抛物线知识点整理资料讲解
抛物线知识梳理
【知识梳理】 1、定义平面内,到定点的距离与到定直线距离相等的点的轨迹.其中定点称为抛物线的焦点,定直线称为抛物线的准线.3、通径过抛物线的焦点F 作直线⊥l x 轴,交抛物线22y px =于,A B 两点,弦长2=AB p ,此时的弦长称为通径,此为所有的焦点弦中最短的弦. 4、焦点弦的性质过抛物线()220y px p =>的焦点F 的直线交抛物线于()()1122,,,A x y B x y 两点,过,A B两点分别作准线的垂线,垂足为,H K ,M 为线段AB 的中点,过M 作准线的垂线,垂足为N ,准线与x 的交点为T 则(1)12x x ⋅=定值24p ;(2)12y y ⋅=定值2p -;(3)11||||FA FB +=定值2p ; (4)12AB x x p =++;(5)()1221122p x y x y y y +=-+;(6)24HK AF BF =; (7)24HFK AHFBKF S SS=;(8)AN ⊥HF ,BN ⊥KF ;(9)以AB 为直径的圆与准线相切;以AF 、BF 为直径的圆与y 轴相切; (10)ATF BTF ∠=∠;5、过抛物线()220y px p =>的焦点F 的直线交抛物线于,A B 两点,过,A B 两点分别作准线的垂线,垂足为,H K ,则HF KF ⊥.6、过抛物线()220y px p =>的焦点F 的直线交抛物线于,A B 两点,M 为线段AB 的中点,过M 作准线的垂线,垂足为N ,则NF AB ⊥.7、过抛物线()220y px p =>的焦点F 的直线交抛物线于,A B 两点,M 为线段AB 的中点,过M 作准线的垂线,垂足为N ,则AN BN ⊥8、过点()(),00M m m >的直线交抛物线()220y px p =>于()()1122,,,A x y B x y 两点,则(1)12x x ⋅=定值2m ;(2)12y y ⋅=定值2pm -; (3)2OA OB m p ⊥⇔=;(4)m p =时,2211||||MA MB +=定值21p. 9、过抛物线()220y px p =>的焦点F 的直线交抛物线于()()1122,,,A x y B x y 两点,直线AB 的倾斜角为θ,则22sin pAB θ=10、设点是抛物线2:2(0)L y px p =>的焦点,12,,,n P P P 是抛物线L 上的n 个不同的点,若120n FP FP FP +++=,则12n FP FP FP np +++=.11、设抛物线2:2(0)C y px p =>的焦点为F ,经过点F 的直线与抛物线交于,A B 两点. 若M 是抛物线C 准线上的点,则直线,,MA MF MB 的斜率成等差数列.F。
完整版)抛物线知识点归纳总结
完整版)抛物线知识点归纳总结抛物线是一种经典的二次函数图像,具有许多重要的特点和性质。
以下是对抛物线知识点的详细总结。
1.定义:抛物线是平面上一点P到定点F的距离等于点P到定直线上一点的距离的轨迹。
2.构成:抛物线由平面上的点集组成,由对称轴与焦点决定。
3. 表达式:一般形式的抛物线方程是y=ax^2 + bx + c,其中a、b、c是实数且a不等于0。
4.开口方向:抛物线开口方向由a的正负决定,如果a大于0,抛物线开口向上;如果a小于0,抛物线开口向下。
5.对称轴:抛物线的对称轴是一条与抛物线的开口方向垂直的直线,由方程x=-b/2a给出。
6. 焦点:抛物线的焦点是与抛物线上任意一点的距离相等的定点F,其坐标为((-b/2a), (4ac-b^2)/4a)。
7.直径:抛物线的直径是通过焦点且与抛物线相交于两点的直线。
8.非退化抛物线:当a不等于0时,抛物线是非退化的,并且它的对称轴是直线x=-b/2a。
9.顶点:抛物线的顶点是抛物线上最高或最低的点,它是通过对称轴的纵坐标最小(或最大)的点。
10.切线:抛物线上任意一点的切线是通过该点并且与抛物线仅有一个交点的直线。
11.弦:抛物线上的弦是通过抛物线上两个点并且与抛物线仅有两个交点的线段。
12. 与X轴交点:抛物线与X轴的交点可通过求解方程ax^2 + bx +c = 0得到。
13.与Y轴交点:抛物线与Y轴的交点是抛物线上当x=0时的点,即把x替换为0后求解方程得到。
14.对称性:抛物线具有关于对称轴对称的性质,即对称轴上的一点关于对称轴上的另一点的映射是自身。
15.焦点和直角三角形:抛物线上两点和焦点构成的三角形是直角三角形。
16.抛物线的图像:抛物线的图像是一个开口朝上或朝下的弧线,形状可以通过方程中的系数来确定。
17.抛物线的平移:抛物线可以通过平移来改变其位置,平移的方式是通过方程中的常数项来实现。
18.抛物线的拉伸/压缩:通过改变抛物线方程中的a的值,可以改变抛物线的宽度。
超详细抛物线知识点归纳总结
超详细抛物线知识点归纳总结抛物线是一个经典的二次曲线,它的形状类似于一个向上开口或向下开口的U 形曲线。
在数学和物理学中,抛物线具有许多重要的性质和应用。
下面是超详细的抛物线知识点总结:1. 基本定义:抛物线是平面上到定点(焦点)和定直线(准线)之距离相等的点的轨迹。
准线与抛物线的交点被称为顶点,准线上两个焦点和顶点的中垂线被称为对称轴。
2. 标准方程:一般抛物线的标准方程为 y = ax^2 + bx + c,其中 a、b、c 是常数。
通过变换可以将一般方程转化为其他形式,如顶点形式、焦点形式和准线形式。
3. 顶点形式:顶点形式的抛物线方程为 y = a(x-h)^2 + k,其中 (h,k) 是顶点的坐标。
通过平移和缩放可以将一般方程转化为顶点形式。
4. 焦点形式:焦点形式的抛物线方程为 (x-h)^2 = 4p(y-k),其中 (h,k) 是顶点的坐标,p 是焦距的一半。
焦点形式可以直接得到焦点坐标。
5. 准线形式:准线形式的抛物线方程为 y = px^2,其中 p 是焦距的一半。
准线形式的焦点在原点,并且准线是 x 轴。
6. 直径和焦距:抛物线的直径是通过顶点且与曲线相切的直线段。
焦距是焦点到准线的垂直距离。
7. 对称性:抛物线是关于对称轴对称的。
即曲线上任意一点关于对称轴对称的点,其到焦点和准线的距离相等。
8. 切线与法线:抛物线上任意一点处的切线是通过该点且与曲线相切的直线。
切线的斜率等于该点处的导数。
法线是与切线垂直的直线,其斜率是切线斜率的负倒数。
9. 焦点与直角焦点:焦点是到准线距离等于到抛物线上一点距离的点。
直角焦点是到准线距离等于到抛物线上一点距离的点,并且该点与焦点、准线之间的连线与准线垂直。
10. 焦半径:焦半径是焦点与抛物线上任意一点的连线与准线的夹角的二倍。
11. 焦散性质:抛物线的焦点到抛物线上任意一点的距离可以通过反射性质来得到。
即经过抛物线上某点的光线经过反射后都通过焦点。
抛物线总结知识点
抛物线总结知识点一、抛物线的定义1、几何定义抛物线实际上是一个平面上的曲线,其特点是所有点到焦点的距离与直线上的点到焦点的距离相等。
在几何上,抛物线可以用一定的数学方法来绘制,比如几何学中的反射法则,就是一个通过抛物线的特性进行绘制的方法。
2、代数定义抛物线也可以用数学式子来表示,通常来说,一个一般形式的抛物线方程可以表示为:y=ax^2+bx+c。
其中a、b、c为常数,且a≠0。
这个方程就是抛物线的代数表示方法。
二、抛物线的性质1、对称性抛物线具有对称性,即其焦点与直线的对称轴关于抛物线是对称的。
也就是说,如果你在抛物线上选取一个点,并且在该点的正上方或是正下方做等距的另外一个点,那么这两个点与抛物线的焦点的距离是一样的。
2、焦点抛物线的焦点是抛物线中的一个重要点,所有在抛物线上的点到焦点的距离,是和这根线上的点到焦点的距离是相等的。
这也是抛物线对称性的基础。
3、直线抛物线的对称轴是一条直线,这条直线被称为抛物线的直线。
直线与抛物线的焦点以及对称轴是彼此有特殊的关系的,这样的直线通常是抛物线的对称轴。
4、距离性质抛物线上的任意一点到焦点的距离与该点到抛物线的对称轴的距离之间的关系。
通常,这个距离关系就是抛物线的形成依据之一。
三、抛物线的方程1、标准形式标准形式的抛物线通常以y=ax^2+bx+c的数学形式表示。
这种数学形式可以清楚的展现抛物线的双曲性。
2、顶点形式抛物线的顶点形式方程也是一种比较通用的表示方法。
顶点形式的抛物线方程是一种通过抛物线的顶点来表示其位置的方法。
其数学表达式通常为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。
3、焦点形式焦点形式的抛物线方程则是基于抛物线的焦点和直线来展现其形状和位置的。
该类型的方程通常为x^2=4py,其中p为焦点的距离。
四、抛物线的几何意义1、抛物线的几何意义作为一条特殊的曲线,抛物线在实际中有着丰富的几何意义。
通过抛物线的特性和性质,我们可以从几何角度来认识抛物线。
抛物线知识点归纳总结
积
• 利用抛物线的对称性,简化体积计算过程
抛物线面积与体积问题的实际应用
抛物线面积与体积在几何问题中的应用
• 描述圆锥曲线、圆等几何图形的面积和体积问题
• 描述抛物线与椭圆、双曲线等二次曲线的面积和体积问题
抛物线面积与体积在物理问题中的应用
• 描述物体的抛物线运动轨迹的面积和体积问题
• 描述物体的抛物线形变问题的面积和体积问题
• 标准方程y = ax^2 + bx + c决定了抛物线图像的形状、
• 一般方程为Ax^2 + Bx + Cy + D = 0,其中A、B、C、
开口方向、顶点坐标等
D为常数,A≠0
• 根据抛物线图像的特征,可以反推出标准方程
• 一般方程可以转化为标准方程,进而确定抛物线图像
03
抛物线的方程求解与应用
kx
抛物线的切线绘制方法与技巧
抛物线的切线绘制方法
抛物线的切线绘制技巧
• 确定抛物线上需要绘制切线的点
• 利用抛物线的对称性,简化切线绘制过程
• 利用切线方程,计算切线的斜率和截距
• 结合图像,判断抛物线的形状和开口方向,辅助切线绘
• 绘制切线,使其通过指定点和切线方程
制
抛物线切线问题的实际应用
• 对抛物线方程进行化简,得到标准方程或一般方程
• 变形后的抛物线方程仍保持原有性质,但图像发生改变
• 化简后的抛物线方程便于求解和应用
04
抛物线的极值与最值问题
抛物线的极值点与最值点求解
抛物线的极值点
抛物线的最值点
• 抛物线在顶点处取得极值,即顶点为极值点
• 抛物线在顶点处取得最值,即顶点为最值点
抛物线性质和知识点总结
抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。
其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。
a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。
2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。
3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。
抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。
当直线与抛物线相切时,两个交点重合。
当直线与抛物线没有交点时,这个抛物线不与这条直线相交。
4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。
5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。
6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。
抛物线知识点
抛物线知识点抛物线是数学中一个非常重要的曲线,在我们的日常生活和科学研究中都有着广泛的应用。
下面就来详细了解一下抛物线的相关知识点。
一、抛物线的定义平面内与一定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线。
点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线。
二、抛物线的标准方程抛物线的标准方程有四种形式:1、焦点在 x 轴正半轴上,方程为 y²= 2px(p>0),焦点坐标为(p/2,0),准线方程为 x = p/2 。
2、焦点在 x 轴负半轴上,方程为 y²=-2px(p>0),焦点坐标为(p/2,0),准线方程为 x = p/2 。
3、焦点在 y 轴正半轴上,方程为 x²= 2py(p>0),焦点坐标为(0,p/2),准线方程为 y = p/2 。
4、焦点在 y 轴负半轴上,方程为 x²=-2py(p>0),焦点坐标为(0,p/2),准线方程为 y = p/2 。
其中,p 为抛物线的焦点到准线的距离,叫做抛物线的焦准距。
三、抛物线的性质1、对称性抛物线关于它的对称轴对称。
对于形如y²=2px(p>0)的抛物线,其对称轴为 x 轴;对于形如 x²= 2py(p>0)的抛物线,其对称轴为 y 轴。
2、顶点抛物线的顶点是其对称轴与曲线的交点。
形如 y²= 2px(p>0)的抛物线顶点为原点(0,0);形如 x²= 2py(p>0)的抛物线顶点也为原点(0,0)。
3、离心率抛物线的离心率 e = 1,这意味着抛物线上任意一点到焦点的距离与到准线的距离相等。
4、焦半径抛物线上一点 P(x₀,y₀) 到焦点的距离称为焦半径。
对于 y²= 2px (p>0),焦半径|PF| = x₀+ p/2;对于 x²= 2py(p>0),焦半径|PF| = y₀+ p/2 。
超详细抛物线知识点归纳总结
引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。
本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。
正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。
2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。
3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。
4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。
5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。
二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。
2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。
3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。
4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。
三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。
2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。
3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。
4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。
四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。
2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。
3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。
4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。
5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。
五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。
抛物线知识点总结_高三数学知识点总结
抛物线知识点总结_高三数学知识点总结一、定义和基本性质抛物线是一条二次曲线,其数学定义为“一个平面曲线,其每个点到一个定点(称为焦点)的距离等于该点到一条直线(称为准线)的距离,该直线与焦点的连线垂直”。
基本性质:(1)抛物线的轴是准线与焦点连线所在的直线。
轴垂直于抛物线的开口方向。
(2)抛物线的焦距等于准线与轴的交点到焦点的距离。
(3)抛物线的顶点是轴与抛物线的交点。
顶点是抛物线的最低点或最高点。
(4)抛物线的开口方向和对称轴的方向相同。
当抛物线开口向上时,对称轴是上下对称线;当抛物线开口向下时,对称轴是左右对称线。
(5)两个相等的角度分别以离顶点最远和最近的两个点为顶点所夹的弧长相等。
二、标准式和一般式(1)标准式:y=ax² (a≠0),抛物线的焦点在y轴上,顶点为原点。
三、参数方程式和极坐标方程(1)参数方程式:x=at²,y=2at(2)极坐标方程:r=2a(cosθ,sinθ)四、求顶点、轴、焦距和焦点坐标(1)顶点:对于标准式y=ax²,顶点坐标为(0,0);对于一般式y=ax²+bx+c,顶点的x坐标为-b/2a,y坐标为c-(b²/4a)。
(3)焦距:焦距是准线与轴的交点到焦点的距离。
焦距长度为1/(4a)。
五、直线与抛物线的交点对于二次方程y=ax²+bx+c和一次方程y=kx+d,它们的交点可以通过联立方程解得。
六、解形式不同的抛物线对于形如y=ax²的抛物线,可以通过求顶点和焦距、左右移动以及大小的变化来确定其形态。
对于形如y=ax²+bx+c的抛物线,则需要将其写成标准式或参数方程式,然后根据顶点、轴、焦距等求解其形态。
抛物线知识点总结
抛物线知识点总结在数学中,抛物线是一种重要的曲线形式,它在许多实际应用中都具有广泛的应用。
本文将总结抛物线的基本概念、方程形式、性质及其应用的相关知识点。
一、抛物线的基本概念抛物线是由一个定点(焦点)和一个定直线(准线)决定的所有点构成的曲线。
抛物线的定义可以描述为:到焦点和准线距离相等的点构成的曲线。
二、抛物线的方程形式抛物线的方程形式可以分为两种:顶点形式和标准形式。
1. 抛物线的顶点形式抛物线的顶点形式为:y = a(x - h)^2 + k,其中(x, y)是抛物线上的任意点,a决定了抛物线的开口方向和形状,(h, k)是抛物线的顶点。
2. 抛物线的标准形式抛物线的标准形式为:y = ax^2 + bx + c,其中(a, b, c)是抛物线的系数,通过调整系数可以改变抛物线的形状、位置和大小。
三、抛物线的性质抛物线具有许多重要的性质,包括对称性、焦点和准线的关系、切线和法线的性质等。
1. 对称性抛物线具有关于顶点的对称性。
具体而言,抛物线上任意一点P与焦点F和准线的距离相等,即FP = PD,其中D为准线上的任意一点。
所以,抛物线的顶点是对称中心。
2. 焦点和准线的关系焦点是抛物线的一个重要特征点,它与抛物线的准线有一定的关系。
具体而言,焦点到准线的距离等于焦距的两倍。
焦距描述了抛物线的背离程度,对于开口向上的抛物线,焦距为正;对于开口向下的抛物线,焦距为负。
3. 切线和法线的性质抛物线上任意一点处的切线与该点到焦点的连线垂直,即切线是法线的垂线,这是抛物线一个重要的性质。
四、抛物线的应用抛物线的应用相当广泛,涵盖了许多领域,以下是其中的几个常见应用:1. 物体的抛体运动抛物线可以描述物体在重力作用下的抛体运动轨迹。
根据抛物线的性质,可以计算物体的最大高度、飞行距离、运动时间等重要参数。
2. 天线的折射与聚焦在无线通信中,天线的性能与抛物线的形状有关。
通过合理设计抛物线反射器,可以使电磁波在抛物面内聚焦,提高信号接收的强度和质量。
抛物线知识点总结
抛物线知识点总结一、抛物线的定义抛物线是一种特殊的二次曲线,它的数学定义是平面上一点到定点和直线的距离相等,这个定点就是抛物线的焦点,直线就是抛物线的准线。
在直角坐标系中,抛物线的标准方程为:y=ax2+bx+c,其中a≠0。
二、抛物线的性质1. 焦点和准线:抛物线的焦点和准线是抛物线的两个重要属性。
焦点是定点,准线是直线,它们共同决定了抛物线的形状和特性。
2. 对称性:抛物线是关于x轴对称的。
3. 切线和法线:抛物线上的任意一点,它的切线和法线都是经过这个点,且与x轴垂直。
4. 定理一:抛物线的焦点到准线的距离等于焦点到抛物线上任意一点的距离。
5. 定理二:抛物线上任意一点到焦点的距离等于该点到准线的距离。
6. 焦距:抛物线上所有点到焦点的距离的最小值称为抛物线的焦距。
7. 平行于准线的矩形,被含在抛物线内部并且对称。
8. 定理三:抛物线的离心率等于1。
三、抛物线的方程1. 标准方程:y=ax2+bx+c,其中a≠0。
2. 顶点坐标:抛物线的顶点坐标为(-b/2a, c-b2/4a)。
3. 焦点坐标:抛物线的焦点坐标为(-b/2a, c-b2/4a+1/4a)。
4. 焦距:抛物线的焦距为1/|4a|。
四、抛物线的应用抛物线作为一种重要的数学曲线,在各种应用中都有着广泛的应用,如物理、工程、建筑等领域。
1. 物理:在物理学中,抛物线曲线被广泛应用于描述抛体运动的轨迹。
比如,抛体在空中的飞行轨迹、抛物线发射器等都涉及到抛物线的运动规律。
2. 工程:在建筑工程和土木工程中,抛物线曲线常常被用于设计拱形结构或者桥梁的曲线轨迹。
抛物线的弧形轨迹具有良好的支撑性能和稳定性,因此在工程设计中得到了广泛应用。
3. 航天航空:在航天航空技术中,抛物线曲线也被用于设计火箭轨迹和飞行器的运动路径。
比如,抛物线曲线可以描述卫星的发射和轨道运行规律。
4. 光学:在光学中,抛物线曲线也被应用于设计反射镜和折射镜的形状。
抛物线反射镜可以将平行光线汇聚到一个焦点上,因此在光学仪器和望远镜中得到了广泛应用。
抛物线方程知识点总结
抛物线方程知识点总结1.抛物线的定义和性质:抛物线可以由一个定点(焦点)和一条定直线(准线)确定。
抛物线上的点到焦点和准线的距离相等。
抛物线对称于准线,焦点位于抛物线的对称轴上。
2.抛物线的标准方程:抛物线的标准方程是 y = ax^2 + bx + c,其中 a、b 和 c 是常数。
这个方程表示了抛物线的形状和位置。
a 决定了抛物线的开口方向和形状,b 决定了对称轴的位置,c 决定了抛物线的纵轴截距。
3.抛物线的顶点和焦点:抛物线的顶点是抛物线的最高(或最低)点,它位于抛物线的对称轴上。
顶点的坐标可以通过将抛物线方程转换成顶点形式来简化计算。
焦点是抛物线的焦点,它位于抛物线的对称轴上,并且与顶点的距离称为焦距。
4.抛物线的焦距和准线:抛物线的焦距是焦点到抛物线的最高(或最低)点的距离,它等于抛物线参数a的倒数的绝对值。
准线是抛物线上的一条直线,与对称轴平行且与焦点和顶点的距离相等。
准线的公式可以通过将焦点的坐标与焦距相加或相减得到。
5.抛物线的对称性:抛物线是关于对称轴对称的。
这意味着如果(x,y)是抛物线上的一个点,那么对称轴上的点(-x,y)也是抛物线上的一个点。
6.抛物线的与坐标轴的交点:抛物线与x轴的交点称为横轴截距,可以通过令y=0解方程得到。
抛物线与y轴的交点称为纵轴截距,它等于常数项c。
7.抛物线的方程转化和变形:8.二次函数和抛物线的关系:以上是抛物线方程的关键知识点总结。
掌握了这些知识,我们就能够理解和计算抛物线上的点的坐标,进一步应用到实际问题中。
抛物线知识点归纳总结
抛物线知识点归纳总结一、抛物线的定义抛物线是平面上的一个几何图形,它的形状像一个弯曲的弧线,其数学定义为:所有到定点的距离等于到直线的距离的点构成的集合。
这个定点称为焦点,直线称为准线,通常用符号来表示抛物线,可以用二次方程来表示:y = ax^2 + bx + c,其中a、b、c为实数,a≠0。
二、抛物线的性质1. 焦点和准线:抛物线的焦点位于开口向上或者向下的一端,准线则位于抛物线的中轴线上。
焦点和准线的位置可以通过二次方程的系数a、b、c来确定。
2. 对称性:抛物线具有轴对称性,即抛物线的焦点和准线关于中轴线对称。
3. 焦点的坐标:抛物线的焦点的坐标可以通过二次方程的系数a、b、c来计算得出。
4. 定点的坐标:抛物线上最低点或者最高点称为定点,定点的坐标可以通过二次方程的顶点公式来计算得出。
5. 法线和切线:抛物线的切线是与抛物线相切的直线,而法线是与切线垂直的直线,它们具有一些特殊的性质和公式。
6. 焦距和焦半径:焦距是焦点到准线的距离,焦半径是焦点到抛物线顶点的距离,它们与抛物线的方程之间存在一些重要的关系。
7. 焦直和准直:焦直是焦点在准线上的投影轴,准直是准线在焦点上的投影轴,它们的位置和形状也与抛物线的方程有关。
8. 定义域和值域:抛物线的定义域和值域是指抛物线上的点的集合,它们与抛物线的方程形式、系数和图像的形态有关。
9. 开口方向:抛物线的开口方向是指向上或者向下,它与抛物线的二次方程的系数a的正负有关。
10. 直线与抛物线的位置关系:抛物线与直线的位置关系有相交、切线和相离三种情况,这与抛物线的方程和直线的方程有关。
三、抛物线的应用抛物线在日常生活和工程技术中有着广泛的应用,如抛物面反射天线、汽车大灯光束设计等。
同时,它也在物理学、天文学、工程学等领域有着重要的作用。
1. 抛物线的运动学应用:抛物线是物体在一个力场中运动的轨迹,它在各种自然和人造的运动中都有着广泛的应用,如抛物线轨道的运动、人造卫星的轨迹等。
抛物线知识点归纳总结
抛物线知识点归纳总结1. 定义- 抛物线是二次函数的图像,具有一个顶点和一个对称轴。
- 它是平面上所有与一个固定点(焦点)和一条固定直线(准线)距离相等的点的集合。
2. 标准方程- 顶点形式:y = a(x - h)^2 + k其中 (h, k) 是顶点的坐标,a 是抛物线的开口系数。
- 一般形式:y = ax^2 + bx + c其中 a, b, c 是常数,且a ≠ 0。
3. 图像特征- 开口方向:当 a > 0 时,抛物线开口向上;当 a < 0 时,开口向下。
- 对称性:抛物线关于其对称轴(垂直于 x 轴的直线)对称。
- 焦点和准线:焦点是抛物线上所有点到准线距离的最小值点,准线是与抛物线焦点等距的一条直线。
4. 焦点和准线的性质- 焦点:对于标准方程 y = a(x - h)^2 + k,焦点坐标为 (h, k+ 1/(4a))。
- 准线:对于标准方程 y = a(x - h)^2 + k,准线的方程为 y =k - 1/(4a)。
5. 顶点- 顶点是抛物线的最高点(开口向下时)或最低点(开口向上时)。
- 顶点坐标可以通过方程的顶点形式直接获得。
6. 对称轴- 对称轴是一条垂直线,其方程为 x = h。
7. 抛物线的变换- 水平变换:抛物线可以通过在 x 或 y 方向上平移来改变位置。
- 垂直变换:抛物线可以通过在 x 或 y 方向上缩放来改变大小。
8. 应用- 物理:抛物线运动(如物体在重力作用下的抛射运动)。
- 工程:建筑设计中的拱形结构。
- 经济学:成本和收益分析中的收益最大化问题。
9. 求导与极值- 对于一般形式 y = ax^2 + bx + c,求导得到 y' = 2ax + b。
- 顶点处的导数为零,即 y'(h) = 0,这是找到顶点的方法。
10. 抛物线与直线的交点- 通过解方程组 {y = ax^2 + bx + c, y = mx + n} 可以找到抛物线与直线的交点。
(完整版)抛物线知识点归纳总结
引言:抛物线是高中数学中重要的曲线之一,具有许多重要的性质和应用。
本文将对抛物线的知识点进行归纳总结,包括抛物线的定义、性质、方程、焦点、准线等。
通过深入理解抛物线的相关概念和性质,读者将能够更好地应用抛物线解决实际问题。
概述:抛物线是一种特殊的曲线,其形状呈现出两侧对称且开口向上或向下的特点。
具体而言,抛物线由一条称为准线的直线和一个称为焦点的特殊点确定。
正文内容:1.抛物线的定义:抛物线是所有到一个定点(焦点)与到一条直线(准线)的距离相等的点的集合。
抛物线也可以通过平面上点的坐标表示,而其坐标满足经典的二次方程形式。
抛物线具有一条对称轴,该对称轴是准线与焦点所在直线的垂直平分线。
2.抛物线的性质:对称性:抛物线是关于对称轴对称的,即对称轴上任意一点关于对称轴上的另一点的坐标对称。
单调性:抛物线开口朝上时,在对称轴上坐标递增;开口朝下时,在对称轴上坐标递减。
切线性质:抛物线上任意一点的切线与焦点到该点的连线垂直,这是抛物线独有的性质。
定理一:抛物线上两个焦点到准线的距离之和等于焦距的两倍。
定理二:抛物线上任意一点到焦点的距离等于该点到准线的距离。
3.抛物线的方程:标准形式:y=ax^2+bx+c,其中a、b、c为实常数,且a≠0。
顶点形式:y=a(xh)^2+k,其中a、h、k为实常数,且a≠0,(h,k)为抛物线的顶点坐标。
焦点形式:4a(yk)=(xh)^2,其中a、h、k为实常数,且a≠0,(h,k)为抛物线的顶点坐标。
4.抛物线的焦点和准线:焦点:抛物线的焦点是准线上一个固定的点,与抛物线的形状和方程相关。
焦距:焦距是焦点到准线的距离,等于焦点到对称轴的距离。
准线:准线是与抛物线的形状和焦点相关的一条直线,与对称轴平行且到焦点的距离等于焦距。
5.抛物线的应用:物理学中的自由落体:抛物线可以用来描述自由落体运动的轨迹,例如抛体的抛射问题。
工程学中的抛物面反射器:抛物面反射器可以将光线从一个点集中集中到另一个点上,常用于太阳能聚焦等应用。
(完整版)抛物线知识点归纳总结
抛物线知识点总结y 22 px( p 0)y 22 px( p 0)x 22 py( p 0)x 2 2 py( p0)y y y图象ylllFOxO Fx F OxOxFl定义 范围 对称性焦点极点离心率 准线 方程极点到准 线的距离 焦点到准 线的距离焦半径A(x 1, y 1 )平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线, 点 F 叫做抛物线的焦点,直线 l 叫做抛物线的准线。
{ M MF =点 M 到直线 l 的距离 }x 0, y R x 0, y R x R, y 0 x R, y 0关于 x 轴对称关于 y 轴对称( p,0)(p,0)(0, p)(0,p ) 2222焦点在对称轴上O(0,0)e=1p xp p pxy2y222准线与焦点位于极点两侧且到极点的距离相等。
p 2 pAF x 1p AFx 1p AF y 1p AFy 1p2222焦点弦长( x1 x2 ) p( x1 x2 ) p( y1 y2 ) p( y1 y2 ) p AByA x1, y1o FxB x2 , y2焦点弦AB 的几条性质以 AB 为直径的圆必与准线l相切A( x1 , y1 ) 2 p 2 p若 AB 的倾斜角为若 AB 的倾斜角为,则 AB,则 ABB (x2 , y2 )sin2cos2p22x1x2y1 y2p4切线方程11AF BF AB2AF BF AF ? BF AF ?BF py0 y p( x x0 )y0 y p( x x0 )x0 x p( y y0 )x0x p( y y0 )参数方程x 2 pt 2y 2 pt( t 为参数)1.直线与抛物线的地址关系直线,抛物线,,消y得:(1)当 k=0 时,直线l与抛物线的对称轴平行,有一个交点;(2)当 k≠0 时,>0,直线l与抛物线订交,两个不同样交点;=0,直线l与抛物线相切,一个切点;<0,直线l与抛物线相离,无公共点。
抛物线及其性质知识点大全
抛物线及其性质知识点大全1. 抛物线的定义:抛物线是平面上满足平方差的关系的点的集合,可以用一般式方程表示为 y = ax^2 + bx + c,其中a、b和c是实数且a不为0。
2.抛物线的基本形状:抛物线呈现出一个宽口向上或向下的U形。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
3.抛物线的对称轴:抛物线的对称轴垂直于抛物线的开口方向,可以通过平移和旋转将抛物线移动到一个新的位置,使得抛物线重合于自身。
4.抛物线的顶点:抛物线的顶点是抛物线的最高点(当抛物线开口向下时)或最低点(当抛物线开口向上时)。
顶点的横坐标可以通过将一般式方程的x项系数取反并将结果除以2a得到,纵坐标可以通过将横坐标代入一般式方程得到。
5.抛物线的焦点:抛物线上所有点到定点(焦点)的距离相等。
焦点的坐标可以通过将一般式方程转化为顶点形式方程(y=a(x-h)^2+k)得到,其中焦点的横坐标为(h,k+a)。
6.抛物线的直径:通过顶点并垂直于对称轴的直线,可以将抛物线分成两个等长度的部分,这条直线称为抛物线的直径。
7.抛物线的切线:与抛物线相切的直线称为抛物线的切线。
抛物线的切线与抛物线在切点处的斜率相等。
8.抛物线的弦:从抛物线上任意两点绘制的线段称为抛物线的弦。
9.抛物线的渐近线:抛物线没有直线渐近线。
10.抛物线的拐点:抛物线的凹凸方向发生改变的点称为拐点。
拐点的横坐标可以通过将一般式方程的一阶导数等于0的解代入一般式方程得到。
11.抛物线的面积:抛物线的面积可以通过用定积分计算抛物线与x 轴之间的曲边梯形的面积得到。
12.抛物线的方程:抛物线的方程可以通过已知的关键点(如焦点和顶点)来确定。
13.抛物线的图像:通过绘制坐标平面上一系列点,连接这些点得到的曲线即为抛物线的图像。
14.抛物线的应用:抛物线在真实世界中具有广泛的应用,如物体的自由落体、抛体运动、喷水器的喷射路径等。
圆锥曲线之抛物线知识点讲解(含解析)
抛物线的概念与几何性质一、知识梳理1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. (2)其数学表达式:{M ||MF |=d }(d 为点M 到准线l 的距离). 2.抛物线的标准方程与几何性质3.通径:过焦点且垂直于对称轴的弦长等于2p ,通径是过焦点最短的弦.4.焦半径:抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径.二、例题精讲 + 随堂训练1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a 4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( )解析 (1)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线,而非抛物线.(2)方程y =ax 2(a ≠0)可化为x 2=1a y ,是焦点在y 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫0,14a ,准线方程是y =-14a .(3)抛物线是只有一条对称轴的轴对称图形. 答案 (1)× (2)× (3)× (4)√2.顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________. 解析 设抛物线的标准方程是y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y .答案 y 2=-92x 或x 2=43y3. 抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.解析 设P (x 1,y 1),则|PF |=x 1+2=5,得x 1=3,y 1=±2 6.故满足条件的点的个数为2. 答案 24.(2019·黄冈联考)已知方程y 2=4x 表示抛物线,且该抛物线的焦点到直线x =m 的距离为4,则m 的值为( ) A.5B.-3或5C.-2或6D.6解析 抛物线y 2=4x 的焦点为F (1,0),它与直线x =m 的距离为d =|m -1|=4,∴m=-3或5.答案B5.(2019·北京海淀区检测)设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4B.6C.8D.12解析如图所示,抛物线的准线l的方程为x=-2,F是抛物线的焦点,过点P 作P A⊥y轴,垂足是A,延长P A交直线l于点B,则|AB|=2.由于点P到y轴的距离为4,则点P到准线l的距离|PB|=4+2=6,所以点P到焦点的距离|PF|=|PB|=6.故选B.答案B6.(2019·宁波调研)已知抛物线方程为y2=8x,若过点Q(-2,0)的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.解析设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,当k=0时,显然满足题意;当k≠0时,Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k<0或0<k≤1,因此k的取值范围是[-1,1].答案[-1,1]考点一抛物线的定义及应用【例1】(1)(2019·厦门外国语模拟)已知抛物线x2=2y的焦点为F,其上有两点A(x1,y1),B(x2,y2)满足|AF|-|BF|=2,则y1+x21-y2-x22=()A.4B.6C.8D.10(2)若抛物线y2=4x的准线为l,P是抛物线上任意一点,则P到准线l的距离与P到直线3x+4y+7=0的距离之和的最小值是()A.2B.135 C.145 D.3解析 (1)由抛物线定义知|AF |=y 1+12,|BF |=y 2+12,∴|AF |-|BF |=y 1-y 2=2,又知x 21=2y 1,x 22=2y 2,∴x 21-x 22=2(y 1-y 2)=4,∴y 1+x 21-y 2-x 22=(y 1-y 2)+(x 21-x 22)=2+4=6.(2)由抛物线定义可知点P 到准线l 的距离等于点P 到焦点F 的距离,由抛物线y 2=4x 及直线方程3x +4y +7=0可得直线与抛物线相离,∴点P 到准线l 的距离与点P 到直线3x +4y +7=0的距离之和的最小值为点F (1,0)到直线3x +4y +7=0的距离,即|3+7|32+42=2. 答案 (1)B (2)A规律方法 应用抛物线定义的两个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x 0,y 0)到焦点F 的距离|PF |=|x 0|+p2或|PF |=|y 0|+p 2.【训练1】 (1)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.(2)(2017·全国Ⅱ卷)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.解析 (1)设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .(2)如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2. ∵点M 为FN 的中点,PM ∥OF ,∴|MP |=12|FO |=1. 又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6. 答案 (1)y 2=4x (2)6考点二 抛物线的标准方程及其性质【例2】 (1)(2018·晋城模拟)抛物线C :y 2=4x 的焦点为F ,其准线l 与x 轴交于点A ,点M 在抛物线C 上,当|MA ||MF |=2时,△AMF 的面积为( ) A.1B. 2C.2D.22(2)已知圆C 1:x 2+(y -2)2=4,抛物线C 2:y 2=2px (p >0),C 1与C 2相交于A ,B 两点,且|AB |=855,则抛物线C 2的方程为( )A.y 2=85xB.y 2=165xC.y 2=325xD.y 2=645x 解析 (1)过M 作MP 垂直于准线,垂足为P , 则|MA ||MF |=2=|MA ||MP |=1cos ∠AMP ,则cos ∠AMP =22,又0°<∠MAP <180°, 则∠AMP =45°,此时△AMP 是等腰直角三角形, 设M (m ,4m ),由|MP |=|MA |,得|m +1|=4m , 解得m =1,M (1,2),所以△AMF 的面积为12×2×2=2. (2)由题意,知直线AB 必过原点, 则设AB 的方程为y =kx (易知k >0), 圆心C 1(0,2)到直线AB 的距离d =|-2|k 2+1=22-⎝ ⎛⎭⎪⎫4552=255,解得k =2,由⎩⎨⎧y =2x ,x 2+(y -2)2=4得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =85,y =165,把⎝ ⎛⎭⎪⎫85,165代入抛物线方程, 得⎝ ⎛⎭⎪⎫1652=2p ·85,解得p =165, 所以抛物线C 2的方程为y 2=325x . 答案 (1)C (2)C规律方法 1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.2.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【训练2】 (1)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为________.(2)(2019·济宁调研)已知点A (3,0),过抛物线y 2=4x 上一点P 的直线与直线x =-1垂直相交于点B ,若|PB |=|P A |,则P 的横坐标为( ) A.1B.32C.2D.52解析 (1)设A ,B 在准线上的射影分别为A 1,B 1, 由于|BC |=2|BF |=2|BB 1|,则直线的斜率为3, 故|AC |=2|AA 1|=6,从而|BF |=1,|AB |=4,故p |AA 1|=|CF ||AC |=12,即p =32,从而抛物线的方程为y 2=3x .(2)由抛物线定义知:|PB |=|PF |,又|PB |=|P A |,所以|P A |=|PF |,所以x P =x A +x F2=2(△PF A 为等腰三角形). 答案 (1)y 2=3x (2)C考点三 直线与抛物线的综合问题【例3】 (2019·武汉调研)已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线交点为N . (1)若N 在以AB 为直径的圆上,求p 的值; (2)若△ABN 面积的最小值为4,求抛物线C 的方程. 解 (1)可设AB :y =kx +1,A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入抛物线C ,得x 2-2pkx -2p =0,显然方程有两不等实根, 则x 1+x 2=2pk ,x 1x 2=-2p .① 又x 2=2py 得y ′=xp ,则A ,B 处的切线斜率乘积为x 1x 2p 2=-2p =-1, 则有p =2.(2)设切线AN 为y =x 1p x +b ,又切点A 在抛物线y =x 22p 上,∴y 1=x 212p ,∴b =x 212p -x 21p =-x 212p ,切线AN 的方程为y AN =x 1p x -x 212p ,同理切线BN 的方程为y BN =x 2p x -x 222p . 又∵N 在y AN 和y BN 上,∴⎩⎪⎨⎪⎧y =x 1p x -x 212p ,y =x 2p x -x 222p,解得N ⎝ ⎛⎭⎪⎫x 1+x 22,x 1x 22p .∴N (pk ,-1). |AB |=1+k 2|x 2-x 1|=1+k 24p 2k 2+8p , 点N 到直线AB 的距离d =|kx N +1-y N |1+k 2=|pk 2+2|1+k 2,S △ABN =12·|AB |·d =p (pk 2+2)3≥22p , ∴22p =4,∴p =2, 故抛物线C 的方程为x 2=4y .规律方法 1.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.2.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.【训练3】 (2017·全国Ⅰ卷)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( ) A.16B.14C.12D.10解析 抛物线C :y 2=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则l 2直线的斜率为-1k ,故l 1:y =k (x -1),l 2:y =-1k (x -1).由⎩⎨⎧y 2=4x ,y =k (x -1),消去y 得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k 2=2+4k 2, 由抛物线定义可知,|AB |=x 1+x 2+2=4+4k 2. 同理得|DE |=4+4k 2,∴|AB |+|DE |=8+4k 2+4k 2≥8+216=16. 当且仅当1k 2=k 2,即k =±1时取等号. 故|AB |+|DE |的最小值为16. 答案 A[思维升华]1.抛物线定义的实质可归结为“一动三定”:一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值1(抛物线的离心率).2.抛物线的焦点弦:设过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则:(1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;|AB |=x 1+x 2+p ; (3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p . [易错防范]1.认真区分四种形式的标准方程(1)区分y =ax 2(a ≠0)与y 2=2px (p >0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0).2.直线与抛物线结合的问题,不要忘记验证判别式.数学抽象——活用抛物线焦点弦的四个结论1.数学抽象素养水平表现为能够在关联的情境中抽象出一般的数学概念和规则,能够将已知数学命题推广到更一般情形.本课时中研究直线方程时常用到直线系方程就是其具体表现之一.2.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24. (2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角). (4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点).【例1】 过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A.4B.92C.5D.6[一般解法]易知直线l 的斜率存在,设为k ,则其方程为y =k (x -1). 由⎩⎨⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0,得x A ·x B =1,①因为|AF |=2|BF |,由抛物线的定义得x A +1=2(x B +1), 即x A =2x B +1,②由①②解得x A =2,x B =12, 所以|AB |=|AF |+|BF |=x A +x B +p =92.[应用结论]法一 由对称性不妨设点A 在x 轴的上方,如图设A ,B 在准线上的射影分别为D ,C ,作BE ⊥AD 于E ,设|BF |=m ,直线l 的倾斜角为θ, 则|AB |=3m ,由抛物线的定义知 |AD |=|AF |=2m ,|BC |=|BF |=m ,所以cos θ=|AE ||AB |=13,所以tan θ=2 2.则sin 2θ=8cos 2θ,∴sin 2θ=89.又y 2=4x ,知2p =4,故利用弦长公式|AB |=2p sin 2θ=92.法二 因为|AF |=2|BF |,1|AF |+1|BF |=12|BF |+1|BF |=32|BF |=2p =1, 解得|BF |=32,|AF |=3,故|AB |=|AF |+|BF |=92. 答案 B【例2】 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938C.6332D.94[一般解法]由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0,因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,即4x -43y -3=0.与抛物线方程联立,化简得4y 2-123y -9=0, 故|y A -y B |=(y A +y B )2-4y A y B =6.因此S△OAB =12|OF||y A-y B|=12×34×6=94.[应用结论]由2p=3,及|AB|=2p sin2α得|AB|=2psin2α=3sin230°=12.原点到直线AB的距离d=|OF|·sin 30°=3 8,故S△AOB =12|AB|·d=12×12×38=94.答案D【例3】(2019·益阳、湘潭调研)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且|AF|=4,则线段AB的长为()A.5B.6C.163 D.203[一般解法]如图,设l与x轴交于点M,过点A作AD⊥l交l于点D,由抛物线的定义知,|AD|=|AF|=4,由F是AC的中点,知|AD|=2|MF|=2p,所以2p=4,解得p=2,所以抛物线的方程为y2=4x.设A(x1,y1),B(x2,y2),则|AF|=x1+p2=x1+1=4,所以x1=3,可得y1=23,所以A(3,23),又F(1,0),所以直线AF的斜率k=233-1=3,所以直线AF 的方程为y=3(x-1),代入抛物线方程y2=4x得3x2-10x+3=0,所以x1+x2=103,|AB |=x 1+x 2+p =163.故选C.[应用结论]法一 设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p 2=x 1+1=4,所以x 1=3,又x 1x 2=p 24=1,所以x 2=13,所以|AB |=x 1+x 2+p =3+13+2=163.法二 因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163.答案 C三、课后练习1.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点,|AF |+|BF |=233|AB |,则∠AFB 的最大值为( )A.π3B.3π4C.5π6D.2π3解析 设|AF |=m ,|BF |=n ,∵|AF |+|BF |=233|AB |,∴233|AB |≥2mn ,∴mn ≤13|AB |2,在△AFB 中,由余弦定理得cos ∠AFB =m 2+n 2-|AB |22mn =(m +n )2-2mn -|AB |22mn =13|AB |2-2mn 2mn ≥-12,∴∠AFB 的最大值为2π3. 答案 D2.(2019·武汉模拟)过点P (2,-1)作抛物线x 2=4y 的两条切线,切点分别为A ,B ,P A ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则△PEF 与△OAB 的面积之比为( )A.32B.33C.12D.34解析 设A (x 1,y 1),B (x 2,y 2),则点A ,B 处的切线方程为x 1x =2(y +y 1),x 2x =2(y +y 2),所以E ⎝ ⎛⎭⎪⎫2y 1x 1,0,F ⎝ ⎛⎭⎪⎫2y 2x 2,0,即E ⎝ ⎛⎭⎪⎫x 12,0,F ⎝ ⎛⎭⎪⎫x 22,0,因为这两条切线都过点P (2,-1),则⎩⎨⎧2x 1=2(-1+y 1),2x 2=2(-1+y 2),所以l AB :x =-1+y ,即l AB 过定点(0,1),则S △PEF S OAB=12×1×⎪⎪⎪⎪⎪⎪x 12-x 2212×1×|x 1-x 2|=12. 答案 C3.已知抛物线方程为y 2=-4x ,直线l 的方程为2x +y -4=0,在抛物线上有一动点A ,点A 到y 轴的距离为m ,到直线l 的距离为n ,则m +n 的最小值为________.解析 如图,过A 作AH ⊥l ,AN 垂直于抛物线的准线,则|AH |+|AN |=m +n +1,连接AF ,则|AF |+|AH |=m +n +1,由平面几何知识,知当A ,F ,H 三点共线时,|AF |+|AH |=m +n +1取得最小值,最小值为F 到直线l 的距离,即65=655,即m +n 的最小值为655-1.答案655-14.(2019·泉州一模)在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0)的焦点为F ,点A 在C 上,若|AO |=|AF |=32.(1)求抛物线C 的方程;(2)设直线l 与C 交于P ,Q ,若线段PQ 的中点的纵坐标为1,求△OPQ 的面积的最大值.解 (1)因为点A 在C 上,|AO |=|AF |=32,所以点A 的纵坐标为p 4,所以p 4+p 2=32,所以p =2,所以C 的方程为x 2=4y .(2)由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b (b ≥0),代入抛物线方程,可得x 2-4kx-4b =0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4b ,所以y 1+y 2=4k 2+2b , 因为线段PQ 的中点的纵坐标为1,所以2k 2+b =1,即2k 2=1-b ≥0,所以0<b ≤1,S △OPQ =12b |x 1-x 2|=12b (x 1+x 2)2-4x 1x 2=12b 16k 2+16b =b 2+2b =2·b 3+b 2(0<b ≤1),设y =b 3+b 2,y ′=3b 2+2b >0,函数单调递增,所以b =1时,△OPQ 的面积最大,最大值为2.5.已知点A (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM ||MN |=55,则p 的值等于( ) A.14 B.2 C.4 D.8解析 过点M 作抛物线的准线的垂线,垂足为点M ′,则易得|MM ′|=|MF |,所以cos ∠NMM ′=|MM ′||MN |=|MF ||MN |=55,则k AM =-tan ∠NMM ′=-1-cos 2∠NMM ′cos 2∠NMM ′=-2,则直线AM 的方程为y -2=-2x ,令y =0得抛物线的焦点坐标F (1,0),则p =2×1=2,故选B.答案 B。
抛物线高考核心知识点整理,赶紧收藏吧
A1, B1, M1 ,则有:
(1) y1 y2
p2 , x1x2
p2 4
;
(2) |
AF
|
x1
p 2
p 1 cos
,|
BF
|
x2
p 2
1
p cos
,
AB
x1
x2
p
2p sin2
(为直线AB的倾斜角) ;
(3)
SAOB
p2 2 sin
(为直线AB的倾斜角) ;
(4) 1 1 为定值 2 ;
| AF | | BF |
p
(5) AM1B 900 ,以焦点弦 AB 为直径的圆与准线 l 相切; (6) A1FB1 900 ,以准线上 A1B1 为直径的圆必与焦点弦 AB 相切; (7)以焦半径 AF 为直径的圆必与过顶点垂直于轴的直线相切,以 BF 为直径的圆与 y 轴相切;
(8)以 B 为圆心, BF 为半径的圆与准线相切; (9)直线 A1B 与 AB1 相交于顶点 O . (10)直线 AB 与 M1F 垂直.
轴垂直时,令
A(
y12 2p
,
y1),
B(
y22 2p
,
y2
)
,此时有
A1(
p 2
,
y1),
B1(
p 2
,
y2 )
.
因为 kAO
y1 x1
2p y1 , kB1O
2 y2 p
2 py2 p2
2p y1
,
所以 kAO kB1O ,即 AB1 过点 O ,同理 A1B 过点 O .
(10)令
A(x1,
y1), B(x2,
完整版)抛物线知识点归纳总结
完整版)抛物线知识点归纳总结抛物线是平面内与一个定点F和一条定直线l的距离相等的点的轨迹。
点F叫做焦点,直线l叫做准线。
抛物线的图象为一个开口朝上或者朝下的弧线。
对于抛物线,有以下几个重要的知识点:1.抛物线的方程和范围:抛物线的方程可以表示为y^2=2px或者x^2=2py,其中p为抛物线的焦距,表示焦点到准线的距离。
抛物线的定义域和值域分别为x∈R和y≥0或者y≤0.2.抛物线的对称性:抛物线关于x轴对称或者关于y轴对称。
焦点在对称轴上。
3.抛物线的焦点和顶点:焦点是抛物线的一个重要特征点,位于抛物线的对称轴上。
顶点是抛物线的最高点或者最低点,也是抛物线的对称轴上的一个点。
4.抛物线的离心率和准线:离心率是焦点到顶点距离与焦点到准线距离之比的绝对值,表示抛物线的扁平程度。
准线是与焦点相对的直线,位于抛物线的对称轴上。
5.抛物线的焦半径和顶点到准线的距离:焦半径是从焦点到抛物线上的任意一点的线段长度,表示焦点到抛物线的距离。
顶点到准线的距离是抛物线的顶点到准线的垂直距离。
6.抛物线的参数方程和直线与抛物线的位置关系:抛物线的参数方程为x=2pt^2,y=2pt。
直线与抛物线的位置关系可以通过解方程或者求判别式的值来确定。
当直线与抛物线有一个交点时,可能是相离、相切或者相交的情况。
7.抛物线的焦点弦和以焦点为圆心的圆:焦点弦是抛物线上任意两点到焦点的线段所组成的线段。
以焦点为圆心的圆与抛物线的准线相切,且以准线为直径。
8.抛物线的切线方程和以AB为直径的圆:以AB为直径的圆与抛物线的准线相切,且以准线为直径。
切线方程可以通过求导得到。
以上是抛物线的一些重要知识点,掌握这些知识点可以更好地理解和应用抛物线。
设抛物线方程为y=2px,交点坐标为A(x1,y1)和B(x2,y2)。
可以利用两点坐标公式求出斜率k和截距b,进而得到交点坐标的表达式。
对于涉及弦长、中点、对称、面积等问题,可以利用交点坐标的表达式来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线方程
1 设,抛物线的标准方程、类型及其几何性质:
图形
焦点
准线
范围
对称轴轴轴
顶点(0,0)
离心率
焦点
注:①顶点.
②则焦点半径;则焦点半径为.
③通径为2p,这是过焦点的所有弦中最短的.
④(或)的参数方程为(或)(为参数).
空间直线知识点总结
1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内
[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)
②直线在平面外,指的位置关系:平行或相交
③若直线a、b异面,a平行于平面,b与的关系是相交、平行、在平面内.
④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.
⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)
⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点向这个平面所引的垂线段和斜线段)
⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面.
2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)
3. 平行公理:平行于同一条直线的两条直线互相平行.
4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).
(二面角的取值范围)
(直线与直线所成角)
(斜线与平面成角)
(直线与平面所成角)
(向量与向量所成角
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.
5. 两异面直线的距离:公垂线的长度.
空间两条直线垂直的情况:相交(共面)垂直和异面垂直.
是异面直线,则过外一点P,过点P且与都平行平面有一个或没有,但与距离相等的点在同一平面内. (或在这个做出的平面内不能叫与平行的平面)
双曲线方程
1. 双曲线的第一定义:
⑴①双曲线标准方程:
.
⑵一般方程:
①i. 焦点在x轴上:
顶点:焦点:准线方程
渐近线方程:
或
ii. 焦点在轴上:顶点:. 焦点:. 准线方程:
.
渐近线方程:或,参数方程:
或.
②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c.
③离心率.
④准线距(两准线的距离);通径
.
⑤参数关系
.
⑥焦点半径公式:对于双曲线方程
(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)
“长加短减”原则:
构成满足
(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)
⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.
⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:
.
⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为
时,它的双曲线方程可设为.
例如:若双曲线一条渐近线为且过,求双曲线的方程?
解:令双曲线的方程为:,代入得.
⑹直线与双曲线的位置关系:
区域①:无切线,2条与渐近线平行的直线,合计2条;
区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;
区域③:2条切线,2条与渐近线平行的直线,合计4条;
区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;
区域⑤:即过原点,无切线,无与渐近线平行的直线.
小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.
(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.
⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P 到两准线的距离比为m︰n.
简证:
常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.。