高中数学-二项式定理(一)教案
36750_《二项式定理》教案1(人教A版选修2-3)
1.3二项式定理学习目标:1理解和掌握二项式系数的性质,并会简单的应用; 2.初步了解用赋值法是解决二项式系数问题;3.能用函数的观点分析处理二项式系数的性质,提高分析问题和解决问题的能力 学习重点:二项式系数的性质及其对性质的理解和应用 学习难点:二项式系数的性质及其对性质的理解和应用授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪 教学过程: 一、复习引入:1.二项式定理及其特例: (1)01()()nnnr n r r n nn n n n a b C a C a b C a b C b n N -*+=+++++∈,(2)1(1)1nr rn n n x C x C x x +=+++++.2.二项展开式的通项公式:1rn rr r n T C ab -+=3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性二、讲解新课:1 二项式系数表(杨辉三角)()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和2.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .rn C 可以看成以r 为自变量的函数()f r定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵mn mn n C C -=).直线2nr=是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!kk nn n n n n k n k C C k k----+-+==⋅, ∴k n C 相对于1k n C -的增减情况由1n k k -+决定,1112n k n k k -++>⇔<, 当12n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n nC -,12n nC+取得最大值.(3)各二项式系数和: ∵1(1)1nr r n n n x C x C x x +=+++++,令1x =,则0122nr nn n n n n C C C C C =++++++三、讲解范例:例1.在()na b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和 证明:在展开式01()()nnnr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈中,令1,1a b ==-,则0123(11)(1)n n nnn n n n C C C C C -=-+-++-,即02130()()n n n n C C C C =++-++,∴0213n n n n C C C C ++=++,即在()na b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和. 说明:由性质(3)及例1知021312n n n n n C C C C -++=++=.例2.已知7270127(12)x a a x a x a x -=++++,求:(1)127a a a +++;(2)1357a a a a +++;(3)017||||||a a a +++.解:(1)当1x =时,77(12)(12)1x -=-=-,展开式右边为∴0127a a a a ++++1=-,当0x =时,01a =,∴127112a a a +++=--=-,(2)令1x =,0127a a a a ++++1=-①令1x =-,7012345673a a a a a a a a -+-+-+-=②①-②得:713572()13a a a a +++=--,∴1357a a a a +++=7132+-.(3)由展开式知:1357,,,a a a a 均为负,0248,,,a a a a 均为正, ∴由(2)中①+②得:702462()13a a a a +++=-+,∴70246132a a a a -++++=,∴017||||||a a a +++=01234567a a a a a a a a -+-+-+-例3.求(1+x)+(1+x)2+…+(1+x)10展开式中x 3的系数解:)x 1(1])x 1(1)[x 1(x 1)x 1()x 1(10102+-+-+=+++++)(=xx x )1()1(11+-+,∴原式中3x 实为这分子中的4x ,则所求系数为711C 例4.在(x 2+3x+2)5的展开式中,求x 的系数 解:∵5552)2x ()1x ()2x 3x (++=++∴在(x+1)5展开式中,常数项为1,含x 的项为x 5C 15=,在(2+x)5展开式中,常数项为25=32,含x 的项为x 80x 2C 415=∴展开式中含x 的项为x 240)32(x 5)x 80(1=+⋅, ∴此展开式中x 的系数为240 例5.已知n2)x 2x (-的展开式中,第五项与第三项的二项式系数之比为14;3,求展开式的常数项解:依题意2n 4n 2n 4n C 14C 33:14C :C =⇒=∴3n(n-1)(n-2)(n-3)/4!=4n(n-1)/2!⇒n=10 设第r+1项为常数项,又2r 510r 10r r 2r10r 101r x C )2()x2()x (C T --+-=-=令2r 02r510=⇒=-, .180)2(C T 221012=-=∴+此所求常数项为180四、课堂练习:(1)()2025x y -的展开式中二项式系数的和为,各项系数的和为,二项式系数最大的项为第项;(2)1)nx的展开式中只有第六项的二项式系数最大,则第四项为. (3)0n C +12n C +24n C ++2n n n C 729=,则123nn n n n C C C C ++++=()A .63 B.64 C.31 D.32(4)已知:5025001250(2)a a x a x a x =++++,求:2202501349()()a a a a a a +++-+++的值答案:(1)202,203,11; (2)展开式中只有第六项的二项式系数最大,∴10n =,3734101()T C x==;(3)A .五、小结:1.性质1是组合数公式rn rn nC C -=的再现,性质2是从函数的角度研究的二项式系数的单调性,性质3是利用赋值法得出的二项展开式中所有二项式系数的和;2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法 六、课后作业: 七、板书设计(略) 八、课后记:求60.998的近似值,使误差小于0.001.解:66011666660.998(10.002)(0.002)(0.002)C C C =-=+-++-,展开式中第三项为2260.0020.00006C =,小于0.001,以后各项的绝对值更小,可忽略不计,∴6611660.998(10.002)(0.002)0.998C C =-≈+-=, 一般地当a 较小时(1)1na na +≈+。
二项式定理教案
1§1.3.1 二项式定理(1)教学目标:1.能用计数原理的思想理解二项式定理2.会求多项式的二项展开式,二项式系数以及二项展开式的通项; 经历二项式定理的推导过程,体会归纳-猜想-论证的思想方法,发展探究能力.教学重点:二项式定理教学难点:经历二项式定理的推导过程. 教学关键:二项式定理的理解 教学工具:多媒体 教学方法:讲授法 教学过程:一. 二项式定理的引入已知()1a b a b +=+,()2222a b a ab b +=++,()3322333a b a a b ab b +=+++,下面分析()4a b +的展开式,进而研究()na b +的展开式.()()()()()4a b a b a b a b a b +=++++,展开式的每一项是从每个括号里任取一个字母的乘积,因而各项都是四次式: 432234,,,,a a b a b ab b ;其中4a 的系数为04C (每个括号都不取b ),3a b 的系数为14C (任取一个括号取b 另三个括号内取a ),22a b 的系数为24C ,3ab 的系数为34C ,4b 的系数为44C .因此()40413*******44444a b C a C a b C a b C ab C b +=++++.参照上式,有()10111a b C a C b +=+;()202122222a b C a C ab C b +=++;()30312********a b C a C a b C ab C b +=+++.二. 二项式定理一般地,对于任意正整数n 有()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n --+=++++∈N右边的多项式叫做()na b +的二项展开式,共有1n +项,其中各项的系数()0,1,2,,rn C r n =叫做二项式系数,式中的r n r rnC a b -叫做二项展开式的通项,它是展开式的第1r +项,用1r T +表示,即1r n r rr nT C a b -+=. 用组合数的方法证明二项式定理.三. 例题:例1 求 的展开式. 612⎪⎪⎭⎫ ⎝⎛-x x 661212⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-x x x x ()63121-=x x2解:()()()()()()23456061524334256666666631222222C x C x C x C x C x C x C x⎡⎤=+-+-+-+-+-+-⎣⎦ 3223240192641260160x x x x x x=-+-+-+. 例2.(1) 求(1+2x)7的展开式的第4项的系数及二项式系数.(2) 求91x x ⎛⎫- ⎪⎝⎭中的3x 的系数。
人教课标版高中数学选修2-3:《二项式定理(第1课时)》教案-新版
1.3 二项式定理 第一课时一、教学目标 1.核心素养通过二项式定理的推导过程的学习,提高学生的归纳推理能力,树立由特殊到一般的数学思想,增强学生的逻辑推理能力. 2.学习目标(1)初步掌握求二项展开式.(2)熟练运用通项公式求二项展开式中指定的项(如常数项、有理项). 3.学习重点熟练运用通项公式求二项展开式中指定的项(如常数项、有理项). 4.学习难点熟练运用通项公式求二项展开式中指定的项(如常数项、有理项). 二、教学设计 (一)课前设计1.预习任务(阅读教材完成)1.二项式定理:=+nb a )( ; 2.(1)n b a )(+的二项展开式中共有 项; (2)二项式系数: ;(3)二项展开式的通项公式:=+1r T ,它是展开式的第 项. 2.预习自测1.二项式91()x x-的展开式的第3项是( )A .-84x 3B .84x 3C .-36x 5D .36x 5 解:D2.(1+x )7的展开式中x 2的系数是( ) A .42 B .35 C .28 D .21 解:D3.在62()x x-的二项展开式中,常数项等于________.解:-160 (二)课堂设计1.知识回顾(1)错误!未找到引用源。
;(2)错误!未找到引用源。
(3)错误!未找到引用源。
2.问题探究问题探究一探究归纳,形成二项式定理●活动一回顾旧知,回忆展开式(a+b)4=(a+b) (a+b) (a+b) (a+b)展开式中的各项是什么?思考:ab3是怎样来的?有多少个?引导学生追究每个系数的来源,借助于组合的思想找到规律,从中体会到探索的乐趣.归纳结论:由上面的探索得到:(a+b)4=C04a4+C14a3b+C24a2b2+C34ab3+C44b4●活动二大胆猜想(a+b)n展开式中的各项是什么?归纳:一般对于任意的正整数n,有:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r…+C n n b n(n∈N*)并指出:①这个式子所表示的定理叫二项式定理.右边的多项式叫(a+b)n的二项展开式.各项系数C r n(r=0、1、2、…、n)叫做二项式系数.②式子中的C r n a n-r b r叫做二项展开式的通项.记做:T r+1=C r n a n-r b r.上述结论是从分析了少数特例后,得出了一般的结论,这种方法叫不完全归纳法,还需用数学归纳法证明,但这里教材不要求证明了.问题探究二利用二项式定理能解决问题?1.求二项式的指定项或其系数例1.(1)(1+x)7的展开式中x2的系数是( )A.42 B.35 C.28 D.21【知识点:二项式展开式的系数求法,考查运算能力】解:选D 依题意可知,二项式(1+x)7的展开式中x2的系数等于C27×15=21.(2)在(2x2-1x)5的二项展开式中,x的系数为( )A.10 B.-10 C.40 D.-40【知识点:二项式展开式的系数求法,考查运算能力】解:D.(2x2-1x)5的展开式的通项为T r+1=5rC(2x2)5-r(-1x)r=5rC25-r(-1)r x10-3 r,令10-3r=1得,r=3,∴T4=35C22(-1)3x=-40x.∴x的系数是-40.例2.(1)在62()x x-的二项展开式中,常数项等于________.【知识点:二项式展开式的系数求法,考查运算能力】解:-160.由通项公式得T r +1=6r C x 6-r 2()r x-=(-2)r 6r C x 6-2r,令6-2r =0,解得r =3,所以是第4项为常数项,T 4=(-2)336C =-160.(2)已知8()ax x-展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或28【知识点:二项式展开式的系数求法,考查运算能力】解:选C 由题意知48C ·(-a )4=1 120,解得a =±2,令x =1,得展开式各项系数和为(1-a )8=1或38.例3.(1) 在(x -2)5y)4的展开式中x 3y 2的系数为________. 【知识点:二项式展开式的系数求法,考查运算能力】 解:480 (x -2)5的展开式的通项为T r +1=5r C x 5-r (-2)r ,令5-r =3得r =2,得x 3的系数25C (-2)2=40;y)4的展开式的通项公式为T r +1=4r C 4-ry r ,令r =2得y 2的系数24C 2=12,于是展开式中x 3y 2的系数为40×12=480.(2) 在(x -1)(x -2)(x -3)(x -4)(x -5)的展开式中,含x 4的项的系数是________. 【知识点:二项式展开式的系数求法,考查运算能力】解:-15.从4个因式中选取x ,从余下的一个因式中选取常数,即构成x 4项,即-5x 4-4x 4-3x 4-2x 4-x 4,所以x 4项的系数应是-1-2-3-4-5=-15. 3.课堂总结 【知识梳理】二项式定理及其通项公式1.二项式定理:01()()n n n r n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈2.(1)nb a )(+的二项展开式中共有错误!未找到引用源。
二项式定理教学设计教案
二项式定理教学设计教案第一章:导入1.1 教学目标让学生了解二项式定理的背景和意义。
引导学生通过实际例子发现问题,激发学习兴趣。
1.2 教学内容引入二项式定理的概念,解释其在数学中的重要性。
通过具体的例子,如完全平方公式,引导学生观察和总结一般规律。
1.3 教学活动利用多媒体展示完全平方公式的例子,引导学生观察和总结。
组织小组讨论,让学生分享自己的发现和思考。
1.4 教学评价通过小组讨论和问题解答,评估学生对二项式定理的理解程度。
第二章:二项式定理的表述2.1 教学目标让学生掌握二项式定理的表述和公式。
引导学生理解二项式定理的推导过程。
2.2 教学内容给出二项式定理的表述和公式,解释各项的系数和指数的含义。
通过示例,引导学生理解二项式定理的推导过程。
2.3 教学活动通过示例和练习,让学生熟悉二项式定理的表述和公式。
引导学生参与推导过程,加深对二项式定理的理解。
2.4 教学评价通过练习和问题解答,评估学生对二项式定理的掌握程度。
第三章:应用二项式定理3.1 教学目标让学生学会运用二项式定理解决实际问题。
引导学生运用二项式定理进行组合计数和概率计算。
3.2 教学内容解释二项式定理在组合计数和概率计算中的应用。
提供实际问题,引导学生运用二项式定理解决问题。
3.3 教学活动通过示例和练习,让学生掌握二项式定理在组合计数和概率计算中的应用。
组织小组讨论,让学生分享自己的解题方法和经验。
3.4 教学评价通过小组讨论和问题解答,评估学生对二项式定理应用的掌握程度。
第四章:拓展与深化4.1 教学目标让学生了解二项式定理的拓展和深化内容。
引导学生思考二项式定理在数学中的广泛应用和意义。
4.2 教学内容介绍二项式定理的拓展内容,如多项式定理和整数定理。
探讨二项式定理在数学中的广泛应用,如组合数学、概率论等领域。
4.3 教学活动通过示例和练习,让学生了解二项式定理的拓展内容。
组织小组讨论,让学生思考二项式定理在数学中的应用和意义。
3 二项式定理 一等奖创新教案
3 二项式定理一等奖创新教案[课题]二项式定理(一)[教学内容解析]在多项式的运算中,二项式定理有着非常重要的地位,它是带领我们进入微积分学领域大门的一把金钥匙,只是在中学阶段还没有显示机会.本小节内容安排在计数原理之后,一方面是因为二项式定理的推导过程及证明要用到计数原理,另一方面二项式系数是一些特殊的组合数,因此本课的学习对排列组合部分知识的深化认识有好处.另外,二项式定理也为学习随机变量及其分布做准备.二项式定理还可以解决近似计算、整除、不等式证明等问题,有着综合性强、联系不同知识点的特点。
[教学目标设置]依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:(一)教学目标1、知识与技能:(1)理解二项式定理是代数乘法公式的推广.(2)理解并掌握二项式定理,能利用计数原理证明二项式定理.2.过程与方法:通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、概括的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式.3. 情感、态度与价值观:培养学生的自主探究意识,合作精神,体验二项式定理的发现和创造历程,体会数学语言的简洁和严谨.(二)重、难点分析重点:用计数原理分析、的展开式,归纳得到二项式定理.难点:用计数原理分析二项式的展开过程,发现二项式展开式各项的形成规律.[学生学情分析]本节课授课的对象是高二年级的学生,他们已掌握了计数原理和排列组合知识,具备一定的分析和解决问题的能力,逻辑思维也初步形成,但要把二项式定理与排列组合问题联系起来,还是比较困难的,因此需要创设一个环境,从语言感知,文字感知及图形感知等各个方面构建学生的思维认知。
[教学策略分析]为了突出重点、突破难点,在教学中采取了以下策略:1.教法分析新的数学课程标准提出:掌握数学知识只是结果,而掌握知识的活动过程才是途径,通过这个途径,来挖掘人的发展潜能才是目的,结果应让位于过程.因此,在教学中,必须贯彻好过程性原则.也就是说,在教学过程中,充分揭示每一个阶段的思维活动过程,通过思维活动过程的暴露和数学创新活动过程的演变,使教学活动成为思维活动的教学,由此来启发、引导学生直接或间接地感受和体验知识的产生、发展和演变过程. 变传统的“接受性、训练性学习”为新颖的“探究式、发现式的学习”,变教师是传授者为组织者、合作者、指导者,在学习过程中,教师想尽办法激发学生探究式、发现式学习的兴趣,并使其作为一种教学方式应用于概念、定理、公式和解题教学中,让学生在探究、发现中获取知识,发展能力.从而增强学生的主体意识,提高学生学习的效果.2.学法分析根据学生思维的特点,遵循“教必须以学为主立足点”的教学理念,让每一个学生自主参与整堂课的知识构建。
二项式定理1教学案
1.3.1二项式定理教学目标:1、能用计数原理证明二项式定理;2、掌握二项式展开式的通项公式 教学重点:掌握二项式定理及二项式展开式的通项公式教学过程:一、课前预习:⑴.2)(b a += ;(2)3)(b a += ;(3) 4)(b a += .(4) 二项式定理:n b a )(+ = .(5)二项式定理的证明.(a+b )n 是 个(a+b )相乘,每个(a+b )在相乘时,有两种选择,选 或 ,由分步计数原理可知展开式共有2n 项(包括同类项),其中每一项都是a k b n-k 的形式,k=0,1,…,n ;对于每一项a k b n-k ,它是由 个(a+b )选了a , 个(a+b)选了b 得到的,它出现的次数相当于从n 个(a+b )中取 个a 的组合数,将它们合并同类项,就得二项展开式,这就是二项式定理.(6)、它有 项,各项的系数(0,1,)r n C r n =叫二项式.系数, 4、r n r r n C a b -叫二项展开式的 ,用1r T +表示,即通项1+r T = .5、二项式定理中,设1,a b x ==,则=+n x )1( .二、典型例题:例1.展开①6)(b a -;②41(1)x +.变式.1.展开6.2.求12()x a +的展开式中的倒数第4项.例2.求7)21(x +的展开式中第4项的二项式系数和系数.例3.求6)21(x x -的二项式中的常数项.变式:求9(3x +的展开式常数项;(2)求9(3x +的展开式的中间两项(3)在103)21(x x -的展开式中,求:①第4项的二项式系数,以及第4项的系数;②常数项,并指出它是展开式的第几项.三、课堂练习:1.化简:1)1(5)1(10)1(10)1(5)1(2345+-+-+-+-+-x x x x x . 2.已知9)2(x x a -的展开式中含3x 的项的系数为49,求常数a 的值. 3.若二项式n xx )2(-的展开式的第5项为常数项,求自然数n 的值. 四、作业:课本, 1~7.。
二项式定理教学设计(
《二项式定理(一)》教学设计贵州省高中数学李时建名师工作室 吴作印一、教学设计1. 教学内容解析二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习后一章“随机变量及其分布”的基础。
中学教材中的二项式定理主要包括:二项式定理的推导,通项公式,杨辉三角,二项式系数的性质等。
通过二项式定理的学习,要求学生掌握“猜想-归纳-论证”的数学思想,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能;进一步体会过程分析与特殊化方法等的运用;二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质。
本节课起到了承上启下的作用,是对之前所学计数原理的巩固,也是对之后随机变量及其分布(特别是超几何分布)作铺垫。
而在高等数学中它是许多重要公式的共同基础,根据二项式定理的展开,可以得到优美的 n n n)11(lim +∞→=e ≈2.718281……2.学生学情分析二项式定理是初中学习的多项式乘法的继续,它所研究的是一类特殊的多项式,表现为二项式的乘方的展开式,也是解决某些整除、近似计算等问题的重要方法之一。
学生在初中是以多项式的乘法展开为载体,从具体式子感知多项式的展开。
学生进入高中一年多的数学学习后,在数学符号化、公理化、抽象化等方面得到了有效的锻炼,逻辑推理能力、转化与化归等数学思想方法得到了训练,特别是,前一节学习了计数原理后,对该节课推导二项式定理奠定了基础。
从学生现阶段的思维特点分析,大部分学生解决n b a )(+展开式采用的是的不完全归纳法(猜想),与初中学习的多项式的展开结合起来,从)(b a +、2)(b a +、3)(b a +、4)(b a +……的展开式的形式特点等方面进行类比,教师可以因势利导,让学生体会从一般到特殊的数学思想方法。
然而,n 无穷大时,能保证展开式恒成立吗?3.教学策略分析考虑到本节课要让学生在以下几个方面得到收获:一是掌握二项式定理的推导过程(生长性);二是基础知识,准确理解数学概念(项、项的系数、二项式系数、通项公式等),并能灵活运用数学思想方法;三是“猜想—证明——归纳”的一般规律及方法。
高三数学教案《二项式定理》四篇
高三数学教案《二项式定理》四篇教学过程篇一1.情景设置问题1:若今天是星期二,再过30天后的那一天是星期几?怎么算?预期回答:星期四,将问题转化为求“30被7除后算余数”是多少?问题2:若今天是星期二,再过810天后的那一天是星期几?问题3:若今天是星期二,再过天后是星期几?怎么算?预期回答:将问题转化为求“被7除后算余数”是多少?在初中,我们已经学过了(a+b)2=a2+2ab+b2(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3(提问):对于(a+b)4,(a+b)5如何展开?(利用多项式乘法)(再提问):(a+b)100又怎么办?(a+b)n(n?N+)呢?我们知道,事物之间或多或少存在着规律。
也就是研究(a+b)n(n?N+)的展开式是什么?这就是本节课要学的内容。
这节课,我们就来研究(a+b)n的二项展开式的规律性。
学完本课后,此题就不难求解了。
(设计意图:使学生明确学习目的,用悬念来激发他们的学习动机。
奥苏贝尔认为动机是学习的先决条件,而认知驱力,即学生渴望认知、理解和掌握知识,并能正确陈述问题、顺利解决问题的倾向是学生学习的重要动力。
)2.新授第一步:让学生展开;问题1:以的展开式为例,说出各项字母排列的规律;项数与乘方指数的关系;展开式第二项的系数与乘方指数的关系。
预期回答:①展开式每一项的次数按某一字母降幂、另一字母升幂排列,且两个字母幂指数的和等于乘方指数;②展开式的项数比乘方指数多1;③展开式中第二项的系数等于乘方指数。
第二步:继续设疑如何展开以及呢?(设计意图:让学生感到仅掌握杨辉三角形是不够的,激发学生继续学习新的更简捷的方法的欲望。
)继续新授师:为了寻找规律,我们以中为例问题1:以项为例,有几种情况相乘均可得到项?这里的字母各来自哪个括号?问题2:既然以上的字母分别来自4个不同的括号,项的系数你能用组合数来表示吗?问题3:你能将问题2所述的意思改编成一个排列组合的命题吗?(预期答案:有4个括号,每个括号中有两个字母,一个是、一个是。
高三数学教案《二项式定理》优秀3篇
高三数学教案《二项式定理》优秀3篇1. 介绍本文档将介绍三篇优秀的高三数学教案,主题为《二项式定理》。
这些教案从不同的角度和方法讲解了二项式定理,帮助学生更好地理解和应用该定理,提高数学解题能力。
2. 教案一:《二项式定理初步认识》2.1 教学目标•了解二项式的定义和性质•掌握二项式展开的基本方法•能够灵活应用二项式定理解决实际问题2.2 教学内容1.二项式的定义和性质–介绍二项式的概念和表达形式–讲解二项式的性质,如二项式系数的对称性等2.二项式展开的基本方法–介绍二项式在展开时的基本方法–给出一些例题进行演示和练习3.实际问题的应用–利用二项式定理解决实际问题,如排列组合问题等–给出一些实际问题的例题和练习2.3 教学方法•讲授与演示相结合:通过讲解二项式的定义和性质,并用例题演示二项式展开的基本方法,加深学生对二项式定理的理解•提问与讨论:引导学生参与讨论,思考问题的解决方法,培养学生的分析和解决问题的能力•练习与巩固:给学生一定数量的练习题,巩固所学知识,并能够应用到实际问题中2.4 教学评价与反馈•教学评价:通过课堂上教师的观察、学生的表现及课后作业的完成情况,进行教学评价•教学反馈:及时给予学生反馈,并指导学生改正错误,提高学习效果3. 教案二:《二项式定理的证明与应用》3.1 教学目标•掌握二项式定理的证明方法•理解二项式定理的应用领域•提高数学推理和证明能力3.2 教学内容1.二项式定理的证明方法–讲解二项式定理的组合证明方法,如二项式系数的递推关系等–通过数学推理,证明二项式定理的正确性2.二项式定理的应用–介绍二项式定理在组合数学、概率论等领域的应用–给出一些应用题进行练习,提高学生的应用能力3.数学推理与证明–培养学生的数学推理和证明能力,通过解答证明题加深学生对二项式定理的理解3.3 教学方法•讲授与演示相结合:通过讲解二项式定理的证明方法,并演示具体的证明过程,加强学生对二项式定理的理解•课堂讨论:引导学生进行证明题的讨论和分析,提高学生的数学推理能力•练习与应用:给学生一些练习题,加深学生对二项式定理的应用理解3.4 教学评价与反馈•教学评价:通过课堂上的表现、学生的参与情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进学习方法,提高学习效果4. 教案三:《二项式定理与三角恒等式》4.1 教学目标•掌握二项式定理与三角恒等式的联系和应用•理解二项式定理与三角恒等式在数学中的重要性•提高学生的综合应用能力4.2 教学内容1.二项式定理与三角恒等式的联系和应用–介绍二项式定理与三角恒等式之间的联系和应用–分析二项式展开式的三角形式及其与三角恒等式的关系2.二项式定理与三角恒等式的具体应用–给出一些具体的二项式展开题目,引导学生将其化简成三角恒等式形式–通过练习题,锻炼学生的综合应用能力4.3 教学方法•讲授与实例演示:通过讲解二项式定理与三角恒等式的联系,并给出具体的例题进行演示,加深学生对二项式定理和三角恒等式的理解•练习与应用:给学生一些练习题,锻炼学生将二项式展开式化简成三角恒等式形式的能力•问题探究与讨论:引导学生思考和探索二项式定理与三角恒等式之间的更多联系4.4 教学评价与反馈•教学评价:通过观察学生的课堂表现、参与讨论的情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进问题解决的方法,提高学习效果5. 总结本文档介绍了三篇优秀的高三数学教案,主题为《二项式定理》。
二项式定理教案
二项式定理教案教案标题:二项式定理教案教案目标:1. 了解并理解二项式定理的概念2. 掌握使用二项式定理展开二项式的技巧和方法3. 掌握使用二项式定理计算组合数的方法4. 运用二项式定理解决实际问题教学重点:1. 二项式定理的概念和公式2. 通过例题训练学生使用二项式定理展开二项式并计算组合数的能力3. 引导学生从实际问题出发,应用二项式定理解决问题的能力教学难点:1. 理解和运用二项式定理展开二项式的思维方式2. 理解并掌握二项式定理计算组合数的方法教学准备:1. 教师准备好教学课件、黑板和粉笔2. 学生准备好教科书、笔和纸教学过程:步骤一:导入(5分钟)- 引入二项式定理的概念,通过一个简单的例子向学生展示二项式定理的作用和重要性。
步骤二:概念讲解(10分钟)- 介绍二项式定理的定义和公式,解释每个符号的含义。
- 强调二项式定理在展开二项式和计算组合数方面的作用。
步骤三:展开二项式(15分钟)- 通过一些简单的示例引导学生运用二项式定理展开二项式,解释每一步的计算过程。
- 给予学生足够的练习机会,检查他们是否掌握了展开二项式的方法和技巧。
步骤四:计算组合数(15分钟)- 解释二项式定理在计算组合数方面的应用,介绍组合数的概念和计算方法。
- 通过练习题让学生熟练掌握计算组合数的方法。
步骤五:应用实例(15分钟)- 提供一些实际问题,引导学生运用二项式定理解决问题。
- 鼓励学生思考如何将实际问题转化为二项式定理的计算过程。
步骤六:总结和评价(5分钟)- 总结二项式定理的概念、公式和应用方法。
- 鼓励学生讲解自己的学习心得,并进行互动评价。
拓展活动:- 提供一些进阶的练习题,以加深学生对二项式定理的理解并提高应用能力。
- 鼓励学生自主探索更多关于二项式定理的应用和拓展知识。
教案扩展:- 可以设计一个小组活动,要求学生选择一个实际问题,并运用二项式定理解决问题,最后进行展示和讨论。
高中高三数学《二项式定理》教案、教学设计
(二)讲授新知,500字
在讲授新知环节,我会按照以下步骤进行:
1.详细讲解二项式定理的基本形式,让学生理解二项式定理的构成要素。
2.通过几何图形和具体实例,引导学生探究二项式定理的推导过程,强调组合数公式的运用。
-例如:请简述二项式定理的推导过程,以及你在学习过程中遇到的问题和解决方法。
-要求:学生认真撰写,培养学生的学习反思能力。
5.课外阅读题:推荐学生阅读与二项式定理相关的数学历史资料,了解数学家们在二项式定理研究过程中的贡献。
-例如:阅读《数学家与二项式定理》的相关文章,了解二项式定理的发现和发展过程。
3.二项式定理在解决实际问题中的应用。
4.二项式定理与其他数学知识的联系。
在整个教学内容与过程中,我注重启发式教学,关注学生的主体地位,充分调动学生的积极性,提高学生的数学素养。
五、作业布置
为了巩固学生对二项式定理的理解和应用,确保学生能够熟练掌握本章节的知识点,我设计了以下几类作业:
1.基础知识巩固题:选取一些典型的题目,要求学生运用二项式定理的基本形式进行计算,巩固二项式系数的计算方法。
-例如:计算(x+y)^5展开式中x^3y^2的系数。
-要求:学生独立完成,注重解题过程的规范性和准确性。
2.应用题:设计一些实际问题,让学生运用二项式定理解决,提高学生分析问题和解决问题的能力。
-例如:一个袋子里有5个红球和5个蓝球,随机取出3个球,求取出2个红球和1个蓝球的概率。
-要求:学生通过小组合作完成,培养学生的团队协作能力。
4.教学策略:
二项式定理教学设计教案
二项式定理教学设计教案一、教学目标1. 让学生理解二项式定理的定义和背景。
2. 引导学生掌握二项式定理的证明过程。
3. 培养学生运用二项式定理解决实际问题的能力。
4. 提高学生对数学公式和定理的记忆和运用。
二、教学内容1. 二项式定理的定义及公式。
2. 二项式定理的证明。
3. 二项式定理的应用。
三、教学重点与难点1. 教学重点:二项式定理的定义、公式及应用。
2. 教学难点:二项式定理的证明过程。
四、教学方法1. 采用讲授法讲解二项式定理的定义、公式及证明。
2. 通过例题演示二项式定理的应用。
3. 引导学生进行小组讨论,培养合作精神。
4. 利用多媒体辅助教学,提高学生的学习兴趣。
五、教学过程1. 导入新课:回顾一元二次方程的解法,引导学生思考如何快速求解特定类型的一元二次方程。
2. 讲解二项式定理:介绍二项式定理的定义、公式及背景,讲解公式中的各项系数和指数的含义。
3. 证明二项式定理:引导学生跟随证明过程,理解二项式定理的推导过程。
4. 应用二项式定理:通过例题展示二项式定理在实际问题中的应用,引导学生学会运用定理解决问题。
5. 课堂练习:布置相关练习题,让学生巩固所学内容。
六、教学评估1. 课堂提问:通过提问了解学生对二项式定理的理解程度。
2. 练习批改:及时批改课后练习,了解学生对知识的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解合作能力和思维过程。
七、课后作业1. 复习二项式定理的定义、公式及证明过程。
2. 完成课后练习题,包括简单应用和综合应用题。
3. 收集有关二项式定理的实际应用案例,进行拓展学习。
八、教学反思1. 反思教学内容:检查教学内容是否全面、深入,是否符合学生的实际需求。
2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。
3. 反思教学效果:分析学生的学习情况,找出不足之处,为下一步教学提供改进方向。
九、课程拓展1. 引导学生关注二项式定理在实际生活中的应用,如概率计算、数据处理等。
完整版)二项式定理教案
完整版)二项式定理教案1.3.1 二项式定理(第一课时)一、教学目标1.知识与技能1)理解二项式定理,并能简单应用。
2)能够区分二项式系数与项的系数。
2.过程与方法通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、归纳的能力,以及转化化归的意识与知识迁移的能力,体会从特殊到一般的思维方式。
3.情感与态度价值观通过探究问题,归纳假设让学生在研究的过程中养成独立思考的好惯,在自主研究中体验成功,在思索中感受数学的魅力,让学生在体验知识产生的过程中找到乐趣。
二、教学重点难点1.教学重点:二项式定理及二项式定理的应用。
2.教学难点:二项式定理中单项式的系数。
三、教学设计教学过程一、新课讲授引入:让学生回顾多项式乘法法则,利用排列、组合理解,写展开式,设计意图是师生活动展开(a+b)²、(a+b)³。
学生完成:a+b)² = a²+2ab+b²a+b)³ = a³+3a²b+3ab²+b³分析(a+b)的展开式:展开式有3项,a、b的指数分别为2、1、0,各项系数分别为1、2、1.教学过程设计意图是师生活动恰有1个因式选b的情况有C₂¹种,所以ab的系数是C₂¹;2个因式选b的情况有C₂²种,所以b的系数是C₂²;每个因式都不选b的情况有C₂⁰种,所以a的系数是C₂⁰。
思考3个问题:1.项数2.每一项a、b的指数和3.各项的系数是什么?a+b) = C₁aCb类比展开(a+b)³:a+b)³ = C₃¹a²b+C₃²ab²+C₃³b³归纳、类比(a+b)的展开式。
二、二项式定理:a+b)ⁿ = C₀aⁿ+C₁aⁿ⁻¹b+。
+Cₙbⁿ学生完成:按照a的降幂排列,解释ab的系数。
二项式定理教案
二项式定理教案一、教学目标1. 了解二项式定理的概念和公式。
2. 掌握使用二项式定理计算组合数。
3. 能够应用二项式定理解决实际问题。
二、教学重点1. 理解二项式定理的概念。
2. 掌握使用二项式定理求解组合数的方法。
三、教学难点1. 灵活运用二项式定理解决实际问题。
2. 深入理解二项式定理的证明过程。
四、教学准备1. 教师准备:黑板、白板、彩色粉笔、多媒体设备。
2. 学生准备:笔记本、习题集。
五、教学过程第一步:导入(约5分钟)通过提问方式引入,复习组合数的概念和计算方法。
例如:某班有10位学生,要从中选出3位代表参加活动,共有多少种选法?第二步:二项式定理的概念(约10分钟)1. 打开多媒体设备,展示二项式定理的公式。
2. 解释二项式定理的含义:表示一个二项式的n次方的展开式中,每一项的系数就是组合数。
3. 引导学生思考二项式定理的应用场景,与之前复习的组合数有何关联。
第三步:二项式定理的计算方法(约20分钟)1. 以具体的例子引导学生理解二项式定理的计算方法。
例如:计算 (a + b)^3 和 (a - b)^4。
2. 通过展示计算步骤,引导学生掌握二项式定理的展开式计算方法。
第四步:二项式定理的应用(约25分钟)1. 给出实际问题,引导学生运用二项式定理解决问题。
例如:某公司有10个岗位需要安排员工,其中3个岗位需要安排女性,有多少种不同的安排方式?2. 鼓励学生积极思考,尝试解决实际问题。
第五步:二项式定理的证明(约15分钟)介绍二项式定理的证明过程,以培养学生对数学思维的训练和探究能力。
教师可以通过推导和演算的方式,以简单的情形为例,向学生阐述证明的思路和方法。
第六步:归纳总结(约5分钟)1. 鼓励学生自主总结二项式定理的关键点和计算步骤。
2. 提醒学生复习并掌握二项式定理的应用和证明过程。
六、作业布置1. 课后作业:完成课堂练习题。
2. 预习下节课内容:学习二项式定理的扩展应用。
七、教学反思本节课通过引入实际问题和计算方法的讲解,帮助学生理解和运用二项式定理。
二项式定理第一课时公开课讲课教案
展开式中项的形成规律:每个因式中取一项作乘积
自主学习 合作探究:
(a+b)2 = ( a + b ) ( a + b )
=a2+ab+ba+ b2
=a2+2ab+b2=C0 2Fra biblioteka2+C
1 ab+C
2
2 2
b2
能解释组合数 上标、下标的
含义吗?
两个因式中 两个因式中有 两个因式中有
二项式定理的公式特征:
1、项数:共有_n_+_1_项
2、次数:字母a按_降__幂_排列,次数由_n_递_减_到_0_ ; 字母b按_升__幂_排列,次数由__0递_增_到_n_;
各项的次数都等于__n__.
3、二项式系数:C
0、
n
C1n、
Cn2、
、C
n n
即
C
k n
(k=0,1,2,…,n)
4、二项展开式的通项:T K 1= Cnkankbk 展开式的
第k+1项
反馈练习
ab n = C n 0 a n C n 1 a n 1 b C n k a n k b k C n n b n
变一变:
CCxCxCxCxCx 1 x5=
5 0 5 1 5 22 5 33 5 44 5 55
a b4 = CaCabCabCab C b 4 044 134 222 4 3 34 44 = a4 4 a3 b 6 a2 b2 4 a3 bb4
有0个选b
1个选b
2个选b
问题三:1、找出展开式中的同类项,并结合“乘法原理”
分析其如何形成?
2、三种项的个数怎样计算?
3、能用组合数表示系数吗?
高二数学二项式定理教案
高二数学二项式定理教案一、课题:二项式定理二、教学目的:1. 正确理解二项式定理及有关概念2. 会根据二项式定理写出二项式的展开式,会利用通项公式求展开式中特殊项3. 领悟从特殊到一般的思维方法,培养学生观察、归纳、猜想的能力三、教学重点:1. 二项式定理2. 展开式中通项公式r r n r n r b a C T -+=1四、教学难点:1. 某项的二项式系数与该项系数的区别2. 通项公式的灵活运用五、教学方法:启发引导法六、教学过程:引导1:观察下面两个公式,请从右边的项数,每项的次数,系数进行研究,你会发现什么规律?抽生回答后,教师明确:项数比左边次数多1;每项次数均为左边指数,a,b 指数a 降b 升;系数33231303221202C C C C C C C ,,,;,,猜想:(a+b)4= (a+b) (a+b) (a+b) (a+b)展开后,会是什么样呢?你能从项数、次数、系数这几个方面谈一谈吗?引导2:①展开式中,每一项为哪一项怎样得到的?(每个括号中任取一个字母相乘而得)②既然这样,每一项的次数都应为几次?〔4次〕展开后具有哪些形式的项呢?(a 4,a 3b ,a 2b 2,ab 3,b 4)③每一项在展开式中出现多少次,也就是展开式中各项系数为什么?探索:(a+b)4= (a+b) (a+b) (a+b) (a+b)在上面4个括号中:每个都不取b ,有04C 种取法,a 4的系数04C 恰有一个取b ,有14C 种取法,a 3b 的系数为14C 恰有2个取b ,有24C 种取法,a 2b 2的系数为24C 恰有3个取b ,有34C 种取法,ab 3的系数为34C 4个都取b ,有44C 种取法 , b 4的系数为44C 师述:(a+b)4展开式中项的形式已清楚,系数也明确了,因此:44433422243144044)(b C ab C b a C b a C a C b a ++++=+222122022222)(b C ab C a C b ab a b a ++=++=+3332232133033223333)(b C ab C b a C a C b ab b a a b a +++=+++=+再次强化特点:项数比次数多1;每项次数为左边指数4,a 降b 升;系数为04C ,14C ,24C ,34C ,44C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理教案(一)
一、教学目标:
1.知识技能:
(1)理解二项式定理是代数乘法公式的推广
(2)理解并掌握二项式定理,能利用计数原理证明二项式定理
2.过程与方法
通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、概括的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式
3.情感、态度、价值观
培养学生自主探究意识,合作精神,体验二项式定理的发现和创造历程,体会数学语言的简捷和严谨
二、教学重点、难点
重点:用计数原理分析3)(b a +的展开式得到二项式定理。
难点:用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律。
三、教学过程
(一)提出问题:
引入:二项式定理研究的是n b a )(+的展开式。
如2222)(b ab a b a ++=+, 那么: 3)(b a +=? 4)(b a +=? 100)(b a +=? 更进一步:n b a )(+=?
(二)对2)(b a +展开式的分析
))(()(2b a b a b a ++=+ 展开后其项的形式为:22,,b ab a
考虑b ,每个都不取b 的情况有1种,即02c ,则2a 前的系数为02c
恰有1个取b 的情况有12c 种,则ab 前的系数为12c
恰有2个取b 的情况有22c 种,则2b 前的系数为22c
所以 222122022222)(b c ab c a c b ab a b a ++=++=+
类似地 333223213303
3223333)(b c ab c b a c a c b ab b a a b a +++=+++=+ 思考:))()()(()(4b a b a b a b a b a ++++=+=?
问题:
1).4)(b a +展开后各项形式分别是什么?
4a b a 3 22b a 3ab 4b
2).各项前的系数代表着什么?
各项前的系数 就是在4个括号中选几个取b 的方法种数
3).你能分析说明各项前的系数吗?
每个都不取b 的情况有1种,即04c ,则4a 前的系数为04c
恰有1个取b 的情况有1
4c 种,则b a 3前的系数为14c
恰有2个取b 的情况有24c 种,则22b a 前的系数为24c
恰有3个取b 的情况有34c 种,则3ab 前的系数为34c
恰有4个取b 的情况有44c 种,则4b 前的系数为44c
则 44433422243144044)(b c ab c b a c b a c a c b a ++++=+
推广:得二项展开式定理:
一般地,对于*N n ∈有
......)(333222110++++=+---b a c b a c b a
c a c b a n n n n n n n n n n n n n n n r r n r n b c ab c b a c +++---11......
右边的多项式叫做n b a )(+的二项展开式
r r n r n b a c -:二项展开式的通项,记作1+r T
n n r n n n n c c c c c ,......,,......,,,21
0: 二项式系数
注1).二项展开式共有1+n 项,每项前都有二项式系数
2).各项中a 的指数从n 起依次减小1,到0为此
各项中b 的指数从0起依次增加1,到n 为此
如n n n n r r n n n n x x
c x c x c x c x +++++++=+--11221
......1)1( 四、应用(例题)
五、课堂练习
六、课后作业
七、总结与归纳
八、板书设计。