵h=10, ∴20t ﹣5t 2=10,即t 2﹣4t+2=0, 解得:t=2+2或t=2﹣2, 故经过2+2或2﹣2时,足球距离地面的高度为10米;(3)、∵m ≥0,由题意得t 1,t 2是方程20t ﹣5t 2=m 的两个不相等的实数根,∴b 2﹣4ac=202﹣20m >0, ∴m <20, 故m 的取值范围是0≤m <20.考点:(1)、一元二次方程的应用;(2)、二次函数的应用21.如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DE 上,点A ,D ,G 在同一直线上,且AD=3,DE=1,连接AC ,CG , AE ,并延长AE 交CG 于点H .(1)求sin ∠EAC 的值.(2)求线段AH 的长.【答案】(1)、55;(2)、1056 【解析】考点:(1)、正方形的性质;(2)、全等三角形的判定与性质;(3)、解直角三角形22.已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.【答案】(1)、a=1,b=1;(2)、①、证明过程见解析;②、当a>0时,y1<y2;当a<0时,y1>y2.【解析】试题解析:(1)、由题意得:,解得:,故a=1,b=1.(2)、①、∵y1=ax2+bx=a,∴函数y1的顶点为(﹣,﹣),∵函数y2的图象经过y1的顶点,∴﹣=a(﹣)+b,即b=﹣,∵ab≠0,∴﹣b=2a,∴2a+b=0.②、∵b=﹣2a,∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.考点:二次函数综合题23.在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ 的长.【答案】(1)、∠APB=90°,AF+BE=2AB;理由见解析;(2)、AQ=43﹣3或43+3【解析】(2)、如图1,过点F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四边形ABEF是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵323=8×FG,∴FG=43,在Rt△FAG中,AF=8,∴∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA延长线时,∠FAB=120°,①如图2,当∠FAB=60°时,∠PAB=30°,∴PB=4,PA=43,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=43﹣3或AQ=43+3.考点:四边形综合题。

2019年浙江省金华市中考数学试卷(答案解析版)

2019年浙江省金华市中考数学试卷(答案解析版)

2019年浙江省金华市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.实数4的相反数是()A. B. C. D. 42.计算a6÷a3,正确的结果是()A. 2B. 3aC.D.3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 84.星期一星期二星期三星期四5.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东方向处B. 在5km处C. 在南偏东方向5km处D. 在南偏东方向5km处7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. B. C. D.8.如图,矩形ABCD的对角线交于点O.已知AB=m,∠BAC=∠α,则下列结论错误的是()A. B. C. D.9.如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.不等式3x-6≤9的解是______.12.数据3,4,10,7,6的中位数是______.13.当x=1,y=-时,代数式x2+2xy+y2的值是______.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是______.15.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是______.16.图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E=∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F→N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD=40cm.(1)如图3,当∠ABE=30°时,BC=______cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为______cm2.三、解答题(本大题共8小题,共66.0分)17.计算:|-3|-2tan60°++()-1.18.解方程组19.某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:(1)求m,n的值.(2)补全条形统计图.(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.20.如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.21.如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.22.如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y=(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.23.如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=-(x-m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.24.如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.答案和解析1.【答案】B【解析】解:∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是-4;故选:B.根据互为相反数的定义即可判定选择项.此题主要考查相反数的定义:只有符号相反的两个数互为相反数.2.【答案】D【解析】解:由同底数幂除法法则:底数不变,指数相减知,a6÷a3=a6-3=a3.故选:D.根据同底数幂除法法则可解.本题是整式除法的基本运算,必须熟练掌握运算法则.本题属于简单题.3.【答案】C【解析】解:由三角形三边关系定理得:5-3<a<5+3,即2<a<8,即符合的只有3,故选:C.根据三角形三边关系定理得出5-3<a<5+3,求出即可.本题考查了三角形三边关系定理,能根据定理得出5-3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.4.【答案】C【解析】解:星期一温差10-3=7℃;星期二温差12-0=12℃;星期三温差11-(-2)=13℃;星期四温差9-(-3)=12℃;故选:C.用最高温度减去最低温度,结果最大的即为所求;本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.5.【答案】A【解析】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是.故选:A.让白球的个数除以球的总数即为摸到白球的概率.本题考查的是随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.【答案】D【解析】解:由图可得,目标A在南偏东75°方向5km处,故选:D.根据方向角的定义即可得到结论.此题主要考查了方向角,正确理解方向角的意义是解题关键.7.【答案】A【解析】解:用配方法解方程x2-6x-8=0时,配方结果为(x-3)2=17,故选:A.方程利用完全平方公式变形即可得到结果.此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.8.【答案】C【解析】解:A、∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,故本选项不符合题意;B、在Rt△ABC中,tanα=,即BBC=m•tanα,故本选项不符合题意;C、在Rt△ABC中,AC=,即AO=,故本选项符合题意;D、∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,故本选项不符合题意;故选:C.根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形求出即可.本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.9.【答案】D【解析】解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选:D.先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.10.【答案】A【解析】解:连接HF,设直线MH与AD边的交点为P,如图:由折叠可知点P、H、F、M四点共线,且PH=MF,设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2,∵若正方形EFGH与五边形MCNGF的面积相等∴由折叠可知正方形EFGH的面积=×正方形ABCD的面积=,∴正方形EFGH的边长GF==∴HF=GF=∴MF=PH== a∴=a÷=故选:A.连接HF,设直线MH与AD边的交点为P,根据剪纸的过程以及折叠的性质得PH=MF且正方形EFGH的面积=×正方形ABCD的面积,从而用a分别表示出线段GF和线段MF的长即可求解.本题主要考查了剪纸问题、正方形的性质以及折叠的性质,由剪纸的过程得到图形中边的关系是解题关键.11.【答案】x≤5【解析】解:3x-6≤9,3x≤9+63x≤15x≤5,故答案为:x≤5根据移项、合并同类项、化系数为1解答即可.本题考查了解一元一次不等式,能根据不等式的性质求出不等式的解集是解此题的关键.12.【答案】6【解析】解:将数据重新排列为3、4、6、7、10,∴这组数据的中位数为6,故答案为:6.将数据重新排列,再根据中位数的概念求解可得.考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.【答案】【解析】解:当x=1,y=-时,x2+2xy+y2=(x+y)2=(1-)2==故答案为:.首先把x2+2xy+y2化为(x+y)2,然后把x=1,y=-代入,求出算式的值是多少即可.此题主要考查了因式分解的应用,要熟练掌握,根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.14.【答案】40°【解析】解:过A点作AC⊥OC于C,∵∠AOC=50°,∴∠OAC=40°.故此时观察楼顶的仰角度数是40°.故答案为:40°.过A点作AC⊥OC于C,根据直角三角形的性质可求∠OAC,再根据仰角的定义即可求解.考查了解直角三角形的应用-仰角俯角问题,仰角是向上看的视线与水平线的夹角,关键是作出辅助线构造直角三角形求出∠OAC的度数.15.【答案】(32,4800)【解析】解:令150t=240(t-12),解得,t=32,则150t=150×32=4800,∴点P的坐标为(32,4800),故答案为:(32,4800).根据题意可以得到关于t的方程,从而可以求得点P的坐标,本题得以解决.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.16.【答案】90-452556【解析】解:∵A、D分别在E、F处,门缝忽略不计(即B、C重合)且AB=50cm,CD=40cm.∴EF=50+40=90cm∵B到达E时,C恰好到达F,此时两门完全开启,∴B、C两点的路程之比为5:4(1)当∠ABE=30°时,在Rt△ABE中,BE=AB=25cm,∴B运动的路程为(50-25)cm∵B、C两点的路程之比为5:4∴此时点C运动的路程为(50-25)×=(40-20)cm∴BC=(50-25)+(40-20)=(90-45)cm故答案为:90-45;(2)当A向M方向继续滑动15cm时,设此时点A运动到了点A'处,点B、C、D分别运动到了点B'、C'、D'处,连接A'D',如图:则此时AA'=15cm∴A'E=15+25=40cm由勾股定理得:EB'=30cm,∴B运动的路程为50-30=20cm∴C运动的路程为16cm∴C'F=40-16=24cm由勾股定理得:D'F=32cm,∴四边形A'B'C'D'的面积=梯形A'EFD'的面积-△A'EB'的面积-△D'FC'的面积=-30×40-24×32=2556cm2.∴四边形ABCD的面积为2556cm2.故答案为:2556.(1)先由已知可得B、C两点的路程之比为5:4,再结合B运动的路程即可求出C运动的路程,相加即可求出BC的长;(2)当A向M方向继续滑动15cm时,AA'=15cm,由勾股定理和题目条件得出△A'EB'、△D'FC'和梯形A'EFD'边长,即可利用割补法求出四边形四边形ABCD的面积.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.17.【答案】解:原式=.【解析】按顺序依次计算,先把绝对值化简,再算出2tan60°=,然后根据二次根式的性质以及负指数幂化简即可求解.本题考查了二次根式的混合运算和分式的加减法,设计到的知识点有零指数幂、特殊角的三角函数值,一定要牢记.18.【答案】解:,将①化简得:-x+8y=5 ③,②+③,得y=1,将y=1代入②,得x=3,∴ ;【解析】根据二元一次方程组的解法,先将式子①化简,再用加减消元法(或代入消元法)求解;本题考查二元一次方程组的解法;熟练掌握加减消元法或代入消元法解方程组是解题的关键.19.【答案】解:(1)观察条形统计图与扇形统计图知:选A的有12人,占20%,故总人数有12÷20%=60人,∴m=15÷60×100%=25%n=9÷60×100%=15%;(2)选D的有60-12-15-9-6=18人,故条形统计图补充为:(3)全校最喜欢“数学史话”的学生人数为:1200×25%=300人.【解析】(1)先用选A的人数除以其所占的百分比即可求得被调查的总人数,然后根据百分比=其所对应的人数÷总人数分别求出m、n的值;(2)用总数减去其他各小组的人数即可求得选D的人数,从而补全条形统计图;(3)用样本估计总体即可确定全校最喜欢“数学史话”的学生人数.本题考查了扇形统计图、条形统计图及用样本估计总体的知识,解题的关键是能够读懂两种统计图并从中整理出进一步解题的有关信息,难度不大.20.【答案】解:如图:从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F,则EG平分BC;EC=,EF=,FC=,借助勾股定理确定F点,则EF⊥AC;借助圆规作AB的垂直平分线即可;【解析】从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F;EC=,EF=,FC=,借助勾股定理确定F点;本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直、中点是解题的关键.21.【答案】解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°.【解析】(1)连接OB,证明△AOB是等腰直角三角形,即可求解;(2)△AOB是等腰直角三角形,则OA=t,HO===t,即可求解.本题主要利用了切线和平行四边形的性质,其中(2),要利用(1)中△AOB是等腰直角三角形结论.22.【答案】解:(1)过点P作x轴垂线PG,连接BP,∵P是正六边形ABCDEF的对称中心,CD=2,∴BP=2,G是CD的中点,∴PG=,∴P(2,),∵P在反比例函数y=上,∴k=2,∴y=,由正六边形的性质,A(1,2),∴点A在反比例函数图象上;(2)D(3,0),E(4,),设DE的解析式为y=mx+b,∴ ,∴ ,∴y=x-3,联立方程解得x=,∴Q点横坐标为;(3)E(4,),F(3,2),将正六边形向左平移两个单位后,E(2,),F(1,2),则点E与F都在反比例函数图象上;【解析】(1过点P作x轴垂线PG,连接BP,可得BP=2,G是CD的中点,所以P(2,);(2)易求D(3,0),E(4,),待定系数法求出DE的解析式为x-3,联立反比例函数与一次函数即可求点Q;(3)E(4,),F(3,2),将正六边形向左平移两个单位后,E(2,),F (1,2),则点E与F都在反比例函数图象上;本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标将结合是解题的关系.23.【答案】解:(1)如图1中,当m=0时,二次函数的表达式y=-x2+2,函数图象如图1所示.∵当x=0时,y=2,当x=1时,y=1,∴抛物线经过点(0,2)和(1,1),观察图象可知:好点有:(0,0),(0,1),(0,2),(1,0),(1,1),共5个.(2)如图2中,当m=3时,二次函数解析式为y=-(x-3)2+5.如图2.∵当x=1时,y=1,当x=2时,y=4,当x=4时,y=4,∴抛物线经过(1,1),(2,4),(4,4),共线图象可知,抛物线上存在好点,坐标分别为(1,1),(2,4),(4,4).(3)如图3中,∵抛物线的顶点P(m,m+2),∴抛物线的顶点P在直线y=x+2上,∵点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),当抛物线经过点E时,-(2-m)2+m+2=1,解得m=或(舍弃),当抛物线经过点F时,-(2-m)2+m+2=2,解得m=1或4(舍弃),∴当≤m<1时,顶点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点.【解析】(1)如图1中,当m=0时,二次函数的表达式y=-x2+2,画出函数图象,利用图象法解决问题即可.(2)如图2中,当m=3时,二次函数解析式为y=-(x-3)2+5,如图2,结合图象即可解决问题.(3)如图3中,∵抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时D m的值,即可判断.本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题,属于中考压轴题.24.【答案】(1)证明:如图1中,∵CA=CB,∠ACB=90°,BD=AD,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴AD=CF,∵∠ADC=∠DCF=90°,∴AD∥CF,∴四边形ADFC是平行四边形,∴OD=OC,∵BD=2OD.(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.由题意:BD=AD=CD=7,BC=BD=14,∵DT⊥BC,∴BT=TC=7,∵EC=2,∴TE=5,∵∠DTE=∠EHF=∠DEF=90°,∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,∴∠TDE=∠FEH,∵ED=EF,∴△DTE≌△EHF(AAS),∴FH=ET=5,∵∠DDBE=∠DFE=45°,∴B,D,E,F四点共圆,∴∠DBF+∠DEF=90°,∴∠DBF=90°,∵∠DBE=45°,∴∠FBH=45°,∵∠BHF=90°,∴∠HBF=∠HFB=45°,∴BH=FH=5,∴BF=5,∵∠ADC=∠ABF=90°,∴DG∥BF,∵AD=DB,∴AG=GF,∴DG=BF=.②解:如图3-1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC 于H.设EC=x.∵AD=6BD,∴BD=AB=2,∵DT⊥BC,∠DBT=45°,∴DT=BT=2,∵△DTE≌△EHF,∴EH=DT=2,∴BH=FH=12-x,∵FH∥AC,∴=,∴=,整理得:x2-12x+28=0,解得x=6±2.如图3-2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.设EC=x,由2①可知BF=(12-x),OG=BF=(12-x),∵∠EHD=∠EDG=∠DOG=90°,∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,∴∠DGO=∠HDE,∴△EHD∽△DOG,∴=,∴=,整理得:x2-36x+268=0,解得x=18-2或18+2(舍弃),如图3-3中,当∠综上所述,满足条件的EC的值为6±2或18-2.【解析】(1)如图1中,首先证明CD=BD=AD,再证明四边形ADFC是平行四边形即可解决问题.(2)①作DT⊥BC于点T,FH⊥BC于H.证明DG是△ABF的中位线,想办法求出BF即可解决问题.②分两种情形:如图3-1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC于H.设EC=x.构建方程解决问题即可.如图3-2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.构建方程解决问题即可.本题属于几何变换综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.第21页,共21页。

2019年浙江省金华市中考数学试题(解析版,含答案)

2019年浙江省金华市中考数学试题(解析版,含答案)

浙江省金华市2019年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.数4的相反数是()A. B. -4 C. D. 42.计算a6÷a3,正确的结果是()A. 2B. 3aC. a2D. a33.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 84.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南75°方向5km处7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=18.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A. ∠BDC=∠αB. BC=m·tanαC. AO=D. BD=9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. -1 C. D.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x-6≤9的解是________.12.数据3,4,10,7,6的中位数是________.13.当x=1,y= 时,代数式x2+2xy+y2的值是________.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04.分式与分式方程一、单选题1.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021·湖南中考真题)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm 的光刻机难题,其中1nm 0.000000001m =,则7nm 用科学记数法表示为( ) A .80.710m ⨯ B .8710m -⨯C .80.710m -⨯D .9710m -⨯【答案】D【分析】由题意易得nm 0.000000007m 7=,然后根据科学记数法可直接进行求解. 【详解】解:由题意得:nm 0.000000007m 7=, ∴7nm 用科学记数法表示为9710m -⨯;故选D .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.3.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键. 5.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.7.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x = B .2x =-C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化市·中考真题)定义12a b a b ⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( ) A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可.【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题.14.(2020·辽宁朝阳市·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x⨯=⨯- 【答案】B【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+故选:B . 【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.15.(2020·四川绵阳市·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时 B .1.6小时C .1.8小时D .2小时【答案】C【分析】设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【详解】解:设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:()1803803x xxx-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.16.(2020·黑龙江鹤岗市·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤- B .12k -≥C .12k >-D .12k <-【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】解:方程433x kx x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43kx =+,∵解为非正数,∴403k+≤,∴12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.17.(2020·湖北荆门市·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数 B .负数C .零D .无法确定【答案】A【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.18.(2020·四川广元市·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0, 经检验,m=0是原方程的解,并且满足m 2-2m≥0,当m 2-2m <0时,m -3=-6,解得m=-3,不满足m 2-2m <0,舍去.故输入的m 为0.故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(2020·四川成都市·中考真题)已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3 B .4C .5D .6【答案】B【分析】将2x =代入原方程,即可求出k 值. 【详解】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.20.(2020·四川遂宁市·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 21.(2020·浙江金华市·中考真题)分式52x x +-的值是零,则x 的值为( ) A .5 B .5- C .2-D .2【答案】B【分析】利用分式值为零的条件可得50x +=,且20x -≠,再解即可. 【详解】解:由题意得:50x +=,且20x -≠,解得:5x =-,故选:B .【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.22.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 23.(2020·河北中考真题)若ab ,则下列分式化简正确的是( )A .22a ab b+=+B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【详解】∵a≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 24.(2020·贵州贵阳市·中考真题)当1x =时,下列分式没有意义的是( )A .1x x+B .1x x -C .1x x-D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【详解】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 25.(2019·河北中考真题)如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B【分析】将所给分式的分母配方化简,再利用分式加减法化简,据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111xx x -=++.又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②.故选B . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.26.(2019·湖南娄底市·中考真题)2018年8月31日,华为正式发布了全新一代自研手机SoC 麒麟980,这款号称六项全球第一的芯片,随着华为Mate 20系列、荣耀Magic 2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗()97110nm nm m -=手机芯片.7nm 用科学记数法表示为( ) A .8710m -⨯ B .9710m -⨯C .80.710m -⨯D .10710m -⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】7nm 用科学记数法表示为9710m -⨯.故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.27.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =,把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+,故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键. 28.(2019·北京中考真题)如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3【答案】D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()mm n m n m n m m n =⋅+-=+-1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.29.(2019·四川中考真题)一辆货车送上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时.则货车上、下山的平均速度为( )千米/时. A .1()2a b + B .aba b+ C .2a bab+ D .2aba b+ 【答案】D【分析】平均速度=总路程÷总时间,设单程的路程为s ,表示出上山下山的总时间,把相关数值代入化简即可.【详解】解:设上山的路程为x 千米,则上山的时间x a 小时,下山的时间为xb小时, 则上、下山的平均速度22xabxxa b ab=++千米/时.故选D .【点睛】本题考查了列代数式以及分式的化简,得到平均速度的等量关系是解决本题的关键,得到总时间的代数式是解决本题的突破点.30.(2019·湖南益阳市·中考真题)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A .x+2=3 B .x ﹣2=3 C .x ﹣2=3(2x ﹣1) D .x+2=3(2x ﹣1)【答案】C【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得x ﹣2=3(2x ﹣1),故选C .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.31.(2019·广东中考真题)定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .25【答案】B【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-,则25m =-,经检验,25m =-是方程的解,故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键. 二、填空题32.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.33.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.34.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.35.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.36.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可.【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 37.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键. 38.(2020·内蒙古呼和浩特市·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【详解】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 39.(2020·山东潍坊市·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x -(x -2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 40.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【详解】解:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭()()y x y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y y x y x y x y=÷+-+()()yx y x y x y y +=⋅+-1x y=-,故答案为:1x y -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 41.(2020·山东滨州市·中考真题)观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).【答案】()12121n n n ++-+【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+,故答案为:21(1)21n n n a n ++-=+ 【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.42.(2020·山东济宁市·中考真题)已知m+n=-3.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是____________. 【答案】1m n -+,13【分析】先计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=()2m n m n m m ⎡⎤++÷-⎢⎥⎢⎥⎣⎦=()2m n m m m n ⎡⎤+⨯-⎢⎥+⎢⎥⎣⎦=1m n -+,∵m+n=-3,代入,原式=13. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.43.(2019·江西中考真题)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.【答案】66111.2x x+= 【分析】设小明通过AB 时的速度是x 米/秒,根据题意列出分式方程解答即可. 【详解】解:设小明通过AB 时的速度是x 米/秒,可得:66111.2x x +=,故答案为66111.2x x+=, 【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题44.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.45.(2021·山东菏泽市·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 46.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.47.(2021·四川达州市·中考真题)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数. 【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.48.(2021·湖南株洲市·中考真题)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可.【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.49.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式=== 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.50.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 51.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.52.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值.【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5, ∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.53.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--. 【答案】无解。

2019年浙江省金华市中考数学试题附解析

2019年浙江省金华市中考数学试题附解析

2019年浙江省金华市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个密闭不透明的盒子里有若干个白球,在不允许将球全部倒出来的情况下,为估计白球的个数,小刚向其中放人 8 个黑球,摇匀后从中随机模出一个球记下颜色,再把它放回盒中,不断重复,共模球 400 次,其中 88次摸到黑球,估计盒中大约有白球()A.28 个B.30 个C. 36 个D. 42 个2.已知:如图,⊙O的两弦 AB、CD 相交于点M,直径 PQ 过点 M,且 MP 平分∠AMC,则图中相等的线段有()A.1对B.2对C.3对D.4对3.如图,在□ABCD中,EF∥GH∥AB,MN∥BC,则图中的平行四边形的个数为(• )A.12个B.16个C.14个D.18个4.体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图).由图可知,最喜欢篮球的频率是()A.0.16 B.0.24 C.0.3 D.0.45.下列命题中,逆命题正确的是()A.对顶角相等B.两直线平行,同位角相等C.全等三角形对应角相等D.等腰三角形是轴对称图形6.若正比例函数的图象经过点(-l,2),则这个图象必经过点()A.(1,2)B.(-l,-2)C.(2,-1)D.(1,-2)7.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26 km/h,现在该列车从甲站到乙站所用的时间比原来减少了1h,已知甲、乙两站的路程是312 km,若设列车提速前的速度是x(km/h),则根据题意所列方程正确的是()A.312312126x x-=+B.312312126x x-=+C .312312126x x -=- D .312312126xχ-=- 8.已知x=2005,y=2004,则分式4422))((y x y x y x -++等于( )A .0B . 1C . 2D . 39.下列事件中,确定事件的个数是( )①下周日是晴天;③人没有氧气就会窒息而死;③三角形的面积=12底×高;④掷一 枚硬币,正面朝上. A .1 个 B .2 个 C .3 个 D .4 个 10.由5 个顶点、8条棱、5个面构成的几何体是( )A . 立方体B .三棱锥C .四棱锥D .不存在11.如图是2007年5月的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是( ) A .27B .36C .40D .54.用x -代替各式中的x ,分式的值不变的是( ) A .32xB .3x -C .21xx + D .211x -+ .有一个数值转换器如下,当输入的x 为64时,输出的y 是( )A .8B .8C .12D .1814. 用最小的正整数、最小的质数、最小的非负数和最小的合数组成的四位数中,最大的一个是( ) A .4210B .4310C .3210D .4321二、填空题15.如图,△ABC 是⊙O 的内接三角形,∠B =55°,P 点在AC 上移动(点P 不与A 、C 两点重合),则α的变化范围是 .16.半径为9cm 的圆中,长为12πcm 的一条弧所对的圆心角的度数为______. 17.如图,⊙O 的直径为 10,弦AB= 8,P 是 AB 上的一个动点,那么OP 长的取值范围是 .日 一 二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3118.在四边形ABCD 中,顺次连接四边中点E ,F ,G ,H ,构成一个新的四边形,请你对四边形ABCD 填加一个条件,使四边形EFGH 成为一个菱形.这个条件是 .19.如图,已知∠AOC=60°,点B 在OA 上,且OB=32,若以B 为圆心,R 为半径的圆与直线OC 相离.则R 的取值范围是 .20.如图,a 、b 、c 三根木条相交,∠1 = 50°,固定木条 b ,c ,转动木条a ,则当木条a 转到与b 所成的角∠2 为 度时,a 与c 平行.21.计算:①a ·a 3 = ;②(a 5 )2 ·a 3 = .22.足球比赛前,裁判用抛一枚硬币猜正反面的方式让甲、乙两个队长选进攻方向,猜对正面的队长先选,则队长甲先选的概率是 .23.某商场为了解本商场的服务质量,随机调查了本商场的200名顾客,调查的结果如图所示.根据图中给出的信息,这200名顾客中对该商场的服务质量表示不满意的有 人. 24.点 A 5 A 表示的数是 .三、解答题25.某校计划把一块近似于直角三角形的废地开发为生物园,如图所示,∠ACB=90°,BC=60米,∠A=36°,(1)若入口处E 在AB 边上,且与A 、B 等距离,求CE 的长(精确到个位);(2)若D 点在AB 边上,计划沿线段CD 修一条水渠.已知水渠的造价为50元/米,水渠路线应如何设计才能使造价最低,求出最低造价.(其中5878.036sin =︒, 8090.036cos =︒, 7265.036tan =︒)BCAE D26.已知: 如图, 在梯形ABCD 中, AD ∥BC, AB=CD, E 是底边BC 的中点, 连接AE 、DE. 求证: △ADE 是等腰三角形.27.如图,△ABC 中,AB=AC ,BD ,CE 分别为∠ABC ,∠ACB 的平分线,则EBCD 是等腰梯形吗?为什么?28.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (分钟)成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg .据以上信息解答下列问题:(1)求药物燃烧时y 与x 的函数关系式. (2)求药物燃烧后y 与x 的函数关系式.(3)当每立方米空气中含药量低于1.6mg 时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?29.分解因式:(1)22-;(2)2100x x y515a ab b---2x x-+;(4)22x-;(3)26930.在某次美化校园活动中,先安排34人去拔草,l8人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和支援植树的分别有多少人?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.D4.D5.B6.D7.A8.B9.B10.C11.C12.D13.B14.A二、填空题 15.0°<α<110°16.240度17.3≤OP ≤518.AC BD =或四边形ABCD 是等腰梯形(符合要求的其它答案也可以)19.0<R<320.5021.134,a a 22.2123. 1424.三、解答题 25.解:(1)在Rt △ABC 中 AB =BC sin 36°=600.5878 = 102.08又∵CE 是Rt △ABC 中斜边AB 上的中线 ∴CE=21AB ≈51(米) ED CBA(2)在Rt △ABC 中作CD ⊥AB 交AB 于D 点 则沿线段CD 修水渠造价最低 ∴∠DCB=∠A=36° ∴在Rt △BDC 中CD=BC ×cos ∠DCB=︒⨯36cos 60=48.54 ∴水渠的最低造价为:50×48.54=2427(元) 答:水渠的最低造价为2427元.26.证: ∵ABCD 是等腰梯形 ,∴∠B=∠C, AB=CD∵E 是BC 中点 ,∴BE=CE ,∴△ABE ≌△DCE,∴AE=DE ∴△AED 是等腰三角形27.证明△EBC ≌△DCB ,得EB=CD ,则A4E=AD ,再证明ED ∥BC ,即可得四边形EBCD 为等腰梯形28.解:(1)设药物燃烧阶段函数解析式为11(0)y k x k =≠,由题意得:1810k =,145k =.∴此阶段函数解析式为45y x =. (2)设药物燃烧结束后的函数解析式为22(0)k y k x =≠,由题意得:2810k=,280k =.∴此阶段函数解析式为80y x=.(3)当 1.6y <时,得801.6x<,0x >, 1.680x >,50x >∴从消毒开始经过50分钟后学生才可回教室. 29.(1)5(3)xy y x -;(2)(10)(10)x x +-;(3)2(3)x -;(4)2()a b -+30.拔草14人,植树6人。

49.中考数学专题 圆数学母题题源系列(解析版)

49.中考数学专题 圆数学母题题源系列(解析版)

【母题来源一】(2019•甘肃)如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=A.54°B.64°C.27°D.37°【答案】C【解析】∵∠AOC=126°,∴∠BOC=180°-∠AOC=54°,∵∠CDB=12∠BOC=27°.故选C.【名师点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【母题来源二】(2019•安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为__________.【解析】如图,连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=12CE=2,专题11 圆BC.∵CD⊥AB,∠CBA=45°,∴CD=2【名师点睛】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.【命题意图】这类试题主要考查圆的基本性质,包括圆周角、弧、弦、圆心角之间的关系等.【方法总结】1.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.【母题来源三】(2019•福建)如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于A.55°B.70°C.110°D.125°【答案】B【解析】如图,连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB =360°-90°-90°-110°=70°.故选B .【名师点睛】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB 的度数.【母题来源四】(2019•重庆)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B的度数为A .60°B .50°C .40°D .30°【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B .【名师点睛】本题考查了切线的性质,直角三角形两锐角互余,熟练运用切线的性质是本题的关键. 【母题来源五】(2019•娄底)如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E . (1)求证:直线CD 是⊙O 的切线. (2)求证:CD BE AD DE ⋅=⋅.【解析】(1)如图,连接OD ,∵AD 平分BAC ∠,∴CAD BAD ∠=∠, ∵OA OD =, ∴BAD ADO =∠∠, ∴CAD ADO ∠=∠, ∴AC OD ∥, ∵CD AC ⊥, ∴CD OD ⊥,∴直线CD 是⊙O 的切线. (2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径, ∴90ABE BDE ∠=∠=︒, ∵CD AC ⊥,∴90C BDE ∠=∠=︒, ∵CAD BAE DBE ∠=∠=∠, ∴ACD BDE △∽△, ∴CD ADDE BE=, ∴CD BE AD DE ⋅=⋅.【名师点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.【命题意图】这类试题主要考查圆的切线的性质与判定,常与相似三角形等知识结合考查. 【方法总结】1.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题. 2.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.【母题来源六】(2019•成都)如图,正五边形ABCDE内接于⊙O,P为DE上的一点(点P不与点D重合),则∠CPD的度数为A.30°B.36°C.60°D.72°【答案】B【解析】如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD=3605=72°,∴∠CPD=12∠COD=36°,故选B.【名师点睛】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【母题来源七】(2019•扬州)如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=__________.【答案】15【解析】如图,连接OB,∵AC 是⊙O 的内接正六边形的一边, ∴∠AOC =360°÷6=60°,∵BC 是⊙O 的内接正十边形的一边, ∴∠BOC =360°÷10=36°, ∴∠AOB =60°-36°=24°, 即360°÷n =24°,∴n =15, 故答案为:15.【名师点睛】本题考查了正多边形和圆,中心角等知识,熟练掌握相关知识是解题的关键.注意把圆周等分,然后顺次连接各个分点就会得到正多边形.【母题来源八】(2019•滨州)若正六边形的内切圆半径为2,则其外接圆半径为__________.【解析】如图,连接OA 、OB ,作OG AB ⊥于G ,则2OG =,∵六边形ABCDEF 正六边形, ∴OAB △是等边三角形, ∴60OAB ∠=︒,∴sin 603OG OA ===︒,∴正六边形的内切圆半径为2,则其外接圆半径为3.故答案为:3.【名师点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.【母题来源九】(2019•山西)如图,在Rt△ABC中,∠ABC=90°,ABBC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为A2π-B2π+C.πD.π2【答案】A【解析】∵在Rt△ABC中,∠ABC=90°,AB,BC=2,∴tan A=BCAB==,∴∠A=30°,∴∠DOB=60°,∵OD=12ABDE=32,∴阴影部分的面积是:23260π222042π36⨯⨯--=-,故选A.【名师点睛】本题考查扇形面积的计算、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.【母题来源十】(2019•黄冈)用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为__________.【答案】4π【解析】扇形的弧长=120π6180⨯=4π,∴圆锥的底面半径为4π÷2π=2.∴面积为:4π,故答案为:4π.【名师点睛】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.【母题来源十一】(2019•杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12 cm,底面圆半径为3 cm,则这个冰淇淋外壳的侧面积等于__________cm2(结果精确到个位).【答案】113【解析】这个冰淇淋外壳的侧面积=12×2π×3×12=36π≈113(cm2).故答案为:113.【名师点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【母题来源十二】(2019•河南)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥O A.若OA=__________.π【解析】如图,作OE⊥AB于点F,∵在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥O A.OA=∴∠AOD=90°,∠BOC=90°,OA=OB,∴∠OAB=∠OBA=30°,∴OD=OA·tan30°==2,AD=4,AB=2AF=2×=6,OF BD=2,∴阴影部分的面积是:S△AOD+S扇形OBC-S△BDOπ+=,π.【名师点睛】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答.【命题意图】这类试题主要考查正多边形和圆、弧长和扇形面积的计算、阴影部分面积的计算等.【方法总结】1.常用公式:(1)扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.(2)圆锥的侧面积为S圆锥侧=12ππ2l r rl⋅=.(3)圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).2.在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.1.【辽宁省盘锦市双台子区2019届九年级下学期第二次联考数学试题】如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是A.30°B.45°C.60°D.70°【答案】C【解析】∵∠ABC=12∠AOC,而∠ABC+∠AOC=90°,∴12∠AOC+∠AOC=90°,∴∠AOC=60°.故选C.【名师点睛】此题考查圆周角定理及其推论,解题关键在于得到∠ABC=12∠AOC.2.【2019年浙江省杭州市拱墅区中考数学二模试卷】如图,△ABC是⊙O的内接三角形,AD是OO的直径,∠ABC=40°,则∠CAD的度数为A.30°B.40°C.50°D.60°【答案】C【解析】如图,连接CD,∵∠ABC=40°,∴∠ADC=∠ABC=40°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD=90°-∠ADC=50°.故选C.【名师点睛】此题考查了三角形的外接圆与外心,圆周角定理与直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.3.【2019年北京市门头沟区中考数学二模试卷】如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=30°,OD=2,那么DC的长等于A.2 B.4 C D.【答案】D【解析】如图,连接OC,设AB交CD于E.∵AB⊥CD,AB是直径,∴EC=DE,∵OA=OC,∠OAC=∠OCA=30°,∴∠COE=60°,∴EC=OC·sin60°,∴CD=2DE故选D.【名师点睛】本题考查圆周角定理,解直角三角形,锐角三角函数等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.4.【2019年山东省青岛市李沧区中考数学二模试卷】如图△MBC中,∠B=90°,∠C=60°,MB,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为A B C.2 D.3【答案】C【解析】在直角△BCM中,tan60°=MB BC,得到BC=2,∵AB为圆O的直径,且AB⊥BC,∴BC为圆O的切线,又CD也为圆O的切线,∴CD=BC=2.故选C.【名师点睛】此题考查学生灵活运用三角函数解直角三角形,掌握圆外一点引圆的两条切线,切线长相等的应用,是一道中档题.5.【浙江省宁波市2019届九年级中考数学模拟试卷(二)】如图,⊙O是正六边形ABCDEF的外接圆,P 是弧EF上一点,则∠BPD的度数是A.30°B.60°C.55°D.75°【答案】B【解析】如图,连接OB,OD,∵六边形ABCDEF是正六边形,∴∠BOD=3603=120°,∴∠BPD=12∠BOD=60°,故选B.【名师点睛】本题考查了正多边形和圆以及圆周角定理的知识,解题的关键是正确的构造圆心角,难度不大.注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6.【广西河池市2019届九年级中考二模数学试题】如图,扇形OAB的圆心角为90°,分别以OA,OB为直径在扇形内作半圆,P和Q分别表示两个阴影部分的面积,那么P和Q的大小关系是A.P>Q B.P<Q C.P=Q D.无法确定【答案】C【解析】设OA=a,扇形OAB的面积=22 90ππ3604a a⨯=,以OA,OB为直径在扇形内作的半圆的面积=221ππ()228a a⨯⨯=,P=扇形OAB的面积-(以OA为直径的半圆的面积+以OB为直径的半圆的面积)+Q=22ππ48a a-×2+Q=Q,故选C.【名师点睛】本题考查的是扇形面积计算,掌握扇形面积公式:2π360n rS=是解题的关键.7.【四川省南充市2019年中考数学试题】如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为A.6πB.C.D.2π【答案】A【解析】如图,连接OB,∵四边形OABC是平行四边形,∴AB=OC,∴AB=OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∵OC∥AB,∴S△AOB=S△ABC,∴图中阴影部分的面积=S扇形AOB=60π366π360⋅⨯=,故选A.【名师点睛】本题考查的是扇形面积的计算,平行四边形的性质,掌握扇形的面积公式是解题的关键.8.【2019年浙江省金华市婺城区中考数学一模试卷】如图,⊙O的直径为,弦AB⊥弦CD于点E,连接AD,BC,若AD=4 cm,则BC的长为__________cm.【答案】2【解析】如图,作直径DH,连接AH,CH,AC.∵DH是直径,∴∠DCH=∠DAH=90°,∵AB⊥CD,∴∠AED=∠DCH=90°,∴CH∥AB,∴∠CAB=∠ACH,∴AH BC=,∴AH=BC,在Rt△ADH中,AH=(cm),∴BC=AH=2(cm).故答案为:2.【名师点睛】本题考查勾股定理,圆周角定理,平行线的性质等知识,解题的关键是学会添加常用辅助线,用转化的思想解决问题,属于中考常考题型.9.【2019年江苏省南京市秦淮区中考数学一模试卷】如图,⊙O的半径为6,AB是⊙O的弦,半径OC⊥AB,D是⊙O上一点,∠CDB=22.5°,则AB=__________.【答案】【解析】∵∠CDB=22.5°,∴∠COB=2∠CDB=45°,∵OC⊥AB,∴∠OBA=∠COB=45°,∴∠OAB=∠OBA=45°,∵半径为6,∴AB OA,故答案为:.【名师点睛】本题考查了圆周角定理及垂径定理的知识,解题的关键是能够得到直角三角形,难度不大.10.【2019年黑龙江省齐齐哈尔市克东县中考数学二模试卷】如图,△OAB中,OA=OB=12,∠A=30°,AB 与⊙O相切于点C,则以图中阴影部分扇形围成一个圆锥的侧面,则这个圆锥的高为__________.【答案】【解析】如图,连接OC,则∠OCA=90°,∵∠A=30°,OA=OB=12,∴OC=6,∠A=∠B=30°,∴∠AOC=120°,∴图中阴影部分扇形围成一个圆锥的底面半径是120π61802π⨯=2,圆锥的母线长是6,.【名师点睛】本题考查切线的性质、等腰三角形的性质、圆锥的计算,解答本题的关键是明确题意,利用数形结合的思想解答.11.【2019年广西柳州市中考数学考前最后一卷】如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AO 交BC于点O,以O为圆心,OC长为半径作⊙O,⊙O交AO所在的直线于D、E两点(点D在BC 左侧).(1)求证:AB是⊙O的切线;(2)连接CD,若AC=23AD,求tan∠D的值;(3)在(2)的条件下,若⊙O的半径为5,求AB的长.【解析】【分析】(1)如图,过点O作OF⊥AB,∵AO平分∠BAC,OF⊥AB,∠ACB=90°,∴OC=OF,∴OF为⊙O半径,且OF⊥AB,∴AB是⊙O切线.(2)如图,连接CE,∵DE是直径,∴∠DCE=90°,∵∠ACB=90°,∴∠DCE=∠ACB,∴∠DCO=∠ACE,∵OC=OD,∴∠D=∠DCO,∴∠ACE=∠D,且∠A=∠A,∴△ACE∽△ADC,∴2233ADAC CEAD CD AD===,∴tan∠D=CECD=23.(3)∵△ACE∽△ADC,∴AC AE AD AC=,∴AC2=AD(AD-10),且AC=23 AD,∴AD=18,∴AC=12,∵AO=AO,OC=OF,∴Rt△AOF≌Rt△AOC,∴AF=AC=12,∵∠B=∠B,∠OFB=∠ACB=90°,∴△OBF∽△ABC,∴OF OB BF AC AB BC==,即512125OB BFBF BO==++,∴5+25=12 60512BO BFBF OB ⎧⎨+=⎩,∴BF=600 119,∴AB=FA+BF=12+600119=2028119.【名师点睛】本题考查的是圆的综合运用,熟练掌握相似三角形和全等三角形是解题的关键.。

2019年浙江省金华市中考数学真题汇编试卷附解析

2019年浙江省金华市中考数学真题汇编试卷附解析

2019年浙江省金华市中考数学真题汇编试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知函y=3x2-6x+k(k为常数)的图象经过点A(0.85,y1),B(1.1,y2),C( 2 ,y3),则有()A. y1<y2<y3B. y1>y2>y3C. y3>y1>y2D. y1>y3>y22.如果抛物线 y=ax2+bx+c经过点(-1,12),(0,5)和(2,-3),则a+b+c的值为()A.-4 B.-2 C.0 D.13.下列说法正确的是()A.汽车沿一条公路从A 地驶往 B地,所需的时间 t与平均速度v 成正比例B.圆的面积S与圆的半径R成反比例C.当矩形的周长为定值时,矩形的长与宽成反比例D.当电器两端的电压V为 220 V 时,电器的功率 P(W)与电阻 R(Ω)成反比例(功电压的平方功率=电阻)4.一张矩形纸片按如图甲和乙所示对折,然后沿着图丙中的虚线剪下,得到①,②两部分,将①展开后得到的平面图形是()A.三角形B.矩形C.菱形D.梯形5.某同学用计算器计算30个数据的平均数数时.错将其中的一个数据l05输入成了l5,那么由此求的的平均数与实际平均数的差是()A.3.5 B.3 C.-3 D.0.56.下列各式中,是一元一次不式的为()A.5xx≥B.2212x x>-C.21x y+<D.2x13x+≤7.下列说法错误的是()A.x=1是方程x+1=2 的解B.x= -1 是不等式13x+<的一个解C.x=3 是不等式13x+<的一个解D .不等式13x +<的解有无数个8.如图所示,已知 AB ∥CD ,则与 ∠1相等的角 (∠1 除外)共有( )A .5 个B .4 个C .3 个D .个9.下列运算正确的是( )A .0(3)1-=-B .236-=-C .9)3(2-=-D .932-=- 10.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是( )A .△OCDB .△OABC .△OAFD .△OEF11.若关于x 的方程230m mx m ++-=是一元一次方程,则这个方程的解是( )A .1B .-lC .-4D .412.在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答.( )A .一定不会B .可能会C .一定会D .以上答案都不对二、填空题13.将半径为3的半圆围成一个圆锥的侧面,此圆锥底面半径为 .14.若△ABC 为等腰三角形,其中∠ABC=90°,AB=BC=52cm ,将等腰直角三角形绕直线AC 旋转一周所得的图形的表面积为________cm 2.15.如图,在等腰梯形ABCD 中,AD ∥BC ,AC ,BD 相交于点0,有下列四个结论:①AC=BD ,②梯形ABCD 是轴对称图形,③∠ADB=∠DAC ,④△AOD ≌△AB0,其中正确的是 .16.如图,把△ABC绕点C顺时针旋转35°到△A′B′C的位置,交AC于点D,若∠A′DC=90°,则∠A= .17.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,写出一个符合上述条件的点P 的坐标.18.在Rt△ABC中,∠C=90°,∠B=2∠A,CD⊥AB,交AB于D,若AB=a,则CD= .19.请在下面这一组图形符号中找出它们所蕴含的规律,后在横线上的空白处填上恰当的图形.20.体育课上,教师让全班 54 名同学每人拿一张扑克牌进行打仗游戏,规则是以大吃小.小陈同学拿的是红桃 6,当他与对面一个同学进行交锋时,他牺牲的可能性大呢还是生存的可能性大?;理由:.21.填空:(1)|13|+= ;(2)|8|-= ;(3)1|3|5+= ;(4)|8.22|-= .22.已知sinα=32,且α为锐角,则α= .23.设⊙O1与⊙O2相交于A,B两点,且O1在⊙O2上,O2在⊙O1上,则∠AO1B=_____度.三、解答题24.如图,它是实物与其三种视图,在三种视图中缺少一些线(包括实线和虚线),请将它们补齐,让其成为一个完整的三种视图.25.某同学在电脑上玩扫雷游戏,如图所示的区域内 5处有雷. (即 5 个方格有雷)(1)这位同学第一次点击区域内任一小方块,触雷的可能性有多大?(2)若他已扫完了30 个小方块发现均无雷,再一次点击下一个未知的小方块,触雷的可能性有多大?26.某一电影院有1000个座位,门票每张 3元,可达客满,根据市场统计,若每张门票提高x元,将有 200x 张门票不能售出.(1)求提价后每场电影的票房收入 y(元)与票价提高量 x(元)之间的函数关系式及自变量x的取值范围;(2)为增加收入,电影院应做怎样的决策(提价还是降价?若提价,提价多少为宜?)27.如图①所示是某立式家具(角书橱)的横断面,请你设计一个方案(角书橱高2 m,房间高2.6 m,所以不必从高度方面考虑方案的设计),按此方案,可使该家具通过图②中的长廊搬人房间,在图②中把你设计的方案画成草图,并通过近似计算说明按此方案可把家具搬人房间的理由.(注:搬运过程中不准拆卸家具,不准损坏墙壁)+=,用含 m 的代数式表示2x.28.已知32x mm829.下表表示从l960~2003年非洲某地区的狮子数量:其中表示50头狮子.(1)该地区哪一年的狮子数量最多?约有多少头?(2)估计2003年该地区狮子的头数是l960年的百分之几(精确到1%)?30.“长江公主号”是来往于武汉与南京的客轮.小明乘它从武汉到南京需要21 h,且它的航速为40 km/h,若该客轮从南京返回武汉时航速为34 km/h.求:(1)小明返回武汉需要多长时间?(2)船在静水中的航行速度.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.C5.C6.D7.C8.C9.D10.C11.CA二、填空题13. 32 14. 502π15.①②③ 16.55°17.(-2,2)(答案不唯一)118.34a 19. 20.牺牲的可能性大,大于6的牌数多于小于6的牌数 21.(1) 13 (2) 8 (3) 135(4)8.22 22.60°23.120三、解答题24.25.(1)518016P ==;(2)515010P ==(1)y=(3+x)(1000-200x),化简得22004003000y x x =-++, x 的取值范围是 0≤x ≤5.(2)22004003000y x x =-++2200(-2)3000x x =-+2200(1)3200x =--+ ∴当 x=1 时,票房收入最大.即提价 1 元为宜. 27.如图放置,可求得2 1.41 1.45≈<,所以能通过 28.8m 29. (1)1960年,约600头 (2)67%30. (1) 122417h (2)37 km/h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省金华市2019年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.初数4的相反数是()A. B. -4C.D. 42.计算a6÷a3,正确的结果是()A. 2 B . 3a C . a2D . a33.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 84.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()A. 星期一B. 星期二 C. 星期三 D. 星期四5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B.C.D.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南75°方向5km处7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=18.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A. ∠BDC=∠αB. BC=m·tanα C. AO=D. BD=9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. -1 C.D.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x-6≤9的解是________.12.数据3,4,10,7,6的中位数是________.13.当x=1,y= 时,代数式x2+2xy+y2的值是________.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。

量角器的O刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是________ .15.元朝朱世杰的《算学启蒙》一书记载:“今有良马目行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之,”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是________ .16.图2、图3是某公共汽车双开门的俯视示意图,ME,EF,FN是门轴的滑动轨道,∠E=∠F=90°,两门AB,CD的门轴A,B,C,D都在滑动轨道上.两门关闭时(图2),A,D分别在E,F处,门缝忽略不计(即B,C重合);两门同时开启,A,D分别沿E→M,F→N的方向匀速滑动,带动B,C滑动;B到达E时,C 恰好到达F,此时两门完全开启。

已知AB=50cm,CD=40cm.(1)如图3,当∠ABE=30°时,BC=________ cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为________cm2.三、解答题(本题有8小题,共66分)17.计算:|-3|-2tan60°+ +( )-118.解方程组:19.某校根据课程设置要求,开设了数学类拓展性课程。

为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(生人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整),请根据图中信息回答问题。

(1)求m,n的值。

(2)补全条形统计图。

(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数。

20.如图,在7×6的方格中,△ABC的顶点均在格点上,试按要求画出线段EF(E,F均为格点),各画出一条即可。

21.如图,在OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D.(1)求的度数。

(2)如图,点E在⊙O上,连结CE与⊙O交于点F。

若EF=AB,求∠OCE的度数.22.如图,在平面直角坐标系中,正次边形ABCDEF的对称中心P在反比例函数y= (k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理曲。

(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标。

(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程。

23.如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横,纵坐标均为整数的点称为好点,点P为抛物线y=-(x-m)2+m+2的顶点。

(1)当m=0时,求该抛物线下方(包括边界)的好点个数。

(2)当m=3时,求该抛物线上的好点坐标。

(3)若点P在正方形OABC内部,该抛物线下方(包括边界)给好存在8个好点,求m的取值范围,24.如图,在等腰Rt△ABC中,∠ACB=90°,AB=14 。

点D,E分别在边AB,BC上,将线段ED绕点E 按逆时针方向旋转90°得到EF。

(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O,求证:BD=2DO.(2)已知点G为AF的中点。

①如图2,若AD=BD,CE=2,求DG的长。

②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由。

答案解析部分一、选择题(本题有10小题,每小题3分,共30分)1.【答案】B【考点】相反数及有理数的相反数【解析】【解答】∵4的相反数是-4.故答案为:B.【分析】反数:数值相同,符号相反的两个数,由此即可得出答案.2.【答案】D【考点】同底数幂的除法【解析】【解答】解:a6÷a3=a6-3=a3故答案为:D.【分析】同底数幂除法:底数不变,指数相减,由此计算即可得出答案.3.【答案】C【考点】三角形三边关系【解析】【解答】解:∵三角形三边长分别为:a,3,5,∴a的取值范围为:2<a<8,∴a的所有可能取值为:3,4,5,6,7.故答案为:C.【分析】三角形三边的关系:两边之和大于第三边,两边之差小于第三边,由此得出a的取值范围,从而可得答案.4.【答案】C【考点】极差、标准差【解析】【解答】解:依题可得:星期一:10-3=7(℃),星期二:12-0=12(℃),星期三:11-(-2)=13(℃),星期四:9-(-3)=12(℃),∵7<12<13,∴这四天中温差最大的是星期三.故答案为:C.【分析】根据表中数据分别计算出每天的温差,再比较大小,从而可得出答案.5.【答案】A【考点】等可能事件的概率【解析】【解答】解:依题可得:布袋中一共有球:2+3+5=10(个),∴搅匀后任意摸出一个球,是白球的概率P= .故答案为:A.【分析】结合题意求得布袋中球的总个数,再根据概率公式即可求得答案.6.【答案】D【考点】钟面角、方位角【解析】【解答】解:依题可得:90°÷6=15°,∴15°×5=75°,∴目标A的位置为:南偏东75°方向5km处.故答案为:D.【分析】根据题意求出角的度数,再由图中数据和方位角的概念即可得出答案.7.【答案】A【考点】配方法解一元二次方程【解析】【解答】解:∵x2-6x-8=0,∴x2-6x+9=8+9,∴(x-3)2=17.故答案为:A.【分析】根据配方法的原则:①二次项系数需为1,②加上一次项系数一半的平方,再根据完全平方公式即可得出答案.8.【答案】C【考点】锐角三角函数的定义【解析】【解答】解:A.∵矩形ABCD,∴AB=DC,∠ABC=∠DCB=90°,又∵BC=CB,∴△ABC≌△DCB(SAS),∴∠BDC=∠BAC=α,故正确,A不符合题意;B.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴tanα= ,∴BC=AB·tanα=mtanα,故正确,B不符合题意;C.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴cosα= ,∴AC= = ,∴AO= AC=故错误,C符合题意;D.∵矩形ABCD,∴AC=BD,由C知AC= = ,∴BD=AC= ,故正确,D不符合题意;故答案为:C.【分析】A.由矩形性质和全等三角形判定SAS可得△ABC≌△DCB,根据全等三角形性质可得∠BDC=∠BAC=α,故A正确;B.由矩形性质得∠ABC=90°,在Rt△ABC中,根据正切函数定义可得BC=AB·tanα=mtanα,故正确;C.由矩形性质得∠ABC=90°,在Rt△ABC中,根据余弦函数定义可得AC= = ,再由AO= AC 即可求得AO长,故错误;D.由矩形性质得AC=BD,由C知AC= = ,从而可得BD长,故正确;9.【答案】D【考点】圆锥的计算【解析】【解答】解:设BD=2r,∵∠A=90°,∴AB=AD= r,∠ABD=45°,∵上面圆锥的侧面积S= ·2πr·r=1,∴r2= ,又∵∠ABC=105°,∴∠CBD=60°,又∵CB=CD,∴△CBD是边长为2r的等边三角形,∴下面圆锥的侧面积S= ·2πr·2r=2πr2=2π×= .故答案为:D.【分析】设BD=2r,根据勾股定理得AB=AD= r,∠ABD=45°,由圆锥侧面积公式得·2πr·r=1,求得r2= ,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案.10.【答案】A【考点】剪纸问题【解析】【解答】解:设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,如图,依题可得:NM= a,FM=GN= ,∴NO= = ,∴GO= = ,∵正方形EFGH与五边形MCNGF的面积相等,∴x2= + a2,∴a= x,∴= = .故答案为:A.【分析】设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,根据题意可得,NM= a,FM=GN= ,NO= = ,根据勾股定理得GO= ,由题意建立方程x2= + a2,解之可得a= x,由,将a= x代入即可得出答案.二、填空题(本题有6小题,每小题4分,共24分)11.【答案】x≤5【考点】解一元一次不等式【解析】【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.12.【答案】 6【考点】中位数【解析】【解答】解:将这组数据从小到大排列为:3,4,6,7,10,∴这组数据的中位数为:6.故答案为:6.【分析】中位数:将一组数据从小到大排列或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;由此即可得出答案.13.【答案】【考点】代数式求值【解析】【解答】解:∵x=1,y=- ,∴x2+2xy+y2=(x+y)2=(1- )2= .故答案为:.【分析】先利用完全平方公式合并,再将x、y值代入、计算即可得出答案.14.【答案】 40°【考点】三角形内角和定理【解析】【解答】如图,依题可得:∠AOC=50°,∴∠OAC=40°,即观察楼顶的仰角度数为40°.故答案为:40°.【分析】根据题意可得∠AOC=50°,由三角形内角和定理得∠OAC=40°,∠OAC即为观察楼顶的仰角度数.15.【答案】(32,4800)【考点】一次函数与一元一次方程的综合应用【解析】【解答】解:设良马追及x日,依题可得:150×12+150x=240x,解得:x=20,∴240×20=4800,∴P点横坐标为:20+12=32,∴P(32,4800),故答案为:(32,4800).【分析】设良马追及x日,根据两种马所走的路程相同列出方程150×12+150x=240x,解之得x=20,从而可得路程为4800,根据题意得P点横坐标为:20+12=32,从而可得P点坐标.16.【答案】(1)90-45(2)2256【考点】解直角三角形的应用【解析】【解答】解:(1)∵AB=50cm,CD=40cm,∴EF=AD=AB+CD=50+40=90(cm),∵∠ABE=30°,∴cos30°= ,∴BE=25 ,同理可得:CF=20 ,∴BC=EF-BE-CF=90-25 -20 =90-45 (cm);( 2 )作AG⊥FN,连结AD,如图,依题可得:AE=25+15=40(cm),∵AB=50,∴BE=30,又∵CD=40,∴sin∠ABE= ,cos∠ABE= ,∴DF=32,CF=24,∴S四边形ABCD=S矩形AEFG-S△AEB-S△CFD-S△ADG,=40×90- ×30×40- ×24×32- ×8×90,=3600-600-384-360,=2256.故答案为:90-45 ,2256.【分析】(1)根据题意求得EF=AD=90cm,根据锐角三角函数余弦定义求得BE=25 ,同理可得:CF=20 ,由BC=EF-BE-CF即可求得答案.(2)作AG⊥FN,连结AD,根据题意可得AE=25+15=40cm,由勾股定理得BE=30,由锐角三角函数正弦、余弦定义可求得DF=32,CF=24,由S四边形=S矩形AEFG-S△AEB-S△CFD-S△ADG,代入数据即可求得答案.ABCD三、解答题(本题有8小题,共66分)17.【答案】解:原式=3-2 +2 +3,=6.【考点】实数的运算,负整数指数幂的运算性质,特殊角的三角函数值,实数的绝对值【解析】【分析】根据有理数的绝对值,特殊角的三角函数值,负整数指数幂,二次根式一一计算即可得出答案.18.【答案】解:原方程可变形为:,①+②得:6y=6,解得:y=1,将y=1代入②得:x=3,∴原方程组的解为:.【考点】解二元一次方程组【解析】【分析】先将原方程组化简,再利用加减消元法解方程组即可得出答案.19.【答案】(1)解:由统计表和扇形统计图可知:A趣味数学的人数为12人,所占百分比为20%,∴总人数为:12÷20%=60(人),∴m=15÷60=25%,n=9÷60=15%,答:m为25%,n为15%.(2)由扇形统计图可得,D生活应用所占百分比为:30%,∴D生活应用的人数为:60×30%=18,补全条形统计图如下,(3)解:由(1)知“数学史话”的百分比为25%,∴该校最喜欢“数学史话”的人数为:1200×25%=300(人).答:该校最喜欢“数学史话”的人数为300人.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【分析】(1)根据统计表和扇形统计图中的数据,由总数=频数÷频率,频率=频数÷总数即可得答案.(2)由扇形统计图中可得D生活应用所占百分比,再由频数=总数×频率即可求得答案.(3)由(1)知“数学史话”的百分比为25%,根据频数=总数×频率即可求得答案.20.【答案】解:如图所示,【考点】作图—复杂作图【解析】【分析】找出BC中点再与格点E、F连线即可得出EF平分BC的图形;由格点作AC的垂线即为EF;找出AB中点,再由格点、AB中点作AB的垂线即可.21.【答案】(1)如图,连结OB,设⊙O半径为r,∵BC与⊙O相切于点B,∴OB⊥BC,又∵四边形OABC为平行四边形,∴OA∥BC,AB=OC,∴∠AOB=90°,又∵OA=OB=r,∴AB= r,∴△AOB,△OBC均为等腰直角三角形,∴∠BOC=45°,∴弧CD度数为45°.(2)作OH⊥EF,连结OE,由(1)知EF=AB= r,∴△OEF为等腰直角三角形,∴OH= EF= r,在Rt△OHC中,∴sin∠OCE= = ,∴∠OCE=30°.【考点】切线的性质,解直角三角形的应用【解析】【分析】(1)连结OB,设⊙O半径为r,根据切线性质得OB⊥BC,由平行四边形性质得OA∥BC,AB=OC,根据平行线性质得∠AOB=90°,由勾股定理得AB= r,从而可得△AOB,△OBC均为等腰直角三角形,由等腰直角三角形性质得∠BOC=45°,即弧CD度数.(2)作OH⊥EF,连结OE,由(1)知EF=AB= r,从而可得△OEF为等腰直角三角形,根据等腰直角三角形性质得OH= EF= r,在Rt△OHC 中,根据正弦函数定义得sin∠OCE= ,从而可得∠OCE=30°.22.【答案】(1)连结PC,过点P作PH⊥x轴于点H,如图,∵在正六边形ABCDEF中,点B在y轴上,∴△OBC和△PCH都是含有30°角的直角三角形,BC=PC=CD=2,∴OC=CH=1,PH= ,∴P(2,),又∵点P在反比例函数y= 上,∴k=2 ,∴反比例函数解析式为:y= (x>0),连结AC,过点B作BG⊥AC于点G,∵∠ABC=120°,AB=CB=2,∴BG=1,AG=CG= ,AC=2 ,∴A(1,2 ),∴点A在该反比例函数的图像上.(2)过点Q作QM⊥x轴于点M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM= b,∴Q(b+3,b),又∵点Q在反比例函数上,∴b(b+3)=2 ,解得:b1= ,b2= (舍去),∴b+3= +3= ,∴点Q的横坐标为.(3)连结AP,∵AP=BC=EF,AP∥BC∥EF,∴平移过程:将正六边形ABCDEF先向右平移1个单位,再向上平移个单位,或将正六边形ABCDEF向左平移2个单位.【考点】待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征【解析】【分析】(1)连结PC,过点P作PH⊥x轴于点H,由正六边形性质可得△OBC和△PCH都是含有30°角的直角三角形,BC=PC=CD=2,根据直角三角形性质可得OC=CH=1,PH= ,即P(2,),将点P坐标代入反比例函数解析式即可求得k值;连结AC,过点B作BG⊥AC于点G,由正六边形性质得∠ABC=120°,AB=CB=2,根据直角三角形性质可得BG=1,AG=CG= ,AC=2 ,即A(1,2 ),从而可得点A在该反比例函数的图像上.(2)过点Q作QM⊥x轴于点M,由正六边形性质可得∠EDM=60°,设DM=b,则QM= b,从而可得Q(b+3,b),将点Q坐标代入反比例函数解析式可得b(b+3)=2 ,解之得b值,从而可得点Q的横坐标b+3的值.(3)连结AP,可得AP=BC=EF,AP∥BC∥EF,从而可得平移过程:将正六边形ABCDEF先向右平移1个单位,再向上平移个单位,或将正六边形ABCDEF 向左平移2个单位.23.【答案】(1)解:∵m=0,∴二次函数表达式为:y=-x2+2,画出函数图像如图1,∵当x=0时,y=2;当x=1时,y=1;∴抛物线经过点(0,2)和(1,1),∴好点有:(0,0),(0,1),(0,2),(1,0)和(1,1),共5个.(2)解:∵m=3,∴二次函数表达式为:y=-(x-3)2+5,画出函数图像如图2,∵当x=1时,y=1;当x=2时,y=4;当x=4时,y=4;∴抛物线上存在好点,坐标分别是(1,1),(2,4)和(4,4)。

相关文档
最新文档