医学统计学案例辨析及参考答案
生物医学研究的统计学方法 课后答案(案例分析)

第1章绪论案例辨析及参考答案案例1-1某研究者的论文题目为“大学生身心健康状况及其影响因素研究”,以某地职业技术学院理、工、文、医学生(三年制)为研究对象,理、工、文、医学生分别挑选了60、38、19和46人,以问卷方式调查每位学生的一般健康状况、焦虑程度、抑郁程度等。
得出的结论是:“大学生身心健康状况不容乐观,学业问题、就业压力、身体状况差、人际交往不良、社会支持不力为主要影响因素”。
请问其结论合理吗?为什么?应该如何?案例辨析①样本不能代表总体。
总体是“大学生”,而样本仅为某地三年制职业技术学院学生;②社会学调查的样本含量显得不足;③“理、工、文、医学生分别挑选……”这种说法中隐含人为“挑选”的意思,不符合统计学要求。
正确做法应在论文的题目中明确调查的时间范围和地点,还应给“大学生”下一个明确的定义,以便确定此次调查的“总体”;对“大学生身心健康状况”可能有影响的因素很多,应结合具体问题拟定出少数最可能有影响的因素(如学科、在学年限等)进行分层随机抽样,以保证样本有较好的代表性;还应根据已知条件找到估计样本含量的计算公式,不可随意确定各学科仅调查几十人;当然,调查表中项目的设置也是十分重要的,此处从略。
案例1-2两种药用于同一种病,A药治疗5例,4例好转;B药治疗50例,36例好转。
结论是:A药优于B药。
请问其结论合理吗?为什么?应该如何?案例辨析①A药样本仅5例,样本含量太少;②得出“A药优于B药”没有交待是否采用了统计学推断方法,若用目测法得出结论,则结论没有说服力;③未明确研究目的和研究结果将被使用的范围。
正确做法①应明确研究目的和研究结果将被使用的范围,若是个别研究者或临床医生想了解这两种药的大致疗效,属于小规模的临床观察,其结论仅供少数人在今后临床实践中参考,其样本含量可能不需要很大,因为观察指标是定性的(有效、无效),一般来说,每个药物组也需要几十例(以不少于20例为宜);若属于新药的Ⅱ期临床试验,那就要严格按有关规定,比较准确地估计出所需要的样本含量,不仅如此,还有很多严格的要求,详见本书中临床试验设计一章;②从明确定义的总体中随机抽样进行实验研究,得到的实验结果不能仅凭数据大小作出判断,应进行假设检验,以提高结论的可信度。
医学统计学案例辨析及答案

医学统计学案例辨析及参考答案目录目录 (2)第1章绪论 (3)第2章统计描述 (5)第3章概率分布 (9)第4章参数估计 (12)第5章假设检验 (14)第6章两样本定量资料的比较 (16)第7章多组定量资料的比较 (19)第8章定性资料的比较 (22)第9章关联性分析 (25)第10章简单线性回归分析 (27)第11章多重线性回归分析 (30)第12章实验设计 (33)第13章临床试验设计 (35)第14章调查设计 (36)第15章样本含量估计 (38)第16章随机区组设计和析因设计资料的分析 (41)第17章重复测量设计和交叉设计资料的分析 (43)第18章 Logistic回归 (46)第19章生存分析 (50)第20章对数线性模型在高维列联表资料分析中的应用 (53)第21章多元统计方法简介 (56)第22章时间序列分析 (57)第24章基因表达谱分析的生物信息学方法 (59)第25章 Meta分析 (60)第26章医学论文的统计学报告要求 (64)第1章绪论案例辨析及参考答案案例1-1某研究者的论文题目为“大学生身心健康状况及其影响因素研究”,以某地职业技术学院理、工、文、医学生(三年制)为研究对象,理、工、文、医学生分别挑选了60、38、19和46人,以问卷方式调查每位学生的一般健康状况、焦虑程度、抑郁程度等。
得出的结论是:“大学生身心健康状况不容乐观,学业问题、就业压力、身体状况差、人际交往不良、社会支持不力为主要影响因素”。
请问其结论合理吗?为什么?应该如何?案例辨析①样本不能代表总体。
总体是“大学生”,而样本仅为某地三年制职业技术学院学生;②社会学调查的样本含量显得不足;③“理、工、文、医学生分别挑选……”这种说法中隐含人为“挑选”的意思,不符合统计学要求。
正确做法应在论文的题目中明确调查的时间范围和地点,还应给“大学生”下一个明确的定义,以便确定此次调查的“总体”;对“大学生身心健康状况”可能有影响的因素很多,应结合具体问题拟定出少数最可能有影响的因素(如学科、在学年限等)进行分层随机抽样,以保证样本有较好的代表性;还应根据已知条件找到估计样本含量的计算公式,不可随意确定各学科仅调查几十人;当然,调查表中项目的设置也是十分重要的,此处从略。
医学统计学案例分析

案例分析—四格表确切概率法【例1—5】为比较中西药治疗急性心肌梗塞的疗效,某医师将27例急性心肌梗塞患者随机分成两组,分别给予中药和西药治疗,结果见表1-4。
经检验,得连续性校正χ2=3.134,P>0。
05,差异无统计学意义,故认为中西药治疗急性心肌梗塞的疗效基本相同。
表1-4 两种药物治疗急性心肌梗塞的疗效比较药物有效无效合计有效率(%)中药12(9。
33)2(4.67)1485。
7西药 6(8.67)7(4.33)1346。
2合计1892766。
7【问题1-5】(1) 这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?【分析】(1)该资料是按中西药的治疗结果(有效、无效)分类的计数资料。
(2) 27例患者随机分配到中药组和西药组,属于完全随机设计方案。
(3)患者总例数n=27<40,该医师用χ2检验是不正确的。
当n<40或T<1时,不宜计算χ2值,需采用四格表确切概率法(exact probabilities in 2×2 table)直接计算概率案例分析-卡方检验(一)【例1—1】某医师为比较中药和西药治疗胃炎的疗效,随机抽取140例胃炎患者分成中药组和西药组,结果中药组治疗80例,有效64例,西药组治疗60例,有效35例.该医师采用成组t检验(有效=1,无效=0)进行假设检验,结果t=2。
848,P=0.005,差异有统计学意义检验(有效=1,无效=0)进行进行假设检验,结果t=2。
848,P=0.005,差异有统计学意义,故认为中西药治疗胃炎的疗效有差别,中药疗效高于西药.【问题1—1】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?(4)该资料应该用何种统计方法?【分析】(1) 该资料是按中西药疗效(有效、无效)分类的二分类资料,即计数资料。
(2) 随机抽取140例胃炎患者分成西药组和中药组,属于完全随机设计方案。
医学统计学案例分析

3
0.003
4
0.001
斑块面积
甲药 0.283 0.196 0.217 0.236
乙药 0.114 0.146 0.158 0.159
丙药 0.094 0.131 0.065 0.087
01
设计
02
现有3种降低转氨酶的药物A、B、C,为了考察它们对甲型
肝炎和乙型肝炎患者转氨酶降低的程度之间的差别是否有
2010.11
实验设计案例分 析
单击此处添加副标题
案例一
• 目的:比较A、B 二种儿童急性淋巴细胞白血病
治疗方案的效果;
• 研究对象:1998年-1999年住院的急性淋巴细 胞白血病患儿17例;
• 效应指标:血药浓度
• 分组:13例患儿第一疗程接受方案A,第二、三 疗程接受方案B,计26例次,
•
4例患儿仅接受方案B一个疗程。
案例二
01
一项研究中,某临床医生根据患者就诊的先后顺序对 他们进行分组,先到的10例分到A组,后到的10例分
到B组,如此分组合适吗?
02
问题:
患者就诊的先后顺序中可能暗含病情轻重不等的因素。
案例三
目的:小剂量干扰素加三氮唑核苷治疗流行性乙脑效果 分组:
○ 治疗组---对发病5天以内接受一般治疗的患者加用小剂量干扰素与三氮唑核苷治疗 ○ 对照组---一般治疗
米 带糠皮米
本例处理因素有2个:饲料类型(米、带糠皮
米),饲料污染与否(污染、未污染),共
有 四 种 组污合染。
未污染
组1
组3
组2
需补充的组
案例五
01 目的:重量法测定血苯-白蛋 白加合物的初步研究
02 分组:实验组:重量法
医学统计学案例分析 2

(3) 患者总例数 n=27<40,该医师用χ2 检验是不正确的。当 n<40 或 T<1 时, 不宜计算χ2 值, 需采用四格表确切概率法 (exact probabilities in 2×2 table) 直接计算概率
案例分析-卡方检验(一)
【例 1-1】 某医师为比较中药和西药治疗胃炎的疗效,随机抽取 140 例胃炎
药 物 有 效 无 效 合 计 有效率(%) 中 药 14(11.2) 14(16.8) 28 50.0 西 药 2 (4.8) 10 (7.2) 12 16.7 合 计 16 24 40 40.0 某医师认为这是完全随机设计的 2 组二分类资料,可用四格表的 检验。其 步骤如下: 1.建立检验假设,确定检验水准
6(8.67)
无 效 2(4.67)
7(4.33)
合 计 14 13 27
有效率(%) 85.7 46.2 66.7
18
9
【问题 1-5】 (1) 这是什么资料? (2) 该资料属于何种设计方案? (3) 该医师统计方法是否正确?为什么? 【分析】 (1) (2) 该资料是按中西药的治疗结果(有效、无效)分类的计数资料。 27 例患者随机分配到中药组和西药组,属于完全随机设计方案。
得 0.025<P<0.05,按α=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义,可认为两药的有效率不等,中药疗效 高于西药。 【问题 1-2】 (1)这是什么资料? (2)该资料属于何种设计方 案? (3)该医师统计方法是否正确?为什么? 【分析】 (1) 中西药的疗效按有效和无效分类,该医师认为此资料是二分类资料即 计数资料是正确的。 (2) 40 例患者随机分配到西药组和中药组,属于完全随机设计方案。 (3) 该医师用四格表 X2 检验是正确的,但计算 值的公式不对。因为有一 个理论频数(T21=4.8)小于 5 大于 1,应用连续性校正公式计算χ2 值。
医学统计学课后案例分析答案:第6章 两样本定量资料的比较

第6章两样本定量资料的比较案例辨析及参考答案案例6-1 为研究直肠癌患者手术前后血清CEA含量有无差异,作者收集了以下资料:术前(24例):31.5 30.0 28.6 39.7 45.2 20.3 37.3 24.0 36.2 20.5 23.1 29.033.1 35.2 28.9 26.4 25.9 23.8 30.4 31.6 27.9 33.0 34.0 32.7 术后(12例):2.0 3.2 2.3 3.1 1.9 2.2 1.5 1.8 3.2 3.0 2.8 2.1 (1)有人采用了两独立样本的t检验,结果t=15.92,ν=34,P<0.05。
从而得出结论:手术前后血清CEA含量有差异,术前CEA含量高于术后。
(2)也有人觉得上述分析方法不对,应该采用两独立样本的秩和检验,结果为:=,P<0.05。
Z-4.83(3)还有人认为应该采用校正t检验,结果:t'=22.51,P<0.05。
(4)有人将上述三种方法作一比较,认为既然三者结论是一致的,所以采用哪种分析方法都无所谓。
对此你有何看法?案例辨析(1)属于盲目套用两独立样本的t检验,因为未检查定量资料是否满足参数检验的前提条件。
(2)若定量资料满足参数检验的前提条件,直接用秩和检验会降低检验功效。
(3)若定量资料不满足正态性要求,直接用校正的t检验也是不妥当的。
(4)应当采用哪种统计分析方法不应仅看结论是否一致,而应根据分析目的、设计类型、资料是否满足参数检验的前提条件等方面综合考虑,事先选定统计分析方法,不能等到计算结果出来了,再确定统计分析方法。
正确做法此案例涉及完全随机设计两小样本资料的假设检验,统计方法的选择一定要结合数据特征。
通过对两组数据进行正态性检验,发现两样本均来自正态总体,但方差齐性检验结果表明,两总体方差不齐,所以最好的办法就是t'检验,此种情况一般不主张采用秩和检验,因为检验功效会大大降低。
医学统计学课后案例分析答案:第7章 多组定量资料的比较

第7章多组定量资料的比较案例辨析及参考答案案例7-1某医院妇产科测定几种卵巢功能异常患者血清中促黄体素的含量(U/L),结果如下:卵巢发育不良 42.50 38.31 35.76 33.60 31.38丘脑性闭经 6.71 3.32 4.59 1.67 10.51 2.96 11.82 3.86•8.26 2.63 2.20 垂体性闭经 4.50 2.75 11.14 5.98 1.90 5.43 11.05 22.03研究者运用t检验进行两两比较,共比较了3次。
结论是卵巢发育不良者血清中促黄体素的含量高于丘脑性闭经和垂体性闭经者。
这样做是否妥当?为什么?正确的做法是什么?案例辨析原作者用3次t检验处理此定量资料是不妥当的,因为这样做割裂了原先的整体设计,对资料的利用率较低,对误差的估计不够合理,检验统计量的自由度较小,结论的可信度降低。
正确做法这是从三个子总体内完全随机抽取受试对象的单因素3水平设计定量资料的假设检验问题,应选用与此设计对应的统计分析方法。
若定量资料满足参数检验的三个前提条件(即独立性、正态性和方差齐性),应选用单因素3水平设计定量资料方差分析;若定量资料不满足参数检验的三个前提条件,可选用Kruskal-Wallis秩和检验。
假定3组定量资料满足独立性要求,对3组定量资料用W检验分别进行正态性检验,得:卵巢发育不良组为W=0.979,P=0.930;丘脑性闭经组为W=0.874,P=0.087;垂体性闭经组为W=0.844,P=0.083。
因3组正态性检验结果均有P 0.05,说明3组定量资料满足正态性要求。
再对3组定量资料进行方差齐性检验(采用Levene检验),得:F=1.416,P=0.265。
说明3组定量资料满足方差齐性的要求。
因该定量资料满足方差分析的前提条件,故建议采用单因素3水平设计定量资料方差分析处理。
经方差分析,F=74.64,P<0.001;进而经Bonferroni检验,卵巢发育不良组高于丘脑性闭经组(P<0.001),卵巢发育不良组高于垂体性闭经组(P<0.001),而丘脑性闭经组与垂体性闭经组之间的差异无统计学意义(P=0.234);虽然结论与原作者的相同(巧合),但原作者的处理过程不妥。
医学统计学案例分析

案例分析—四格表确切概率法【例1-5】为比较中西药治疗急性心肌梗塞的疗效,某医师将27例急性心肌梗塞患者随机分成两组,分别给予中药和西药治疗,结果见表1-4。
经检验,得连续性校正χ2=3.134,P>0.05,差异无统计学意义,故认为中西药治疗急性心肌梗塞的疗效基本相同。
表1-4 两种药物治疗急性心肌梗塞的疗效比较药物有效无效合计有效率(%)中药12(9.33)2(4.67)1485.7西药 6(8.67)7(4.33)1346.2合计1892766.7【问题1-5】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?【分析】(1) 该资料是按中西药的治疗结果(有效、无效)分类的计数资料。
(2) 27例患者随机分配到中药组和西药组,属于完全随机设计方案。
(3) 患者总例数n=27<40,该医师用χ2检验是不正确的。
当n<40或T<1时,不宜计算χ2值,需采用四格表确切概率法(exact probabilities in 2×2 table)直接计算概率案例分析-卡方检验(一)【例1-1】某医师为比较中药和西药治疗胃炎的疗效,随机抽取140例胃炎患者分成中药组和西药组,结果中药组治疗80例,有效64例,西药组治疗60例,有效35例。
该医师采用成组t检验(有效=1,无效=0)进行假设检验,结果t=2.848,P=0.005,差异有统计学意义检验(有效=1,无效=0)进行进行假设检验,结果t=2.848,P=0.005,差异有统计学意义,故认为中西药治疗胃炎的疗效有差别,中药疗效高于西药。
【问题1-1】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?(4)该资料应该用何种统计方法?【分析】(1) 该资料是按中西药疗效(有效、无效)分类的二分类资料,即计数资料。
(2) 随机抽取140例胃炎患者分成西药组和中药组,属于完全随机设计方案。
医学统计学案例分析 (1)

案例分析—四格表确切概率法【例1-5】为比较中西药治疗急性心肌梗塞的疗效,某医师将27例急性心肌梗塞患者随机分成两组,分别给予中药和西药治疗,结果见表1-4。
经检验,得连续性校正χ2=3.134,P>0.05,差异无统计学意义,故认为中西药治疗急性心肌梗塞的疗效基本相同。
表1-4 两种药物治疗急性心肌梗塞的疗效比较药物有效无效合计有效率(%)中药12(9.33)2(4.67)1485.7西药 6(8.67)7(4.33)1346.2合计1892766.7【问题1-5】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?【分析】(1) 该资料是按中西药的治疗结果(有效、无效)分类的计数资料。
(2) 27例患者随机分配到中药组和西药组,属于完全随机设计方案。
(3) 患者总例数n=27<40,该医师用χ2检验是不正确的。
当n<40或T<1时,不宜计算χ2值,需采用四格表确切概率法(exact probabilities in 2×2 table)直接计算概率案例分析-卡方检验(一)【例1-1】某医师为比较中药和西药治疗胃炎的疗效,随机抽取140例胃炎患者分成中药组和西药组,结果中药组治疗80例,有效64例,西药组治疗60例,有效35例。
该医师采用成组t检验(有效=1,无效=0)进行假设检验,结果t=2.848,P=0.005,差异有统计学意义检验(有效=1,无效=0)进行进行假设检验,结果t=2.848,P=0.005,差异有统计学意义,故认为中西药治疗胃炎的疗效有差别,中药疗效高于西药。
【问题1-1】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?(4)该资料应该用何种统计方法?【分析】(1) 该资料是按中西药疗效(有效、无效)分类的二分类资料,即计数资料。
(2) 随机抽取140例胃炎患者分成西药组和中药组,属于完全随机设计方案。
生物医学研究的统计学方法-课后答案(案例分析)

第1章绪论案例辨析及参考答案案例1-1某研究者的论文题目为“大学生身心健康状况及其影响因素研究”,以某地职业技术学院理、工、文、医学生(三年制)为研究对象,理、工、文、医学生分别挑选了60、38、19和46人,以问卷方式调查每位学生的一般健康状况、焦虑程度、抑郁程度等。
得出的结论是:“大学生身心健康状况不容乐观,学业问题、就业压力、身体状况差、人际交往不良、社会支持不力为主要影响因素”。
请问其结论合理吗?为什么?应该如何?案例辨析①样本不能代表总体。
总体是“大学生”,而样本仅为某地三年制职业技术学院学生;②社会学调查的样本含量显得不足;③“理、工、文、医学生分别挑选……”这种说法中隐含人为“挑选"的意思,不符合统计学要求.正确做法应在论文的题目中明确调查的时间范围和地点,还应给“大学生"下一个明确的定义,以便确定此次调查的“总体”;对“大学生身心健康状况”可能有影响的因素很多,应结合具体问题拟定出少数最可能有影响的因素(如学科、在学年限等)进行分层随机抽样,以保证样本有较好的代表性;还应根据已知条件找到估计样本含量的计算公式,不可随意确定各学科仅调查几十人;当然,调查表中项目的设置也是十分重要的,此处从略。
案例1—2两种药用于同一种病,A药治疗5例,4例好转;B药治疗50例,36例好转。
结论是:A药优于B药.请问其结论合理吗?为什么?应该如何?案例辨析①A药样本仅5例,样本含量太少;②得出“A药优于B药”没有交待是否采用了统计学推断方法,若用目测法得出结论,则结论没有说服力;③未明确研究目的和研究结果将被使用的范围.正确做法①应明确研究目的和研究结果将被使用的范围,若是个别研究者或临床医生想了解这两种药的大致疗效,属于小规模的临床观察,其结论仅供少数人在今后临床实践中参考,其样本含量可能不需要很大,因为观察指标是定性的(有效、无效),一般来说,每个药物组也需要几十例(以不少于20例为宜);若属于新药的Ⅱ期临床试验,那就要严格按有关规定,比较准确地估计出所需要的样本含量,不仅如此,还有很多严格的要求,详见本书中临床试验设计一章;②从明确定义的总体中随机抽样进行实验研究,得到的实验结果不能仅凭数据大小作出判断,应进行假设检验,以提高结论的可信度.案例1-3某研究者为了探讨原发性高血压患者肾小管早期损害的监控指标,选取尿常规、蛋白定性检查阴性,血肌酐、尿素氮均在正常范围内的原发性高血压患者74例作为病例组,其中男43例,女31例,平均年龄61岁(40 73岁)。
医学统计学-课后答案

1.参数检验:已知总体分布类型,对未知的总体参数做推断的假设检验方法。
故参数检验依赖于特定的分布类型,比较的是总体参数2.非参数检验:不依赖于总体分布类型、不针对总体参数的检验方法。
故非参数检验对总体的分布类型不做任何要求,不受总体参数的影响,比较的是分布或分布位置。
适用范围广,可适用于任何类型资料参数检验优点:资料信息利用充分;检验效能较高缺点:对资料的要求高;适用范围有限2.非参数检验优点:适用范围广,可适用于任何类型的资料缺点:检验效能低,易犯Ⅱ型错误凡适合参数检验的资料,应首选参数检验对于符合参数检验条件者,采用非参数检验,其检验效能低,易犯Ⅱ型错误第一章绪论1.举例说明总体和样本的概念。
研究人员通常需要了解和研究某一类个体,这个类就是总体。
总体是根据研究目的所确定的所有同质观察单位某种观察值(即变量值)的集合,通常有无限总体和有限总体之分,前者指总体中的个体是无限的,如研究药物疗效,某病患者就是无限总体,后者指总体中的个体是有限的,它是指特定时间、空间中有限个研究个体。
但是,研究整个总体一般并不实际,通常能研究的只是它的一部分,这个部分就是样本。
例如在一项关于2007年西藏自治区正常成年男子的红细胞平均水平的调查研究中,该地2007年全部正常成年男子的红细胞数就构成一个总体,从此总体中随即抽取2000人,分别测的其红细胞数,组成样本,其样本含量为2000人。
2.简述误差的概念。
误差泛指实测值与真实值之差,一般分为随机误差和非随机误差。
随机误差是使重复观测获得的实际观测值往往无方向性地围绕着某一个数值左右波动的误差;非随机误差中最常见的为系统误差,系统误差也叫偏倚,是使实际观测值系统的偏离真实值的误差。
3.举例说明参数和统计量的概念。
某项研究通常想知道关于总体的某些数值特征,这些数值特征称为参数,如整个城市的高血压患病率。
根据样本算得的某些数值特征称为统计量,如根据几百人的抽样调查数据所算得的样本人群高血压患病。
医学统计学案例分析

案例分析—四格表确切概率法【例1-5】为比较中西药治疗急性心肌梗塞的疗效,某医师将27例急性心肌梗塞患者随机分成两组,分别给予中药和西药治疗,结果见表1-4。
经检验,得连续性校正χ2=3.134,P>0.05,差异无统计学意义,故认为中西药治疗急性心肌梗塞的疗效基本相同。
表1-4 两种药物治疗急性心肌梗塞的疗效比较药物有效无效合计有效率(%)中药12(9.33)2(4.67)1485.7西药 6(8.67)7(4.33)1346.2合计1892766.7【问题1-5】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?【分析】(1) 该资料是按中西药的治疗结果(有效、无效)分类的计数资料。
(2) 27例患者随机分配到中药组和西药组,属于完全随机设计方案。
(3) 患者总例数n=27<40,该医师用χ2检验是不正确的。
当n<40或T<1时,不宜计算χ2值,需采用四格表确切概率法(exact probabilities in 2×2 table)直接计算概率案例分析-卡方检验(一)【例1-1】某医师为比较中药和西药治疗胃炎的疗效,随机抽取140例胃炎患者分成中药组和西药组,结果中药组治疗80例,有效64例,西药组治疗60例,有效35例。
该医师采用成组t检验(有效=1,无效=0)进行假设检验,结果t=2.848,P=0.005,差异有统计学意义检验(有效=1,无效=0)进行进行假设检验,结果t=2.848,P=0.005,差异有统计学意义,故认为中西药治疗胃炎的疗效有差别,中药疗效高于西药。
【问题1-1】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?(4)该资料应该用何种统计方法?【分析】(1) 该资料是按中西药疗效(有效、无效)分类的二分类资料,即计数资料。
(2) 随机抽取140例胃炎患者分成西药组和中药组,属于完全随机设计方案。
医学统计学课后案例分析答案:第9章 关联性分析

第9章关联性分析案例辨析及参考答案案例9-1 有研究者以“正常血糖、糖耐量减低及2型糖尿病人群胰岛素抵抗与非酒精性脂肪肝的相关分析”为题,研究了非酒精性脂肪肝的患病率与糖尿病分级(即正常血糖、糖耐量减低和2型糖尿病三级)的关系。
以正常血糖者、糖耐量减低者和2型糖尿病患者为研究对象,年龄、性别可比,无大量饮酒史、肝炎史,脂肪肝的诊断以影像学结果为准。
指标以均数±标准差表示,统计分析采用两组独立样本比较的t检验。
结果发现,三组血糖、胰岛素、血脂水平等和脂肪肝患病率差别有统计学意义(数据及统计结果见教材表9-7),糖耐量减低组与正常血糖组比较P<0.05,2型糖尿病组与糖耐量减低组比较P<0.05。
结论,随着正常血糖向糖耐量减低及糖尿病发展,血糖、血脂、胰岛素抵抗指数及脂肪肝患病率等指标值皆升高并逐渐加重,差异有统计学意义,认为脂肪肝患病率与血糖水平、血胰岛素、血脂、胰岛素抵抗、糖耐量减低和2型糖尿病等成正相关。
教材表9-7 三种血糖水平人群的血生化及脂肪肝患病率组别例血糖/1Lmmol-⋅胰岛素/1Lmmol-⋅三酰甘油/1Lmmol-⋅总胆固醇/1Lmmol-⋅胰胰素抵抗指数/1Lmmol-⋅脂肪肝患病率/% 空腹餐后空腹餐后正常血糖87 5.0±0.55.6±1.07.4±1.824±8 0.9±0.3 3.0±0.9 0.6±0.5 48.3糖耐量减低62 6.5±0.58.2±1.311.4±2.7134±582.1±1.0 4.6±0.8 1.2±0.7 69.42型糖尿病68 8.3±2.612.5±3.416.8±3.2114±442.6±1.5 5.1±0.8 1.9±0.7 83.8经t检验,糖耐量减低组与正常血糖组比较,以及2型糖尿病与正常血糖组比较,各指标比较的P值均<0.01;而2型糖尿病与糖耐量减低组比较,餐后胰岛素两组比较P<0.05,脂肪肝患病率比较P<0.05,其余各指标比较的P值均<0.01。
医学统计学案例分析

案例分析—四格表确切概率法【例1-5】为比较中西药治疗急性心肌梗塞的疗效,某医师将27例急性心肌梗塞患者随机分成两组,分别给予中药和西药治疗,结果见表1-4。
经检验,得连续性校正χ2=3.134,P>0.05,差异无统计学意义,故认为中西药治疗急性心肌梗塞的疗效基本相同。
表1-4 两种药物治疗急性心肌梗塞的疗效比较药物有效无效合计有效率(%)中药12(9.33)2(4.67)1485.7西药 6(8.67)7(4.33)1346.2合计1892766.7【问题1-5】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?【分析】(1) 该资料是按中西药的治疗结果(有效、无效)分类的计数资料。
(2) 27例患者随机分配到中药组和西药组,属于完全随机设计方案。
(3) 患者总例数n=27<40,该医师用χ2检验是不正确的。
当n<40或T<1时,不宜计算χ2值,需采用四格表确切概率法(exact probabilities in 2×2 table)直接计算概率案例分析-卡方检验(一)【例1-1】某医师为比较中药和西药治疗胃炎的疗效,随机抽取140例胃炎患者分成中药组和西药组,结果中药组治疗80例,有效64例,西药组治疗60例,有效35例。
该医师采用成组t检验(有效=1,无效=0)进行假设检验,结果t=2.848,P=0.005,差异有统计学意义检验(有效=1,无效=0)进行进行假设检验,结果t=2.848,P=0.005,差异有统计学意义,故认为中西药治疗胃炎的疗效有差别,中药疗效高于西药。
【问题1-1】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?(4)该资料应该用何种统计方法?【分析】(1) 该资料是按中西药疗效(有效、无效)分类的二分类资料,即计数资料。
(2) 随机抽取140例胃炎患者分成西药组和中药组,属于完全随机设计方案。
医学统计学案例分析

案例分析-四格表确切概率法【例1—5】为比较中西药治疗急性心肌梗塞的疗效,某医师将27例急性心肌梗塞患者随机分成两组,分别给予中药和西药治疗,结果见表1-4。
经检验,得连续性校正χ2=3。
134,P>0。
05,差异无统计学意义,故认为中西药治疗急性心肌梗塞的疗效基本相同.表1-4 两种药物治疗急性心肌梗塞的疗效比较药物有效无效合计有效率(%)中药12(9.33)2(4.67)1485。
7西药 6(8。
67)7(4。
33)1346。
2合计1892766。
7【问题1—5】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?【分析】(1) 该资料是按中西药的治疗结果(有效、无效)分类的计数资料。
(2) 27例患者随机分配到中药组和西药组,属于完全随机设计方案. (3)患者总例数n=27<40,该医师用χ2检验是不正确的。
当n<40或T<1时,不宜计算χ2值,需采用四格表确切概率法(exact probabilities in 2×2 table)直接计算概率案例分析-卡方检验(一)【例1—1】某医师为比较中药和西药治疗胃炎的疗效,随机抽取140例胃炎患者分成中药组和西药组,结果中药组治疗80例,有效64例,西药组治疗60例,有效35例。
该医师采用成组t检验(有效=1,无效=0)进行假设检验,结果t=2.848,P=0.005,差异有统计学意义检验(有效=1,无效=0)进行进行假设检验,结果t=2。
848,P=0。
005,差异有统计学意义,故认为中西药治疗胃炎的疗效有差别,中药疗效高于西药。
【问题1—1】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?(4)该资料应该用何种统计方法? 【分析】(1)该资料是按中西药疗效(有效、无效)分类的二分类资料,即计数资料。
(2)随机抽取140例胃炎患者分成西药组和中药组,属于完全随机设计方案.(3) 该医师统计方法不正确.因为成组t检验用于推断两个总体均数有无差别,适用于正态或近似正态分布的计量资料,不能用于计数资料的比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学统计学案例辨析及参考答案非凡文印提供松园7号楼目录目录 (2)第1章绪论 (3)第2章统计描述 (5)第3章概率分布 (9)第4章参数估计 (12)第5章假设检验 (14)第6章两样本定量资料的比较 (16)第7章多组定量资料的比较 (19)第8章定性资料的比较 (22)第9章关联性分析 (25)第10章简单线性回归分析 (27)第11章多重线性回归分析 (31)第12章实验设计 (34)第13章临床试验设计 (36)第14章调查设计 (37)第15章样本含量估计 (39)第16章随机区组设计和析因设计资料的分析 (42)第17章重复测量设计和交叉设计资料的分析 (44)第18章 Logistic回归 (47)第19章生存分析 (51)第20章对数线性模型在高维列联表资料分析中的应用 (54)第21章多元统计方法简介 (57)第22章时间序列分析 (58)第24章基因表达谱分析的生物信息学方法 (60)第25章 Meta分析 (61)第26章医学论文的统计学报告要求 (65)第1章绪论案例辨析及参考答案案例1-1某研究者的论文题目为“大学生身心健康状况及其影响因素研究”,以某地职业技术学院理、工、文、医学生(三年制)为研究对象,理、工、文、医学生分别挑选了60、38、19和46人,以问卷方式调查每位学生的一般健康状况、焦虑程度、抑郁程度等。
得出的结论是:“大学生身心健康状况不容乐观,学业问题、就业压力、身体状况差、人际交往不良、社会支持不力为主要影响因素”。
请问其结论合理吗?为什么?应该如何?案例辨析①样本不能代表总体。
总体是“大学生”,而样本仅为某地三年制职业技术学院学生;②社会学调查的样本含量显得不足;③“理、工、文、医学生分别挑选……”这种说法中隐含人为“挑选”的意思,不符合统计学要求。
正确做法应在论文的题目中明确调查的时间范围和地点,还应给“大学生”下一个明确的定义,以便确定此次调查的“总体”;对“大学生身心健康状况”可能有影响的因素很多,应结合具体问题拟定出少数最可能有影响的因素(如学科、在学年限等)进行分层随机抽样,以保证样本有较好的代表性;还应根据已知条件找到估计样本含量的计算公式,不可随意确定各学科仅调查几十人;当然,调查表中项目的设置也是十分重要的,此处从略。
案例1-2两种药用于同一种病,A药治疗5例,4例好转;B药治疗50例,36例好转。
结论是:A药优于B药。
请问其结论合理吗?为什么?应该如何?案例辨析①A药样本仅5例,样本含量太少;②得出“A药优于B药”没有交待是否采用了统计学推断方法,若用目测法得出结论,则结论没有说服力;③未明确研究目的和研究结果将被使用的范围。
正确做法①应明确研究目的和研究结果将被使用的范围,若是个别研究者或临床医生想了解这两种药的大致疗效,属于小规模的临床观察,其结论仅供少数人在今后临床实践中参考,其样本含量可能不需要很大,因为观察指标是定性的(有效、无效),一般来说,每个药物组也需要几十例(以不少于20例为宜);若属于新药的Ⅱ期临床试验,那就要严格按有关规定,比较准确地估计出所需要的样本含量,不仅如此,还有很多严格的要求,详见本书中临床试验设计一章;②从明确定义的总体中随机抽样进行实验研究,得到的实验结果不能仅凭数据大小作出判断,应进行假设检验,以提高结论的可信度。
案例1-3某研究者为了探讨原发性高血压患者肾小管早期损害的监控指标,选取尿常规、蛋白定性检查阴性,血肌酐、尿素氮均在正常范围内的原发性高血压患者74例作为病例组,其中男43例,女31例,平均年龄61岁(40~73岁)。
根据高血压的病程将患者分为三组,Ⅰ组高血压病期<10年,Ⅱ组高血压病期10~20年,Ⅲ组高血压病期>20年。
另选取53名体检健康的职工为对照组。
观测两组尿视黄醇结合蛋白(retinal binding protein, RBP )、微量白蛋白(microalbumin, mALB)、β2 微球蛋白(β2 microglobulin, β2-MG)和N -乙酰-β-D-氨基葡萄糖苷酶(N -acetyl-β-D-glucosaminidase, NAG)四项定量指标的取值。
结论为:尿RBP 、mALB 、β2-MG 和NAG 是原发性高血压患者肾小球、肾小管早期损害的敏感指标。
请辨析这样设计实验存在什么问题?正确的做法是什么?案例辨析 研究对象的选取在病例组和对照组之间存在不均衡性,即两组受试者之间,除了一组患有高血压,另一组未患高血压以外,在其他很多与评价高血压可能导致坏影响的方面都不一致。
对照组选取的是53名体检健康的职工,未明确写出平均年龄以及年龄所在的范围,也未交代性别构成情况。
但由我国现行的退休制度可知,在职职工的年龄通常在18~60岁之间,平均年龄大约40岁。
由临床医学基本常识可知,很多因素(比如年龄、性别等)不仅对血压有影响(通常是随着年龄的增大,血压有升高的趋势),而且对肾功能也有一定程度的影响;况且,高血压患者与健康职工还在“体力和脑力劳动强度、生活方式、心理和精神的紧张程度等诸多方面不具有可比性,而这些重要的非实验因素可能对肾功能也存在不同程度的影响。
总之,原研究者所选取的病例组与对照组在很多重要的非实验因素方面(特别是年龄)不具有可比性,降低了结论的说服力。
正确做法 欲探讨高血压早期肾损害的监控指标,应根据高血压患者病程所分的三个组确定受试者的年龄段,从患者所取自的人群范围内随机选取一定数量的正常健康人(而不应仅局限在原研究者所在单位内),将正常健康人也分成相应的三个年龄段,并应尽可能确保在每个年龄段中,病例组与对照组受试者在其他重要非实验因素方面(如性别构成、体力和脑力劳动强度、生活方式、心理和精神的紧张程度等)均衡一致,采用相应的统计分析方法去比较定量指标的测定结果之间的差别,其结论才具有较高的可信度。
案例1-4 某部队共有1 200人,在某段时间内患某病的人数有120人,其中男性114人,女性6人。
某卫生员进行统计分析后说,经假设检验,该病的两性发病率(114/120=95%与6/120=5%)之间的差别有统计学意义,由此得出结论:“该病男性易得”。
你对这个结论有何看法?若结论是错误的,那么,错误的实质是什么?正确的做法是什么?案例辨析 这个结论是错误的!因为在这1 200人中,究竟有多少男性和多少女性并不清楚,无法计算男性发病的频率和女性发病的频率。
假如其中有1 194名男性和6名女性,则男性发病率为(120/1 194)⨯100% = 10.05%,而女性全部发病(女性总例数太少,不宜用百分之百发病率来描述)。
显然,原来的结论是不成立的。
该卫生员所犯错误的实质是将发病人员中性别的频率错误地当作人群中发病的频率了,因而得出毫无根据的错误结论。
正确做法 若这1 200人是从一个总体中抽出来的样本,要弄清在这1 200人中男、女人数各是多少,设分别为男n 和女n ,然后,分别计算男性和女性的发病频率,即%100120⨯=男男n P ,%1006⨯=女女n P ;要想得出两个发病频率之间的差别是否能反映总体的情况,还应进行统计推断(即进行假设检验,此处从略)。
第2章统计描述案例辨析及参考答案案例2-1本章的例2-1中,该医生同时还观察了1 402名临产母亲的住院天数(教材表2-14),并得到平均住院天数为6.6天。
请对此发表评论。
教材表2-14 1 402名临产母亲生产期间的住院天数组段(1)组中值X i(2)频数(3)频率f i(4)1~ 2 79 5.633~ 4 316 22.545~ 6 559 39.877~ 8 243 17.339~ 10 89 6.3511~ 12 57 4.0713~ 14 23 1.6415~ 16 19 1.3617~ 18 9 0.6419~ 20 1 0.0721~ 22 2 0.1423~ 24 2 0.1425~ 26 3 0.21合计— 1 402 1.00由加权法的计算公式(2-2)求出平均住院天数661002264001244225430562.....X=⨯+⨯++⨯+⨯= (天) 案例辨析首先观察资料的分布形式,由于呈正偏峰分布,选用上述结果描述住院天数的平均水平不合适。
正确做法宜选用不受定量资料分布情况限制的中位数来描述住院天数的平均水平。
本例计算结果为M =6.1(天)。
案例2-2某人编制了一张统计表(教材表2-15), 你认为哪些需要改进?案例辨析原表格存在的问题:①标题不准确;②线条过多,出现了斜线、竖线和多余的横线;③数字区域出现了文字;④小数位数不统一,小数点没有纵向对齐;⑤量纲的标注位置有误。
正确做法将原统计表中存在的上述错误纠正过来,修改后的统计表见案例表2-1。
案例表2-1 1976—1979年吉林市各年龄组人群部分恶性肿瘤死亡情况调查结果疾病各年龄组死亡率(1/10万)0~15~35~55~75~胃癌0.00 1.13 19.92 150.00 313.44 食管癌0.00 0.10 2.18 35.20 73.56肝癌肺癌0.340.001.640.4125.3020.2197.51125.10134.33137.53案例2-3某人绘制一张统计图(教材图2-11), 你认为哪些需要改进?教材图2-11 1952年与1972年某地肺结核、心脏病和恶性肿瘤的死亡率案例辨析原图形存在的问题:①缺标题;②复式条图误用为单式条图;③纵轴的量纲未注明;④未正确给出图例。
正确做法将原图中存在的上述错误纠正过来,重新绘图(案例图2-1)。
案例图2-1 某地三种疾病死亡率在1952与1972年间的变化案例2-4以病死率为考察指标,对两所医院某病的治疗水平进行比较,结果见教材表2-16,由合计的病死率得出结论为乙医院治疗水平优于甲医院,请评述这个结论。
教材表2-16 2000年两所医院某病的病死率比较病情严重程度甲医院乙医院出院人数病死数病死率/ % 出院人数病死数病死率/ %轻100 8 8.0 650 65 10.0中300 36 12.0 250 40 16.0重600 90 15.0 100 18 18.0 合计 1 000 134 13.4 1 000 123 12.3 案例辨析由教材表2-16可以看出,此表编制得不够规范,更为严重的是,虽然甲医院各种病情患者的病死率均低于乙医院,但总的病死率却是甲医院高于乙医院。
这个矛盾的出现,是由于甲医院收治的重病人多,轻病人少,乙医院则是重病人少,轻病人多。
两家医院收治患者的病情不均衡,不宜直接比较基于各自病情状况的病死率——“粗病死率”。
正确做法因各医院收治的患者在病情方面不均衡,直接进行比较是不正确的,而是要进行标准化处理后再比较。