信号与系统作业作业1第二章答案
信号与系统课后题解第二章

⑺
对⑺式求一阶导,有:
de(t ) d 2 i 2 (t ) di (t ) du (t ) =2 +2 2 + c 2 dt dt dt dt de(t ) d 2 i2 (t ) di (t ) =2 + 2 2 + 2i1 (t ) + 2i 2 (t ) 2 dt dt dt
⑻
将⑸式代入⑻式中,有:
λ 2 + 2λ + 1 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1
y h (t ) = C1e −t + C2 te− t
由初始状态为 y (0 ) = 1, y ' (0 ) = 0 ,则有:
C1 = 1 − C 1 + C 2 = 0
由联立方程可得 故系统的零输入响应为:
由联立方程可得 故系统的零输入响应为:
A1 = 2, A2 = −1
y zi (t ) = 2e − t − e −2 t
(2)由原微分方程可得其特征方程为
λ 2 + 2λ + 2 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1 ± i
y h (t ) = e −t (C1 cos t + C2 sin t )
(− 3C1 + 3C2 )δ (t ) + (C1 + C2 )δ ' (t ) − (− 2C1 + C 2 )δ (t ) = δ (t )
(
(
( + C e )δ (t ) + (C e
2 1
)
−2 t
+ C2 e t δ ' (t )
信号与系统 陈后金 第二版 课后习题答案(完整版)

(1) f (t) = 3sin 2t + 6 sinπ t
(2) f (t) = (a sin t) 2
(8)
f
(k)
=
cos⎜⎛ ⎝
πk 4
⎟⎞ ⎠
+
sin⎜⎛ ⎝
πk 8
⎟⎞ ⎠
−
2
cos⎜⎛ ⎝
πk 2
⎟⎞ ⎠
解:(1)因为 sin 2t 的周期为π ,而 sin πt 的周期为 2 。
显然,使方程
−∞
0
2-10 已知信号 f (t) 的波形如题 2-10 图所示,绘出下列信号的波形。
f (t)
2
1
−1 0
t 2
题 2-10 图
(3) f (5 − 3t) (7) f ′(t) 解:(3)将 f (t) 表示成如下的数学表达式
(5) f (t)u(1 − t)
由此得
⎧2
f
(t)
=
⎪ ⎨ ⎪ ⎩
f (t)u(1− t) 2
1
0.5
t
−1 0
1
(7)方法 1:几何法。由于 f (t) 的波形在 t = −1处有一个幅度为 2 的正跳变,所以 f ′(t) 在 此处会形成一个强度为 2 的冲激信号。同理,在 t = 0 处 f ′(t) 会形成一个强度为 1 的冲激信 号(方向向下,因为是负跳变),而在 0 < t < 2 的区间内有 f ′(t) = −0.5 (由 f (t) 的表达式可
第 1 页 共 27 页
《信号与系统》(陈后金等编)作业参考解答
(2)显然,该系统为非线性系统。 由于
T{f (t − t0 )}= Kf (t − t0 ) + f 2 (t − t0 ) = y(t − t0 )
信号与系统 于敏慧(第二版)第二周作业答案

y0(t)
1
t
0
2
4
(6) x(t) = dx0 (t) , h(t) = dh0 (t) 。
dt
dt
x(t) * h(t) = dx0 (t) * dh0 (t) = d 2 y0 (t)
dt dt
dt 2
x(t) ∗ h(t) = 0.5δ(t) − 0.5δ(t − 2)
2.10 求 y[n] = x1[n]* x2[n]* x3[n] 。 其 中 x1[n] = (0.5)n u[n] , x2[n] = u[n + 3] 和
(2)利用(1)的结果,求系统的逆系统的单位样值(脉冲)响应。
(3)利用(2)的结果,结合卷积性质,求一信号 x[n],使之满足
x[n]* h[n] = 2n (u[n] − u[n − 4])
解:(1) h[n] − Ah[n −1] = δ [n],其中 h[n] = (1 )n u[n] , 2
(通项: an = a1q n−1 )
n
∑ 此题: a1 = 1, q = 2 ; x[n]* h[n] = 2nu[n]*u[n] = ( 2k )u[n] = (2n+1 −1)u[n] k =0
2.6 计算图 2-45(b)与(c)所示信号 x(n)与 h(n)的卷积和,注意:N=4。 解:(b)利用脉冲信号δ(n)的卷积性质以及卷积的延时性质计算:
k =−∞
+ 3] =
u[n + 3] 0.5k
k =0
;
= 2(1 − 0.5n+4 )u[n + 3]
(2) x1[n]* x2[n]* x3[n] = 2(1 − 0.5n+4 )u[n + 3]* (δ [n] − δ [n −1]) ; = 2(1 − 0.5n+4 )u[n + 3] − 2(1 − 0.5n+3 )u[n + 2]
信号与系统作业任务作业任务1(第二章)答案解析

第二章作业答案2 - 已知描述某LTI 连续系统的微分方程和系统的初始状态如下, 此系统的零输入响应(1)y (t) 3y(t) 2y(t) 2e(t) e(t)y(0 ) 2,y(0 ) 1解:y (0 ) y(0 ) 1。
解:23 2 0( 1)( 2) 0所以, 其特征根为:i2, 21所以, 零输入响应可设为:y zi (t)C 1e 2tC 2e ty(° ) C i C 22C 1 1又因为y (0 ) 2C iC 21C 2 3所以,y zi (t) 3e t e 2tt根据微分方程, 可知 特征方程为:t 0试求(2)y (t) 5y (t) 6y(t) e(t) 2e(t)根据微分方程,可知特征方程为:(2)( 3) 0所以,其特征根为:i 2 , 2 3所以,零输入响应可设为:y zi(t) C1e 2t C2e 3t t 0”y(0 ) C i C2 1 C1 4又因为y (0 ) 2C i 3C2 1 C2 3所以,y zi (t) 4e 2t 3e 3t t 0某LTI连续系统的微分方程为y (t) 3y(t) 2y(t) e (t)3e(t) 已知y(0 ) 1,y(0 ) 2,试求:(1)系统的零输入响应y zi(t);(2)输入e(t) (t)时,系统的零状态响应y zs(t)和全响应y(t)解:(1 )根据微分方程,可知特征方程为:2 3 2 0 ( 1)( 2) 0所以,其特征根为: 1 2, 2 1所以,零输入响应可设为:y zi (t) C1e 2t C2e t t 0y(0 ) C i C 2 1 y (0 ) 2C i C 2 2所以,yd)4e ' 3e 2t t 0C i 3C 2 4(2) 可设零状态响应为:y zs (t) C xi e 2t C x2e t p其中p 为特解,由激励信号和系统方程确定。
因为e(t) (t)所以,p 为常数,根据系统方程可知,p 于是,零状态响应可设为为:y zs (t)C xi e” C x2e t 3 232。
信号与系统第一章习题及作业(1,2)

(2)(余弦序列是否为周期信号,取决于2л/Ω0是正整 (余弦序列是否为周期信号,取决于 Ω 有理数还是无理数。) 数、有理数还是无理数。) 因此, 因此, 2л/Ω0=2л·7/8л=7/4=N/m Ω =2л·7/8л 所以基波周期为N=7; 所以基波周期为N=7; N=7
因为2л/Ω =16л 为无理数, (4) 因为 Ω0=16л,为无理数,则此信号不是周期 信号. 信号. (5) 因为周期信号在[-∞,+∞]的区间上,而本题的重 因为周期信号在[ ∞,+∞]的区间上, 的区间上 复区间是[0, +∞],则此信号为非周期信号 则此信号为非周期信号, 复区间是[0, +∞],则此信号为非周期信号,
f(n) 1 0 3 6 … n
9、判断是否为线性系统?为什么? 、判断是否为线性系统?为什么?
( 3) ( 5) (7 )
y( t ) = ln y( t 0 ) + 3t 2 f ( t ) y( t ) = y( t 0 ) + f 2 ( t ) y( t ) = sin t ⋅ f ( t )
8、一个连续时间系统的输入-输出关系为 、一个连续时间系统的输入 输出关系为
1 t+T y ( t ) = T [ f ( t ) ] = ∫ T2 f (τ )d τ T t− 2 试确定系统是否为线性的?非时变的?因果的? 试确定系统是否为线性的?非时变的?因果的?
解:积分系统是线性的,因此系统是线性系统。 积分系统是线性的,因此系统是线性系统。
sin ω 0 tε ( t )
sin ω 0 ( t − t 0 )ε ( t )tt0 Nhomakorabeat
sin ω 0 tε ( t − t 0 )
信号与系统(杨晓非)1,2,3章习题答案

e (e e lim (2 j ) 2 0
j 2t
2 t
j 2t
)
1 dt ( ) lim e2t (e j 4t e j 4t 2)dt 4 0
1 ( ) lim [e (2 j 4)t e (2 j 4)t ]dt 4 0
2
4s
6s 3 T ' mT1 12 s T 5 12 60 s f (t )为周期信号,周期为60s.
(3) f (t ) 3e t sin(3t ) 3e t Im[e j (3t ) ] 3e t cos(3t ) 2 (4) f (t ) je( j100t 2) e 2 e( j100t 2) e 2e Re[ f (t )] e 2 cos(100t ) 2
0 0
10
10
(7) sin ( 5) d sin 5 (t 5)
0 t
t
(8) ( 2 1) ( ) d ( 2 1)2 ( ) d 2 (t ) 2
10 1 (9) (2t 2 t 5) (t )dt [2t 2 t 5] 10 4 t t t 1 4
(2)显然f (t ) | cos(2t ) | 为周期信号 (3) f (t ) 3e j (2t 45 )为周期信号
《信号与系统》第二章作业题答案

第二章 连续时间系统的时域分析1.与()t δ相等的表达式为:A .1()4t δ B .2(2)t δ C .(2)t δ D .1(2)2t δ解:由()t δ函数的性质1()()t t δαδα=可得,选B2.()j tet dt ωδ∞--∞'=⎰。
解:运用性质0()()()(0)t f t t dt f t f δ∞=-∞'''=-≡-⎰,得到()()j tet dt j j ωδωω∞--∞'=--=⎰。
3.两个线性时不变系统的级联,其总的输入-输出关系与它们在级联中的次序没有关系。
(正确)解:以冲击响应为例。
因为级联时,系统总的冲击响应等于各子系统冲击响应的卷积,而卷积与顺序没有关系,所以冲击响应与子系统顺序没有关系。
4.若()()()y t x t h t =*,则()()()y t x t h t -=-*-。
(错误)解:由()()()y t x h t d τττ∞-∞=-⎰,得()()()y t x h t d τττ∞-∞-=--⎰。
而()()()()()x t h t x h t d y t τττ∞-∞-*-=--+≠-⎰5.已知(21)f t -+波形如图所示,试画出()f t 的波形。
解:根据1反2展36.用图解法求图中信号的卷积()()()t f t f t f 21*=。
(03北邮A,8分)解:当10t -<时,即1t <时,由图1所示,12()()*()0f t f t f t ==图1当1020t t ->⎧⎨-<⎩时,即12t <<时,由图2所示,11201()()*()sin()[cos()1]t f t f t f t d t πττππ-===+⎰图2当1220t t -<⎧⎨->⎩时,即23t <<时,由图3所示,11222()()*()sin()cos()t t f t f t f t d t πττππ--===⎰图3当1222t t ->⎧⎨-<⎩时,即34t <<时,由图4所示,21221()()*()sin()[cos()1]t f t f t f t d t πττππ-===-⎰图4当4t >时,如图5所示,12()()*()0f t f t f t ==图57.如图所示系统由几个子系统组成,各子系统的冲激响应为)()(1t u t h =,)1()(2-=t t h δ,)()(3t t h δ-=,试求此系统的冲激响应)(t h ;若以()()t u e t e t -=作为激励信号,用时域卷积法求系统的零状态响应。
信号与系统课后答案(第二版)+曾禹村+第二章作业参考答案

i1(t) = i2 (t) + i3 (t) , i2 (t) R2 − L 有 8i2 `(t) + 3i2 (t) = 2e`(t) ˆ ˆ 由 h`(t) + 3h(t) = 2δ (t)
0
h
(−1) t 3
T
t
t 3E − τ E (t) = ∫ δ (τ )dτ − ∫ e 8 u(τ )dτ −∞ 4 −∞ 32
x(t)
1
2 t
yx(t)
1 2 3 4 t
0
1
0
Qh(0) = 0, t ≤ 0, 有 0 ≤ t <1 , h(t) + h(t −1) + h(t − 2) = h(t) = t 时 1≤ t < 2时 h(t) + h(t −1) + h(t − 2) = h(t) + h(t −1) =1 , h(t) =1− h(t −1) =1− (t −1) = 2 −t 2 ≤ t < 3 , h(t) + h(t −1) + h(t − 2) =1 时 h(t) =1− h(t −1) − h(t − 2) =1− (2 − (t −1)) − (t − 2) = 0 3 ≤ t < 4时 h(t) = 4 − t − h(t −1) − h(t − 2) =4 −t − 0 − (2 − (t − 2)) = 0 , t, 0 ≤ t < 1 ∴h(t) = 2 − t, 1 ≤ t ≤ 2 0, t < 0,2 < t
解: (e) 特征方程为 λ2+4λ+4=0 得 λ1=-2, λ2=-2。 则 h(t)= (c1eλ1 t+ c2eλ2t)u(t)=( c1e- 3 t+ c2e-2 t)u(t) h`(t)= (c1+ c2)δ(t)+(-3c1e- 3 t-2c2e- 2t)u(t) h``(t)= (c1+ c2)δ`(t)+(-3c1-2c2) δ(t)+ (9c1e- 3 t+4c2e- 2t)u(t) 将x(t)= δ(t), y(t)=h(t)代入原方程得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 作业答案
2–1 已知描述某LTI 连续系统的微分方程和系统的初始状态如下,试求此系统的零输入响应。
(1))()(2)(2)(3)(t e t e t y t y t y +'=+'+'' 2)0(=-y ,1)0(-='-y
解:
根据微分方程,可知特征方程为:
0)2)(1(0232=++⇒=++λλλλ
所以,其特征根为: 1,
221-=-=λλ
所以,零输入响应可设为:0)(221≥+=--t e C e C t y t
t
zi
又因为 ⎩⎨⎧=-=⇒⎩⎨
⎧-=--='=+=--31
12)0(2)0(2
1
2121C C C C y C C y 所以,03)(2≥-=--t e e t y t
t
zi
(2))(2)()(6)(5)(t e t e t y t y t y -'=+'+'' ﻩ1)0()0(=='--y y 。
解:
根据微分方程,可知特征方程为:
0)3)(2(0652=++⇒=++λλλλ
所以,其特征根为: 3,
221-=-=λλ
所以,零输入响应可设为:0)(3221≥+=--t e C e
C t y t
t
zi
又因为 ⎩⎨⎧-==⇒⎩⎨
⎧=--='=+=--3
4
132)0(1)0(21
2121C C C C y C C y 所以,034)(32≥-=--t e
e t y t
t zi
2–2 某L TI 连续系统的微分方程为)(3)()(2)(3)(t e t e t y t y t y +'=+'+'' 已知1)0(=-y ,2)0(='-y ,试求: (1) 系统的零输入响应)(t y zi ;
(2) 输入)()(t t e ε=时,系统的零状态响应)(t y zs 和全响应)(t y 。
解:
(1)根据微分方程,可知特征方程为:
0)2)(1(0232=++⇒=++λλλλ
所以,其特征根为: 1,
221-=-=λλ
所以,零输入响应可设为:0)(221≥+=--t e C e C t y t
t
zi
又因为 ⎩⎨⎧=-=⇒⎩⎨
⎧=--='=+=--43
22)0(1)0(2
12121C C C C y C C y
所以,034)(2≥-=--t e e
t y t
t
zi ﻩ
(2) 可设零状态响应为:0)(221>++=--t p
e C e
C t y t x t
x zs
其中p 为特解,由激励信号和系统方程确定。
因为)()(t t e ε= 所以,p 为常数,根据系统方程可知,23=p 。
于是,零状态响应可设为为:02
3)(221>++=--t e C e C t y t x t x zs
将上式代入原方程中,比较方程两边的系数,可得到
⎪⎩⎪⎨⎧-==
2
2121C C 所以,02322
1)(2>+-=
--t e e t y t t
zs
全响应为 )()()(t y t y t y zs zi +=
0)
23221
()34()(22>+-+-=----t e e e e t y t t t t zs
0)
232
5
2()(2>+-=--t e e t y t t zs
2–3 试求下列各LTI 系统的冲激响应和阶跃响应。
(1))(2)()(3)(4)(t e t e t y t y t y +'=+'+'' 解:
根据 在激励信号为)(t δ的条件下,求解系统的零状态响应可得
()
)(2
1)(3t e e t h t t
ε⋅+=
-- 因为,单位阶跃响应⎰-
⋅=t
d h t g 0)()(ττ
所以,()
⎰
-⋅+=--t
d e e t g 032
1)(τττ
0),1(6
1
)1(216
12
16030>-+-=
--=-----
-
t e e e e t t t t ττ
0,6
121326>--=
--t e e t
t
(2))(2)(2)()(2)(3)("t e t e t e t y t y t y +'+''=+'+ 解:
可先求系统 )()(2)(3)("t e t y t y t y =+'+ 的冲激励响应)(0t h ,
则,原系统的冲激响应为)(2)(2)()(0'0"0
t h t h t h t h ++=。
因为)()(2)(3)("t e t y t y t y =+'+的特征根为:1,221-=-=λλ 所以,可设冲激响应为:)()()(2210t e C e C t h t t ε⋅+=-- 将)(0t h 代入系统方程,并确定待定系数后,可得:
)()()(20t e e t h t t ε⋅-=--ﻩ
因为,)(2)(2)()(0'
0"0
t h t h t h t h ++= 又因为,)()2()(2'0
t e e t h t t ε⋅-=--,)()4()()(2"0t e e t t h t t εδ⋅--=-- 所
以,[]
)()(2)()2(2)()4()()(222t e e t e e t e e t t h t t t t t t εεεδ⋅-⋅+⋅-⋅+⋅--=------
)()2()(2t e e t t t εδ⋅--=--
因为,单位阶跃响应⎰-
⋅=t
d h t g 0)()(ττ
所以,[]
⎰-
⋅--=--t
t t d t e e t t g 02)()(2)()(τεδ
()
)(212t e e t t ε⋅-+=--
2–4 各信号的波形如题2–4图所示,试计算下列卷积,并画出其波形。
(1))()(21t f t f *
(2))()(31t f t f *
(3))()(24t f t f *ﻩ(4))()(34t f t f *
题2–4 图
解:
根据 )()()(00t t f t t t f -=-*δ,可方便地得到此题的卷积结果。
(1)
(2)
(3)
(4)
2–5 已知某LTI 连续系统的冲激响应)(t h 和各激励信号)(t e 的波形如题2–5图所示,试求此系统对激励信号的零状态响应。
题2–5图
解:
因为,)()()(t h t e t y zs *=
所以,[][])2()()2()()(--*--=t t t t t y zs εεεε
)2()2()2()()()2()()(-*-+-*-*--*=t t t t t t t t εεεεεεεε )4()4()2()2(2)(--+---=t t t t t t εεε
2–6 题2–6图所示系统是由几个子系统组合而成的,各子系统的冲激响应分别为
)()(1t t h ε=,)1()(2-=t t h δ,)1()(3-=t t h ε
试求总系统的冲激响应)(t h 并画出其波形。
题2–6图
解: 根据系统框图,可得: [])()()()()(1321t h t h t h t h t h **+=
[])()1()1()(t t t t εεδε*-*--= [])()2()(t t t εεε*--=
)2()2()(-⋅--=t t t t εε
此系统的单位冲激响应的波形为:
2–7 题2–7图所示系统是由几个子系统组合而成,各子系统的冲激响应分别为
)1()(1-=t t h δ,)3()1()(2---=t t t h εε
试求总系统的冲激响应)(t h 并画出其波形。
题2–7图
解:根据系统框图,可得:
[])()()()()()(2111t h t h t h t h t t h **++=δ
[][])3()1()1()1()1()(---*-*-+-+=t t t t t t εεδδδδ [][])3()1()2()1()(---*-+-+=t t t t t εεδδδ
[][][])5()3()4()2()3()1(---+---+---=t t t t t t εεεεεε
)5()4()2()1(-----+-=t t t t εεεε 此系统的单位冲激响应的波形为:。