第四讲 空间计量经济学基本模型
空间计量经济学PPT精品文档
3
从模型驱动看,理论经济学的兴趣越来越从彼此独 立的决策主体模型转向明确解释系统中不同主体(参 数或效用)相互作用的模型。即分析个体之间的“直 接”相互作用以及单个个体的相互作用是如何导致 集体行为和总体模式。 从数据驱动看,计量经济学的热点由时间序列数据 转向空间数据。空间数据之间并非完全独立,而是 存在着某种空间联系和关联性,但是经典的计量经 济学分析方法的基本出发点是样本独立假设。因此 无法直接用经典计量分析方法揭示与地理位置相关 的空间数据关联和依赖性。
C [ y i,o y j] v E [ y iy j] E [ y i] E [ y j] 0i j
8
一般而言,空间相关性来源于以下几个方面:
(1)观测数据地理位置接近(geographical proximity)
(2)截面上个体间互相竞争(competition)和合作: (3)模仿行为(copy cat):在一群体中,个体会重复或 模仿一个或几个特定个体的行为。
真实空间相关性反映现实中存在的空间交互作用( Spatial Interaction Effects),比如区域经济要素的流 动、创新的扩散、技术溢出等。
干扰空间依赖性可能来源于测量问题,
Y I Y A Y B ,Y II Y C ( 1 ) Y B
当 0 时,cov(YI,YII)0
10
空间异质性
7
空间相关性是指第 个i 空间观测单元的观测变量
与其y 他n i 各地观测变量之间存在着函数关系
f
y i f( y 1 ,,y i 1 ,y i 1 ,f ,y n ) i,i 1 ,,n
空间自相关通常是空间相关性的核心内容,是用来 测试空间某点的观测值是否与其相邻点的值存在相 关性的一种分析方法。可用来表示属性值相似性与 位置相似性的一致程度
空间计量方法模型
空间计量方法模型空间经济计量模型主要解决回归模型中复杂的空间相互作用与空间依存性结构问题(Anselin ,1988)。
长期以来,在主流的经济学理论中,空间事物无关联及均质性假定的局限,以及普遍使用忽视空间效应的普通最小二乘法 (OLS)进行模型估计,使得在实际应用中往往存在模型的设定偏差问题,进而导致经济学研究得出的各种结果和推论不够完整、科学,缺乏应有的解释力(吴玉鸣,2007)。
空间计量经济学 (Anselin ,1988)理论认为一个地区空间单元上的某种经济地理现象或某一属性值与邻近地区空间单元上同一现象或属性值是相关的。
几乎所有的空间数据都具有空间依赖性或空间自相关性的特征,空间依赖的存在打破了大多数经典统计和计量分析中相互独立的基本假设。
也就是说,各区域之间的数据存在与时间序列相关、相对应的空间相关。
根据空间计量经济学方法原理,空间计量分析的思路如下:首先采用空间统计分析Moran 指数法检验因变量是否存在空间自相关性;如果存在空间自相关性,则以空间计量经济学理论方法为基础,建立空间计量经济模型,进行空间计量估计和检验。
1.空间自相关性检验空间相关性存在与否,实际应用研究中常常使用空间自相关指数Moran’I ,其计算公式如下所示:∑∑∑∑==-==---=ni nj ijj ni nj i ijW S Y Y Y Y WI Moran 11211,)()( (3)其中,∑∑=-=-=-=ni i n i i Y n Y Y Y n S 1121;)(1,i Y 表示第i 地区的观测值;n 为地区总数(本文为28);ij W 为二进制的邻接空间权值矩阵,表示其中的任一元素,采用邻接标准或距离标准,其目的是定义空间对象的相互邻接关系,便于把地理信息系统(GIS)数据库中的有关属性放到所研究的地理空间上来对比。
一般邻接标准的ij W 为:⎩⎨⎧=不相邻;区域和当区域相邻;区域和当区域j i j i W ij 01 。
空间计量模型选择、估计、权重、检验(Spatialeffect)
空间计量模型选择、估计、权重、检验(Spatialeffect)应读者的要求,推送⼀篇关于空间计量⽅⾯的⽂章。
空间计量模型,主要⽤来解决空间被解释变量⾃相关和测量误差⽅⾯的问题;⽽且两个空间事物存在交互效应和异质性,因此,存在常系数回归和变异系数的回归区分。
空间计量经济学是计量经济学的⼀个分⽀,研究的是如何在横截⾯数据和⾯板数据的回归模型中处理空间相互作⽤(空间⾃相关)和空间结构(空间不均匀性)结构分析。
它与地学统计和空间统计学相似。
从某种程度上⽽⾔,空间计量经济学与空间统计学之间的不同和计量经济学与统计学之间的不同⼀样。
由于对其理论上的关⼼以及将计量经济模型应⽤到新兴⼤型编码数据库中的要求,近年来这个领域获得了快速发展。
空间数据分析和建模技巧与GIS的结合,现已⼴泛应⽤于经济政策分析中,尤其是实产和房地产经济[Anselin (1998a), Can(1998)], 环境和资源经济[Bockstael (1996), Geoghegan, Waingerand Bockstael (1997)], 发展经济[Nelson and Gray (1997)].当⾯临空间⾃相关时,标准的计量分析技巧通常会失效,⽽这种情形经常在地理或横截⾯数据集中出现,这也是空间计量得以迅速发展的原因之⼀。
传统的统计理论是⼀种建⽴在独⽴观测值假定基础上的理论。
然⽽,在现实世界中,特别是遇到空间数据问题时,独⽴观测值在现实⽣活中并不是普遍存在的(Getis, 1997)。
对于具有地理空间属性的数据,⼀般认为离的近的变量之间⽐在空间上离的远的变量之间具有更加密切的关系(Anselin & Getis,1992)。
正如著名的Tobler地理学第⼀定律所说:“任何事物之间均相关,⽽离的较近事物总⽐离的较远的事物相关性要⾼。
”(Tobler,1979)地区之间的经济地理⾏为之间⼀般都存在⼀定程度的Spatial Interaction,Spatial Effects):Spatial Dependenceand Spatial Autocorrelation)。
空间计量经济学基本模型
精品课件
➢空间误差模型(Spatial Error Model, SEM)
y X u u Wu
~ (0, 2I n )
* 参照时间序列误差自相关的叫法,空间误差模型 也被称作空间自相关模型(Spatial Autocorrelation Model),简记为SAC模型。
精品课件
问题:
练◦ 习考虑空间溢出效应的地区人均GDP影响因素 分析
数据文件:
◦ china.shp
论文提纲
◦ 全局MoranI检验 ◦ 局部Moran I检验 ◦ 回归分析 ◦ 运用三类不同的w分别做出结果,选最好的。
精品课件
精品课件
➢OLS、SLM、SEM的选择
Run OLS
精品课件
➢选择标准及步骤
✓1、做一次OLS估计
✓2、对比LM统计量,LM-Lag和LM-Error
✓3、若均不显著,则无需进行空间计量分析
✓4、若只有一个显著,则设定为与显著统计量 对应的空间计量模型
✓5、若均显著,再对比Robust LM-Lag和 Robust LM-Error
精品课件
➢空间杜宾误差模型(SDEM)
y W1y X1 W1X2 u u W2u ~ (0,2In)
* SDEM模型是SLM、SEM、SDM的综合,比GSAR更一般化。
* β2=0,λ=0,SDEMSLM; * β2=0,ρ=0,SDEMSEM; * λ=0,SDEMSDM;
* β2=0,SDEMGSAR;
精品课件
精品课件
精品课件
空间计量经济学模型归纳复习过程
空间计量经济学模型空间相关性是指 (),i j y f y i j =≠即i y 与j y 相关 模型可表示为()(),1i j j i i y f y x i j βε=++≠其中,()f为线性函数,(1)式的具体形式为()()2,0,2i ij j i i ii jy a y x N βεεδ≠=++∑如果只考虑应变量空间相关性,则(2)式变为(3)式()()21,0,,1,2...3ni ij j i ii y W y N i nρεεδ==+=∑式中1nijj i Wy =∑为空间滞后算子,ij W 为维空间权重矩阵n n W ⨯中的元素,ρ为待估的空间自相关系数。
0ρ≠,存在空间效应 (3)式的矩阵形式为()()21,0,4u n y Wy N I ρεδ⨯=(4)式称为一阶空间自回归模型,记为FAR 模型 当在模型中引入一系列解释变量X 时,形式如下()()2,0,5n y Wy X N I ρβεεδ=++(5)式称为空间自回归模型,记为SAR 模型 当个体间的空间效应体现在模型扰动项时有()()21,,0,6u n y X u u Wu N I βλεδ⨯=+=(6)式成为空间误差模型,记为SEM 模型 当应变量与扰动项均存在空间相关时有()()2121,,0,7u n y W y X u u W u N I ρβλεεδ⨯=++=+(7)式称为一般空间模型,记为SAC 模型当0X =且20W =时,SAC →FAR ;当20W =时,SAC →SAR当10W =时,SAC →SEM当空间相关性还体现在解释变量上时,则有()()2,0,8n y Wy X WXr N I ρβεεδ=+++(8)式成为空间杜宾模型,记为SDM 模型面板数据空间混合回归模型空间滞后应变量()NT T N Wy W y I W y ==⊗ 空间滞后解释变量()NT T N WX W X I W X ==⊗ 空间滞后扰动项()NT T N W W I W εεε==⊗,,*(...)NT N N N NT NT T N W diag w w w I W ==⊗含因变量空间滞后的模型为()()1119NT T N NK K K NT Y I W Y X ρβε⨯⨯⨯⨯=⊗++ρ为空间自回归参数空间面板固定效应模型2,,()0,()T t t t t t t t t t NY X W E E I βμφφδφεεεεσ=++=+==(10)(10)为加入空间残差自相关的固定效应模型2,()0,()T t t t t t t t N Y WY X E E I δβμεεεεσ=+++== (11)(11)为加入空间滞后因变量的固定效应模型. 空间面板随机效应模型为Y X v β=+,1()()T N T v I I B ιμε-=⊗+⊗ (12)其中()1,,1T T ι'= , N B I W δ=-, (12)式为空间误差随机效应模型.()T N Y I W Y X v δβ=⊗++ (13)(13)式为空间滞后应变量随机效应模型.空间计量经济学:既要考虑应变量的空间相关性Wy ρ,也要考虑各个解释变量的空间相关性rWX ,还要考虑各个扰动项的空间相关性u Wu λ= a) 地理空间权重 b) 经济空间权重c) 基于距离的(阀值法、K 最近点法) 注:划*者应用最为广泛W 为空间权重矩阵,以0-1空间权重矩阵为例550111010011100101110101010A ⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1y 与234,,y y y 相关。
空间计量经济学分析课件
2020年3月20日11时30分
天行健,君子以自强不息;地势坤,君子以厚德载物。
16
全域空间相关性检验与分析
Moran’s I定义如下:
2020年3月20日11时30分
天行健,君子以自强不息;地势坤,君子以厚德载物。
18
目前计量研究方法及其局限性
目前有关研究的计量方法主要是传统的回归分析
方法(如多元统计分析、回归分析、数据包络分 析DEA等方法),其实质上都是线性的变量之间 相互关系的一种测量方法,适合于企业或产业部
门时间序列层面的经验研究,未考虑区域(或截 面单元)之间的空间关联,局限性比较明显。
天行健,君子以自强不息;地势坤,君子以厚德载物。
9
空间异质性
空间异质性反映了经济实践中的空间观测单元 之间经济行为(如增长或创新)关系的一种普 遍存在的不稳定性。
区域创新的企业、大学、研究机构等主体在研 发行为上存在不可忽视的个体差异,譬如研发 投入的差异导致产出的技术知识的差异,
这种创新主体的异质性与技术知识异质性的耦 合将导致创新行为在地理空间上具有显著的异 质性差异,进而可能存在创新在地理空间上的 相互依赖现象或者创新的局域俱乐部集团。
空间相关性表现出的空间效应可以用以下两种 模型来表征和刻画:当模型的误差项在空间上 相关时,即为空间误差模型;当变量间的空间 依赖性对模型显得非常关键而导致了空间相关 时,即为空间滞后模型(Anselin,1988)。
2020年3月20日11时30分
天行健,君子以自强不息;地势坤,君子以厚德载物。
空间计量经济模型的理论与应用
空间计量经济模型的理论与应用第一部分空间计量经济模型介绍 (2)第二部分模型理论基础与原理 (5)第三部分空间相关性分析方法 (8)第四部分常用空间计量模型构建 (10)第五部分模型估计与检验方法 (14)第六部分应用案例与实证分析 (19)第七部分空间计量模型的局限性 (22)第八部分展望与未来研究方向 (25)第一部分空间计量经济模型介绍空间计量经济模型是一种将地理空间因素纳入传统经济学模型的分析方法,它通过在传统的线性模型中引入空间相关系数来考虑地区间的相互作用和影响。
这种模型起源于 20 世纪 70 年代,并逐渐成为经济学、地理学、城市规划等领域的重要工具。
本文将从理论与应用两个方面对空间计量经济模型进行详细介绍。
一、理论基础1.空间数据特性空间数据通常具有以下特点:(1)空间邻接性:相邻地区的变量之间往往存在相互影响。
(2)空间异质性:不同地区的自然环境、人文条件等差异会导致数据表现出不同的特性。
(3)空间相关性:同一地区内的多个变量之间可能存在着内在的联系,从而使得数据具有一定的空间自相关性。
2.空间计量模型的分类根据空间效应的不同,空间计量经济模型可分为两大类:(1)局部空间模型:这类模型关注的是单个区域的数据,如空间滞后模型(SLM)和空间误差模型(SEM),它们分别考虑了邻居地区的影响和空间内相关性的效果。
(2)全局空间模型:这类模型考虑的是整个研究区域的空间效应,如空间杜宾模型(SDM)和空间卡尔曼滤波模型(SKF),它们能够捕捉到区域间广泛存在的相互作用关系。
二、空间计量模型的构建1.空间权重矩阵在构建空间计量模型时,首先要确定空间权重矩阵。
空间权重矩阵用于衡量地区之间的空间关联程度,常见的有邻接矩阵、距离衰减矩阵等。
例如,在邻接矩阵中,如果两个地区相邻,则它们之间的权值为1;否则,权值为 0。
2.模型选择根据所要解决的问题和数据特点,可以选择相应的空间计量模型。
例如,当研究区域内部存在明显的空间自相关性时,可以采用空间误差模型或空间滞后模型;当研究区域之间的互动效应较强时,则应选用空间杜宾模型。
Lecture4-非参数+空间计量经济学模型概述
• 半参数模型
Yi βZi g (Xi ) i , i 1, 2,, n
模型假定一部分解释变量与被解释变量的关系为线性关 系,这部分解释变量为参数部分的解释变量;其它解释 变量与被解释变量的关系未知,这部分解释变量为非参 数部分的解释变量;
回归函数为参数部分的线性关系加非参数部分的未知函 数关系。
三、空间计量经济学模型的发展
1、概述
• 空间计量经济学(Spatial Econometrics)是在 20世纪70、80年代开始出现的一个计量经济学分 支学科。
– Anselin(1988)给出的定义:其基本内容是在计量经 济学模型中考虑经济变量的空间效应,并进行一系列 的模型设定、估计、检验以及预测的计量经济学模型 方法。
2、从计量经济学模型的角度提出问题
• 截面数据计量经济学模型
– 被解释变量存在一定的相关性 • 用解释变量构造矩条件的矩估计不是无偏估计量。 • 工具变量估计量虽然满足无偏性,但是在估计的过 程中损失了空间相关性的信息。 – 随机误差项存在一定的相关性 • LLN和CLT便不再成立。 • 采用经典模型的方法很难消除。
– 空间依赖性打破了大多数传统经典统计学和计量经济 学中相互独立的基本假设,是对传统方法的继承和发 展。
• 空间效应
– 空间相关性(spatial dependence) – 空间异质性(spatial heterogeneity)
• 将空间效应纳入计量模型分析的框架下,便面临 着两方面的问题。
– 一是如何正确的将空间效应引入既有的模型,或者根 据空间效应的特殊性构造新的计量经济学模型; – 二是对于新的模型,如何进行估计和检验。
Y Xβ ε ε Wμ + μ, μ N[0, I]
空间经济计量学模型
时空聚类分析
03
根据时空相似性对观测对象进阶空间模型
高阶空间自回归模型
在传统空间自回归模型中引入高阶空间项,以捕捉经济变量之间 的长距离空间依赖关系。
高阶空间滞后模型
在传统空间滞后模型中引入高阶空间项,以反映经济变量之间的 全局空间交互作用。
高阶空间权重矩阵
空间计量经济学模型的应用主要包括以下几个方 面
2. 检测空间异质性和空间依赖性:空间计量经济 学模型可以用来检测数据的空间异质性和空间依 赖性,从而更好地理解经济现象的空间关系。
1. 探索空间数据的分布和模式:通过分析空间数 据,可以了解经济现象在地理空间上的分布特征 和变化趋势。
3. 建立空间预测模型:基于空间数据的特点,可 以建立空间预测模型,对未来的经济现象进行预 测和分析。
模型估计方法 空间滞后模型的估计方法包括最 小二乘法、广义最小二乘法等。
适用范围 空间滞后模型适用于研究空间自 相关问题,即某一变量在空间上 的分布情况对其他变量产生的影 响。
空间误差模型
误差项
空间误差模型中包含一个误差项,该误差 项反映了其他未纳入模型的空间因素的影
响。
适用范围
空间误差模型适用于研究空间异质性问题 ,即某一变量在不同空间位置上的变异情
变量产生影响,又受其他变量的影响。 • 模型参数解释:空间杜宾模型的参数包括空间权重矩阵、解释变量、误差项等,其中空间权重矩阵的选取对模
型结果影响较大。此外,空间杜宾模型的解释变量系数反映了相应解释变量对因变量的影响程度和方向。
04
模型选择与评估
模型选择的原则和方法
根据研究目的和数据特点选择合适的模型
VS
详细描述
通过引入空间因素,分析人口流动的空间 影响因素及其作用机制,探讨不同地区人 口流动的异同点及影响因素的差异,为制 定有针对性的人口政策提供科学支持。
空间计量经济学基本模型
✓OLS ✓SLM ✓SEM
➢软件操作步骤
✓1、打开.shp数据文件 ✓2、创建W(若已有W,则省略该步骤)
※SLM只能使用对称的W,K最近距离W不能用
✓3、在菜单选择Methods-Regression ✓4、选择变量,以及W ✓5、选择Models类型(OLS、SLM、SEM) ✓6、运行run
* 参照时间序列自回归模型的叫法,空间滞后模型 也被称作空间自回归模型(Spatial Autoregressive Model),简记为SAR模型。
➢空间误差模型(Spatial Error Model, SEM)
y X u u Wu
~ (0, 2I n )
* 参照时间序列误差自相关的叫法,空间误差模型 也被称作空间自相关模型(Spatial Autocorrelation Model),简记为SAC模型。
➢确立最优模型(难点)
✓1、确定OLS、SLM、SEM模型 ✓2、对确定后的模型,展开诊断检验 ✓3、如果各项诊断均通过检验,则确定该模型
为最优模型 ✓4、如果有诊断未通过,一般通过调整W、调
整解释变量重新回归。 ✓重复步骤3、步骤4,直至确定合适的模型。
练习
问题:
◦ 考虑空间溢出效应的地区人均GDP影响因 素分析
Run OLS
➢选择标准及步骤
✓1、做一次OLS估计 ✓2、对比LM统计量,LM-Lag和LM-Error ✓3、若均不显著,则无需进行空间计量分析 ✓4、若只有一个显著,则设定为与显著统计量
对应的空间计量模型 ✓5、若均显著,再对比Robust LM-Lag和Robust
LM-Error ✓6、选择显著(相对显著)的统计量对应的空
空间计量
二、空间权重矩阵与空间效应n散点图,常来研究局部的空间不稳定性,它对空 间滞后因子Wz和z数据对进行了可视化的二维图示。 全局Moran指数,可以看作是Wz对于z的线性回归系数,对界外值以及对Moran 指数具有强烈影响的区域单元,可通过标准回归来诊断出。 由于数据对(Wz,z)经过了标准化,因此界外值可易由2-sigma规则可视化地 识别出来。
空间误差模型SEM
•
空间误差模型(Spatial Error Model,SEM)的数学表达式为:
y X
W
• • • 式中, ε为随机误差项向量,λ 为空间误差相关系数, μ 为正态分布的随机误 差向量。W为空间权重矩阵 SEM中参数β 反映了自变量X对因变量y的影响。参数λ 衡量了样本观察值中 的空间依赖作用,存在于扰动误差项之中的空间依赖作用,度量了邻近地区 关于因变量的误差冲击对本地区观察值的影响程度。 SEM模型与时间序列中的序列相关问题类似,也被称为空间自相关模型( Spatial Autocorrelation Model,SAC)。 一、空间计量经济学的发展
空间权重矩阵
•
空间权重矩阵W是一种与被解释变量的空间自回归过程相联系的矩阵。在实 际的区域分析中,该矩阵的选择设定是外生的,是n×n维的W包含了关于区 域i和区域j之间相关的空间连接的外生信息,不需要通过模型来估计得到它, 只需通过权值计算出来就行了。
w11 w W 21 wm1
•
•
(ii)截面上个体间互相竞争(competition)和合作:最典型的例子是在一个伯川 德(Bertrand)寡头竞争的市场中, 厂商对自己产品定价时将同时对市场上其他 厂商的价格作出反应, 最后决定的价格将是博弈的均衡点。
空间计量模型选择、估计、权重、检验(Spatialeffect)
空间计量模型选择、估计、权重、检验(Spatialeffect)应读者的要求,推送⼀篇关于空间计量⽅⾯的⽂章。
空间计量模型,主要⽤来解决空间被解释变量⾃相关和测量误差⽅⾯的问题;⽽且两个空间事物存在交互效应和异质性,因此,存在常系数回归和变异系数的回归区分。
空间计量经济学是计量经济学的⼀个分⽀,研究的是如何在横截⾯数据和⾯板数据的回归模型中处理空间相互作⽤(空间⾃相关)和空间结构(空间不均匀性)结构分析。
它与地学统计和空间统计学相似。
从某种程度上⽽⾔,空间计量经济学与空间统计学之间的不同和计量经济学与统计学之间的不同⼀样。
由于对其理论上的关⼼以及将计量经济模型应⽤到新兴⼤型编码数据库中的要求,近年来这个领域获得了快速发展。
空间数据分析和建模技巧与GIS的结合,现已⼴泛应⽤于经济政策分析中,尤其是实产和房地产经济[Anselin (1998a), Can(1998)], 环境和资源经济[Bockstael (1996), Geoghegan, Waingerand Bockstael (1997)], 发展经济[Nelson and Gray (1997)].当⾯临空间⾃相关时,标准的计量分析技巧通常会失效,⽽这种情形经常在地理或横截⾯数据集中出现,这也是空间计量得以迅速发展的原因之⼀。
传统的统计理论是⼀种建⽴在独⽴观测值假定基础上的理论。
然⽽,在现实世界中,特别是遇到空间数据问题时,独⽴观测值在现实⽣活中并不是普遍存在的(Getis, 1997)。
对于具有地理空间属性的数据,⼀般认为离的近的变量之间⽐在空间上离的远的变量之间具有更加密切的关系(Anselin & Getis,1992)。
正如著名的Tobler地理学第⼀定律所说:“任何事物之间均相关,⽽离的较近事物总⽐离的较远的事物相关性要⾼。
”(Tobler,1979)地区之间的经济地理⾏为之间⼀般都存在⼀定程度的Spatial Interaction,Spatial Effects):Spatial Dependenceand Spatial Autocorrelation)。
空间计量
的空间依赖作用,存在于扰动误差项之中的空间依赖作用,度量了邻近地区 关于因变量的误差冲击对本地区观察值的影响程度。
• SEM模型与时间序列中的序列相关问题类似,也被称为空间自相关模型(
Spatial Autocorrelation Model,SAC)。
一、空间计量经济学的发展
空间权重矩阵
• 空间权重矩阵W是一种与被解释变量的空间自回归过程相联系的矩阵。在实
• (iv)溢出效应(spillover effect):溢出效应是指经济活动和过程中的外部性对
未参与经济活动和过程其中的周围个体的影响。 散发有毒气体的植物会对周 围的植物产生有害的影响, 屋主拥有一座漂亮花园也显然对周围邻居有正效应 。 同样不断加强的贸易往来所带来的经济利益对地区性国家多边联盟的形成 具有正的溢出效应
一、空间计量经济学的发展
空间效应
空间相关性
空间相关性是描述经济变量存在相关性的 一种方法,而这一相关性是体现在空间结 构上的,当然,空间相关性并不是局限在 地理意义上的相关性。
7.1 空间计量经济学模型概述解析
– 空间依赖性打破了大多数传统经典统计学和计量经济 学中相互独立的基本假设,是对传统方法的继承和发 展。
• 空间效应
– 空间相关性(spatial dependence) – 空间异质性(spatial heterogeneity)
• 将空间效应纳入计量模型分析的框架下,便面临 着两方面的问题。
– 一是如何正确的将空间效应引入既有的模型,或者根 据空间效应的特殊性构造新的计量经济学模型; – 二是对于新的模型,如何进行估计和检验。
– 离散被解释变量数据空间模型
– 受限被解释变量数据空间模型
3、从经济学的角度提出问题
• 空间相关性包含明确的经济信息
– 这些经济信息具有意义。 – 为了避免这些经济信息的损失,就需要将这些信息分 离出来。
二、空间计量经济学模型的类型
1、概念
• 空间相关性表现在两个方面:
– 空间实质相关(spatially substantive dependence)。反映现实中存在的空间交互作用 (Spatial Interaction Effects)。 – 空间扰动相关(spatial nuisance dependence)。由 归入随机干扰项的,没有作为解释变量的影响因素的 空间相关性所引起的。
Y Xβ ε
ε Wε μ μ
N[0, I]
2
• 由于空间误差模型与时间序列中的序列相关问题 类似,也被称为空间自相关模型(Spatial Autocorrelation Model)或者空间残差自回归 模型(Spatial Residual Autoregressive Model, SRAR)。
• 空间滞后模型的经济学含义是,如果所关注的经 济变量存在利用空间矩阵表示的空间相关性,则 仅仅考虑其自身的解释变量不足以很好的估计和 预测该变量的变化趋势。而在模型中考虑适当的 由于空间结构造成的影响,便可以较好的控制这 一空间效应造成的影响。
空间计量模型_截面数据空间计量模型空间误差
空间计量模型_截面数据空间计量模型空间误差空间计量模型是空间计量经济学的基础,用来研究空间数据的相互依存关系。
截面数据空间计量模型是空间计量模型中常用的一种。
截面数据空间计量模型基于空间自相关的概念,空间自相关指的是地理空间上的实体之间存在相互依赖关系。
在空间自相关的基础上,截面数据空间计量模型可以刻画空间数据间的相互影响和空间效应。
它基于传统的截面数据模型,添加了空间自相关项,从而考虑了空间因素的影响。
在截面数据空间计量模型中,假设观测数据x和y在空间上是相关的,即同一地理区域的观测数据之间存在相关性。
空间自相关可以分为正向自相关和负向自相关两种情况。
正向自相关表示相邻地理区域的观测数据之间具有相似的特征,负向自相关表示相邻地理区域的观测数据之间具有相反的特征。
空间误差模型是截面数据空间计量模型的一种形式,它将空间自相关建模为误差项的一部分。
空间误差模型可以形式化为:y = Xβ + u,其中u = λWu + ε在上述公式中,y是因变量,X是自变量矩阵,β是自变量的系数向量,u是误差项,λ是空间自相关参数,W是权重矩阵,ε是独立同分布误差项。
空间误差模型的参数估计可以采用广义最小二乘法(GLS)或最大似然法。
通过估计模型中的参数,我们可以得到自变量的系数估计值,进而分析空间自相关对因变量的影响。
截面数据空间计量模型的应用非常广泛。
比如,在城市经济学中,可以使用截面数据空间计量模型来研究城市的空间分布、空间集聚效应和空间溢出效应等问题。
在环境经济学中,可以利用截面数据空间计量模型来研究污染物之间的相互影响和空间溢出效应等。
总之,截面数据空间计量模型是空间计量经济学中的重要工具。
通过考虑空间自相关,它可以更精确地分析和解释空间数据之间的相互依存关系。
在实际应用中,研究人员可以根据具体问题选择适合的模型形式和估计方法来分析空间数据的特征和效应。
计量经济学第4章 分位数回归模型
2021年5月8日星期六
计量经济学-第4章 分位数回归模型
17
2.拟似然比检验(Quasi-LR Test) 3.分位数过程检验(Quantile Process Testing)
(1)斜率相等检验(Slope Equality Testing) (2)对称检验(Symmetry Testing)
2021年5月8日星期六
计量经济学-第4章 分位数回归模型
20
最小二乘法和分位数回归结果
系数估计结果
ˆ0 ˆ1 ˆ2 ˆ3
R2
OLS
0.28 (5.78)
0.47 (7.22)
0.47 (7.57)
0.027 (1.65)
0.999
Quant20
0.21 (2.78)
0.49 (4.49)
0.44 (4.22)
14
系数协方差的估计
1.独立同分布设定下协方差矩阵的直接估计方法 (1)Siddiqui 差商法 (2)稀疏度的核密度估计量
2.独立但不同分布设定下协方差矩阵的直接估计方法 3.自举法(Bootstrap)
(1)X-Y自举法 (2)残差自举方法 (3)马尔可夫链边际自举法
2021年5月8日星期六
计量经济学-第4章 分位数回归模型
(x1, y1),(x2 , y2 2021年5月8日星期六
计量经济学-第4章 分位数回归模型
9
分位数回归(Quantile Regression)最早由Koenker和Bassett于 1978年提出 ,它提供了回归变量X和因变量Y的分位数之间线性关 系的估计方法。绝大多数的回归模型都关注因变量的条件均值,但 是人们对于因变量条件分布的其他方面的模拟方法也越来越有兴趣, 尤其是能够更加全面地描述因变量的条件分布的分位数回归。利用 分位数回归解决经济学问题的文献越来越多,尤其是在劳动经济学 中取得了广泛应用。如在教育回报和劳动市场歧视等方面都出现了 很好的研究成果。在经济学中的应用研究还包括诸如财富分配不均 问题、失业持续时间问题、食品支出的恩格尔曲线问题、酒精需求 问题和日间用电需求问题等。在金融学领域也涌现出大量使用分位 数回归的应用研究成果,主要应用领域包括风险价值(Value at Risk, VaR)研究和刻画共同基金投资类型的指数模型。
第四讲 空间计量经济学基本模型 ppt课件
PPT课件
16
六、最优模型的确定
PPT课件
17
➢ OLS、SLM、SEM的选择
Run OLS
PPT课件
18
➢ 选择标准及步骤
✓1、做一次OLS估计
✓2、对比LM统计量,LM-Lag和LM-Error
✓3、若均不显著,则无需进行空间计量分析
✓4、若只有一个显著,则设定为与显著统计量对 应的空间计量模型
为最优模型 ✓4、如果有诊断未通过,一般通过调整W、调
整解释变量重新回归。 ✓重复步骤3、步骤4,直至确定合适的模型。
PPT课件
23
练习
问题:
◦ 考虑空间溢出效应的地区人均GDP影响因素 分析
数据文件:
◦ china.shp
论文提纲
◦ 全局MoranI检验 ◦ 局部Moran I检验 ◦ 回归分析 ◦ 运用三类不同的w分别做出结果,选最好的。
第四讲 空间计量经济学 基本模型
PPT课件
1
经典模型:SLM、SEM、SDM 扩展模型: SDEM 、GSAR 基本模型之间的关系 空间关系的体现 基本模型的GeoDa估计 最优模型的选择
PPT课件
2
一、基础模型
➢空间滞后模型(Spatial Lag Model, SLM)
y Wy X ~ (0, 2I n )
➢权重矩阵对GeoDa能力的约束
✓GeoDa只能给出基于邻接关系的W ✓只能估计基于邻接关系的空间计量模型
➢可以估计的模型类型
✓OLS ✓SLM ✓SEM
PPT课件
11
➢软件操作步骤
✓1、打开.shp数据文件 ✓2、创建W(若已有W,则省略该步骤)
※SLM只能使用对称的W,K最近距离W不能用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间杜宾模型(Spatial
Durbin Model, SDM)
y Wy X1 WX 2 ~ (0, I n )
2
* 考虑了自变量空间滞后项与因变量之间的相关性。
二、扩展模型
广义空间自回归模型(GSAR)
y W1y X u u W 2u 2 ~ (0, I n )
五、基本模型的GeoDa估计
权重矩阵对GeoDa能力的约束
GeoDa只能给出基于邻接关系的W 只能估计基于邻接关系的空间计量模型
可以估计的模型类型O来自SSLMSEM
软件操作步骤
1、打开.shp数据文件
2、创建W(若已有W,则省略该步骤)
※SLM只能使用对称的W,K最近距离W不能用
* β2=0,ρ=0,SDEMSEM;
* λ=0,SDEMSDM; * β2=0,SDEMGSAR;
三、模型之间的关系
SEM模型等价于SDM模型
SDEM模型是考虑了高阶相关性的SDM
模型
四、空间关系的体现
空间关系的三种类型
邻接关系
w ij
1 if contiguity 0 eles
第四讲 空间计量经济学 基本模型
经典模型:SLM、SEM、SDM
扩展模型: SDEM
、GSAR
基本模型之间的关系 空间关系的体现 基本模型的GeoDa估计 最优模型的选择
一、基础模型
空间滞后模型(Spatial
Lag Model, SLM)
y Wy X ~ (0, I n )
关性
六、最优模型的确定
OLS、SLM、SEM的选择
Run OLS
选择标准及步骤
1、做一次OLS估计
2、对比LM统计量,LM-Lag和LM-Error
3、若均不显著,则无需进行空间计量分析 4、若只有一个显著,则设定为与显著统计量对 应的空间计量模型 5、若均显著,再对比Robust LM-Lag和Robust LM-Error 6、选择显著(相对显著)的统计量对应的空间 计量模型
确立最优模型(难点)
1、确定OLS、SLM、SEM模型
2、对确定后的模型,展开诊断检验
3、如果各项诊断均通过检验,则确定该模型 为最优模型 4、如果有诊断未通过,一般通过调整W、调 整解释变量重新回归。 重复步骤3、步骤4,直至确定合适的模型。
练习
问题:
◦ 考虑空间溢出效应的地区人均GDP影响因 素分析
3、在菜单选择Methods-Regression
4、选择变量,以及W
5、选择Models类型(OLS、SLM、SEM)
6、运行run
结果说明
模块一:模型的基本统计信息
模块二:回归结果的统计信息 模块三:回归系数及其显著性 模块四:模型结果的诊断(SLM、SEM)
• 蓝色线条以上,异方差诊断,原假设为无异方差 • 蓝色线条以下,空间相关性诊断,原假设为不存在空间相
2
* 参照时间序列自回归模型的叫法,空间滞后模型 也被称作空间自回归模型(Spatial Autoregressive Model),简记为SAR模型。
空间误差模型(Spatial
Error Model, SEM)
y X u u Wu 2 ~ (0, I n )
* 参照时间序列误差自相关的叫法,空间误差模型 也被称作空间自相关模型(Spatial Autocorrelation Model),简记为SAC模型。
空间距离
w ij 1 / d ij
w ij GDPj / GDPi
经济距离
空间关系的体现方式
只考虑单一类型的空间关系
• 邻接关系:L1,L2,L3……
• 空间距离:K1,K2,K3……
• 经济距离:J1,J2,J3……
同时考虑两类空间关系
• 邻接关系与空间距离二选一
• 模型中至少包含两个空间矩阵:SDEM、GSAR
数据文件:
◦ china.shp
论文提纲
◦ ◦ ◦ ◦
全局MoranI检验 局部Moran I检验 回归分析 运用三类不同的w分别做出结果,选最好的。
* λ=0,GSARSAR(SLM)
* ρ=0, GSARSEM
空间杜宾误差模型(SDEM)
y W 1y X1 W 1X 2 u u W 2u ~ (0, I n )
2
* SDEM模型是SLM、SEM、SDM的综合,比GSAR更一般化。 * β2=0,λ=0,SDEMSLM;