复变函数习题五解答
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
复变函数习题答案
习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. 解:i 4πππecos isin 442222-⎛⎫⎛⎫⎛⎫=-+-=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z aa z a-∈+); 33311;;;.22nz i ⎛⎛-+-- ⎝⎭⎝⎭①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re3z xxy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩¢. ∴当2n k =时,()()Rei 1kn =-,()Imi 0n=;当21n k =+时,()Re i 0n=,()()Im i 1kn=-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-= 33-=- ③解:()()2i 32i 2i32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 222++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈¡,则z x x ==. ∴z z =. 命题成立.5、设z ,w ∈£,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w w z zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈£,证明下列不等式.()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+. ∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--== 其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .25531cos πisin πi 6622=+=-+z39931cos πisin πi 6622=+=--z⑵-1的三次根 解:()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-=+=+=∴1ππ13cosisin i 3322=+=+z 2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z-+++=L证明:∵2πi enz ⋅= ∴1nz=,即10n z -=.∴()()1110n z z z --+++=L又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=L11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z+i|<2解:表示以-i为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数答案 钟玉泉 第五章习题全解
5.4
的条件(2)
f
(z)
(z) (z a)m
,其中 (z) 在点 a
邻域内解析,
且 (a) 0 为 f (z) 以 a 为 m 阶极点的特征,则
lim(z a)m
z a
f
(z)
lim(z a)m za
(z) (z a)m
(a)
0
6.证明:令 g(z) (z a)k f (z) 。由题设, g(z) 在 k {a}: 0 | z a | R 内有界。由
n0
2i
(0
z i
2)
1
(2) z 2e z
1 z n2
1 1 (0 z )
n0 n!
n2(n 2)! z n
e e e (3) 令 1 ,则 z
1
1z
1
2
(1 ...) 2
2
3
4
5
4
2 (1 ...)(1 ...)
2 3! 4! 5!
2
3
4
5
平面上无其他奇点.
(4)令分母为 0,解得 z 2 (1 i) ,即为所给函数的极点. 2
且因[(z2 i)3 ] z
2 (1i)
0,[(z2 i)3 ] z
2 (1i)
0,
2
2
故 z 2 (1 i) 均为所给函数的三级极点. 2
又因 1 z 0 ,所以 z 为可去奇点. (z2 1)3
从而分别是函数的一级和二级极点,又因
z 1 z(z 2 4)
z
0
,所以
z
为可去
奇点.
(2)由定理 5.4(3)知函数 sin z cos z 的 m 级零点,就是
复变函数课后习题答案(全)
习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 3. 求下列各式的值: (1)5)i -(2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(56解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5=(6=4.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)z i +=由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4(1),1),1),)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。
复变函数课后习题答案(全)
习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2.将下列复数化为三角表达式和指数表达式:(1)i(2)1-+(3)(sin cos)r iθθ+(4)(cos sin)r iθθ-(5)1cos sin (02)iθθθπ-+≤≤解:(1)2cossin22ii i e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin )33)sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-)sin()](cos2sin 2)1212i i ππθθ=-+-+(2)12)sin(2)]1212ii πθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+-(5=11cos (2)sin (2)3232k i k ππππ=+++1, 0221, 122, 2i k i k i k +=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin (2)]2424k i k ππππ=+++88, 0, 1i i e k e k ππ==⎪=⎩4.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+z x y≤≤+证明:首先,显然有z x y =≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+从而z =≥。
复变函数课后习题答案
习题一 P311题 (2)i ii i -+-11 = 1)1(2)1(--++i i i i =223i --)R e (z 23-= ; 21)(-=z I m ; z = 23-2i + ; z =210;arg(z) = arctan-31π (4) 8i i i +-214 i i +-=41 i 31-= ;;1)Re(=z ;3)Im(-=z ;31i z += ;10=z 3a r c t a na r g -=z ; 5题(2) πππi e i 2)sin (cos 22=+=-;(4)⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+=-)43sin(arctan )43cos(arctan 5)43sin(arctan )43cos(arctan 91634i i i;5θi e = );43arctan(-=θ (6) θθθθθθθθϑθθ7sin 7cos )()()2sin 2(cos )sin (cos )7(4322323i e e e e e i i i i i i i -====+---- ; 8题(2) 16)2()1(848==+πie i (4));3432sin 3432(cos2163ππππ-+-=--k i k i ;431arctan ππθ-=-= ;2,1,0=K);1(24)2222(2360i i K -=-= );125sin 125(cos261ππi K += );1213sin 1213(cos 262ππi K +=12题(2) ;3)2(=-z R e 即 ;3])2[(e =+-iy x R ;32=-x 5=x 直线(6) ;4)arg(π=-i z ;4))1(arg(π=-+y i x arctan;41π=-x y ;11=-xy 1+=x y 以i 为起点的射线(x>0). 13题(1) 0)(<z I m ; 即y<0, 不含实轴的下半平面,开区域,无界,单连通。
复变函数习题答案
习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. ①解:i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1kn =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3 352π2π;;1;8π(1);.cos sin7199ii ii+⎛⎫--++⎪+⎝⎭①解:()()()()35i17i35i7i117i17i+-+=++-3816i198ie5025iθ⋅--===其中8πarctan19θ=-.②解:e iiθ⋅=其中π2θ=.π2e ii=③解:ππi i1e e-==④解:()28π116ππ3θ-==-.∴()2πi38π116πe--=⋅⑤解:32π2πcos isin99⎛⎫+⎪⎝⎭解:∵32π2πcos isin199⎛⎫+=⎪⎝⎭.∴322πiπ.3i932π2πcos isin1e e99⋅⎛⎫+=⋅=⎪⎝⎭8.计算:(1)i的三次根;(2)-1的三次根;(3)的平方根.⑴i的三次根.()13ππ2π2πππ22cos sin cos isin0,1,22233++⎛⎫+=+=⎪⎝⎭k ki k∴1ππ1cos isin i662=+=z.2551cosπi sinπi662=+=z3991cosπi sinπi662=+=-z⑵-1的三次根()()132π+π2ππcosπisinπcos isin0,1,233k kk++=+=∴1ππ1cos isin332=+=z2cosπisinπ1=+=-z3551cos πi sin π332=+=--z的平方根.解:πi 4e ⎫=⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe ,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换第五章习题解答
c-1r-•
1 (1 2 7) Res[f(z),O] =Iim!!:_[z = ti ,k =土1,土2, ] = o, Res[f(z),k叶= ,�, dz k冗 (zsin z)'L,, zsinz 8) Res[f位), (k+½
叶
(ch z)' :�(k+ )汀i
一
shz
=
I k为整数。
证 由题知: J(z)=(z-z。)飞(z), <p亿)*o, 则有
一 Ill
-{,, 0
0
k=O k=,;O
l 2 (sinz )"1 z O =2, 知 z=O 是 . 2 的二级极点, smz
=
故z。是 J'(z) 的 m-1 级零点。
冗l
f'(z)=m(z-z。)m 凇(z)+(z-z。) 份'(z)=(z-z0 Y,一'[m<p(z)+(z-z。炒'(z)]
六
f'(z) = (fJ(z) + (z- Zo )(fJ'(z) g'(z) lf/(z) + (z-Zo)lf/'(z)
亡,
6. 若叫z) 与 lf/(z) 分别以 z=a 为 m 级与 n 级极点(或零点),那么下列三个函数在 z=a 处各有什 (f)(Z)lf/(Z); (2) (f)(z)llf/(Z);
汗
I
2
5) cos— = L 巨 -11>0 , 知 Res [f(z), l ] = c一 . 2 "' I- z n=O (2n) !(z-1)
1 00
I
(-1) "
复变函数—课后答案习题五解答
1 z ( z − 1) 1
2 2
在 z = 1 处有一个二级极点,这个函数又有下列洛朗展开式
z ( z − 1)
="+
1
( z − 1)
5
−
1
( z − 1)
4
+
1
( z − 1)
3
,| z − 1|> 1. , | z − 2 |> 1
−1 所以“ z = 1 又是 f (z ) 的本性奇点” ,又其中不含 (z − 2) 幂项,因此 Res ⎡ ⎣ f ( z ) ,1⎤ ⎦ = 0 ,这些说法对
m −1
ϕ (z ) + (z − z 0 )m ϕ ' (z ) = (z − z0 )m−1 [mϕ (z ) + (z − z0 )ϕ ' (z )]
故 z0 是 f ' (z ) 的 m-1 级零点。 3.验证: z = 解 由 ch
πi
2
是 ch z 的一级零点。
πi
2
= cos
π
2
= 0 , (ch z ) ' z = π i = sh
z → z0
lim
f ( z) f '( z ) = lim z → z 0 g '( z ) g ( z)
(或两端均为∞) 。
证
因 f ( z ) 和 g ( z ) 是 以 z0 为 零 点 的 两 个 不 恒 等 于 零 的 解 析 函 数 , 可 设 f ( z ) = ( z − z0 )ϕ ( z ) ,
习题五解答
1、下列函数有些什么奇点?如果是极点,指出它的级。 (1)
z ( z + 1)
复变函数与积分变换第五版习题解答
复变函数与积分变换第五版答案目录练 习 一...............................1 练 习 二...............................3 练 习 三...............................5 练 习 四...............................8 练 习 五..............................13 练 习 六..............................16 练 习 七..............................18 练 习 八..............................21 练 习 九 (24)练 习 一1.求下列各复数的实部、虚部、模与幅角。
(1)i iii 524321----; 解:i i i i 524321---- =i 2582516+ zk k Argz z z z ∈+====π221arctan2558258Im 2516Re(2)3)231(i + 解: 3)231(i +zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin 3(cos 3332.将下列复数写成三角表示式。
1)i 31-解:i 31-)35sin 35(cos2ππi +=(2)i i +12解:i i+12)4sin 4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。
(1)i i2332++- 解:i i 2332++-2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k ki k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。
复变函数习题五
习题五(A )1. 求2w z =在点z i =处的伸缩率和旋转角.问2w z =将经过点z i =且平行于实轴正向的曲线的切线方向映射成w 平面上哪个方向?解由2)(z z f =得z z f 2)(=',i i f 2)(='。
故2z w =在i z =处的伸缩率2)(='=i f ,旋转角2)(arg π='=i f 。
又1)(-=i f ,由导数)(i f '的辐角(旋转角)的几何意义可知, 过i z =且平行于实轴正向的曲线的切线方向经过映射2z w =后变为过1-=w 且平行于虚轴正向的曲线的切线方向(辐角增加2π). 2. 在下述情况下,试决定映射()w f z =在z 平面上不保角的点.(1)3222w z z z =-+-;(2)221w z z=+;(3)2sin w z =. 解 (1) 因143)(2+-='z z z f ,当0)(='z f 时,映射)(z f w =在z 平面上不保角,即1=z ,31=z 时,映射)(z f w =在z 平面上不保角. (2) 因3122)(zz z f -=',且0)(='z f 时,1z =,1z =-,z i =z i =-,即1,1,,z z z i z i ==-==-时,映射)(z f w =在z 平面上不保角.(3) 因()2cos sin sin(2)f z z z z '==,且0)(='z f 时,2n z π=),2,1,0( ±±=n .即zn z π=()Z ∈n 时,映射()z f w =在z 平面上不保角.3. 在映射w iz =下,下列图形映射成什么图形?(1)以123,1,1z i z z ==-=为顶点的三角形; (2)圆域11z -≤.解 (1) 因映射iz w =ize 2π=为一旋转变换(旋转角为2π,这一结论也可由i dzdw=得到),所以它将以i z =1,12-=z ,13=z 为顶点的三角形映射为11-=w ,i w -=2,i w =3为顶点的三角形(即原图形绕原点旋转2π即可). (2) 将闭圆域11≤-z 映射为闭圆域1≤-i w (原图形绕原点旋转2π即可). 4. 在映射1w z=下,下列图形映射成什么图形? (1)圆(0)z r =>; (2)双曲线221x y -=; (3)抛物线22y px =.解 (1) 令iv u w iy x z +=+=,,将iy x z +=代入圆)0(>=r r z 的方程得,222r y x =+,在映射zw 1=下, 得22,r y v r x u -==,即2221rv u =+,即)0(1>=r r w . (2) 令iv u w +=,在映射z w 1=下,得2222,yx y v y x x u +-=+=,又因为122=-y x ,则22221yx v u +=+,2222222)(y x y x v u +-=-, 即22222)(v u v u -=+,则映射成双纽线22222)(v u v u -=+. (3) 令iv u w +=,在映射zw 1=下,得 2222,yx y v y x x u +-=+=,又因为px y 22=, 则322)21(pu v pu =-.5. 求分式线性映射()w f z =把点,0,z i i =-依次映成1,,1w i =-.解: 由唯一确定分式线性映射的条件可知,能将点i i z ,0,-=依次映成1,,1-=i w 的分式线性映射又下式ii i z i z i i w w )(:111:1--+=------ 确定.整理后得所求的映射为zz i w -+=11.6. 求把上半平面Im()0z >映射成单位圆1w <的分式线性映射()w f z =,并满足条件:(1)()0,(1)1f i f =-=;(2)()0,arg ()0f i f i '==; (3)1(1)1,()5f f i ==. 解把上半平面0)Im(>z 映射成单位圆1<w 的分式线性映射)(z f w =的一般形式为λλϕ--==z z e z f w i )()0)(Im(>λ1) 若1)1(,0)(=-=f i f ,则i i i e i =⇒=--λλλϕ0 122111=⋅⇒=----ie e i i ϕϕλλ即i e i -=ϕ 故所求映射为iz i z iw +--= (2)由0)(=i f 易知i =λ。
复变函数1到5章测试题及答案
第一章复数与复变函数(答案)一、选择题1.当时,的值等于(B )ii z -+=115075100z z z ++(A ) (B ) (C ) (D )i i -11-2.设复数满足,,那么(A )z arg(2)3z π+=5arg(2)6z π-==z (A ) (B ) (C ) (D )i 31+-i +-3i 2321+-i 2123+-3.复数的三角表示式是(D ))2(tan πθπθ<<-=i z (A ) (B ))]2sin()2[cos(sec θπθπθ+++i )]23sin()23[cos(sec θπθπθ+++i (C )(D ))]23sin()23[cos(sec θπθπθ+++-i )]2sin()2[cos(sec θπθπθ+++-i 4.若为非零复数,则与的关系是(C )z 22z z -z z 2(A ) (B )z z z z 222≥-z z z z 222=-(C ) (D )不能比较大小z z zz 222≤-5.设为实数,且有,则动点y x ,yi x z yi x z +-=++=11,11211221=+z z 的轨迹是(B )),(y x (A )圆 (B )椭圆 (C )双曲线 (D )抛物线6.一个向量顺时针旋转,对应的复数为,则原向量对应的复数是(A )3πi 31-(A ) (B ) (C ) (D )2i 31+i -3i+37.使得成立的复数是(D )22z z =z(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设为复数,则方程的解是(B )z i z z +=+2(A ) (B ) (C ) (D )i +-43i +43i -43i --439.满足不等式的所有点构成的集合是(D )2≤+-iz iz z (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程所代表的曲线是(C )232=-+i z (A )中心为,半径为的圆周 (B )中心为,半径为2的圆周i 32-2i 32+-(C )中心为,半径为的圆周 (D )中心为,半径为2的圆周i 32+-2i 32-11.下列方程所表示的曲线中,不是圆周的为(B )(A ) (B )221=+-z z 433=--+z z (C ) (D ))1(11<=--a azaz )0(0>=-+++c c a a z a z a z z 12.设,则(C ),5,32,1)(21i z i z z z f -=+=-=12()f z z -=(A ) (B ) (C ) (D )i 44--i 44+i 44-i 44+-13.(D )000Im()Im()limz z z z z z →--(A )等于 (B )等于 (C )等于 (D )不存在i i -014.函数在点处连续的充要条件是(C )),(),()(y x iv y x u z f +=000iy x z +=(A )在处连续 (B )在处连续),(y x u ),(00y x ),(y x v ),(00y x (C )和在处连续(D )在处连续),(y x u ),(y x v ),(00y x ),(),(y x v y x u +),(00y x15.设且,则函数的最小值为(A )C z ∈1=z zz z z f 1)(2+-=(A ) (B ) (C ) (D )3-2-1-1二、填空题1.设,则)2)(3()3)(2)(1(i i i i i z ++--+==z 22.设,则)2)(32(i i z +--==z arg 8arctan -π3.设,则 43)arg(,5π=-=i z z =z i 21+-4.复数的指数表示式为 22)3sin 3(cos )5sin5(cos θθθθi i -+ie θ165.以方程的根的对应点为顶点的多边形的面积为 i z 1576-=6.不等式所表示的区域是曲线(或522<++-z z 522=++-z z ) 的内部1)23()25(2222=+y x 7.方程所表示曲线的直角坐标方程为 1)1(212=----zi iz 122=+y x 8.方程所表示的曲线是连接点 和 的线段的垂i z i z +-=-+22112i -+2i -直平分线9.对于映射,圆周的像曲线为zi =ω1)1(22=-+y x ()2211u v -+=10. =+++→)21(lim 421z z iz 12i -+三、若复数满足,试求的取值范围.z 03)21()21(=+++-+z i z i z z 2+z((或))]25,25[+-25225+≤+≤-z 四、设,在复数集中解方程.0≥a C a z z =+22(当时解为或10≤≤a i a )11(-±±)11(-+±a 当时解为)+∞≤≤a 1)11(-+±a 五、设复数,试证是实数的充要条件为或.i z ±≠21zz+1=z Im()0z =六、对于映射,求出圆周的像.)1(21zz +=ω4=z (像的参数方程为.表示平面上的椭圆)π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u w 1)215()217(2222=+v u 七、设,试讨论下列函数的连续性:iy x z +=1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f 2..⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f (1.在复平面除去原点外连续,在原点处不连续;)(z f 2.在复平面处处连续))(z f 第二章 解析函数(答案)一、选择题:1.函数在点处是( B )23)(z z f =0=z(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数在点可导是在点解析的( B ))(z f z )(z f z (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( D )(A )设为实数,则y x ,1)cos(≤+iy x (B )若是函数的奇点,则在点不可导0z )(z f )(z f 0z (C )若在区域内满足柯西-黎曼方程,则在内解析v u ,D iv u z f +=)(D (D )若在区域内解析,则在内也解析)(z f D )(z if D 4.下列函数中,为解析函数的是( C )(A ) (B )xyi y x 222--xyi x +2(C ) (D ))2()1(222x x y i y x +-+-33iy x +5.函数在处的导数( A ))Im()(2z z z f =0z =(A )等于0 (B )等于1 (C )等于 (D )不存在1-6.若函数在复平面内处处解析,那么实常)(2)(2222x axy y i y xy x z f -++-+=数( C )=a (A ) (B ) (C ) (D )0122-7.如果在单位圆内处处为零,且,那么在内( C ))(z f '1<z 1)0(-=f 1<z ≡)(z f (A ) (B ) (C ) (D )任意常数011-8.设函数在区域内有定义,则下列命题中,正确的是( C ))(z f D (A )若在内是一常数,则在内是一常数)(z f D )(z f D (B )若在内是一常数,则在内是一常数))(Re(z f D )(z f D (C )若与在内解析,则在内是一常数)(z f )(z f D )(z f D(D )若在内是一常数,则在内是一常数)(arg z f D )(z f D 9.设,则( A )22)(iy x z f +==+')1(i f (A ) (B ) (C ) (D )2i 2i +1i 22+10.的主值为( D )ii (A ) (B ) (C ) (D )012πe 2eπ-11.在复平面上( A )ze (A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设,则下列命题中,不正确的是( C )z z f sin )(=(A )在复平面上处处解析 (B )以为周期)(z f )(z f π2(C ) (D )是无界的2)(iziz e e z f --=)(z f 13.设为任意实数,则( D )αα1(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A ) (B ) (C ) (D )3)1(i -i cos i ln e 23π-15.设是复数,则( C )α(A )在复平面上处处解析 (B )的模为αz αz αz(C )一般是多值函数 (D )的辐角为的辐角的倍αz αz z α二、填空题1.设,则i f f +='=1)0(,1)0(=-→zz f z 1)(limi +12.设在区域内是解析的,如果是实常数,那么在内是 常数iv u z f +=)(D v u +)(z f D3.导函数在区域内解析的充要条件为 可微且满足x vix u z f ∂∂+∂∂=')(D xvx u ∂∂∂∂, 222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂4.设,则2233)(y ix y x z f ++==+-')2323(i f i 827427-5.若解析函数的实部,那么或iv u z f +=)(22y x u -==)(z f ic xyi y x ++-222为实常数ic z +2c 6.函数仅在点处可导)Re()Im()(z z z z f -==z i 7.设,则方程的所有根为 z i z z f )1(51)(5+-=0)(='z f 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k 8.复数的模为ii ),2,1,0(2L ±±=π-k ek 9.=-)}43Im{ln(i 34arctan -10.方程的全部解为01=--ze),2,1,0(2L ±±=πk i k 三、试证下列函数在平面上解析,并分别求出其导数z 1.();sinh sin cosh cos )(y x i y x z f -=;sin )(z z f -='2.());sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=.)1()(ze z zf +='四、已知,试确定解析函数.22y x v u -=-iv u z f +=)((.为任意实常数)c i z i z f )1(21)(2++-=c 第三章 复变函数的积分(答案)一、选择题:1.设为从原点沿至的弧段,则( D )c x y =2i +1=+⎰cdz iy x )(2(A )(B ) (C ) (D )i 6561-i 6561+-i 6561--i 6561+2.设为不经过点与的正向简单闭曲线,则为( D)c 11-dz z z zc ⎰+-2)1)(1((A )(B ) (C ) (D )(A)(B)(C)都有可能2iπ2iπ-03.设为负向,正向,则( B )1:1=z c 3:2=z c =⎰+=dz zzc c c 212sin (A )(B ) (C ) (D )i π2-0iπ2iπ44.设为正向圆周,则( C)c 2=z =-⎰dz z zc2)1(cos (A ) (B ) (C ) (D )1sin -1sin 1sin 2i π-1sin 2i π5.设为正向圆周,则 ( B)c 21=z =--⎰dz z z z c23)1(21cos(A ) (B ) (C ) (D ))1sin 1cos 3(2-i π01cos 6i π1sin 2i π-6.设,其中,则( A )ξξξξd ze zf ⎰=-=4)(4≠z =')i f π((A ) (B ) (C ) (D )i π2-1-i π217.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分)(z f B c B( C )dz z f z f z f z f c⎰+'+'')()()(2)((A )于 (B )等于 (C )等于 (D )不能确定i π2i π2-08.设是从到的直线段,则积分( A )c 0i 21π+=⎰cz dz ze (A ) (B) (C) (D) 21eπ-21eπ--i e21π+ie21π-9.设为正向圆周,则( A )c 0222=-+x y x =-⎰dz z z c1)4sin(2π(A )(B ) (C ) (D )i π22i π20i π22-10.设为正向圆周,则( C)c i a i z ≠=-,1=-⎰cdz i a zz 2)(cos (A ) (B )(C ) (D )ie π2eiπ20i i cos 11.设在区域内解析,为内任一条正向简单闭曲线,它的内部全属于.如果)(z f D c D D 在上的值为2,那么对内任一点,( C ))(z f c c 0z )(0z f (A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D )(A )积分的值与半径的大小无关⎰=--ra z dz az 1)0(>r r (B ),其中为连接到的线段2)(22≤+⎰cdz iy xc i -i (C )若在区域内有,则在内存在且解析D )()(z g z f ='D )(z g '(D )若在内解析,且沿任何圆周的积分等于零,则)(z f 10<<z )10(:<<=r r z c 在处解析)(z f 0=z 13.设为任意实常数,那么由调和函数确定的解析函数是 ( D)c 22y x u -=iv u z f +=)((A) (B ) (C ) (D )c iz +2ic iz +2c z +2ic z +214.下列命题中,正确的是(C)(A )设在区域内均为的共轭调和函数,则必有21,v v D u 21v v =(B )解析函数的实部是虚部的共轭调和函数(C )若在区域内解析,则为内的调和函数iv u z f +=)(D xu∂∂D (D )以调和函数为实部与虚部的函数是解析函数15.设在区域内为的共轭调和函数,则下列函数中为内解析函数的是( ),(y x v D ),(y x u D B )(A ) (B )),(),(y x iu y x v +),(),(y x iu y x v -(C ) (D )),(),(y x iv y x u -xv i x u ∂∂-∂∂二、填空题1.设为沿原点到点的直线段,则 2c 0=z i z +=1=⎰cdz z 22.设为正向圆周,则c 14=-z =-+-⎰c dz z z z 22)4(23i π103.设,其中,则 0 ⎰=-=2)2sin()(ξξξξπd zz f 2≠z =')3(f 4.设为正向圆周,则=+⎰cdz zzz c 3=z i π65.设为负向圆周,则 c 4=z =-⎰c z dz i z e 5)(π12iπ6.解析函数在圆心处的值等于它在圆周上的 平均值7.设在单连通域内连续,且对于内任何一条简单闭曲线都有,)(z f B B c 0)(=⎰cdz z f 那么在内 解析)(z f B 8.调和函数的共轭调和函数为xy y x =),(ϕC x y +-)(21229.若函数为某一解析函数的虚部,则常数 -323),(axy x y x u +==a 10.设的共轭调和函数为,那么的共轭调和函数为 ),(y x u ),(y x v ),(y x v ),(y x u -三、计算积分1.,其中且;⎰=+-R z dz z z z)2)(1(621,0≠>R R 2≠R (当时,; 当时,; 当时,)10<<R 021<<R i π8+∞<<R 202..(0)⎰=++22422z z z dz四、求积分,从而证明.()⎰=1z zdz z e πθθπθ=⎰0cos )cos(sin d e i π2五、若,试求解析函数.)(22y x u u +=iv u z f +=)(((为任意实常数))321ln 2)(ic c z c z f ++=321,,c c c 第四章 级 数(答案)一、选择题:1.设,则( C )),2,1(4)1(L =++-=n n nia n n n n a ∞→lim (A )等于 (B )等于 (C )等于 (D )不存在01i2.下列级数中,条件收敛的级数为( C )(A ) (B )∑∞=+1)231(n n i ∑∞=+1!)43(n nn i (C ) (D )∑∞=1n n n i ∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) (B )∑∞=+1)1(1n n i n ∑∞=+-1]2)1([n n n in (C) (D )∑∞=2ln n n n i ∑∞=-12)1(n n nn i 4.若幂级数在处收敛,那么该级数在处的敛散性为( A )∑∞=0n n nz ci z 21+=2=z (A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定5.设幂级数和的收敛半径分别为,则∑∑∞=-∞=01,n n n n nnznc z c∑∞=++011n n n z n c 321,,R R R 之间的关系是( D )321,,R R R (A ) (B ) 321R R R <<321R R R >>(C ) (D )321R R R <=321R R R ==6.设,则幂级数的收敛半径( D )10<<q ∑∞=02n n n z q =R (A ) (B )(C ) (D )q q10∞+7.幂级数的收敛半径( B )∑∞=1)2(2sinn n z n n π=R(A )(B ) (C ) (D )122∞+8.幂级数在内的和函数为( A )∑∞=++-011)1(n n n z n 1<z (A ) (B ))1ln(z +)1ln(z -(D ) (D) z +11lnz-11ln 9.设函数的泰勒展开式为,那么幂级数的收敛半径( C )z e z cos ∑∞=0n n n z c ∑∞=0n nn z c =R (A ) (B ) (C )(D )∞+12ππ10.级数的收敛域是( B )L +++++22111z z z z(A ) (B ) (C ) (D )不存在的1<z 10<<z +∞<<z 111.函数在处的泰勒展开式为( D)21z1-=z (A )(B ))11()1()1(11<++-∑∞=-z z n n n n)11()1()1(111<++-∑∞=--z z n n n n (C ) (D ))11()1(11<++-∑∞=-z z n n n )11()1(11<++∑∞=-z z n n n 12.函数,在处的泰勒展开式为( B )z sin 2π=z (A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn (C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n (D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn 13.设在圆环域内的洛朗展开式为,为内)(z f 201:R z z R H <-<∑∞-∞=-n n nz z c)(0c H 绕的任一条正向简单闭曲线,那么( B )0z =-⎰c dz z z z f 20)()((A) (B ) (C ) (D )12-ic π12ic π22ic π)(20z f i 'π14.若,则双边幂级数的收敛域为( A )⎩⎨⎧--==-+=L L ,2,1,4,2,1,0,)1(3n n c nn n n ∑∞-∞=n nn z c (A )(B ) 3141<<z 43<<z (C )(D )+∞<<z 41+∞<<z 3115.设函数在以原点为中心的圆环内的洛朗展开式有个,那么)4)(1(1)(++=z z z z f m ( C )=m (A )1 (B )2 (C )3 (D )4二、填空题1.若幂级数在处发散,那么该级数在处的收敛性为 发散∑∞=+0)(n n ni z ci z =2=z 2.设幂级数与的收敛半径分别为和,那么与之间的关∑∞=0n nnz c∑∞=0)][Re(n n n z c 1R 2R 1R 2R系是 .12R R ≥3.幂级数的收敛半径∑∞=+012)2(n n nz i =R 224.设在区域内解析,为内的一点,为到的边界上各点的最短距离,那么)(z f D 0z d 0z D 当时,成立,其中d z z <-0∑∞=-=0)()(n n nz z cz f 或=n c ),2,1,0()(!10)(L =n z f n n ().)0,2,1,0()()(21010d r n dz z z z f irz z n <<=-π⎰=-+L 5.函数在处的泰勒展开式为 .z arctan 0=z )1(12)1(012<+-∑∞=+z z n n n n 6.设幂级数的收敛半径为,那么幂级数的收敛半径为∑∞=0n nn z c R ∑∞=-0)12(n n n n z c 2R .7.双边幂级数的收敛域为 .∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 211<-<z 8.函数在内洛朗展开式为 .zze e 1++∞<<z 0nn nn z n z n ∑∑∞=∞=+00!11!19.设函数在原点的去心邻域内的洛朗展开式为,那么该洛朗级数z cot R z <<0∑∞-∞=n n nz c收敛域的外半径 .=R π10.函数在内的洛朗展开式为)(1i z z -+∞<-<i z 1∑∞=+--02)()1(n n n n i z i三、若函数在处的泰勒展开式为,则称为菲波那契(Fibonacci)211z z --0=z ∑∞=0n nn z a {}n a 数列,试确定满足的递推关系式,并明确给出的表达式.n a n a (,)2(,12110≥+===--n a a a a a n n n )),2,1,0(}251()251{(5111L =--+=++n a n n n 四、求幂级数的和函数,并计算之值.∑∞=12n nz n ∑∞=122n n n (,)3)1()1()(z z z z f -+=6五、将函数在内展开成洛朗级数.)1()2ln(--z z z 110<-<z ()n n nk k z k n z z z z z z )1(1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+第五章 留 数(答案)一、选择题:1.函数在内的奇点个数为 ( D )32cot -πz z2=-i z (A )1 (B )2 (C )3 (D )42.设函数与分别以为本性奇点与级极点,则为函数)(z f )(z g a z =m a z =)()(z g z f 的( B )(A )可去奇点 (B )本性奇点(C )级极点 (D )小于级的极点m m 3.设为函数的级极点,那么( C )0=z zz e xsin 142-m =m(A )5 (B )4 (C)3 (D )24.是函数的( D )1=z 11sin)1(--z z (A)可去奇点 (B )一级极点(C ) 一级零点 (D )本性奇点5.是函数的( B )∞=z 2323z z z ++(A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设在内解析,为正整数,那么( C )∑∞==)(n n n z a z f R z <k =]0,)([Re kz z f s (A ) (B ) (C ) (D )k a k a k !1-k a 1)!1(--k a k 7.设为解析函数的级零点,那么='],)()([Re a z f z f s ( A )a z =)(z f m (A) (B ) (C ) (D )m m -1-m )1(--m 8.在下列函数中,的是( D )0]0),([Re =z f s (A )(B )21)(ze zf z -=z z z z f 1sin )(-=(C ) (D) z z z z f cos sin )(+=ze zf z 111)(--=9.下列命题中,正确的是( C )(A )设,在点解析,为自然数,则为的)()()(0z z z z f mϕ--=)(z ϕ0z m 0z )(z f 级极点.m (B )如果无穷远点是函数的可去奇点,那么∞)(z f 0]),([Re =∞z f s (C )若为偶函数的一个孤立奇点,则0=z )(z f 0]0),([Re =z f s(D )若,则在内无奇点0)(=⎰c dz z f )(z f c 10. ( A )=∞],2cos[Re 3ziz s (A ) (B ) (C ) (D )32-32i 32i32-11. ( B)=-],[Re 12i e z s iz (A ) (B ) (C ) (D )i +-61i +-65i +61i +6512.下列命题中,不正确的是( D)(A )若是的可去奇点或解析点,则)(0∞≠z )(z f 0]),([Re 0=z z f s (B )若与在解析,为的一级零点,则)(z P )(z Q 0z 0z )(z Q )()(],)()([Re 000z Q z P z z Q z P s '=(C )若为的级极点,为自然数,则0z )(z f m m n ≥)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点为的一级极点,则为的一级极点,并且∞)(z f 0=z )1(zf )1(lim ]),([Re 0zzf z f s z →=∞13.设为正整数,则( A )1>n =-⎰=211z ndz z (A) (B ) (C )(D )0i π2niπ2i n π214.积分( B )=-⎰=231091z dz z z (A ) (B ) (C ) (D )0i π2105iπ15.积分( C )=⎰=121sin z dz z z (A ) (B ) (C ) (D )061-3i π-iπ-二、填空题1.设为函数的级零点,那么 9 .0=z 33sin z z -m =m 2.函数在其孤立奇点处的留数zz f 1cos1)(=),2,1,0(21L L ±±=+=k k z k ππ.=]),([Re k z z f s 2)2()1(π+π-k k3.设函数,则 0 }1exp{)(22zz z f +==]0),([Re z f s 4.设为函数的级极点,那么 .a z =)(z f m ='],)()([Re a z f z f s m -5.设,则 -2 .212)(zzz f +==∞]),([Re z f s 6.设,则 .5cos 1)(z z z f -==]0),([Re z f s 241-7.积分.=⎰=113z zdz e z 12iπ8.积分.=⎰=1sin 1z dz z i π2三、计算积分.()⎰=--412)1(sin z z dz z e z z i π-316四、设为的孤立奇点,为正整数,试证为的级极点的充要条件是a )(z f m a )(z f m ,其中为有限数.b z f a z m az =-→)()(lim 0≠b 五、设为的孤立奇点,试证:若是奇函数,则;a )(z f )(z f ]),([Re ]),([Re a z f s a z f s -=若是偶函数,则.)(z f ]),([Re ]),([Re a z f s a z f s --=。
复变函数5
是
1 的 1 级极点.由定理 5.3, z sin z
z 2 ' z 2 z 2 z
,e z − 1 的 1 级零点, z 的 2 级零点,所以 z = 0 是 ① z = 0 时, z = 0 是 sin z 的 1 级零点,
2
sin z (e z − 1) z 2 的 4 级零点.
② z1 = kπ , k ≠ 0 时, f ( z1 ) = 0 , f ' ( z1 ) ≠ 0 ,由定义 5.2 知, z1 = kπ , k ≠ 0 是 f ( z ) 的 1 级零点. 由定义 5.2 知,z2 = 2kπ i ,k ≠ 0 是 f ( z ) ③ z2 = 2kπ i ,k ≠ 0 时, f ( z1 ) = 0 , f ' ( z1 ) ≠ 0 , 的 1 级零点. 3. z = 0 是函数 (sin z + shz − 2 z ) 的几级极点? 答:记 f ( z ) = sin z + shz − 2 z ,则 f ( z ) = cos z + chz − 2 , f ( z ) = − sin z + shz ,
z = 0 是函数 f ( z ) = sin z + shz − 2 z 的 5 级零点,故是 (sin z + shz − 2 z ) −2 的 10 级极点.
4. 证明:如果 z0 是 f ( z ) 的 m( m > 1) 级零点,那么 z0 是 f ( z ) 的 m − 1 级零点.
'
证明:因为 z0 是 f ( z ) 的 m 级零点,所以 f ( z0 ) = f ' ( z0 ) = f '' ( z0 ) = " = f
《复变函数》习题及答案
第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。
( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。
( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。
( )4、cos z 与sin z 在复平面内有界。
( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。
( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。
( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。
( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。
( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。
( ) 12、有界整函数必为常数。
( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。
( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。
( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。
( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。
( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。
( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。
( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。
复变函数第五章留数(习题五)解答
8.求下列各积分:
(1) ;(2) ,其中 ;
(3) ,其中 ;(4) ;(5) ;
(6) ;(7) ,其中 ;
(8) ,其中 ;[提示]:从顶点为 , , , ( )的矩形中分别挖去以 为心的上半圆盘和以 为心的下半圆,考虑 沿这个区域边界的积分.
(9) ;[提示]:从顶点为 , , , ( )的矩形中分别挖去以 为心的上半圆盘和以 为心的下半圆,考虑 沿这个区域边界的积分.
(2) ,其中 .
[提示]:作辅助函数 ,并考虑以 , , , ( )为顶点的矩形.
证明(1)作辅助函数 ,并取 ,以及如图示的扇形
显然 在此扇形区域及其边界上解析,由柯西积分定理
又
所以
即
比较两边的实部和虚部得
.
(2)因
,
考虑函数 沿如图示矩形区域边界的积分,由柯西积分定理得
而
同理
所以
比较两边的实部和虚部得
不难观察出,上式展开后最低的负幂次项为 ,不含有 这样的项,即这样的项的系数为 ,所以,由第4题得
.
(方法2)[利用公式 计算]
记 ,因 ,显然它以 为可去奇点,所以
.
6.试把关于留数的基本定理1.1转移到 是扩充复平面上含无穷远点区域情形.
设区域 是一条简单闭曲线或有限条互不相交且其内部也互不相交的简单闭曲线(记为 )的外部(称为扩充平面上含无穷远点的区域),若函数 在 内除去有有限个孤立奇点 , , , 外,在每一点都解析,并且 可连续到 上,则
用此结果计算积分
.
证明 由题设,显然函数 在复平面上的奇点都是孤立的,记为 , , , .
(方法1:利用第6题)如图示,可取简单闭曲线 ,使得 , , , 都位于 的外部,从而 在 及 的内部是解析的.由第6题,并注意到第3章的柯西定理,
复变函数习题五解答
第五章部分习题解答1.若()z f 与()z g 分别以0z z =为m 级与n 级极点,试问下列函数在0z z =点有何性质?(1)()()z g z f +;(2)()()z g z f ⋅;(3)()()z g z f 解 由题意,()()()mz z z z f 0-=ϕ,()()()nz z z h z g 0-=,其中()z ϕ,()z h 在0z 点解析且()00≠z ϕ,()00≠z h 。
(1)当n m ≠时,点0z 是()()z g z f +的{}n m ,max 级极点,当n m =时,点0z 是()()z g z f +的极点。
(可退化为可去),其级不高于m ,点0z 也可能是()()z g z f +的可去奇点(解析点)。
(2)0z z =是()()z g z f ⋅的n m +级极点。
(3)对于()()z g z f /,当n m <时,0z 是m n -级零点;当n m >时,0z 是n m -级极点;当n m =时,0z 是可去奇点。
2.若()z f 在0z 点解析()z g 在0z 点有本性奇点,试问: (1)()()z g z f +;(2)()()z g z f ⋅;(3)()()z g z f /在0z 有何性质? 解:0z z =是(1)、(2)、(3)的本性奇点,证明如下: 设()()()z z g z f 1ϕ=±,()()()z z g z f 2ϕ=⋅,()()()z z g z f 3/ϕ=反证法:如果0z z =不是()()3,2,1=i z i ϕ的本性奇点,则由上题结论知,()z g 以0z z =为可去奇点或极点,这与题设矛盾。
3.把下列各函数在指定的圆环域内展开成Laurent 级数。
(1)ze -11,+∞<<||1z解 在+∞<<||1z 内,因⎪⎭⎫ ⎝⎛+++-=⎪⎭⎫ ⎝⎛+++-=⎪⎭⎫ ⎝⎛--=- 322111*********z z z z z z z z z 故+⎪⎭⎫⎝⎛+++-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++-=-3322323211111!31111!211111z z z z z z z z z ez++---=4321!411!311!2111z z z z4.试求下列函数在给定圆环域内的Laurent 级数。
复变函数 积分变换——课后答案
ln 1 z 1
( )
+
b .lim lim 1 ,故z 0 为可去奇点。
z→0 z→0 1+
----------------------- Page 1-----------------------
习题五解答
1、下列函数有些什么奇点?如果是极点,指出它的级。
z − z −
( 1)( 1) z z
( −1)( +1)
∞ z n+1 ( ) ∞ n
1 z
(4 ) ; (5) ; (6)e − ;
n +1 z n +1
n 0 n 0
3 sin z
a. z 0 为sin z 为的一级零点;而z 0 为z 的三级零点。故z 0 为 的二级极点。
z z z z 2 z 1
(7)因e −1 z∑ z(1+ + +) ,故z 0 为z (e −1) 的三级零点,因而是 2 z
1
ln(z +1) z
(2k+1)π
1+z (k 0,±1,±2,) 1+e
(5)由1+z 0 得z ±i 为 的一级零点,由1+e 0得z 2k +1 i 为
( ) 2 2 ( )
z (z +1)
其奇点,z 0 为一级极点,而z ±i 为其二级极点。
3
z
n 0 (n +1) ! 2 3! z (e −1)
的三级极点,而z 2kπi,(k ±1,±2,) 均为一级极点。
1 sin z 1
(1) ; (2 ) ; (3) ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知 Res[ f (z ),0] = c−1 = −
4 3
4 ⎡ ⎤ 3 3 1+ z ⎢( z − i) ( z 2 + 1)3 ⎥ = − 8 i , ⎣ ⎦
1 d2 3) Res ⎡ ⎣ f ( z ) ,i ⎤ ⎦ = lim z →i 2! dz 2
m −1
ϕ (z ) + (z − z 0 )m ϕ ' (z ) = (z − z0 )m−1 [mϕ (z ) + (z − z0 )ϕ ' (z )]
故 z0 是 f ' (z ) 的 m-1 级零点。 3.验证: z = 解 由 ch
πi
2
是 ch z 的一级零点。
πi
2
= cos
π
2
= 0 , (ch z ) ' z = π i = sh
2
5) cos
∞ 1 (−1) n =∑ ,| z − 1|> 0 ,知 Res ⎡ ⎣ f ( z ) ,1⎤ ⎦ = c−1 = 0 1 − z n =0 (2n)!( z − 1) 2 n
∞ 1 1 (−1) n −1 2 f ( z ) , 0⎤ = c−1 = − 6) z sin = z ∑ ,| z |> 0 ,知 Res ⎡ 2 n −1 ⎣ ⎦ z 6 n =1 (2 n − 1)! z 2
z → z0
lim
f ( z) f '( z ) = lim z → z 0 g '( z ) g ( z)
(或两端均为∞)
6.若 ϕ ( z ) 与ψ ( z ) 分别以 z = a 为 m 级与 n 级极点(或零点) ,那么下列三个函数在 z = a 处各有什 么性质? (2) ϕ ( z ) /ψ ( z ) ; (3) ϕ ( z ) +ψ ( z ) (1) ϕ ( z )ψ ( z ) ; 解 由题意, ϕ ( z ) =
g ( z ) = ( z − z0 )ψ ( z ) , ϕ ( z ),ψ ( z ) 为解析函数,则
f '( z ) ϕ ( z ) + ( z − z0 )ϕ '( z ) f ( z ) ( z − z0 )ϕ ( z ) ϕ ( z ) , , = = = g ( z ) ( z − z0 )ψ ( z ) ψ ( z ) g '( z ) ψ ( z ) + ( z − z0 )ψ '( z )
2) f ( z ) =
1 − e2 z , z = 0 为分母的四级零点,是分子的一级零点,所以是 f (z ) 的三级极点。 z4
Res[ f (z ),0] = lim
z →0
1 d2 2! dz 2
⎡ 3 1 − e2z ⎤ 4 ⎢z ⋅ ⎥=− 4 3 z ⎦ ⎣
或展开洛朗级数
f (z ) =
f ( z)
( z − z0 )
m
,ψ ( z ) =
g ( z)
( z − z0 )
-2-
n
,其中 f ( z ) , g ( z ) 在 a 点解析且 f ( a ) ≠ 0 ,
g (a) ≠ 0 。
(1) z = a 是 ϕ ( z ) ⋅ψ ( z ) 的 m + n 级极点。 (2)对于 ϕ ( z ) /ψ ( z ) ,当 m < n 时, a 是 n − m 级零点;当 m > n 时, a 是 m − n 级极点;当 m = n 时,
1 1 ,故 z = 1 为其二级极点,而 z = −1 为一级极点。 = ( z 2 − 1)( z − 1) (z − 1)2 (z + 1)
∞ n z n+1 ln(1 + z ) ∞ n z = ∑ (− 1) , 0 <| z |< 1 , 无负幂项,故 z = 0 为其可去奇点。 n +1 z n +1 n =0
a 是可去奇点。
(3)当 m ≠ n 时,点 a 是 ϕ ( z ) + ψ ( z ) 的 max{m, n} 级极点,当 m = n 时,点 a 是 ϕ ( z ) + ψ ( z ) 的极点。 (可退化为可去) ,其级不高于 m,点 a 也可能是 ϕ ( z ) + ψ ( z ) 的可去奇点(解析点) 。 7.函数 f ( z ) =
z → z0
lim
f ( z) f '( z ) = lim z → z 0 g '( z ) g ( z)
(或两端均为∞) 。
证
因 f ( z ) 和 g ( z ) 是 以 z0 为 零 点 的 两 个 不 恒 等 于 零 的 解 析 函 数 , 可 设 f ( z ) = ( z − z0 )ϕ ( z ) ,
习题五解答
1、下列函数有些什么奇点?如果是极点,指出它的级。 (1)
z ( z + 1)
2
1
2
;
(2)
sin z ; z3
z ; 2 (1 + z )(1 + eπ z )
z 2n ; 1+ zn
(3)
1 z − z − z +1
3 2
;
(4)
ln (z + 1) ; z
1
(5)
(6) e1− z ;
(sin z + sh z − 2 z ) '' z =0 = (− sin z + sh z ) z =0 = 0, (sin z + sh z − 2 z ) ''' z = 0 = (− cos z + ch z ) z = 0 = 0 ,
(sin z + sh z − 2 z )(4)
z =0
-3-
Res ⎡ ⎣ f ( z ) , −i ⎤ ⎦ = lim
4) Res ⎢ f ( z ), kπ +
1 d2 z →− i 2! dz 2
4 ⎡ ⎤ 3 3 1+ z + = i ( z i) ⎢ 2 3⎥ ( z + 1) ⎦ 8 ⎣
⎡ ⎣
π⎤
z π = = (−1) k +1 (kπ + ) , k = 0, ±1, ±2," ⎥ 2 ⎦ (cos z ) ' z = kπ + π 2
(3)原式=
(4)a. ln(1 + z ) = ∑ (− 1)n
n =0
b. lim
z →0
ln (1 + z ) 1 = lim = 1 ,故 z = 0 为可去奇点。 z →0 ( 1 + z) z
由1 + e (5) 由 1 + z 2 = 0 得 z = ± i 为 1 + z 2 的一级零点, 的零点,又 1 + e
= (sin z + sh z ) z =0 = 0, (sin z + sh z − 2 z )(5)
z =0
= (cos z + ch z ) z =0 = 2 ,
−2
故 z = 0 是函数 sin z + sh z − 2 z 的五级零点,也即为 (sin z + sh z − 2 z ) 的十级极点。 5.如果 f ( z ) 和 g ( z ) 是以 z0 为零点的两个不恒等于零的解析函数,那么
吗? 解 不对, z = 1 不是 f (z ) 的本性奇点,这是因为函数的洛朗展开式是在 | z − 2 |> 1 内得到的,而不是在
z = 2 的圆环域内的洛朗展开式。
Res ⎡ ⎣ f ( z ) ,1⎤ ⎦ = lim
⎤ 1 d ⎡ 1 2 = −1 ⎢( z − 1) 2⎥ z →1 ( 2 − 1) ! dz z z 1 − ( ) ⎢ ⎥ ⎣ ⎦
(
)
πz
= 0 得 zk = ( 2k + 1) i (k = 0,±1,±2, ") 为 (1 + e z )
(
πz
)′
∞
zk
= π eπ zk = −π ≠ 0 ,所以 zk 为 (1 + e z ) 的一级零点,因此, z = ± i 为二级极点;
zk = ( 2k + 1) i , ( k = 1, ±2,") 为一级极点。
-1-
( sin z ) ′ |
2
z 2 = kπ
⎧ 0 k =0 1 2 = 2 ,知 z = 0 是 , (sin z ) '' 的二级极点, = 2 z cos z 2 |z 2 = kπ = ⎨ z = 0 sin z 2 ⎩≠ 0 k ≠ 0
z = ± kπ , z = ±i kπ ( k = 1, 2,3," )均为
1 z ( z − 1) 1
2 2
在 z = 1 处有一个二级极点,这个函数又有下列洛朗展开式
z ( z − 1)
="+
1
( z − 1)
5
−
1
( z − 1)
4
+
1
( z − 1)
3
,| z − 1|> 1. , | z − 2 |> 1
−1 所以“ z = 1 又是 f (z ) 的本性奇点” ,又其中不含 (z − 2) 幂项,因此 Res ⎡ ⎣ f ( z ) ,1⎤ ⎦ = 0 ,这些说法对
2
πi
2
= isin
π