2020年湖北省孝感市中考数学试卷

合集下载

2020年湖北省孝感市中考数学试卷(附答案解析)

2020年湖北省孝感市中考数学试卷(附答案解析)

2020年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.-2℃B.+2℃C.+3℃D.-3℃2.(3分)如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°3.(3分)下列计算正确的是()A.2a+3b=5ab B.(3ab)2=9ab2C.2a•3b=6ab D.2ab2÷b=2b4.(3分)如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.5.(3分)某公司有10名员工,每人年收入数据如下表:年收入/万元46810人数/人3421则他们年收入数据的众数与中位数分别为()A.4,6B.6,6C.4,5D.6,56.(3分)已知x1,y1,那么代数式的值是()A.2B.C.4D.27.(3分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位: )是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I B.I C.I D.I8.(3分)将抛物线C1:y=x2-2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=-x2-2B.y=-x2+2C.y=x2-2D.y=x2+29.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD =30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y 关于x的函数图象大致是()A.B.C.D.10.(3分)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.B.C.4D.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为______.12.(3分)有一列数,按一定的规律排列成,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是______.13.(3分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长为______m.(结果保留根号)14.(3分)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C类:10分钟<总时长≤15分钟;D类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.15.(3分)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则的值为______.16.(3分)如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y和y(k<0)上,,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为______.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(6分)计算:|1|-2sin60°+()0.18.(8分)如图,在▱ABCD中,点E在AB的延长线上,点F在CD的延长线上,满足BE=DF.连接EF,分别与BC,AD交于点G,H.求证:EG=FH.19.(7分)有4张看上去无差别的卡片,上面分别写有数-1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为______;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20.(8分)如图,在平面直角坐标系中,已知点A(-1,5),B(-3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标为______;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并直接写出cos ∠BCE的值为______;(3)在y轴上找出点F,使△ABF的周长最小,并直接写出点F的坐标为______.21.(10分)已知关于x的一元二次方程x2-(2k+1)x k2-2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1-x2=3,求k的值.22.(10分)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg 乙产品的售价比1kg甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?23.(10分)已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.(1)如图1,若α=60°,①直接写出的值为______;②当⊙O的半径为2时,直接写出图中阴影部分的面积为______;(2)如图2,若 <60°,且,DE=4,求BE的长.24.(13分)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a-6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A______,B______,C______,D______;(2)如图1,直线DC交x轴于点E,若tan∠AED,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设-5<t≤m(m<0),求f的最大值.【试题答案】一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.A【解答】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作-2℃.2.B【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°-40°=50°,∴∠AOC=∠BOD=50°.3.C【解答】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a•3b=6ab,因此选项C符合题意;2ab2÷b=2ab,因此选项D不符合题意;4.C【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,5.B【解答】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6,将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6,6.D【解答】解:原式=x+y当x1,y1,原式11=2.7.C【解答】解:设I,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I.8.A【解答】解:∵抛物线C1:y=x2-2x+3=(x-1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,-2),∴抛物线C3的解析式为y=-x2-2,9.D【解答】解:①当点P在AB上运动时,y AH×PH AP sin A×AP cos A x2x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=AB sin A=42,同理AH′=2,则y AH×PH(2x-4)×2=24+x,为一次函数;③当点P在CD上运动时,同理可得:y(26)×(4+6+2-x)=(3)(12-x),为一次函数;10.B【解答】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5-x=BF,FG=8-x,∴EG=8-x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8-x)2,解得x,∴CE的长为,二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.1×106【解答】解:100万=1000000=1×106,12.-81【解答】解:设这三个数中的第一个数为x,则另外两个数分别为-3x,9x,依题意,得:x-3x+9x=-567,解得:x=-81.13.( 1.6)【解答】解:如图,在Rt△DEA中,∵cos∠EDA,∴DA5(m);在Rt△BCF中,∵cos∠BCF,∴CB(m),∴BF BC(m),∵AB+AE=EF+BF,∴AB=3.45 1.6(m).答:AB的长为( 1.6)m.14.C【解答】解:本次抽取的学生有:10÷10%=100(人),B类学生有:100-10-41-100×21%=28(人),1200336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人,15.【解答】解:设直角三角形另一条直角边为x,依题意有2x2m2,解得x m,由勾股定理得(m)2+(n m)2=m2,m2-2mn-2n2=0,解得m1=(-1)n(舍去),m2=(-1)n,则的值为.16.【解答】解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴()2,∵A点在双曲线y,,∴S△AOM4=2,,∴()2,∴S△ODN,∵D点在双曲线y(k<0)上,∴|k|,∴k=-9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF,三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.)17.【解答】解:原式=-211=-2.18.【分析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,,∴△BEG≌△DFH(ASA),∴EG=FH.19.【分析】用列表法列举出所有可能出现的结果,从中找出“两数之差绝对值大于3”的结果数,进而求出概率.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种,∴P(差的绝对值大于3).20.【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)先作出点A关于y轴的对称点A',连接A'B交y轴于点F,依据两点之间,线段最短,即可得到此时△ABF的周长最小,根据待定系数法即可得出直线A'B的解析式,令x =0,进而得到点F的坐标.【解答】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,cos∠BCE;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,-4);;(0,4).21.【分析】(1)根据根的判别式得出△=[-(2k+1)]2-4×1×(k2-2)=2(k+1)2+7>0,据此可得答案;(2)先根据根与系数的关系得出x1+x2=2k+1,x1x2k2-2,由x1-x2=3知(x1-x2)2=9,即(x1+x2)2-4x1x2=9,从而列出关于k的方程,解之可得答案.【解答】解:(1)∵△=[-(2k+1)]2-4×1×(k2-2)=4k2+4k+1-2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2k2-2,∵x1-x2=3,∴(x1-x2)2=9,∴(x1+x2)2-4x1x2=9,∴(2k+1)2-4×(k2-2)=9,化简得k2+2k=0,解得k=0或k=-2.22.【分析】(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg 丙产品的售价为3x元,根据“用270元购买丙产品的数量是用60元购买乙产品数量的3倍”列方程解答即可;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40-3m)kg,根据题意列不等式求出m的取值范围;设按此方案购买40kg农产品所需费用为y元,根据题意求出y与m之间的函数关系式,再根据一次函数的性质解答即可.【解答】解:(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg 丙产品的售价为3x元,根据题意,得:,解得:x=5,经检验,x=5既符合方程,也符合题意,∴x+5=10,3x=15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40-3m)kg,∴40-3m+m≤2m×3,∴m≥15,设按此方案购买40kg农产品所需费用为y元,根据题意,得:y=5(40-3m)+20m+15m=20m+200,∵20>0,∴y随m的增大而增大,∴m=5时,y取最小值,且y最小=300,答:按此方案购买40kg农产品最少要花费300元.23.【分析】(1)①由切线的性质得:∠OAF=90°,证明△ABC是等边三角形,得∠ABC=∠ACB=∠BAC=60°,根据三角形的内角和定理证明∠BAD=90°,可知BD是⊙O的直径,由圆周角,弧,弦的关系得AD=CD,说明△ADF是含30度的直角三角形,得AD=CD=2DF,可解答;②根据阴影部分的面积=S梯形AODF-S扇形OAD=代入可得结论;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,先证明△ADF≌△ADE(ASA),得DF=DE=4,由已知得DC=6,证明△CDE∽△BDC,列比例式可得BD=9,从而解答即可.【解答】解:(1)如图1,连接OA,AD,∵AF是⊙O的切线,∴∠OAF=90°,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵∠ADB=∠ACB=60°,∴∠BAD=90°,∴BD是⊙O的直径,∵OA=OB=OD,∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,∵∠BDC=∠BAC=60°,∴∠ADF=180°-60°-60°=60°=∠OAD,∴OA∥DF,∴∠F=180°-∠OAF=90°,∵∠DAF=30°,∴AD=2DF,∵∠ABD=∠CBD,∴,∴AD=CD,∴CD=2DF,∴,故答案为:;②∵⊙O的半径为2,∴AD=OA=2,DF=1,∴阴影部分的面积为:S梯形AODF-S扇形OADπ;故答案为:π;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,∴∠DAH+∠DHA=90°,∵AF与⊙O相切,∴∠DAH+∠DAF=∠F AO=90°,∴∠DAF=∠DHA,∵BD平分∠ABC,∴∠ABD=∠CBD,∵,∴∠CAD=∠DHA=∠DAF,∵AB=AC,∴∠ABC=∠ACB,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,∵∠ADB=∠ACB=∠ABC,∴∠ADF=∠ADB,在△ADF和△ADE中∵,∴△ADF≌△ADE(ASA),∵,∴DC=6,∵∠DCE=∠ABD=∠DBC,∠CDE=∠CDE,∴△CDE∽△BDC,∴,即,∴BD=9,∴BE=DB-DE=9-5=5.24.【分析】(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,即可求解;(2)由点C、D的坐标得,直线CD的表达式为:y=2ax+4a-6,进而求出点E(2,0),利用tan∠AED,即可求解;(3)①证明△FJH∽△ECO,故,则FH,即可求解;②f(t+3)2(-5<t≤m且m<0),即可求解.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=-1或-3;当x=0时,y=18,函数的对称轴为x=-2,故点A、B、C、D的坐标分别为(-3,0)、(-1,0)、(0,18)、(-2,-6);故答案为:(-3,0)、(-1,0)、(0,18)、(-2,-6);(2)y=ax2+4ax+4a-6,令x=0,则y=4a-6,则点C(0,4a-6),函数的对称轴为x=-2,故点D的坐标为(-2,-6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a-6,令y=0,则x2,故点E(2,0),则OE2,tan∠AED,解得:a,故点C、E的坐标分别为(0,)、(,0),则CE;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y x2x,故点A、C的坐标分别为(-5,0)、(0,),则点N(0,),由点A、N的坐标得,直线AN的表达式为:y x;设点P(t,t2t),则点F(t,t);则PF t2-3t,由点E(,0)、C的坐标得,直线CE的表达式为:y x,则点J(t,t),故FJ t,∵FH⊥DE,JF∥y轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故,则FH,f=PF+FH t2-3t(-t+1)t2-4t;②f t2-4t(t+3)2(-5<t≤m且m<0);∴当-5<m<-3时,f max m2-4m;当-3≤m<0时,f max.。

孝感市中考数学试题及答案(通用)

孝感市中考数学试题及答案(通用)

2020年孝感市中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分)1.-5的绝对值是【】A.5 B.-5 C. 15D.-152.我国平均每平方千米的土地上,一年从太阳得到的能量相当于燃烧130000吨煤所产生的能量.130000用科学记数法表示为【】A.13×104B.1.3×105C.0.13×106 D.1.3×1083.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值是【】A.45º B.60º C.90º D.180º4.下列运算正确的是【】A.3a2·2a2=6a6 B.4a2÷2a2=2aC.3a-a=2 a D.a+b=a+b5.几个棱长为1的正方体组成的几何体的三视图如下图所示,则这个几何体的体积是【】A.4 B.5 C.6 D.76.下列事件中,属于随机事件的是【 】 A .通常水加热到100ºC 时沸腾B .测量孝感某天的最低气温,结果为-150ºC C .一个袋中装有5个黑球,从中摸出一个是黑球D .篮球队员在罚球线上投篮一次,未投中7.如图,在塔AB 前的平地上选择一点C ,测出塔顶的仰角为30º,从C 点向塔底B 走100m 到达D 点,测出塔顶的仰角为45º,则塔AB 的高为【 】A .503mB .1003mC .50(3-1)mD .50(3+1)m 8.若关于x的一元一次不等式组⎩⎪⎨⎪⎧x -a >01-2x >x -2无解,则a 的取值范围是【 】A .a ≥1B .a >1C .a ≤-1D .a <-1 9.如图,△ABC 在平面直角坐标系中的第二象限内,顶点A 的坐标是(-2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作△A 1B 1C 1关于x 轴的对称图形△A 2B 2C 2,则顶点A 2的坐标是【 】A .(-3,2)B .(2,-3)C .(1,-2)D .(3,-1)10.若正比例函数y=-2x与反比例函数y= kx的图象的一个交点坐标为(-1,2),则另一个交点的坐标为【】A.(2,-1) B.(1,-2) C.(-2,-1) D.(-2,1)11.如图,在△ABC中,AB=AC,∠A=36º,BD平分∠ABC交AC于点D.若AC=2,则AD的长是【】A.5-12B.5+12C.5-1 D.5+112.如图,在菱形ABCD中,∠A=60º,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论,其中正确的有【】①∠BGD=120º;②BG+DG=CG;③△BDF≌△CGB;④S△ADE =34AB2.A.1个 B.2个 C.3个 D.4个二、填空题(本大题共6小题,每小题3分,满分18分)13.分解因式:a3b-ab=.14.计算:cos230º+tan30º·sin60º=.15.2020年北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英国伦敦举行,奥运会的年份与届数如下表所示:年份1896 1900 1904 (2020)届数 1 2 3 …n表中n的值等于.16.把如图所示的长方体材料切割成一个体积最大的圆柱,则这个圆柱的体积是(结果不取近似值).17.已知一组数据x 1,x 2,…,x n 的方差是S 2,则新的一组数据ax 1+1,ax 2+1,…,ax n +1(a 为非零常数)的方差是 (用含a 和S 2的代数式表示). 18.二次函数y =ax 2+bx +c(a ≠0)的图象的对称轴是直线x =1,其图象的一部分如图所示.下列说法正确的是 (填正确结论的序号). ①abc <0;②a -b +c <0;③3a +c <0;④当-1<x <时,y >0. 三、解答题(本大题共7小题,满分66分)19.(6分)先化简,再求值: a -b a ÷⎝ ⎛⎭⎪⎫a - 2ab -b 2 a ,其中a =3+1,b =3-1.20.(8分)我们把依次连接任意四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,依次连接各边中点得到中点四边形EFGH .(1)这个中点四边形EFGH 的形状是 ;(2)证明你的结论.21.(8分)在6张卡片上分别写有1~6的整数,随机抽取一张后放回,再随机抽取一张.(1)用列表或画树状图表示所有可能出现的结果;(2)记第一取出的数字为a,第二取出的数字为b,求 ba是整数的概率.22.(10分)如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.23.(10分)为提醒人们节约用水,及时修好漏水的水龙头,两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100毫升.实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如下表(漏出的水量精确到1毫升):时间t(秒) 10 20 30 40 50 60 70漏出的水量V(毫升) 2 5 8 11 14 17 20(1)在图1的坐标系中描出上表中数据对应的点;(2)如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出(精确到1秒)?(3)按此漏水速度,一小时会漏水千克(精确到0.1千克).实验二:小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的部分?24.(12分)已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若x1、x2是原方程的两根,且|x1-x2|=22,求m的值和此时方程的两根.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;(3)点Q是抛物线第一象限上的一个动点,过点Q作QN∥AC交x轴于点N.当点Q的坐标为时,四边形QNAC是平行四边形;当点Q的坐标为时,四边形QNAC是等腰梯形(直接写出结果,不写求解过程).参考答案及评分标准。

2020年湖北省孝感市中考数学试和答案

2020年湖北省孝感市中考数学试和答案

2020年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃2.(3分)如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°3.(3分)下列计算正确的是()A.2a+3b=5ab B.(3ab)2=9ab2C.2a•3b=6ab D.2ab2÷b=2b4.(3分)如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.5.(3分)某公司有10名员工,每人年收入数据如下表:年收入/万元46810人数/人3421则他们年收入数据的众数与中位数分别为()A.4,6B.6,6C.4,5D.6,5 6.(3分)已知x=﹣1,y=+1,那么代数式的值是()A.2B.C.4D.27.(3分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=B.I=C.I=D.I=8.(3分)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+2 9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C.D.10.(3分)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE 的长为()A.B.C.4D.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为.12.(3分)有一列数,按一定的规律排列成,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是.13.(3分)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为m.(结果保留根号)14.(3分)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C类:10分钟<总时长≤15分钟;D类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有人.15.(3分)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则的值为.16.(3分)如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=和y=(k<0)上,=,平行于x 轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(6分)计算:+|﹣1|﹣2sin60°+()0.18.(8分)如图,在▱ABCD中,点E在AB的延长线上,点F在CD的延长线上,满足BE=DF.连接EF,分别与BC,AD交于点G,H.求证:EG=FH.19.(7分)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20.(8分)如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标为;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并直接写出cos∠BCE的值为;(3)在y轴上找出点F,使△ABF的周长最小,并直接写出点F 的坐标为.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.22.(10分)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg乙产品的售价比1kg甲产品的售价多5元,1kg 丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?23.(10分)已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A 的切线交于点F,记∠BAC=α.(1)如图1,若α=60°,①直接写出的值为;②当⊙O的半径为2时,直接写出图中阴影部分的面积为;(2)如图2,若α<60°,且=,DE=4,求BE的长.24.(13分)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A,B,C,D;(2)如图1,直线DC交x轴于点E,若tan∠AED=,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f =FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.2020年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.【解答】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作﹣2℃.故选:A.2.【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°﹣40°=50°,∴∠AOC=∠BOD=50°.故选:B.3.【解答】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a•3b=6ab,因此选项C符合题意;2ab2÷b=2ab,因此选项D不符合题意;故选:C.4.【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,故选:C.5.【解答】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6,将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6,故选:B.6.【解答】解:原式==x+y当x=﹣1,y=+1,原式=﹣1++1=2.故选:D.7.【解答】解:设I=,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I=.故选:C.8.【解答】解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,﹣2),∴抛物线C3的解析式为y=﹣x2﹣2,故选:A.9.【解答】解:①当点P在AB上运动时,y=AH×PH=×APsinA×APcosA=×x2×=x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=ABsinA=4×=2,同理AH′=2,则y=×AH×PH=(2+x﹣4)×2=2﹣4+x,为一次函数;③当点P在CD上运动时,同理可得:y=×(2+6)×(4+6+2﹣x)=(3)(12﹣x),为一次函数;故选:D.10.【解答】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5﹣x=BF,FG=8﹣x,∴EG=8﹣x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8﹣x)2,解得x=,∴CE的长为,故选:B.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.【解答】解:100万=1000000=1×106,故答案:1×106.12.【解答】解:设这三个数中的第一个数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=﹣567,解得:x=﹣81.故答案为:﹣81.13.【解答】解:如图,在Rt△DEA中,∵cos∠EDA=,∴DA==5(m);在Rt△BCF中,∵cos∠BCF=,∴CB==(m),∴BF=BC=(m),∵AB+AE=EF+BF,∴AB=3.4+﹣5=﹣1.6(m).答:AB的长为(﹣1.6)m.故答案为:(﹣1.6),14.【解答】解:本次抽取的学生有:10÷10%=100(人),B类学生有:100﹣10﹣41﹣100×21%=28(人),1200×=336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人,故答案为:336.15.【解答】解:设直角三角形另一条直角边为x,依题意有2x2=m2,解得x=m,由勾股定理得(m)2+(n+m)2=m2,m2﹣2mn﹣2n2=0,解得m 1=(﹣1﹣)n(舍去),m2=(﹣1+)n,则的值为.故答案为:.16.【解答】解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴=()2,∵A点在双曲线y=,=,∴S△AOM=×4=2,=,∴=()2,∴S△ODN=,∵D点在双曲线y=(k<0)上,∴|k|=,∴k=﹣9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF=+=,故答案为.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.【解答】解:原式=﹣2+﹣1﹣+1=﹣2.18.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,,∴△BEG≌△DFH(ASA),∴EG=FH.19.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为=,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种,∴P(差的绝对值大于3)==.20.【解答】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,﹣4);(2)如图所示,线段AE即为所求,cos∠BCE===;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,﹣4);;(0,4).21.【解答】解:(1)∵△=[﹣(2k+1)]2﹣4×1×(k2﹣2)=4k2+4k+1﹣2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=k2﹣2,∵x1﹣x2=3,∴(x1﹣x2)2=9,∴(x1+x2)2﹣4x1x2=9,∴(2k+1)2﹣4×(k2﹣2)=9,化简得k2+2k=0,解得k=0或k=﹣2.22.【解答】解:(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg丙产品的售价为3x元,根据题意,得:,解得:x=5,经检验,x=5既符合方程,也符合题意,∴x+5=10,3x=15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40﹣3m)kg,∴40﹣3m+m≤2m×3,∴m≥15,设按此方案购买40kg农产品所需费用为y元,根据题意,得:y=5(40﹣3m)+20m+15m=20m+200,∵20>0,∴y随m的增大而增大,∴m=5时,y取最小值,且y最小=300,答:按此方案购买40kg农产品最少要花费300元.23.【解答】解:(1)如图1,连接OA,AD,∵AF是⊙O的切线,∴∠OAF=90°,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵∠ADB=∠ACB=60°,∴∠BAD=90°,∴BD是⊙O的直径,∵OA=OB=OD,∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,∵∠BDC=∠BAC=60°,∴∠ADF=180°﹣60°﹣60°=60°=∠OAD,∴OA∥DF,∴∠F=180°﹣∠OAF=90°,∵∠DAF=30°,∴AD=2DF,∵∠ABD=∠CBD,∴,∴AD=CD,∴CD=2DF,∴=,故答案为:;②∵⊙O的半径为2,∴AD=OA=2,DF=1,∵∠AOD=60°,∴阴影部分的面积为:S梯形AODF﹣S扇形OAD=﹣==π;故答案为:π;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,∴∠DAH+∠DHA=90°,∵AF与⊙O相切,∴∠DAH+∠DAF=∠FAO=90°,∴∠DAF=∠DHA,∵BD平分∠ABC,∴∠ABD=∠CBD,∵,∴∠CAD=∠DHA=∠DAF,∵AB=AC,∴∠ABC=∠ACB,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,∵∠ADB=∠ACB=∠ABC,∴∠ADF=∠ADB,在△ADF和△ADE中∵,∴△ADF≌△ADE(ASA),∴DF=DE=4,∵,∴DC=6,∵∠DCE=∠ABD=∠DBC,∠CDE=∠CDE,∴△CDE∽△BDC,∴,即,∴BD=9,∴BE=DB﹣DE=9﹣5=5.24.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x =﹣2,故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);故答案为:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a ﹣6),函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,令y=0,则x=﹣2,故点E(﹣2,0),则OE=﹣2,tan∠AED===,解得:a=,故点C、E的坐标分别为(0,﹣)、(,0),则CE==;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y=x2+x﹣,故点A、C的坐标分别为(﹣5,0)、(0,﹣),则点N(0,﹣),由点A、N的坐标得,直线AN的表达式为:y=﹣x﹣;设点P(t,t2+t﹣),则点F(t,﹣t﹣);则PF=﹣t2﹣3t+,由点E(,0)、C的坐标得,直线CE的表达式为:y=x﹣,则点J(t,t﹣),故FJ=﹣t+,∵FH⊥DE,JF∥y轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故,则FH=,f=PF+FH=﹣t2﹣3t++(﹣t+1)=﹣t2﹣4t+;②f=﹣t2﹣4t+=﹣(t+3)2+(﹣5<t≤m且m<0);∴当﹣5<m<﹣3时,f max=﹣m2﹣4m+;当﹣3≤m<0时,f max=.。

2020年湖北省孝感市中考数学试卷(含解析)

2020年湖北省孝感市中考数学试卷(含解析)

2020年湖北省孝感市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃2.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°3.下列计算正确的是()A.2a+3b=5ab B.(3ab)2=9ab2C.2a•3b=6ab D.2ab2÷b=2b4.如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.5.某公司有10名员工,每人年收入数据如下表:年收入/万元 4 6 8 10人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为()A.4,6 B.6,6 C.4,5 D.6,56.已知x=﹣1,y=+1,那么代数式的值是()A.2 B.C.4 D.27.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=B.I=C.I=D.I=8.将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2 B.y=﹣x2+2 C.y=x2﹣2 D.y=x2+29.如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C →D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C.D.10.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.B.C.4 D.二、填空题(每小题3分,共18分)11.原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为.12.有一列数,按一定的规律排列成,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是.13.某型号飞机的机翼形状如图所示,根据图中数据计算AB的长为m.(结果保留根号)14.在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C 类:10分钟<总时长≤15分钟;D类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有人.15.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则的值为.16.如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=和y=(k<0)上,=,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.三、解答题(共72分)17.(6分)计算:+|﹣1|﹣2sin60°+()0.18.(8分)如图,在▱ABCD中,点E在AB的延长线上,点F在CD的延长线上,满足BE=DF.连接EF,分别与BC,AD交于点G,H.求证:EG=FH.19.(7分)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20.(8分)如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标为;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并直接写出cos∠BCE的值为;(3)在y轴上找出点F,使△ABF的周长最小,并直接写出点F的坐标为.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.22.(10分)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg乙产品的售价比1kg 甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?23.(10分)已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.(1)如图1,若α=60°,①直接写出的值为;②当⊙O的半径为2时,直接写出图中阴影部分的面积为;(2)如图2,若α<60°,且=,DE=4,求BE的长.24.(13分)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A ,B ,C ,D ;(2)如图1,直线DC交x轴于点E,若tan∠AED=,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.参考答案与试题解析一1.【解答】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作﹣2℃.故选:A.2.【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°﹣40°=50°,∴∠AOC=∠BOD=50°.故选:B.3.【解答】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a•3b=6ab,因此选项C符合题意;2ab2÷b=2ab,因此选项D不符合题意;故选:C.4.【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,故选:C.5.【解答】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6,将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6,故选:B.6.【解答】解:原式==x+y当x=﹣1,y=+1,原式=﹣1++1=2.故选:D.7.【解答】解:设I=,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I=.故选:C.8.【解答】解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,﹣2),∴抛物线C3的解析式为y=﹣x2﹣2,故选:A.9.【解答】解:①当点P在AB上运动时,y=AH×PH=×APsinA×APcosA=×x2×=x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=ABsinA=4×=2,同理AH′=2,则y=×AH×PH=(2+x﹣4)×2=2﹣4+x,为一次函数;③当点P在CD上运动时,同理可得:y=×(2+6)×(4+6+2﹣x)=(3)(12﹣x),为一次函数;故选:D.10.【解答】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5﹣x=BF,FG=8﹣x,∴EG=8﹣x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8﹣x)2,解得x=,∴CE的长为,故选:B.二11.【解答】解:100万=1000000=1×106,故答案:1×106.12.【解答】解:设这三个数中的第一个数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=﹣567,解得:x=﹣81.故答案为:﹣81.13.【解答】解:如图,在Rt△DEA中,∵cos∠EDA=,∴DA==5(m);在Rt△BCF中,∵cos∠BCF=,∴CB==(m),∴BF=BC=(m),∵AB+AE=EF+BF,∴AB=3.4+﹣5=﹣1.6(m).答:AB的长为(﹣1.6)m.故答案为:(﹣1.6),14.【解答】解:本次抽取的学生有:10÷10%=100(人),B类学生有:100﹣10﹣41﹣100×21%=28(人),1200×=336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人,故答案为:336.15.【解答】解:设直角三角形另一条直角边为x,依题意有2x2=m2,解得x=m,由勾股定理得(m)2+(n+m)2=m2,m2﹣2mn﹣2n2=0,解得m1=(﹣1﹣)n(舍去),m2=(﹣1+)n,则的值为.故答案为:.16.【解答】解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴=()2,∵A点在双曲线y=,=,∴S△AOM=×4=2,=,∴=()2,∴S△ODN=,∵D点在双曲线y=(k<0)上,∴|k|=,∴k=﹣9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF=+=,故答案为.三17.【解答】解:原式=﹣2+﹣1﹣+1=﹣2.18.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,,∴△BEG≌△DFH(ASA),∴EG=FH.19.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为=,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种,∴P(差的绝对值大于3)==.20.【解答】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,﹣4);(2)如图所示,线段AE即为所求,cos∠BCE===;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,﹣4);;(0,4).21.【解答】解:(1)∵△=[﹣(2k+1)]2﹣4×1×(k2﹣2)=4k2+4k+1﹣2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=k2﹣2,∵x1﹣x2=3,∴(x1﹣x2)2=9,∴(x1+x2)2﹣4x1x2=9,∴(2k+1)2﹣4×(k2﹣2)=9,化简得k2+2k=0,解得k=0或k=﹣2.22.【解答】解:(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg丙产品的售价为3x元,根据题意,得:,解得:x=5,经检验,x=5既符合方程,也符合题意,∴x+5=10,3x=15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40﹣3m)kg,∴40﹣3m+m≤2m×3,∴m≥15,设按此方案购买40kg农产品所需费用为y元,根据题意,得:y=5(40﹣3m)+20m+15m=20m+200,∵20>0,∴y随m的增大而增大,∴m=5时,y取最小值,且y最小=300,答:按此方案购买40kg农产品最少要花费300元.23.【解答】解:(1)如图1,连接OA,AD,∵AF是⊙O的切线,∴∠OAF=90°,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵∠ADB=∠ACB=60°,∴∠BAD=90°,∴BD是⊙O的直径,∵OA=OB=OD,∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,∵∠BDC=∠BAC=60°,∴∠ADF=180°﹣60°﹣60°=60°=∠OAD,∴OA∥DF,∴∠F=180°﹣∠OAF=90°,∵∠DAF=30°,∴AD=2DF,∵∠ABD=∠CBD,∴,∴AD=CD,∴CD=2DF,∴=,故答案为:;②∵⊙O的半径为2,∴AD=OA=2,DF=1,∵∠AOD=60°,∴阴影部分的面积为:S梯形AODF﹣S扇形OAD=﹣==π;故答案为:π;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,∴∠DAH+∠DHA=90°,∵AF与⊙O相切,∴∠DAH+∠DAF=∠FAO=90°,∴∠DAF=∠DHA,∵BD平分∠ABC,∴∠ABD=∠CBD,∵,∴∠CAD=∠DHA=∠DAF,∵AB=AC,∴∠ABC=∠ACB,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,∵∠ADB=∠ACB=∠ABC,∴∠ADF=∠ADB,在△ADF和△ADE中∵,∴△ADF≌△ADE(ASA),∴DF=DE=4,∵,∴DC=6,∵∠DCE=∠ABD=∠DBC,∠CDE=∠CDE,∴△CDE∽△BDC,∴,即,∴BD=9,∴BE=DB﹣DE=9﹣5=5.24.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x=﹣2,故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);故答案为:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a﹣6),函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,令y=0,则x=﹣2,故点E(﹣2,0),则OE=﹣2,tan∠AED===,解得:a=,故点C、E的坐标分别为(0,﹣)、(,0),则CE==;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y=x2+x﹣,故点A、C的坐标分别为(﹣5,0)、(0,﹣),则点N(0,﹣),由点A、N的坐标得,直线AN的表达式为:y=﹣x﹣;设点P(t,t2+t﹣),则点F(t,﹣t﹣);则PF=﹣t2﹣3t+,由点E(,0)、C的坐标得,直线CE的表达式为:y=x﹣,则点J(t,t﹣),故FJ=﹣t+,∵FH⊥DE,JF∥y轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故,则FH=,f=PF+FH=﹣t2﹣3t++(﹣t+1)=﹣t2﹣4t+;②f=﹣t2﹣4t+=﹣(t+3)2+(﹣5<t≤m且m<0);∴当﹣5<m<﹣3时,f max=﹣m2﹣4m+;当﹣3≤m<0时,f max=。

2020年湖北省孝感市中考数学试卷

2020年湖北省孝感市中考数学试卷

2020年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)(2020•孝感)如果温度上升3℃,记作+3℃,那么温度下降2℃记作( )A .﹣2℃B .+2℃C .+3℃D .﹣3℃2.(3分)(2020•孝感)如图,直线AB ,CD 相交于点O ,OE ⊥CD ,垂足为点O .若∠BOE=40°,则∠AOC 的度数为( )A .40°B .50°C .60°D .140°3.(3分)(2020•孝感)下列计算正确的是( )A .2a +3b =5abB .(3ab )2=9ab 2C .2a •3b =6abD .2ab 2÷b =2b4.(3分)(2020•孝感)如图是由5个相同的正方体组成的几何体,则它的左视图是( )A .B .C .D .5.(3分)(2020•孝感)某公司有10名员工,每人年收入数据如下表:年收入/万元4 6 8 10 人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为( )A .4,6B .6,6C .4,5D .6,56.(3分)(2020•孝感)已知x =√5−1,y =√5+1,那么代数式x 3−xy 2x(x−y)的值是( ) A .2 B .√5 C .4D .2√57.(3分)(2020•孝感)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=24R B.I=36R C.I=48R D.I=64R8.(3分)(2020•孝感)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+29.(3分)(2020•孝感)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH 的面积为y,则y关于x的函数图象大致是()A.B.C .D .10.(3分)(2020•孝感)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( )A .54B .154C .4D .92 二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)(2020•孝感)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为 .12.(3分)(2020•孝感)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是 .13.(3分)(2020•孝感)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为m .(结果保留根号)14.(3分)(2020•孝感)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C类:10分钟<总时长≤15分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有人.15.(3分)(2020•孝感)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则nm的值为.16.(3分)(2020•孝感)如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=4x和y=kx(k<0)上,ACBD=23,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(6分)(2020•孝感)计算:√−83+|√3−1|﹣2sin60°+(14)0. 18.(8分)(2020•孝感)如图,在▱ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE =DF .连接EF ,分别与BC ,AD 交于点G ,H .求证:EG =FH .19.(7分)(2020•孝感)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为 ;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20.(8分)(2020•孝感)如图,在平面直角坐标系中,已知点A (﹣1,5),B (﹣3,1)和C (4,0),请按下列要求画图并填空.(1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为 ;(2)将线段AB 绕点A 逆时针旋转90°,画出旋转后所得的线段AE ,并直接写出cos ∠BCE 的值为 ;(3)在y 轴上找出点F ,使△ABF 的周长最小,并直接写出点F 的坐标为 .21.(10分)(2020•孝感)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0.(1)求证:无论k 为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值.22.(10分)(2020•孝感)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg 乙产品的售价比1kg 甲产品的售价多5元,1kg 丙产品的售价是1kg 甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg ,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg 农产品最少要花费多少元?23.(10分)(2020•孝感)已知△ABC 内接于⊙O ,AB =AC ,∠ABC 的平分线与⊙O 交于点D ,与AC 交于点E ,连接CD 并延长与⊙O 过点A 的切线交于点F ,记∠BAC =α.(1)如图1,若α=60°,①直接写出DF DC 的值为 ;②当⊙O 的半径为2时,直接写出图中阴影部分的面积为 ;(2)如图2,若α<60°,且DF DC =23,DE =4,求BE 的长.24.(13分)(2020•孝感)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A,B,C,D;(2)如图1,直线DC交x轴于点E,若tan∠AED=43,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P 的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.2020年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)(2020•孝感)如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃【解答】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作﹣2℃.故选:A.2.(3分)(2020•孝感)如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE =40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°﹣40°=50°,∴∠AOC=∠BOD=50°.故选:B.3.(3分)(2020•孝感)下列计算正确的是()A.2a+3b=5ab B.(3ab)2=9ab2C.2a•3b=6ab D.2ab2÷b=2b【解答】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a•3b=6ab,因此选项C符合题意;2ab 2÷b =2ab ,因此选项D 不符合题意;故选:C .4.(3分)(2020•孝感)如图是由5个相同的正方体组成的几何体,则它的左视图是( )A .B .C .D .【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C 的图形符合题意,故选:C .5.(3分)(2020•孝感)某公司有10名员工,每人年收入数据如下表:年收入/万元4 6 8 10 人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为( )A .4,6B .6,6C .4,5D .6,5【解答】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6, 将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6, 故选:B .6.(3分)(2020•孝感)已知x =√5−1,y =√5+1,那么代数式x 3−xy 2x(x−y)的值是( ) A .2B .√5C .4D .2√5【解答】解:原式=x(x+y)(x−y)x(x−y) =x +y当x =√5−1,y =√5+1,原式=√5−1+√5+1=2√5.故选:D .7.(3分)(2020•孝感)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=24R B.I=36R C.I=48R D.I=64R【解答】解:设I=KR,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I=48 R.故选:C.8.(3分)(2020•孝感)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+2【解答】解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,﹣2),∴抛物线C3的解析式为y=﹣x2﹣2,故选:A.9.(3分)(2020•孝感)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH 的面积为y,则y关于x的函数图象大致是()A.B.C.D.【解答】解:①当点P在AB上运动时,y=12AH×PH=12×AP sin A×AP cos A=12×x2×√34=√38x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH ′=AB sin A =4×12=2,同理AH ′=2√3, 则y =12×AH ×PH =12(2√3+x ﹣4)×2=2√3−4+x ,为一次函数; ③当点P 在CD 上运动时,同理可得:y =12×(2√3+6)×(4+6+2﹣x )=(3+√3)(12﹣x ),为一次函数; 故选:D .10.(3分)(2020•孝感)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( )A .54B .154C .4D .92【解答】解:如图所示,连接EG ,由旋转可得,△ADE ≌△ABF , ∴AE =AF ,DE =BF , 又∵AG ⊥EF , ∴H 为EF 的中点, ∴AG 垂直平分EF , ∴EG =FG ,设CE =x ,则DE =5﹣x =BF ,FG =8﹣x , ∴EG =8﹣x , ∵∠C =90°,∴Rt △CEG 中,CE 2+CG 2=EG 2,即x 2+22=(8﹣x )2,解得x =154, ∴CE 的长为154,故选:B .二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)(2020•孝感)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为 1×106 . 【解答】解:100万=1000000=1×106, 故答案:1×106.12.(3分)(2020•孝感)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是 ﹣81 . 【解答】解:设这三个数中的第一个数为x ,则另外两个数分别为﹣3x ,9x , 依题意,得:x ﹣3x +9x =﹣567, 解得:x =﹣81. 故答案为:﹣81.13.(3分)(2020•孝感)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为 (53√3−1.6)m .(结果保留根号)【解答】解:如图,在Rt △DEA 中,∵cos ∠EDA =DEDA , ∴DA =5cos45°=5√2(m ); 在Rt △BCF 中,∵cos ∠BCF =CFCB , ∴CB =5cos30°=10√33(m ),∴BF =12BC =5√33(m ), ∵AB +AE =EF +BF ,∴AB =3.4+5√33−5=5√33−1.6(m ). 答:AB 的长为(53√3−1.6)m .故答案为:(53√3−1.6),14.(3分)(2020•孝感)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A 类:总时长≤5分钟;B 类:5分钟<总时长≤10分钟;C 类:10分钟<总时长≤15分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有 336 人.【解答】解:本次抽取的学生有:10÷10%=100(人), B 类学生有:100﹣10﹣41﹣100×21%=28(人), 1200×28100=336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人, 故答案为:336.15.(3分)(2020•孝感)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S 1,空白部分的面积为S 2,大正方形的边长为m ,小正方形的边长为n ,若S 1=S 2,则nm的值为√3+12.【解答】解:设直角三角形另一条直角边为x ,依题意有 2x 2=12m 2, 解得x =12m ,由勾股定理得(12m )2+(n +12m )2=m 2,m 2﹣2mn ﹣2n 2=0,解得m 1=(﹣1−√3)n (舍去),m 2=(﹣1+√3)n , 则nm 的值为√3+12. 故答案为:√3+12. 16.(3分)(2020•孝感)如图,已知菱形ABCD 的对角线相交于坐标原点O ,四个顶点分别在双曲线y =4x 和y =kx (k <0)上,AC BD=23,平行于x 轴的直线与两双曲线分别交于点E ,F ,连接OE ,OF ,则△OEF 的面积为 132.【解答】解:作AM ⊥x 轴于M ,DN ⊥x 轴于N , ∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴∠AOM +∠DON =∠ODN +DON =90°, ∴∠AOM =∠ODN , ∵∠AMO =∠OND =90°,∴△AOM ∽△ODN , ∴S △AOM S △ODN=(OAOD)2,∵A 点在双曲线y =4x ,AC BD=23,∴S △AOM =12×4=2,OA OD =23, ∴2S △ODN=(23)2,∴S △ODN =92,∵D 点在双曲线y =k x(k <0)上, ∴12|k |=92,∴k =﹣9,∵平行于x 轴的直线与两双曲线分别交于点E ,F , ∴S △OEF =12×4+12×9=132, 故答案为132.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上) 17.(6分)(2020•孝感)计算:√−83+|√3−1|﹣2sin60°+(14)0.【解答】解:原式=﹣2+√3−1−√3+1 =﹣2.18.(8分)(2020•孝感)如图,在▱ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE =DF .连接EF ,分别与BC ,AD 交于点G ,H . 求证:EG =FH .【解答】证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∠ABC =∠CDA , ∴∠EBG =∠FDH ,∠E =∠F ,在△BEG 与△DFH 中,{∠E =∠FBE =DF ∠EBG =∠FDH ,∴△BEG ≌△DFH (ASA ), ∴EG =FH .19.(7分)(2020•孝感)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8. (1)随机抽取一张卡片,则抽取到的数是偶数的概率为12;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为24=12,故答案为:12;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种, ∴P (差的绝对值大于3)=616=38.20.(8分)(2020•孝感)如图,在平面直角坐标系中,已知点A (﹣1,5),B (﹣3,1)和C (4,0),请按下列要求画图并填空.(1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为 (2,﹣4) ;(2)将线段AB 绕点A 逆时针旋转90°,画出旋转后所得的线段AE ,并直接写出cos ∠BCE 的值为√55; (3)在y 轴上找出点F ,使△ABF 的周长最小,并直接写出点F 的坐标为 (0,4) .【解答】解:(1)如图所示,线段CD 即为所求,点D 的坐标为(2,﹣4); (2)如图所示,线段AE 即为所求,cos ∠BCE =CE BC =√1050=√55; (3)如图所示,点F 即为所求,点F 的坐标为(0,4).故答案为:(2,﹣4);√55;(0,4). 21.(10分)(2020•孝感)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0. (1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值.【解答】解:(1)∵△=[﹣(2k +1)]2﹣4×1×(12k 2﹣2)=4k 2+4k +1﹣2k 2+8 =2k 2+4k +9=2(k +1)2+7>0,∵无论k 为何实数,2(k +1)2≥0, ∴2(k +1)2+7>0,∴无论k 为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x 1+x 2=2k +1,x 1x 2=12k 2﹣2, ∵x 1﹣x 2=3, ∴(x 1﹣x 2)2=9, ∴(x 1+x 2)2﹣4x 1x 2=9, ∴(2k +1)2﹣4×(12k 2﹣2)=9,化简得k 2+2k =0, 解得k =0或k =﹣2.22.(10分)(2020•孝感)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg 乙产品的售价比1kg 甲产品的售价多5元,1kg 丙产品的售价是1kg 甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍. (1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg ,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg 农产品最少要花费多少元?【解答】解:(1)设1kg 甲产品的售价为x 元,则1kg 乙产品的售价为(x +5)元,1kg 丙产品的售价为3x 元,根据题意,得:2703x=60x+5×3,解得:x =5,经检验,x =5既符合方程,也符合题意, ∴x +5=10,3x =15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg 的甲、乙、丙三种农产品搭配中丙种产品有xkg ,则乙种产品有2mkg ,甲乙种产品有(40﹣3m )kg , ∴40﹣3m +m ≤2m ×3, ∴m ≥15,设按此方案购买40kg 农产品所需费用为y 元,根据题意,得: y =5(40﹣3m )+20m +15m =20m +200, ∵20>0,∴y 随m 的增大而增大,∴m =5时,y 取最小值,且y 最小=300,答:按此方案购买40kg 农产品最少要花费300元.23.(10分)(2020•孝感)已知△ABC 内接于⊙O ,AB =AC ,∠ABC 的平分线与⊙O 交于点D ,与AC 交于点E ,连接CD 并延长与⊙O 过点A 的切线交于点F ,记∠BAC =α. (1)如图1,若α=60°, ①直接写出DF DC的值为12;②当⊙O 的半径为2时,直接写出图中阴影部分的面积为 3√32−23π ;(2)如图2,若α<60°,且DF DC=23,DE =4,求BE 的长.【解答】解:(1)如图1,连接OA ,AD ,∵AF 是⊙O 的切线,∴∠OAF =90°,∵AB =AC ,∠BAC =60°,∴△ABC 是等边三角形,∴∠ABC =∠ACB =∠BAC =60°,∵BD 平分∠ABC ,∴∠ABD =∠CBD =30°,∵∠ADB =∠ACB =60°,∴∠BAD =90°,∴BD 是⊙O 的直径,∵OA =OB =OD ,∴∠ABO =∠OAB =30°,∠OAD =∠ADO =60°,∵∠BDC =∠BAC =60°,∴∠ADF =180°﹣60°﹣60°=60°=∠OAD ,∴OA ∥DF ,∴∠F =180°﹣∠OAF =90°,∵∠DAF =30°,∴AD =2DF ,∵∠ABD =∠CBD ,∴AD̂=CD ̂, ∴AD =CD ,∴CD =2DF ,∴DF DC =12,故答案为:12; ②∵⊙O 的半径为2,∴AD =OA =2,DF =1,∵∠AOD =60°,∴阴影部分的面积为:S 梯形AODF ﹣S 扇形OAD =12⋅AF ⋅(DF +OA)−60π×22360=12×√3(1+2)−60π×4360=3√32−23π;故答案为:3√32−23π; (2)如图2,连接AD ,连接AO 并延长交⊙O 于点H ,连接DH ,则∠ADH =90°,∴∠DAH +∠DHA =90°,∵AF 与⊙O 相切,∴∠DAH +∠DAF =∠F AO =90°,∴∠DAF =∠DHA ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵AD̂=CD ̂, ∴∠CAD =∠DHA =∠DAF ,∵AB =AC ,∴∠ABC =∠ACB ,∵四边形ABCD 内接于⊙O ,∴∠ABC +∠ADC =180°,∵∠ADF +∠ADC =180°,∴∠ADF =∠ABC ,∵∠ADB =∠ACB =∠ABC ,∴∠ADF =∠ADB ,在△ADF 和△ADE 中∵{∠DAF =∠DAE AD =AD ∠ADF =∠ADE,∴△ADF ≌△ADE (ASA ),∴DF =DE =4,∵DF DC =23, ∴DC =6,∵∠DCE =∠ABD =∠DBC ,∠CDE =∠CDE ,∴△CDE ∽△BDC ,∴CD DB =DE CD ,即6BD =46, ∴BD =9,∴BE =DB ﹣DE =9﹣5=5.24.(13分)(2020•孝感)在平面直角坐标系中,已知抛物线y =ax 2+4ax +4a ﹣6(a >0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)当a =6时,直接写出点A ,B ,C ,D 的坐标:A (﹣3,0) ,B (﹣1,0) ,C (0,18) ,D (﹣2,﹣6) ;(2)如图1,直线DC 交x 轴于点E ,若tan ∠AED =43,求a 的值和CE 的长;(3)如图2,在(2)的条件下,若点N 为OC 的中点,动点P 在第三象限的抛物线上,过点P 作x 轴的垂线,垂足为Q ,交AN 于点F ;过点F 作FH ⊥DE ,垂足为H .设点P 的横坐标为t ,记f =FP +FH .①用含t 的代数式表示f ;②设﹣5<t ≤m (m <0),求f 的最大值.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x=﹣2,故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);故答案为:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a﹣6),函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,令y=0,则x=3a−2,故点E(3a−2,0),则OE=3a−2,tan∠AED=OCOE=4a−63a−2=43,解得:a=23,故点C、E的坐标分别为(0,−103)、(52,0),则CE=√(103)2+(52)2=256;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y =23x 2+83x −103, 故点A 、C 的坐标分别为(﹣5,0)、(0,−103),则点N (0,−53),由点A 、N 的坐标得,直线AN 的表达式为:y =−13x −53; 设点P (t ,23t 2+83t −103),则点F (t ,−13t −53); 则PF =−23t 2﹣3t +53,由点E (52,0)、C 的坐标得,直线CE 的表达式为:y =43x −103, 则点J (t ,43t −103),故FJ =−53t +53, ∵FH ⊥DE ,JF ∥y 轴,故∠FHJ =∠EOC =90°,∠FJH =∠ECO ,∴△FJH ∽△ECO ,故FH OE =FJ CE , 则FH =OE CE×FJ =−t +1, f =PF +FH =−23t 2﹣3t +53+(﹣t +1)=−23t 2﹣4t +83;②f =−23t 2﹣4t +83=−23(t +3)2+263(﹣5<t ≤m 且m <0); ∴当﹣5<m <﹣3时,f max =−23m 2﹣4m +83;当﹣3≤m <0时,f max =263.。

2020年湖北省孝感市中考数学试卷附详细答案解析

2020年湖北省孝感市中考数学试卷附详细答案解析

2020年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣的绝对值是()A.﹣3 B.3 C.D.﹣2.(3分)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个B.3个C.2个D.1个3.(3分)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b4.(3分)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)方程=的解是()A.x=B.x=5 C.x=4 D.x=﹣57.(3分)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为8.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)9.(3分)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.10.(3分)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为.12.(3分)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.13.(3分)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB 的值最小,则点P的坐标为.14.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.15.(3分)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD 的度数为.16.(3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.三、解答题(本大题共8小题,共72分)17.(6分)计算:﹣22++•cos45°.18.(8分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.19.(9分)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A 95≤x≤100 4B 90≤x<95 mC 85≤x<90 nD 80≤x<85 24E 75≤x<80 8F 70≤x<75 4请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为,表中:m= ,n= ;扇形统计图中,E等级对应扇形的圆心角α等于度;(2)该校决定从本次抽取的 A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20.(8分)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.21.(8分)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22.(10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2020年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2020年市政府经过招标,决定年内采购并安装劲松公司A,B 两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的 5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.(10分)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,围成的曲边三角形的面积是;(2)求证:DE是⊙O的切线;(3)求线段DE的长.24.(13分)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为,伴随直线为,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为和;(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.2020年湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2020•孝感)﹣的绝对值是()A.﹣3 B.3 C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选C【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型2.(3分)(2020•孝感)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个B.3个C.2个D.1个【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5.【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.(3分)(2020•孝感)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2020•孝感)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.(3分)(2020•孝感)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)(2020•孝感)方程=的解是()A.x=B.x=5 C.x=4 D.x=﹣5【分析】方程的两边都乘以(x+3)(x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.7.(3分)(2020•孝感)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.8.(3分)(2020•孝感)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,从而知将点A顺时针旋转150°得到点A′后如图所示,OA′=OA==2,∠A′OC=30°,继而可得答案.【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D.【点评】本题考查了坐标与图形的变化﹣旋转,根据点A的坐标求出∠AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在OA上是解题的关键.9.(3分)(2020•孝感)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC 的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),故选:B.【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x 的关系式是解决问题的关键.10.(3分)(2020•孝感)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5【分析】根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.【解答】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2020•孝感)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为 2.75×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:27500=2.75×104.故答案为:2.75×104.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.(3分)(2020•孝感)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.13.(3分)(2020•孝感)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为(,0).【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标.【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0).【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.14.(3分)(2020•孝感)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确得出DH的长是解题关键.15.(3分)(2020•孝感)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为150°或30°.【分析】连接OC,过点O作OE⊥AD于点E,由OA=OC=AC可得出∠OAC=60°,再根据垂径定理结合勾股定理可得出AE=OE,即∠OAD=45°,利用角的计算结合圆周角与圆心角间的关系,即可求出∠COD的度数.【解答】解:连接OC,过点O作OE⊥AD于点E,如图所示.∵OA=OC=AC,∴∠OAC=60°.∵AD=2,OE⊥AD,∴AE=,OE==,∴∠OAD=45°,∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°.故答案为:150°或30°.【点评】本题考查了垂径定理、解直角三角形、等边三角形的判定与性质以及圆周角定理,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(3分)(2020•孝感)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A 的坐标为(n,1),则k的值为.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解答】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.三、解答题(本大题共8小题,共72分)17.(6分)(2020•孝感)计算:﹣22++•cos45°.【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.【解答】解:原式=﹣4﹣2+×=﹣4﹣2+1=﹣5.【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则.18.(8分)(2020•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.19.(9分)(2020•孝感)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A 95≤x≤100 4B 90≤x<95 mC 85≤x<90 nD 80≤x<85 24E 75≤x<80 8F 70≤x<75 4请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为80 ,表中:m= 12 ,n= 8 ;扇形统计图中,E等级对应扇形的圆心角α等于36 度;(2)该校决定从本次抽取的 A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【分析】(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题.【解答】解:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.(8分)(2020•孝感)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.【分析】(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案.【解答】解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE==6,在△DAF和△EAF中,∵,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE===,故答案为:.【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.21.(8分)(2020•孝感)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1•x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的 m的值为4.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20﹣4m≥0;(2)分x2≥0和x2<0两种情况求出x1、x2的值.22.(10分)(2020•孝感)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B 两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2020年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2020年市政府经过招标,决定年内采购并安装劲松公司A,B 两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的 5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.∵m=40时,y最小值=﹣0.1×40+14.4=10.4(万元).又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.【点评】本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用.解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案.23.(10分)(2020•孝感)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,围成的曲边三角形的面积是+;(2)求证:DE是⊙O的切线;(3)求线段DE的长.【分析】(1)连接OD,由AB是直径知∠ACB=90°,结合CD平分∠ACB知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S扇形AOD+S△BOD可得答案;(2)由∠AOD=90°,即OD⊥AB,根据DE∥AB可得OD⊥DE,即可得证;(3)勾股定理求得BC=8,作AF⊥DE知四边形AODF是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC知tan∠EAF=tan∠CBA,即=,求得EF的长即可得.【解答】解:(1)如图,连接OD,∵AB是直径,且AB=10,∴∠ACB=90°,AO=BO=DO=5,∵CD平分∠ACB,∴∠ABD=∠ACD=∠ACB=45°,∴∠AOD=90°,则曲边三角形的面积是S扇形AOD+S△BOD=+×5×5=+,故答案为:+;(2)由(1)知∠AOD=90°,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10、AC=6,∴BC==8,过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴=,即=,∴,∴DE=DF+EF=+5=.【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.24.(13分)(2020•孝感)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为(﹣1,﹣4),伴随直线为y=x﹣3 ,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为(0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;(2)①可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在Rt△ABC中由勾股定理可得到关于m的方程,可求得m的值;②由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出△PBC的面积,利用二次函数的性质可得到m的方程,可求得m 的值.【解答】解:(1)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴A(1,﹣4m),B(2,﹣3m),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],∴S△PBC=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在(1)中注意伴随直线的定义的理解,在(2)①中分别求得A、B、C、D的坐标是解题的关键,在(2)②中用x表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2020年湖北省孝感市中考数学试卷(解析版)

2020年湖北省孝感市中考数学试卷(解析版)
k
故设反比例函数解析式为 I= ,
R
将(6,8)代入函数解析式中, 解得 k=48,
48
故 I=
R
故选 C. 【点睛】本题主要考查反比例函数解析式的求解方法,掌握求解反比例函数解析式的方法是解答本题的关
键.
8.将抛物线 C1 : y x2 2x 3 向左平移 1 个单位长度,得到抛物线 C2 ,抛物线 C2 与抛物线 C3 关于 x 轴对
C. 60
D. 140
【答案】B
【解析】
【分析】
已知 OE CD , BOE 40 ,根据邻补角定义即可求出 AOC 的度数. 【详解】∵ OE CD ∴ COE 90 ∵ BOE 40 ∴ AOC 180° COE EOB 180 90 40 50
故选:B
【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平
则这三个数中第一个数是______.
13.某型号飞机的机翼形状如图所示,根据图中数据计算 AB 的长为______ m .(结果保留根号)
14.在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取
了部分学生进行调查,调查结果分为四类(A 类:总时长 5 分钟;B 类:5 分钟 总时长 10 分钟;C 类: 10 分钟 总时长 15 分钟;D 类:总时长 15 分钟),将调查所得数据整理并绘制成如下两幅不完整的统
D. y x2 2
9.如图,在四边形 ABCD 中, AD∥BC , D 90 , AB 4 , BC 6 , BAD 30 .动点 P 沿路径 A B C D 从点 A 出发,以每秒 1 个单位长度的速度向点 D 运动.过点 P 作 PH AD ,垂足为 H .设点 P 运动的时间为 x (单位: s ),V APH 的面积为 y ,则 y 关于 x 的函数图象大致是( )

2020年湖北省孝感中考数学试卷-答案

2020年湖北省孝感中考数学试卷-答案

2020年湖北省孝感市高中阶段学校招生考试数学答案解析一、 1.【答案】A【解析】根据具有相反意义的量进行书写即可.由题知:温度上升3 ℃,记作+3 ℃,∴温度下降2 ℃,记作 2 -℃,故选:A .【考点】具有相反意义的量的书写形式 2.【答案】B【解析】已知OE CD ⊥,40BOE ∠=︒,根据邻补角定义即可求出AOC ∠的度数.OE CD ⊥,90COE ∴∠=︒.40BOE ∠=︒,180180904050AOC COE EOB ∴∠=︒-∠-∠=︒-︒-︒=︒故选:B【考点】垂直的性质 3.【答案】C【解析】据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变和单项式的乘法法则,逐一判断即可.A :2a 和3b 不是同类项,不能合并,故此选项错误;B :()22239ab a b =故B 错误;C :236a b ab ⋅=正确;D :222ab b ab =÷故D 错误. 【考点】合并同类项以及单项式的乘法 4.【答案】C【解析】从左面看,所得到的图形形状即为所求答案.从左面可看到第一层为2个正方形,第二层为1个正方形且在第一层第一个的上方,故答案为:C . 【考点】三视图的知识 5.【答案】B【解析】数据出现最多的为众数;将数据从小到大排列,最中间的2个数的平均数为中位数.6出现次数最多,故众数为:6,最中间的2个数为6和6,中位数为6+6=62,故选:B . 【考点】众数和中位数 6.【答案】D【解析】先按照分式四则混合运算法则化简原式,然后将x y 、的值代入计算即可.解:()()()()3211x x y x y x xy x y x x y x x y +--==+==--D . 【考点】分式的化简求值 7.【答案】C【解析】根据题意,电流与电阻是反比例函数关系,根据图中给出的坐标即可求出该反比例函数解析式.根据题意,电流与电阻是反比例函数关系,在该函数图象上有一点(6,8),故设反比例函数解析式为kI R=,将(6,8)代入函数解析式中,解得48k =,故48I R=故选C . 【考点】反比例函数解析式的求解方法 8.【答案】A【解析】利用平移的规律:左加右减,上加下减.并用规律求函数解析式2C ,再因为关于x 轴对称的两个抛物线,自变量x 的取值相同,函数值y 互为相反数,由此可直接得出抛物线3C 的解析式.解:抛物线21:23C y x x =-+向左平移1个单位长度,得到抛物线()()222:+1+13C y x x =-+,即抛物线222:y C x =+;由于抛物线2C 与抛物线3C 关于x 轴对称,则抛物线3C 的解析式为:22y x =--.故选:A .【考点】函数图象的平移、对称 9.【答案】D【解析】分点P 在AB 边上,如图1,点P 在BC 边上,如图2,点P 在CD 边上,如图3,利用解直角三角形的知识和三角形的面积公式求出相应的函数关系式,再根据相应函数的图象与性质即可进行判断. 解:当点P 在AB 边上,即04x ≤≤时,如图1,AP x =,30BAD ∠=︒,12PH x ∴=,AH =,21122y x x =⋅=∴;当点P 在BC 边上,即410x <≤时,如图2,过点B 作BM AD ⊥于点M ,则122PH BM AB ===,AM AB ==4MH BP x ==-,()1142422y AH PH x x ∴=⋅=-⨯=+;当点P 在CD 边上,即1012x <≤时,如图3,6AD =,12PH x =-,()()(()16123122y x x =⨯⨯-∴=-;综上,y 与x 的函数关系式是:()()()()()230423441033121012y x x y x x y x x ⎧=⎪⎪⎪=+-⎨⎪=+-⎪⎪⎩≤≤<≤<≤,其对应的函数图象应为:,故选:D .【考点】动点问题的函数图象,一次函数和二次函数的图象与性质,解直角三角形 10.【答案】B【解析】根据正方形性质和已知条件可知5BC CD ==,再由旋转可知DE BF =,设DE BF x ==,则55CE x CF x =-=+,,然后再证明ABG CEF △∽△,根据相似三角形的性质列方程求出x ,最后求CE即可.解:3BG =,2CG =,235BC BG GC ∴=+=+=,正方形ABCD ,5CD BC ∴==.设DE BF x ==,则55CE x CF x =-=+,.90AH EF ABG C ⊥∠=∠=︒,,90HFG AGF ∴∠+∠=︒,90BAG AGF ∠+∠=︒,HFG BAG ∴∠=∠,ABG CEF ∴△∽△,CE BG FC AB =∴,即5355x x -=+,解得54x =.515544CE CD DE ∴=-=-=故答案为B . 【考点】正方形的性质,相似三角形的判定与性质 二、11.【答案】6110⨯【解析】先将100万写成1 000 000,然后再写成10n a ⨯的形式,其中110a ≤<,n 为1 000 000写成a 时小时点向左移动的位数.解:100万6=1000000=110⨯故答案为6110⨯. 【考点】科学记数法 12.【答案】81-【解析】题中数列的绝对值的比是3-,由三个相邻数的和是567-,可设三个数为n ,3n -,9n ,据题意列式即可求解.题中数列的绝对值的比是3-,由三个相邻数的和是567-,可设第一个数是n ,则三个数为n ,3n -,9n ,由题意:(3)9567n n n +-+=-,解得:81n =-,故答案为:81-.【考点】一元一次方程与数字的应用13.【答案】 1.6)- 【解析】如图,先在Rt BCF △中,解直角三角形可求出CF 的长,再根据等腰直角三角形的判定与性质可得DE 的长,从而可得CE 的长,然后根据线段的和差即可得.如图,过A 作//AE BF ,交DF 于点E ,则四边形ABFE 是矩形AB EF ∴=, 5 m AE BF ==,AE EF ⊥由图中数据可知, 3.4 m CD =,30CBF ∠=︒,45DAE ∠=︒,90F ∠=︒在Rt BCF △中,tan CF CBF BF ∠=,即tan305CF =︒=解得CF =. ,45AE EF DAE ⊥∠=︒,Rt ADE ∴△是等腰三角形, 5 m DE AE ∴==,5 3.4 1.6(m)CE DE CD ∴=-=-=, 1.6(m)3EF CF CE ∴=-=-,则AB 的长为( 1.6)m 3-,故答案为: 1.6)-.【考点】解直角三角形的应用,等腰三角形的判定与性质 14.【答案】336【解析】先根据A 类的条形统计图和扇形统计图信息求出调查抽取的总人数,再求出每天做眼保健操总时长超过5分钟且不超过10分钟的学生的占比,然后乘以1 200即可得.调查抽取的总人数为1010%100÷=(人)C 类学生的占比为41100%41%100⨯=,B 类学生的占比为100%10%41%21%28%---=,则120028%336⨯=(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人故答案为:336.【考点】条形统计图和扇形统计图的信息关联15.【解析】如图(见解析),设AB CD a ==,先根据直角三角形的面积公式、正方形的面积公式求出12,S S 的值,再根据12S S =建立等式,然后根据212S S m +=建立等式求出a 的值,最后代入求解即可.如图,由题意得:AC m =,BD n =,AB CD =,ABC △是直角三角形,且,m n 均为正数则大正方形的面积为22AC m =小正方形的面积为22BD n =设(0)AB CD a a ==> 则222114422RtABDS S n AB BD n an n =+=⨯⋅+=+,2214422ACDS S CD AB a ==⨯⋅=.12S S =,2222an n a ∴+=.又212S S m +=,即222S m =,224a m ∴=,解得2m a =或2ma =-(不符题意,舍去).将2m a =代入2222an n a +=得:222m mn n +=,两边同除以22m 得:222()1n n m m +=,令0n x m =>,则2221x x +=.解得x =或0x (不符题意,舍去),即n m .【考点】一元二次方程与几何图形的性质,勾股定理的性质,三角形全等的性质 16.【答案】132【解析】先作AG x ⊥轴于点G ,作BH x ⊥轴于点H ,证明AOG OBH ∽△△,利用23AC BD =,同时设出点A 的坐标,表示出OH BH ,的长度,求出k 的值,设直线EF 的解析式为y n =,表示点E F ,的坐标,求出EF 的长度,可求得OEF △的面积.作AG x ⊥轴于点G ,作BH x ⊥轴于点H ,如图所示:AOG OAG AOG BOG ∠+∠=∠+∠即OAG BOH ∠=∠,AOG OBH ∴∽△△,23AO OG AG AC OB BH OH BD ====∴.设点A 的坐标为4(,)m m ,则OG m =,4AG m =,6OH m ∴=,32mBH =,63||92mk OH BH m =⋅∴=⋅=.ky x=的图象在第二,四象限,9k ∴=-.设直线EF 的解析式为:y n =,则9(,)F n n -,4(,)E n n ,4913()EF n n n =--=∴,111313||222OEF F S EF y n n ⨯∴=⋅=⨯=△.故答案为:132.【考点】反比例函数与几何图形的综合 三、17.【答案】原式2121--=211=-2=-【解析】先计算立方根、绝对值运算、特殊角的三角函数值、零指数幂,再计算实数的混合运算即可. 【考点】立方根,绝对值运算,特殊角的三角函数值,零指数幂18.【答案】四边形ABCD 为平行四边形,//AB CD ∴,ABC CDA ∠=∠,E F ∴∠=∠,180180ABC CDA ︒-∠=︒-∠,EBG FDH ∴∠=∠.在BEG △和DFH △中,E F BE DF EBG FDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()BEG DFH ASA ∴△≌△,EG FH ∴=.【解析】先根据平行四边形的性质可得//AB CD ,ABC CDA ∠=∠,再根据平行线的性质、邻补角的定义可得E F ∠=∠,EBG FDH ∠=∠,然后根据三角形全等的判定定理与性质即可得证. 【考点】平行四边形的性质,平行线的性质,邻补角的定义,三角形全等的判定定理与性质 19.【答案】(1)12(2)列表如下:差的绝对值有16种可能,绝对值大于3的有6种可能,∴差的绝对值大于3的概率63168P ==.【解析】(1)直接利用概率公式进行计算即可。

2020年湖北省孝感市中考数学试卷-解析版

2020年湖北省孝感市中考数学试卷-解析版

2020年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A. −2℃B. +2℃C. +3℃D. −3℃2.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A. 40°B. 50°C. 60°D. 140°3.下列计算正确的是()A. 2a+3b=5abB. (3ab)2=9ab2C. 2a⋅3b=6abD. 2ab2÷b=2b4.如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.5.年收入/万元46810人数/人3421则他们年收入数据的众数与中位数分别为A. 4,6B. 6,6C. 4,5D. 6,56.已知x=√5−1,y=√5+1,那么代数式x 3−xy2x(x−y)的值是()A. 2B. √5C. 4D. 2√57.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A. I=24RB. I=36RC. I=48RD. I=64R8.将抛物线C1:y=x2−2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A. y=−x2−2B. y=−x2+2C. y=x2−2D. y=x2+29.如图,在四边形ABCD中,AD//BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A. B.C. D.10.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A. 54B. 154C. 4D. 92二、填空题(本大题共5小题,共15.0分)11.原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为______.12.有一列数,按一定的规律排列成13,−1,3,−9,27,−81,….若其中某三个相邻数的和是−567,则这三个数中第一个数是______.13.某型号飞机的机翼形状如图所示,根据图中数据计算AB的长为______m.(结果保留根号)14.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则nm的值为______.15.如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=4x和y=kx (k<0)上,ACBD=23,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为______.三、解答题(本大题共9小题,共75.0分)16.在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C类:10分钟<总时长≤15分钟;D类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.17. 计算:√−83+|√3−1|−2sin60°+(14)0.18. 如图,在▱ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE =DF.连接EF ,分别与BC ,AD 交于点G ,H . 求证:EG =FH .19. 有4张看上去无差别的卡片,上面分别写有数−1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为______;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20. 如图,在平面直角坐标系中,已知点A(−1,5),B(−3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为______;(2)将线段AB 绕点A 逆时针旋转90°,画出旋转后所得的线段AE ,并直接写出cos∠BCE 的值为______;(3)在y 轴上找出点F ,使△ABF 的周长最小,并直接写出点F 的坐标为______.21.已知关于x的一元二次方程x2−(2k+1)x+12k2−2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1−x2=3,求k的值.22.某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg乙产品的售价比1kg甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?23.已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.(1)如图1,若α=60°,①直接写出DFDC的值为______;②当⊙O的半径为2时,直接写出图中阴影部分的面积为______;(2)如图2,若α<60°,且DFDC =23,DE=4,求BE的长.24.在平面直角坐标系中,已知抛物线y=ax2+4ax+4a−6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A______,B______,C______,D______;(2)如图1,直线DC交x轴于点E,若tan∠AED=4,求a的值和CE的长;3(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设−5<t≤m(m<0),求f的最大值.答案和解析1.【答案】A【解析】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作−2℃.故选:A.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题考查了正数与负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.【答案】B【解析】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°−40°=50°,∴∠AOC=∠BOD=50°.故选:B.直接利用垂直的定义结合对顶角的性质得出答案.此题主要考查了垂线以及对顶角,正确得出∠BOD的度数是解题关键.3.【答案】C【解析】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a⋅3b=6ab,因此选项C符合题意;2ab2÷b=2ab,因此选项D不符合题意;故选:C.根据单项式乘以多项式、积的乘方幂的乘方以及整式加减的计算法则进行计算即可.本题考查单项式乘以多项式、积的乘方幂的乘方以及整式加减的计算法则,掌握计算法则是正确计算的前提.4.【答案】C【解析】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,故选:C.从左侧看几何体所得到的图形就是该几何体的左视图,从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C符合题意.本题考查简单几何体的三视图,明确三种视图的形状和大小是正确判断的前提.5.【答案】B【解析】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6,将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6,故选:B.根据中位数、众数的计算方法,分别求出结果即可.本题考查中位数、众数的计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.【答案】D【解析】解:原式=x(x+y)(x−y)x(x−y)=x+y当x=√5−1,y=√5+1,原式=√5−1+√5+1=2√5.故选:D.先将分式化简,再代入值求解即可.本题考查了分式的化简求值,解决本题的关键是掌握分式的化简.7.【答案】C【解析】解:设I=KR,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I=48R.故选:C.直接利用待定系数法求出反比例函数解析式即可.此题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.8.【答案】A【解析】解:∵抛物线C1:y=x2−2x+3=(x−1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,−2),∴抛物线C3的解析式为y=−x2−2,故选:A.根据抛物线C1的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线C2的得到坐标,而根据关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的函数表达式.本题主要考查了二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可,关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数,难度适中.9.【答案】D【解析】解:①当点P在AB上运动时,y=12AH×PH=12×APsinA×APcosA=12×x2×√34=√38x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=ABsinA=4×12=2,同理AH′=2√3,则y=12×AH×PH=12(2√3+x−4)×2=2√3−4+x,为一次函数;③当点P在CD上运动时,同理可得:y=12×(2√3+6)×(4+6+2−x)=(3+√3)(12−x),为一次函数;故选:D.分别求出点P在AB上运动、点P在BC上运动、点P在CD上运动时的函数表达式,进而求解.本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.10.【答案】B【解析】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5−x=BF,FG=8−x,∴EG=8−x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8−x)2,解得x=154,∴CE的长为154,故选:B.连接EG,根据AG垂直平分EF,即可得出EG=FG,设CE=x,则DE=5−x=BF,FG=EG=8−x,再根据Rt△CEG中,CE2+CG2=EG2,即可得到CE的长.本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.【答案】1×106【解析】解:100万=1000000=1×106,故答案:1×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.此题考查科学记数法的表示方法.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.12.【答案】−81【解析】解:设这三个数中的第一个数为x,则另外两个数分别为−3x,9x,依题意,得:x−3x+9x=−567,解得:x=−81.故答案为:−81.设这三个数中的第一个数为x,则另外两个数分别为−3x,9x,根据三个数之和为−567,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用以及数字的变化规律,找准等量关系,正确列出一元一次方程是解题的关键.13.【答案】(53√3−1.6)【解析】解:如图,在Rt△DEA中,∵cos∠EDA=DEDA,∴DA=5cos45∘=5√2(m);在Rt△BCF中,∵cos∠BCF=CFCB,∴CB=5cos30∘=10√33(m),∴BF=12BC=5√33(m),∵AB+AE=EF+BF,∴AB=3.4+5√33−5=5√33−1.6(m).答:AB的长为(53√3−1.6)m.故答案为:(53√3−1.6),如图,在Rt△DEA中,利用45°的余弦可计算出DA=5√2m;在Rt△BCF中利用30度的余弦可计算出CB10√33m,则BF=12BC=5√33m,然后利用AB+AE=EF+BF计算AB的长.本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).14.【答案】√3−12【解析】解:设直角三角形另一条直角边为x,依题意有2x2=12m2,解得x=12m,由勾股定理得(12m)2+(n+12m)2=m2,m2−2mn−2n2=0,解得m1=(−1−√3)n(舍去),m2=(−1+√3)n,则nm 的值为√3−12.故答案为:√3−12.可设直角三角形另一条直角边为x,根据S1=S2,可得2x2=12m2,则x=√22m,再根据勾股定理得到关于m,n的方程,可求nm的值.本题考查了勾股定理的证明,根据正方形的面积公式和三角形形的面积公式得出它们之间的关系是解题的关键.15.【答案】132【解析】解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴S△AOMS△ODN =(OAOD)2,∵A点在双曲线y=4x ,ACBD=23,∴S△AOM=12×4=2,OAOD=23,∴2S△ODN =(23)2,∴S△ODN=92,∵D点在双曲线y=kx(k<0)上,∴12|k|=92,∴k=−9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF=12×4+12×9=132,故答案为132.作AM⊥x轴于M,DN⊥x轴于N,易证得△AOM∽△ODN,根据系数三角形的性质即可求得k的值,然后根据反比例函数系数k的几何意义即可求得△OEF的面积.本题考查了反比例函数系数k的几何意义,菱形的性质,作出辅助线构建相似三角形是解题的关键.16.【答案】336【解析】解:本次抽取的学生有:10÷10%=100(人),B类学生有:100−10−41−100×21%=28(人),1200×28100=336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人,故答案为:336.根据A类学生的人数和所占的百分比,可以求得本次抽取的学生,然后即可计算出B类学生,从而可以计算出该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有多少人.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=−2+√3−1−√3+1=−2.【解析】分别根据立方根的定义,绝对值的定义,特殊角的三角函数值以及任何非零数的零次幂定义1计算即可.本题主要考查了实数的运算,熟记相应定义以及特殊角的三角函数值是解答本题的关键.18.【答案】证明:∵四边形ABCD是平行四边形,∴AB//CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,{∠E=∠FBE=DF∠EBG=∠FDH,∴△BEG≌△DFH(ASA),∴EG=FH.【解析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.19.【答案】12【解析】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为24=12,故答案为:12;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种,∴P(差的绝对值大于3)=616=38.用列表法列举出所有可能出现的结果,从中找出“两数之差绝对值大于3”的结果数,进而求出概率.考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.20.【答案】(2,−4)√55(0,4)【解析】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,−4);(2)如图所示,线段AE即为所求,cos∠BCE=CEBC =√10√50=√55;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,−4);√55;(0,4).(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)先作出点A关于y轴的对称点A′,连接A′B交y轴于点F,依据两点之间,线段最短,即可得到此时△ABF的周长最小,根据待定系数法即可得出直线A′B的解析式,令x=0,进而得到点F的坐标.本题主要考查了利用平移变换和旋转变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21.【答案】解:(1)∵△=[−(2k+1)]2−4×1×(12k2−2)=4k2+4k+1−2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=12k2−2,∵x1−x2=3,∴(x1−x2)2=9,∴(x1+x2)2−4x1x2=9,∴(2k+1)2−4×(12k2−2)=9,化简得k2+2k=0,解得k=0或k=−2.【解析】(1)根据根的判别式得出△=[−(2k+1)]2−4×1×(12k2−2)=2(k+1)2+ 7>0,据此可得答案;(2)先根据根与系数的关系得出x1+x2=2k+1,x1x2=12k2−2,由x1−x2=3知(x1−x2)2=9,即(x1+x2)2−4x1x2=9,从而列出关于k的方程,解之可得答案.本题主要考查根与系数的关系、根的判别式,解题的关键是掌握x1,x2是方程x2+px+ q=0的两根时,x1+x2=−p,x1x2=q.22.【答案】解:(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg 丙产品的售价为3x元,根据题意,得:270 3x =60x+5×3,解得:x=5,经检验,x=5既符合方程,也符合题意,∴x+5=10,3x=15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40−3m)kg,∴40−3m+m≤2m×3,∴m≥15,设按此方案购买40kg农产品所需费用为y元,根据题意,得:y=5(40−3m)+20m+15m=20m+200,∵20>0,∴y随m的增大而增大,∴m=5时,y取最小值,且y最小=300,答:按此方案购买40kg农产品最少要花费300元.【解析】(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg丙产品的售价为3x元,根据“用270元购买丙产品的数量是用60元购买乙产品数量的3倍”列方程解答即可;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40−3m)kg,根据题意列不等式求出m的取值范围;设按此方案购买40kg 农产品所需费用为y元,根据题意求出y与m之间的函数关系式,再根据一次函数的性质解答即可.本题考查了一次函数的应用、分式方程的应用、一元一次不等式的应用.本题属于中档题,难度不大,解决该体系题目时,找准数量关系是解题的突破点.23.【答案】3√323π【解析】解:(1)如图1,连接OA,AD,∵AF是⊙O的切线,∴∠OAF=90°,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵∠ADB=∠ACB=60°,∴∠BAD=90°,∴BD是⊙O的直径,∵OA=OB=OD,∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,∵∠BDC=∠BAC=60°,∴∠ADF=180°−60°−60°=60°=∠OAD,∴OA//DF,∴∠F=180°−∠OAF=90°,∵∠DAF=30°,∴AD=2DF,∵∠ABD=∠CBD,∴AD⏜=CD⏜,∴AD=CD,∴CD=2DF,∴DFDC =12,故答案为:12;②∵⊙O的半径为2,∴AD=OA=2,DF=1,∵∠AOD=60°,∴阴影部分的面积为:S梯形AODF −S扇形OAD=12⋅AF⋅(DF+OA)−60π×22360=12×√3(1+2)−60π×4360=3√32−23π;故答案为:3√32−23π;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,∴∠DAH+∠DHA=90°,∵AF与⊙O相切,∴∠DAH+∠DAF=∠FAO=90°,∴∠DAF=∠DHA,∵BD平分∠ABC,∴∠ABD=∠CBD,∵AD⏜=CD⏜,∴∠CAD=∠DHA=∠DAF,∵AB=AC,∴∠ABC=∠ACB,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,∵∠ADB=∠ACB=∠ABC,∴∠ADF=∠ADB,在△ADF和△ADE中∵{∠DAF=∠DAE AD=AD∠ADF=∠ADE,∴△ADF≌△ADE(ASA),∴DF=DE=4,∵DFDC =23,∴DC=6,∵∠DCE=∠ABD=∠DBC,∠CDE=∠CDE,∴△CDE∽△BDC,∴CDDB =DECD,即6BD=46,∴BD=9,∴BE=DB−DE=9−5=5.(1)①由切线的性质得:∠OAF=90°,证明△ABC是等边三角形,得∠ABC=∠ACB=∠BAC=60°,根据三角形的内角和定理证明∠BAD=90°,可知BD 是⊙O的直径,由圆周角,弧,弦的关系得AD=CD,说明△ADF是含30度的直角三角形,得AD=CD=2DF,可解答;②根据阴影部分的面积=S梯形AODF−S扇形OAD=代入可得结论;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,先证明△ADF≌△ADE(ASA),得DF=DE=4,由已知得DC=6,证明△CDE∽△BDC,列比例式可得BD=9,从而解答即可.本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质,相似三角形的性质和判定,全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.24.【答案】(−3,0) (−1,0) (0,18) (−2,−6)【解析】解:(1)当a =6时,抛物线的表达式为:y =6x 2+24x +18, 令y =0,则x =−1或−3;当x =0时,y =18,函数的对称轴为x =−2, 故点A 、B 、C 、D 的坐标分别为(−3,0)、(−1,0)、(0,18)、(−2,−6); 故答案为:(−3,0)、(−1,0)、(0,18)、(−2,−6);(2)y =ax 2+4ax +4a −6,令x =0,则y =4a −6,则点C(0,4a −6), 函数的对称轴为x =−2,故点D 的坐标为(−2,−6),由点C 、D 的坐标得,直线CD 的表达式为:y =2ax +4a −6, 令y =0,则x =3a −2,故点E(3a −2,0),则OE =3a −2, tan∠AED =OCOE =4a−63a−2=43,解得:a =23,故点C 、E 的坐标分别为(0,−103)、(52,0), 则CE =√(103)2+(52)2=256;(3)①如图,作PF 与ED 的延长线交于点J ,由(2)知,抛物线的表达式为:y =23x 2+83x −103,故点A 、C 的坐标分别为(−5,0)、(0,−103),则点N(0,−53), 由点A 、N 的坐标得,直线AN 的表达式为:y =−13x −53; 设点P(t,23t 2+83t −103),则点F(t,−13t −53); 则PF =−23t 2−3t +53,由点E(52,0)、C 的坐标得,直线CE 的表达式为:y =43x −103,则点J(t,43t −103),故FJ =−53t +53, ∵FH ⊥DE ,JF//y 轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故FHOE =FJCE,则FH=OECE×FJ=−t+1,f=PF+FH=−23t2−3t+53+(−t+1)=−23t2−4t+83;②f=−23t2−4t+83=−23(t+3)2+263(−5<t≤m且m<0);∴当−5<m<−3时,f max=−23m2−4m+83;当−3≤m<0时,f max=263.(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,即可求解;(2)由点C、D的坐标得,直线CD的表达式为:y=2ax+4a−6,进而求出点E(3a−2,0),利用tan∠AED=OCOE=4a−63a−2=43,即可求解;(3)①证明△FJH∽△ECO,故FHOE =FJCE,则FH=OECE×FJ=−t+1,即可求解;②f=−23(t+3)2+263(−5<t≤m且m<0),即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形相似等,综合性较强,难度较大.。

湖北省孝感市2020年中考数学试题(解析版)

湖北省孝感市2020年中考数学试题(解析版)

湖北省孝感市2020年中考数学试题─、精心选一选,相信自己的判断!1.如果温度上升3℃,记作3+℃,那么温度下降2℃记作( ) A. 2-℃ B. 2+℃C. 3+℃D. 3-℃【答案】A 【解析】 【分析】根据具有相反意义的量进行书写即可. 【详解】由题知:温度上升3℃,记作3+℃, ∴温度下降2℃,记作2-℃, 故选:A .【点睛】本题考查了具有相反意义的量的书写形式,熟知此知识点是解题的关键.2.如图,直线AB ,CD 相交于点O ,OE CD ⊥,垂足为点O .若40BOE ∠=︒,则AOC ∠的度数为( )A. 40︒B. 50︒C. 60︒D. 140︒【答案】B 【解析】 【分析】已知OE CD ⊥,40BOE ∠=︒,根据邻补角定义即可求出AOC ∠的度数. 【详解】∵OE CD ⊥ ∴90COE ∠=︒ ∵40BOE ∠=︒∴180?180904050AOC COE EOB ∠=-∠-∠=︒-︒-︒=︒ 故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.3.下列计算正确是( )A. 235a b ab +=B. ()2239ab ab =C. 236a b ab ⋅=D. 222ab b b ÷=【答案】C 【解析】 【分析】据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变和单项式的乘法法则,逐一判断即可.【详解】A :2a 和3b 不是同类项,不能合并,故此选项错误; B :()22239ab a b =故B 错误; C :236a b ab ⋅=正确; D :222ab b ab =÷故D 错误.【点睛】本题考查了合并同类项以及单项式的乘法的知识,解答本题的关键是熟练掌握合并同类项的法则. 4.如图是由5个相同的正方体组成的几何体,则它的左视图是( )A. B. C. D.【答案】C 【解析】 【分析】从左面看,所得到的图形形状即为所求答案.【详解】从左面可看到第一层为2个正方形,第二层为1个正方形且在第一层第一个的上方, 故答案为:C .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图. 5.某公司有10名员工,每人年收入数据如下表: 年收入/万元 4 6 8 10 人数/人 3421则他们年收入数据的众数与中位数分别为( ) A. 4,6 B. 6,6C. 4,5D. 6,5【答案】B 【解析】 【分析】数据出现最多的为众数;将数据从小到大排列,最中间的2个数的平均数为中位数. 【详解】6出现次数最多, 故众数为: 6, 最中间的2个数为6和6,中位数为6+6=62, 故选: B .【点睛】本题考查众数和中位数,需要注意,求解中位数前,一定要将数据进行排序.6.已知51x =-,51y =+,那么代数式()32x xy x x y --的值是( )A. 2B.5C. 4D. 25【答案】D 【解析】 【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--=x+y=51-+51+=25. 故答案为D .【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 7.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为( )A. 24I R=B. 36I R=C. 48I R=D. 64I R=【答案】C 【解析】【分析】根据题意,电流与电阻是反比例函数关系,根据图中给出的坐标即可求出该反比例函数解析式. 【详解】根据题意,电流与电阻是反比例函数关系,在该函数图象上有一点(6,8), 故设反比例函数解析式为I=k R, 将(6,8)代入函数解析式中, 解得k=48, 故I=48R故选C .【点睛】本题主要考查反比例函数解析式的求解方法,掌握求解反比例函数解析式的方法是解答本题的关键.8.将抛物线21:23C y x x =-+向左平移1个单位长度,得到抛物线2C ,抛物线2C 与抛物线3C 关于x 轴对称,则抛物线3C 的解析式为( ) A. 22y x =-- B. 22y x =-+ C. 22y x =- D. 22y x =+【答案】A 【解析】 【分析】利用平移的规律:左加右减,上加下减.并用规律求函数解析式2C ,再因为关于x 轴对称的两个抛物线,自变量x 的取值相同,函数值y 互为相反数,由此可直接得出抛物线3C 的解析式.【详解】解:抛物线21:23C y x x =-+向左平移1个单位长度,得到抛物线2C :()()2+12+13=-+y x x ,即抛物线2C :22y x =+;由于抛物线2C 与抛物线3C 关于x 轴对称,则抛物线3C 的解析式为:22y x =--.故选:A .【点睛】主要考查了函数图象的平移、对称,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式以及关于x 轴对称的两个抛物线,自变量x 的取值相同,函数值y 互为相反数.9.如图,在四边形ABCD 中,AD BC ∥,90D ∠=︒,4AB =,6BC =,30BAD ∠=︒.动点P 沿路径A B C D →→→从点A 出发,以每秒1个单位长度的速度向点D 运动.过点P 作PH AD ⊥,垂足为H .设点P 运动的时间为x (单位:s ),APH 的面积为y ,则y 关于x 的函数图象大致是( )A. B.C. D.【答案】D 【解析】 【分析】分点P 在AB 边上,如图1,点P 在BC 边上,如图2,点P 在CD 边上,如图3,利用解直角三角形的知识和三角形的面积公式求出相应的函数关系式,再根据相应函数的图象与性质即可进行判断. 【详解】解:当点P 在AB 边上,即0≤x ≤4时,如图1, ∵AP=x ,30BAD ∠=︒, ∴13,22PH x AH x ==, ∴2113322y x x x =⋅⋅=;当点P 在BC 边上,即4<x ≤10时,如图2, 过点B 作BM ⊥AD 于点M ,则132,23,42PH BM AB AM AB MH BP x =======-, ∴()11234223422y AH PH x x =⋅=-⨯=+;当点P 在CD 边上,即10<x ≤12时,如图3, AD =236+,12PH x =-, ∴()()()()12361233122y x x =⨯+⨯-=+-;综上,y 与x的函数关系式是:()()()()()230423441033121012y x x y x x y x x ⎧=≤≤⎪⎪⎪=+-<≤⎨⎪=+-<≤⎪⎪⎩,其对应的函数图象应为:.故选:D .【点睛】本题以直角梯形为载体,主要考查了动点问题的函数图象、一次函数和二次函数的图象与性质以及解直角三角形等知识,属于常考题型,正确分类、列出相应的函数关系式是解题的关键.10.如图,点E 在正方形ABCD 的边CD 上,将ADE 绕点A 顺时针旋转90︒到ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若3BG =,2CG =,则CE 的长为( )A.54B.154C. 4D.92【答案】B 【解析】 【分析】根据正方形性质和已知条件可知BC=CD=5,再由旋转可知DE=BF,设DE=BF=x ,则CE=5-x ,CF=5+x ,然后再证明△ABG ∽△CEF ,根据相似三角形的性质列方程求出x ,最后求CE 即可. 【详解】解:∵3BG =,2CG = ∴BC=BG+GC=2+3=5 ∵正方形ABCD ∴CD=BC=5设DE=BF=x ,则CE=5-x ,CF=5+x ∵AH ⊥EF ,∠ABG=∠C=90°∴∠HFG+∠AGF=90°,∠BAG+∠AGF=90° ∴∠HFG=∠BAG ∴△ABG ∽△CEF∴CE BG FC AB = ,即5355x x -=+,解得x=54∴CE=CD-DE=5-54=154.故答案为B .【点睛】本题考查了正方形的性质和相似三角形的判定与性质,根据相似三角形的性质列方程求出DE 的长是解答本题的关键.二、细心填一填,试试自己的身手!11.原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为______. 【答案】6110⨯ 【解析】 【分析】先将100万写成1000000,然后再写成a×10n 的形式,其中1≤|a|<10,n 为1000000写成a 时小时点向左移动的位数.【详解】解:100万=1000000=6110⨯ 故答案为6110⨯.【点睛】本题考查了科学记数法,将1000000写成a×10n 的形式,确定a 和n 的值是解答本题的关键. 12.有一列数,按一定的规律排列成13,1-,3,9-,27,-81,….若其中某三个相邻数的和是567-,则这三个数中第一个数是______. 【答案】81- 【解析】 【分析】题中数列的绝对值的比是-3,由三个相邻数的和是567-,可设三个数为n ,-3n ,9n ,据题意列式即可求解. 【详解】题中数列的绝对值的比是-3,由三个相邻数的和是567-,可设第一个数是n ,则三个数为n ,-3 n ,9n由题意:()n 3n 9n 567+-+=-, 解得:n=-81, 故答案为:-81.【点睛】此题主要考查数列的规律探索与运用,一元一次方程与数字的应用,熟悉并会用代数式表示常见的数列,列出方程是解题的关键.13.某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为______m .(结果保留根号)【答案】531.6) 【解析】 【分析】如图(见解析),先在Rt BCF 中,解直角三角形可求出CF 的长,再根据等腰直角三角形的判定与性质可得DE 的长,从而可得CE 的长,然后根据线段的和差即可得.【详解】如图,过A 作//AE BF ,交DF 于点E ,则四边形ABFE 是矩形,5,AB EF AE BF m AE EF ∴===⊥由图中数据可知, 3.4CD m =,30CBF ∠=︒,45DAE ∠=︒,90F ∠=︒ 在Rt BCF 中,tan CF CBF BF ∠=,即3tan 3053CF =︒=解得53()3CF m =,45AE EF DAE ⊥∠=︒Rt ADE ∴是等腰三角形 5DE AE m ∴==5 3.4 1.6()CE DE CD m ∴=-=-=531.6()3EF CF CE m ∴=-=- 则AB 的长为53(1.6)m - 故答案为:53(1.6)-.【点睛】本题考查了解直角三角形的应用、等腰三角形的判定与性质等知识点,掌握解直角三角形的方法是解题关键.14.在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A 类:总时长5≤分钟;B 类:5分钟<总时长10≤分钟;C 类:10分钟<总时长15≤分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如下两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人. 【答案】336 【解析】 【分析】先根据A 类的条形统计图和扇形统计图信息求出调查抽取的总人数,再求出每天做眼保健操总时长超过5分钟且不超过10分钟的学生的占比,然后乘以1200即可得. 【详解】调查抽取的总人数为1010%100÷=(人) C 类学生的占比为41100%41%100⨯= B 类学生的占比为100%10%41%21%28%---= 则120028%336⨯=(人)即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人 故答案为:336.【点睛】本题考查了条形统计图和扇形统计图的信息关联等知识点,掌握理解统计调查的相关知识是解题关键.15.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为1S ,空白部分的面积为2S ,大正方形的边长为m ,小正方形的边长为n ,若12S S ,则n m的值为______.【答案】312【解析】 【分析】如图(见解析),设AB CD a ==,先根据直角三角形的面积公式、正方形的面积公式求出12,S S 的值,再根据12S S 建立等式,然后根据212S S m 建立等式求出a 的值,最后代入求解即可.【详解】如图,由题意得:AC m =,BD n =,AB CD =,ABC 是直角三角形,且,m n 均为正数 则大正方形的面积为22AC m 小正方形的面积为22BD n设(0)AB CD a a ==> 则222114422Rt ABDS S n AB BD n an n2214422ACDS SCD AB a 12S S2222an n a又212S S m ,即222S m224a m解得2m a =或2ma (不符题意,舍去) 将2ma =代入2222an n a 得:222m mn n 两边同除以22m 得:222()1n n m m 令0n x m则2221x x解得312x -=或3102x (不符题意,舍去) 即n m 的值为312- 故答案为:312-.【点睛】本题考查了一元二次方程与几何图形、勾股定理、三角形全等的性质等知识点,理解题意,正确求出12,S S 的值是解题关键.16.如图,已知菱形ABCD 的对角线相交于坐标原点O ,四个顶点分别在双曲线4y x=和()0ky k x =<上,23AC BD =.平行于x 轴的直线与两双曲线分别交于点E ,F ,连接OE ,OF ,则OEF 的面积为______.【答案】132【解析】 【分析】先作AG x ⊥轴于点G ,作BH x ⊥轴于点H ,证明AOG OBH △△,利用23AC BD =,同时设出点A 的坐标,表示出OH ,BH 的长度,求出k 的值,设直线EF 的解析式为y n =,表示点E ,F 的坐标,求出EF 的长度,可求得OEF 的面积.【详解】作AG x ⊥轴于点G ,作BH x ⊥轴于点H ,如图所示:∵AOG OAG AOG BOG ∠+∠=∠+∠即OAG BOH ∠=∠ ∴AOG OBH △△ ∴23AO OG AG AC OB BH OH BD ==== 设点A 的坐标为4(,)m m则4,OG m AG m==∴63,2mOH BH m ==∴63||92mk OH BH m =⋅=⋅= ∵ky x=的图象在第二,四象限 ∴9k=-设直线EF 的解析式为:y n =则94(,),(,)F n E n n n -∴4913()EF n n n =--=∴111313||222OEF F S EF y n n =⋅=⨯⨯=△故答案为:132.【点睛】本题考查了反比例函数与几何图形的综合,快速找到相似三角形求出k 的值,是解题的关键.三、用心做一做,显显自己的能力!17.0318312sin 604⎛⎫--︒+ ⎪⎝⎭【答案】2-.【解析】 【分析】先计算立方根、绝对值运算、特殊角的三角函数值、零指数幂,再计算实数的混合运算即可. 【详解】原式3231212-+--⨯+= 23131=-+--+2=-.【点睛】本题考查了立方根、绝对值运算、特殊角的三角函数值、零指数幂等知识点,熟记各运算法则是解题关键.18.如图,在ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE DF =.连接EF ,分别与BC ,AD 交于点G ,H .求证:EG FH =.【答案】证明见解析. 【解析】 分析】先根据平行四边形的性质可得//AB CD ,ABC CDA ∠=∠,再根据平行线的性质、邻补角的定义可得E F ∠=∠,EBG FDH ∠=∠,然后根据三角形全等的判定定理与性质即可得证.【详解】∵四边形ABCD 为平行四边形 ∴//AB CD ,ABC CDA ∠=∠∴E F ∠=∠,180180ABC CDA ︒-∠=︒-∠EBG FDH ∴∠=∠在BEG 和DFH 中,E F BE DFEBG FDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()BEG DFH ASA ≅∴EG FH=.【点睛】本题考查了平行四边形的性质、平行线的性质、邻补角的定义、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质,正确找出全等三角形是解题关键.19.有4张看上去无差别的卡片,上面分别写有数1-,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为______;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.【答案】(1)12;(2)38【解析】【分析】(1)直接利用概率公式进行计算即可;(2)列表展示所有16种等可能的结果数,再找出两次抽取的卡片上两数之差的绝对值大于3结果数,然后根据概率公式求解.【详解】解:(1)抽取到的数为偶数的概率为P=21 42 =.(2)列表如下:1,2)∵差的绝对值有16种可能,绝对值大于3的有6种可能,∴差的绝对值大于3的概率63168 P==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.如图,在平面直角坐标系中,已知点()1,5A -,()3,1B -和()4,0C ,请按下列要求画图并填空. (1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为______; (2)将线段AB 绕点A 逆时针旋转90︒,画出旋转后所得的线段AE ,并直接写出cos BCE ∠的值为______;(3)在y 轴上找出点F ,使ABF 的周长最小,并直接写出点F 的坐标为______.【答案】(1)(2,-4) (25(3)(0,4) 【解析】 【分析】(1)平移线段AB ,使A 点平移到C 点,可以知道A 点是向右平移5个单位,向下平移5个单位,故可以确定D 点坐标.(2)根据B 、C 、E 三点坐标,连接BE ,可以判断出△BCE 为直角三角形,故可求解cos BCE∠的值.(3)过A 点做y 轴的对称点A’,连接A’B ,与y 轴的交点即为F 点.此时△ABF 的周长最小,通过求解函数解析式确认点F的坐标.【详解】解:(1)如图所示:平移线段AB ,使A 点平移到C 点,可以知道A 点是向右平移5个单位,再向下平移5个单位,根据题意可知,B 点(-3,1)平移到D 点,故可以确定点D 的坐标. 点D 的坐标为()2,4-; (2)如图所示:根据题意,AE 是线段AB 围绕点A 逆时针旋转90°得到,故AB=AE ,不难算出点E 的坐标为(3,3).连接BE ,根据B 、C 、E 三点坐标算出BC=5210、BE=10,故222BE EC BC +=,可以判断出△BEC 为直角三角形. 故5cos 5BCE EC BC ==∠ (3)如图所示:过A 点做y 轴的对称点A’,连接A’B ,与y 轴的交点即为F 点.故可知A’的坐标为(1,5),点B 的坐标为(-3,1),设A ’B 的函数解析式为y=kx+b ,将(1,5),(-3,1)代入函数解析中解得k=1,b=4,则函数解析式为y=x+4,则F 点坐标为(0,4), 故点F 的坐标为(0,4).【点睛】(1)本题主要考查平移,洞察点A 是如何平移到点C ,是求出D 点坐标的关键.(2)连接BE ,根据B 、C 、E 三点坐标判断出△BCE 是直角三角形,就不难算出cos BCE ∠的值.(3)本题通过做A 点的对称点A’,连接A’B ,找到A’B 与y 轴的交点F 是解答本题的关键. 21.已知关于x 的一元二次方程()22121202x k x k -++-=. (1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根1x ,2x 满足123x x -=,求k 的值. 【答案】(1)见解析 (2)0,-2 【解析】 【分析】(1)根据根的判别式即可求证出答案;(2)可以根据一元二次方程根与系数的关系得k 与的1x 、2x 的关系式,进一步可以求出答案. 【详解】(1)证明:∵()222121422492k k k k ⎛⎫∆=+-⨯-=++ ⎪⎝⎭()2217k =++, ∵无论k 为何实数,()2210k +≥, ∴()22170k +∆=+>,∴无论k 为何实数,方程总有两个不相等的实数根; (2)由一元二次方程根与系数的关系得:1221x x k +=+,212122x x k =-,∵123x x -=, ∴()2129x x -=, ∴()2121249x x x x +-=, ∴()221214292k k ⎛⎫+-⨯-=⎪⎝⎭,化简得:220k k +=, 解得0k =,2-.【点睛】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题.22.某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品.已知1kg 乙产品的售价比1kg 甲产品的售价多5元,1kg 丙产品的售价是1kg 甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg ,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg 农产品最少要花费多少元?【答案】(1)甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)按此方案购买40kg 农产品最少要花费300元. 【解析】 【分析】(1)设1kg 甲产品的售价为x 元,先表示出1kg 乙产品的售价和1kg 丙产品的售价,再根据“用270元购买丙产品的数量是用60元购买乙产品数量的3倍”建立方程,然后求解即可得;(2)设40kg 的甲、乙、丙三种农产品搭配中,丙种农产品有mkg ,先求出乙种农产品的数量和甲种农产品的数量,再根据题干三种农产品间的数量关系列出不等式求出m 的取值范围,然后根据(1)的结论得出所需费用关于m 的函数关系式,最后利用一次函数的性质即可得.【详解】(1)设1kg 甲产品的售价为x 元,则1kg 乙产品的售价为()5+x 元,1kg 丙产品的售价为3x 元 由题意得:27060335x x =⨯+ 解得:5x =经检验,5x =是所列分式方程的解,也符合题意 则510+=x ,315x =答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg 的甲、乙、丙三种农产品搭配中,丙种农产品有mkg ,则乙种农产品有2mkg ,甲种农产品有()403m kg -由题意得:40332m m m -+≤⨯ 解得5m ≥设按此销售方案购买40kg 农产品所需费用y 元 则()54031021520200y m m m m =-+⨯+=+ ∵在5m ≥范围内,y 随m 的增大而增大∴当5m =时,y 取得最小值,最小值为205200300⨯+=(元) 答:按此方案购买40kg 农产品最少要花费300元.【点睛】本题考查了分式方程的实际应用、一次函数的实际应用、一元一次不等式的应用等知识点,依据题意,正确列出方程和函数的解析式是解题关键. 23.已知ABC 内接于O ,AB AC =,ABC ∠的平分线与O 交于点D ,与AC 交于点E ,连接CD并延长与O 过点A 的切线交于点F ,记BAC α∠=.(1)如图1,若60α=︒, ①直接写出DF DC的值为______;②当O 的半径为2时,直接写出图中阴影部分的面积为______;(2)如图2,若60α<︒,且23DF DC =,4DE =,求BE 的长.【答案】(1)①12; ②33223π- ;(2)5 【解析】 【分析】(1)①连接AD ,连接AO 并延长交BC 于H 点,根据题意先证明△ABC 是等边三角形,再得到∠AFD 为直角,利用含30°的直角三角形即可求解;②根据割补法即可求解阴影部分面积; (2)连接AD ,连接AO 并延长交O 于点H ,连接DH ,根据题意先证明ADF ADE ≌,得到4DF DE ==,再求出6DC =,根据DCE DBC △△∽,得到CD DEDB CD=,即可求出BD ,从而求出BE 的长.【详解】解:(1)①60BAC α∠==︒,AB AC = ∴△ABC 是等边三角形, ∵BD 平分∠ABC , ∴∠DBC=12∠ABC=30°, ∵∠BDC=∠BAC=60°∴∠BCD=180°-∠DBC-∠BDC=90° ∴BD 是直径, ∴∠BAD=90°,CD=AD连接AO 并延长交BC 于H 点, ∵AO=BO∴∠BAH=∠ABO=30°,∴∠AHB=180°-∠BAH-∠ABC=90° ∴AH ⊥BC ∵AF 是O 的切线∴AF ⊥AH∴四边形AHCF 是矩形 ∴AF ⊥CF∵∠ADB=∠BDC=60°∴∠ADF=180°-∠ADB-∠BDC=60° ∴∠FAD=90°-∠ADF=30°∴12DF DF DC AD ==; ②∵半径为2, ∴AO=OD=2, ∵∠DBC=30°,∴CD=12BD=2=AD , ∴DF=12AD=1,∴AF=2222213AD DF -=-=,∵∠AOB=180°-2∠ABO=120°, ∴∠AOD=180°-∠AOB=60°, ∴221601602332()(21)3236023603AODF AODAO S S S AO DF AF πππ⋅⋅⋅⋅=-=+⋅-=⨯+⨯-=-梯形扇形阴影﹔故答案为:①12; ②33223π-;(2)如图,连接AD ,连接AO 并延长交O 于点H ,连接DH ,则90ADH ∠=︒,∴90DAH DHA ∠+∠=︒. ∵AF 与O 相切,∴90DAH DAF FAO ∠+∠=∠=︒. ∴DAF DHA ∠=∠. ∵BD 平分ABC ∠, ∴ABD CBD ∠=∠. ∴DHA DAC ∠=∠, ∴DAF DAC ∠=∠. ∵AB AC =,∴A ABC CB =∠∠. ∵四边形ABCD 内接于O ,∴180ABC ADC ∠+∠=︒. 又∵180ADF ADC ∠∠=+︒, ∴ADF ABC ∠=∠.又∵ADB ACB ABC ∠=∠=∠, ∴ADF ADB ∠=∠. 又∵AD 公共,∴()ASA ADF ADE ≌△△, ∴4DF DE ==. ∵23DF DC =, ∴6DC =.∵DCE ABD DBC ∠=∠=∠,CDE ∠公共, ∴DCE DBC △△∽. ∴CD DE DB CD=,即646DB =, ∴9DB =.∴5BE DB DE =-=.【点睛】此题主要考查切线的判定与性质综合,解题的关键是熟知切线的性质、等边三角形的判定与性质及相似三角形的判定与性质.24.在平面直角坐标系中,已知抛物线()24460y ax ax a a =++->与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)当6a =时,直接写出点A ,B ,C ,D 的坐标:A ______,B ______,C ______,D ______;(2)如图1,直线DC 交x 轴于点E ,若4tan 3AED =∠,求a 的值和CE 的长;(3)如图2,在(2)的条件下,若点N 为OC 的中点,动点P 在第三象限的抛物线上,过点P 作x 轴的垂线,垂足为Q ,交AN 于点F ;过点F 作FH DE ⊥,垂足为H .设点P 的横坐标为t ,记f FP FH =+. ①用含t 的代数式表示f ;②设()50t m m -<≤<,求f 的最大值.【答案】(1)()3,0-,()1,0-,()0,18,()2,6--;(2)23;256;(3)①228433f t t =--+;②263.【解析】 【分析】(1)求出0y =时,x 的值可得点A 、B 的坐标,求出0x =时,y 的值可得点C 的坐标,将二次函数的解析式化为顶点式即可得点D 的坐标;(2)先求出顶点D 的坐标,从而可得DK 、OK 的长,再利用正切三角函数可得EK 、OE 、OC 的长,从而可得出点C 的坐标,然后将点C 的坐标代入二次函数的解析式可得a 的值,利用勾股定理可求出CE 的长; (3)①如图,先利用待定系数法求出直线AN 的解析式,从而可得点F 的坐标,由此可得出PF 的长,再利用待定系数法求出直线CE 的解析式,从而可得点J 的坐标,由此可得出FJ 的长,然后根据相似三角形的判定与性质可得FH FJOE CE=,从而可得FH 的长,最后根据f 的定义即可得; ②先将f 的表达式化为顶点式,从而得出其增减性,再利用二次函数的性质即可得. 【详解】(1)当6a =时,262418y x x =++当0y =时,2624180x x ++=,解得1x =-或3x =- 则点A 的坐标为(3,0)A -,点B 的坐标为(1,0)B - 当0x =时,18y = 则点C 的坐标为(0,18)C中考数学将262418y x x =++化成顶点式为26()62y x =+- 则点D 的坐标为(2,6)D --故答案为:()3,0-,()1,0-,()0,18,()2,6--; (2)如图,作DK x ⊥轴于点K将2446y ax ax a =++-化成顶点式为2(2)6y a x =+- 则顶点D 的坐标为(2,6)D -- ∴6DK =,2OK = 在Rt DKE 中,tan DK AED EK ∠=,即643EK = 解得92EK =95222K OE EK O =--=∴= 在Rt COE △中,tan OC AED OE=∠,即4532OC =解得103OC =10(0,)3C ∴-,2222105()()32256CE OC OE =+=+= 将点10(0,)3C -代入2446y ax ax a =++-得:10463a -=- 解得23a =;(3)①如图,作FP 与ED 的延长线交于点J 由(2)可知,23a =,100,3C ⎛⎫- ⎪⎝⎭中考数学∴22810333y x x =+- 当0y =时,228100333x x +-=,解得5x =-或1x = ∴()5,0A -,()10B , N 为OC 的中点∴50,3N ⎛⎫- ⎪⎝⎭设直线AN 的解析式为11y k x b =+将点()5,0A -,50,3N ⎛⎫- ⎪⎝⎭代入得:1115053k b b -+=⎧⎪⎨=-⎪⎩,解得111353k b ⎧=-⎪⎪⎨⎪=-⎪⎩则直线AN 的解析式为1533y x =-- ∵22810,333P t t t ⎛⎫+-⎪⎝⎭∴15,33F t t ⎛⎫-- ⎪⎝⎭∴2215281025()33333333PF t t t t t =---+-=--+ 由(2)知,25OE =∴5,02E ⎛⎫ ⎪⎝⎭,100,3C ⎛⎫- ⎪⎝⎭设直线CE 的解析式为22y k x b =+将点5,02E ⎛⎫ ⎪⎝⎭,100,3C ⎛⎫- ⎪⎝⎭代入得:222502103k b b ⎧+=⎪⎪⎨⎪=-⎪⎩,解得2243103k b ⎧=⎪⎪⎨⎪=-⎪⎩则直线CE 的解析式为41033y x =- ∴410,33J t t ⎛⎫-⎪⎝⎭中考数学∴1541055()333333FJ t t t =----=-+ ∵FH DE ⊥,//JF y 轴∴90FHJ EOC ∠=∠=︒,FJH ECO ∠=∠ ∴FJH ECO ~∴FH FJOE CE=,即553226535t FH -+= 解得1FH t =-+∴()2253133f PF FH t t t =+=--++-+ 即228433f t t =--+; ②将228433f t t =--+化成顶点式为()2226333t f =-++由二次函数的性质可知,当3t <-时,f 随t 的增大而增大;当3t ≥-时,f 随t 的增大而减小()50t m m -<≤< 50m ∴-<<因此,分以下两种情况: 当53m -<<-时在5t m -<≤内,f 随t 的增大而增大 则当t m =时,f 取得最大值,最大值为()2226333m -++ 又当53m -<<-时,()20233m -+< ()2226263333m -++<∴ 当30m -≤<时在53t -<<-内,f 随t 的增大而增大;在3t m -≤≤内,f 随t 的增大而减小 则当3t =-时,f 取得最大值,最大值为263综上,f 的最大值为263.中考数学【点睛】本题考查了利用待定系数法求二次函数的表达式、二次函数的图象与性质、正切三角函数、相似三角形的判定与性质等知识点,较难的是题(3)①,通过作辅助线,构造相似三角形求出FH的长是解题关键.。

湖北省孝感市2020年数学中考试题及答案

湖北省孝感市2020年数学中考试题及答案
解得:
经检验, 是所列分式方程的解,也符合题意
则 ,
答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;
(2)设 的甲、乙、丙三种农产品搭配中,丙种农产品有 ,则乙种农产品有 ,甲种农产品有
由题意得:
解得
设按此销售方案购买 农产品所需费用 元

∵在 范围内, 随 的增大而增大
∴当 时, 取得最小值,最小值为 (元)
(1)随机抽取一张卡片,则抽取到 数是偶数的概率为______;
(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.
20.如图,在平面直角坐标系中,已知点 , 和 ,请按下列要求画图并填空.
(1)平移线段 ,使点 平移到点 ,画出平移后所得的线段 ,并写出点 的坐标为______;
答:按此方案购买 农产品最少要花费300元.
23.解:(1)① ,
∴△ABC是等边三角形,
∵BD平分∠ABC,
∴∠DBC= ∠ABC=30°,
∵∠BDC=∠BAC=60°
∴∠BCD=180°-∠DBC-∠BDC=90°
∴BD是直径,
∴∠BAD=90°,CD=AD
连接AO并延长交BC于H点,
∵AO=BO
该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.
15.如图1,四个全等 直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为 ,空白部分的面积为 ,大正方形的边长为 ,小正方形的边长为 ,若 ,则 的值为______.

2020年孝感市中考数学试题、试卷(解析版)

2020年孝感市中考数学试题、试卷(解析版)

2020年孝感市中考数学试题、试卷(解析版)一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)(2020•孝感)如果温度上升3℃,记作+3℃,那么温度下降2℃记作( )A .﹣2℃B .+2℃C .+3℃D .﹣3℃2.(3分)(2020•孝感)如图,直线AB ,CD 相交于点O ,OE ⊥CD ,垂足为点O .若∠BOE=40°,则∠AOC 的度数为( )A .40°B .50°C .60°D .140°3.(3分)(2020•孝感)下列计算正确的是( )A .2a +3b =5abB .(3ab )2=9ab 2C .2a •3b =6abD .2ab 2÷b =2b4.(3分)(2020•孝感)如图是由5个相同的正方体组成的几何体,则它的左视图是( )A .B .C .D .5.(3分)(2020•孝感)某公司有10名员工,每人年收入数据如下表:年收入/万元4 6 8 10 人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为( )A .4,6B .6,6C .4,5D .6,56.(3分)(2020•孝感)已知x =√5−1,y =√5+1,那么代数式x 3−xy 2x(x−y)的值是( ) A .2 B .√5 C .4D .2√57.(3分)(2020•孝感)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=24R B.I=36R C.I=48R D.I=64R8.(3分)(2020•孝感)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+29.(3分)(2020•孝感)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH 的面积为y,则y关于x的函数图象大致是()A.B.C .D .10.(3分)(2020•孝感)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( )A .54B .154C .4D .92 二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)(2020•孝感)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为 .12.(3分)(2020•孝感)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是 .13.(3分)(2020•孝感)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为m .(结果保留根号)14.(3分)(2020•孝感)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C类:10分钟<总时长≤15分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有人.15.(3分)(2020•孝感)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则nm的值为.16.(3分)(2020•孝感)如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=4x和y=kx(k<0)上,ACBD=23,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(6分)(2020•孝感)计算:√−83+|√3−1|﹣2sin60°+(14)0. 18.(8分)(2020•孝感)如图,在▱ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE =DF .连接EF ,分别与BC ,AD 交于点G ,H .求证:EG =FH .19.(7分)(2020•孝感)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为 ;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20.(8分)(2020•孝感)如图,在平面直角坐标系中,已知点A (﹣1,5),B (﹣3,1)和C (4,0),请按下列要求画图并填空.(1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为 ;(2)将线段AB 绕点A 逆时针旋转90°,画出旋转后所得的线段AE ,并直接写出cos ∠BCE 的值为 ;(3)在y 轴上找出点F ,使△ABF 的周长最小,并直接写出点F 的坐标为 .21.(10分)(2020•孝感)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0.(1)求证:无论k 为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值.22.(10分)(2020•孝感)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg 乙产品的售价比1kg 甲产品的售价多5元,1kg 丙产品的售价是1kg 甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg ,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg 农产品最少要花费多少元?23.(10分)(2020•孝感)已知△ABC 内接于⊙O ,AB =AC ,∠ABC 的平分线与⊙O 交于点D ,与AC 交于点E ,连接CD 并延长与⊙O 过点A 的切线交于点F ,记∠BAC =α.(1)如图1,若α=60°,①直接写出DF DC 的值为 ;②当⊙O 的半径为2时,直接写出图中阴影部分的面积为 ;(2)如图2,若α<60°,且DF DC =23,DE =4,求BE 的长.24.(13分)(2020•孝感)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A,B,C,D;(2)如图1,直线DC交x轴于点E,若tan∠AED=43,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P 的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.2020年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)(2020•孝感)如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃【解答】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作﹣2℃.故选:A.2.(3分)(2020•孝感)如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE =40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°﹣40°=50°,∴∠AOC=∠BOD=50°.故选:B.3.(3分)(2020•孝感)下列计算正确的是()A.2a+3b=5ab B.(3ab)2=9ab2C.2a•3b=6ab D.2ab2÷b=2b【解答】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a•3b=6ab,因此选项C符合题意;2ab 2÷b =2ab ,因此选项D 不符合题意;故选:C .4.(3分)(2020•孝感)如图是由5个相同的正方体组成的几何体,则它的左视图是( )A .B .C .D .【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C 的图形符合题意,故选:C .5.(3分)(2020•孝感)某公司有10名员工,每人年收入数据如下表:年收入/万元4 6 8 10 人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为( )A .4,6B .6,6C .4,5D .6,5【解答】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6, 将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6, 故选:B .6.(3分)(2020•孝感)已知x =√5−1,y =√5+1,那么代数式x 3−xy 2x(x−y)的值是( ) A .2B .√5C .4D .2√5【解答】解:原式=x(x+y)(x−y)x(x−y) =x +y当x =√5−1,y =√5+1,原式=√5−1+√5+1=2√5.故选:D .7.(3分)(2020•孝感)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=24R B.I=36R C.I=48R D.I=64R【解答】解:设I=KR,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I=48 R.故选:C.8.(3分)(2020•孝感)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+2【解答】解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,﹣2),∴抛物线C3的解析式为y=﹣x2﹣2,故选:A.9.(3分)(2020•孝感)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH 的面积为y,则y关于x的函数图象大致是()A.B.C.D.【解答】解:①当点P在AB上运动时,y=12AH×PH=12×AP sin A×AP cos A=12×x2×√34=√38x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH ′=AB sin A =4×12=2,同理AH ′=2√3, 则y =12×AH ×PH =12(2√3+x ﹣4)×2=2√3−4+x ,为一次函数; ③当点P 在CD 上运动时,同理可得:y =12×(2√3+6)×(4+6+2﹣x )=(3+√3)(12﹣x ),为一次函数; 故选:D .10.(3分)(2020•孝感)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( )A .54B .154C .4D .92【解答】解:如图所示,连接EG ,由旋转可得,△ADE ≌△ABF , ∴AE =AF ,DE =BF , 又∵AG ⊥EF , ∴H 为EF 的中点, ∴AG 垂直平分EF , ∴EG =FG ,设CE =x ,则DE =5﹣x =BF ,FG =8﹣x , ∴EG =8﹣x , ∵∠C =90°,∴Rt △CEG 中,CE 2+CG 2=EG 2,即x 2+22=(8﹣x )2,解得x =154, ∴CE 的长为154,故选:B .二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)(2020•孝感)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为 1×106 . 【解答】解:100万=1000000=1×106, 故答案:1×106.12.(3分)(2020•孝感)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是 ﹣81 . 【解答】解:设这三个数中的第一个数为x ,则另外两个数分别为﹣3x ,9x , 依题意,得:x ﹣3x +9x =﹣567, 解得:x =﹣81. 故答案为:﹣81.13.(3分)(2020•孝感)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为 (53√3−1.6)m .(结果保留根号)【解答】解:如图,在Rt △DEA 中,∵cos ∠EDA =DEDA , ∴DA =5cos45°=5√2(m ); 在Rt △BCF 中,∵cos ∠BCF =CFCB , ∴CB =5cos30°=10√33(m ),∴BF =12BC =5√33(m ), ∵AB +AE =EF +BF ,∴AB =3.4+5√33−5=5√33−1.6(m ). 答:AB 的长为(53√3−1.6)m .故答案为:(53√3−1.6),14.(3分)(2020•孝感)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A 类:总时长≤5分钟;B 类:5分钟<总时长≤10分钟;C 类:10分钟<总时长≤15分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有 336 人.【解答】解:本次抽取的学生有:10÷10%=100(人), B 类学生有:100﹣10﹣41﹣100×21%=28(人), 1200×28100=336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人, 故答案为:336.15.(3分)(2020•孝感)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S 1,空白部分的面积为S 2,大正方形的边长为m ,小正方形的边长为n ,若S 1=S 2,则nm的值为√3+12.【解答】解:设直角三角形另一条直角边为x ,依题意有 2x 2=12m 2, 解得x =12m ,由勾股定理得(12m )2+(n +12m )2=m 2,m 2﹣2mn ﹣2n 2=0,解得m 1=(﹣1−√3)n (舍去),m 2=(﹣1+√3)n , 则nm 的值为√3+12. 故答案为:√3+12. 16.(3分)(2020•孝感)如图,已知菱形ABCD 的对角线相交于坐标原点O ,四个顶点分别在双曲线y =4x 和y =kx (k <0)上,AC BD=23,平行于x 轴的直线与两双曲线分别交于点E ,F ,连接OE ,OF ,则△OEF 的面积为 132.【解答】解:作AM ⊥x 轴于M ,DN ⊥x 轴于N , ∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴∠AOM +∠DON =∠ODN +DON =90°, ∴∠AOM =∠ODN , ∵∠AMO =∠OND =90°,∴△AOM ∽△ODN , ∴S △AOM S △ODN=(OAOD)2,∵A 点在双曲线y =4x ,AC BD=23,∴S △AOM =12×4=2,OA OD =23, ∴2S △ODN=(23)2,∴S △ODN =92,∵D 点在双曲线y =k x(k <0)上, ∴12|k |=92,∴k =﹣9,∵平行于x 轴的直线与两双曲线分别交于点E ,F , ∴S △OEF =12×4+12×9=132, 故答案为132.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上) 17.(6分)(2020•孝感)计算:√−83+|√3−1|﹣2sin60°+(14)0.【解答】解:原式=﹣2+√3−1−√3+1 =﹣2.18.(8分)(2020•孝感)如图,在▱ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE =DF .连接EF ,分别与BC ,AD 交于点G ,H . 求证:EG =FH .【解答】证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∠ABC =∠CDA , ∴∠EBG =∠FDH ,∠E =∠F ,在△BEG 与△DFH 中,{∠E =∠FBE =DF ∠EBG =∠FDH ,∴△BEG ≌△DFH (ASA ), ∴EG =FH .19.(7分)(2020•孝感)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8. (1)随机抽取一张卡片,则抽取到的数是偶数的概率为12;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为24=12,故答案为:12;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种, ∴P (差的绝对值大于3)=616=38.20.(8分)(2020•孝感)如图,在平面直角坐标系中,已知点A (﹣1,5),B (﹣3,1)和C (4,0),请按下列要求画图并填空.(1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为 (2,﹣4) ;(2)将线段AB 绕点A 逆时针旋转90°,画出旋转后所得的线段AE ,并直接写出cos ∠BCE 的值为√55; (3)在y 轴上找出点F ,使△ABF 的周长最小,并直接写出点F 的坐标为 (0,4) .【解答】解:(1)如图所示,线段CD 即为所求,点D 的坐标为(2,﹣4); (2)如图所示,线段AE 即为所求,cos ∠BCE =CE BC =√1050=√55; (3)如图所示,点F 即为所求,点F 的坐标为(0,4).故答案为:(2,﹣4);√55;(0,4). 21.(10分)(2020•孝感)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0. (1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值.【解答】解:(1)∵△=[﹣(2k +1)]2﹣4×1×(12k 2﹣2)=4k 2+4k +1﹣2k 2+8 =2k 2+4k +9=2(k +1)2+7>0,∵无论k 为何实数,2(k +1)2≥0, ∴2(k +1)2+7>0,∴无论k 为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x 1+x 2=2k +1,x 1x 2=12k 2﹣2, ∵x 1﹣x 2=3, ∴(x 1﹣x 2)2=9, ∴(x 1+x 2)2﹣4x 1x 2=9, ∴(2k +1)2﹣4×(12k 2﹣2)=9,化简得k 2+2k =0, 解得k =0或k =﹣2.22.(10分)(2020•孝感)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg 乙产品的售价比1kg 甲产品的售价多5元,1kg 丙产品的售价是1kg 甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍. (1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg ,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg 农产品最少要花费多少元?【解答】解:(1)设1kg 甲产品的售价为x 元,则1kg 乙产品的售价为(x +5)元,1kg 丙产品的售价为3x 元,根据题意,得:2703x=60x+5×3,解得:x =5,经检验,x =5既符合方程,也符合题意, ∴x +5=10,3x =15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg 的甲、乙、丙三种农产品搭配中丙种产品有xkg ,则乙种产品有2mkg ,甲乙种产品有(40﹣3m )kg , ∴40﹣3m +m ≤2m ×3, ∴m ≥15,设按此方案购买40kg 农产品所需费用为y 元,根据题意,得: y =5(40﹣3m )+20m +15m =20m +200, ∵20>0,∴y 随m 的增大而增大,∴m =5时,y 取最小值,且y 最小=300,答:按此方案购买40kg 农产品最少要花费300元.23.(10分)(2020•孝感)已知△ABC 内接于⊙O ,AB =AC ,∠ABC 的平分线与⊙O 交于点D ,与AC 交于点E ,连接CD 并延长与⊙O 过点A 的切线交于点F ,记∠BAC =α. (1)如图1,若α=60°, ①直接写出DF DC的值为12;②当⊙O 的半径为2时,直接写出图中阴影部分的面积为 3√32−23π ;(2)如图2,若α<60°,且DF DC=23,DE =4,求BE 的长.【解答】解:(1)如图1,连接OA ,AD ,∵AF 是⊙O 的切线,∴∠OAF =90°,∵AB =AC ,∠BAC =60°,∴△ABC 是等边三角形,∴∠ABC =∠ACB =∠BAC =60°,∵BD 平分∠ABC ,∴∠ABD =∠CBD =30°,∵∠ADB =∠ACB =60°,∴∠BAD =90°,∴BD 是⊙O 的直径,∵OA =OB =OD ,∴∠ABO =∠OAB =30°,∠OAD =∠ADO =60°,∵∠BDC =∠BAC =60°,∴∠ADF =180°﹣60°﹣60°=60°=∠OAD ,∴OA ∥DF ,∴∠F =180°﹣∠OAF =90°,∵∠DAF =30°,∴AD =2DF ,∵∠ABD =∠CBD ,∴AD̂=CD ̂, ∴AD =CD ,∴CD =2DF ,∴DF DC =12,故答案为:12; ②∵⊙O 的半径为2,∴AD =OA =2,DF =1,∵∠AOD =60°,∴阴影部分的面积为:S 梯形AODF ﹣S 扇形OAD =12⋅AF ⋅(DF +OA)−60π×22360=12×√3(1+2)−60π×4360=3√32−23π;故答案为:3√32−23π; (2)如图2,连接AD ,连接AO 并延长交⊙O 于点H ,连接DH ,则∠ADH =90°,∴∠DAH +∠DHA =90°,∵AF 与⊙O 相切,∴∠DAH +∠DAF =∠F AO =90°,∴∠DAF =∠DHA ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵AD̂=CD ̂, ∴∠CAD =∠DHA =∠DAF ,∵AB =AC ,∴∠ABC =∠ACB ,∵四边形ABCD 内接于⊙O ,∴∠ABC +∠ADC =180°,∵∠ADF +∠ADC =180°,∴∠ADF =∠ABC ,∵∠ADB =∠ACB =∠ABC ,∴∠ADF =∠ADB ,在△ADF 和△ADE 中∵{∠DAF =∠DAE AD =AD ∠ADF =∠ADE,∴△ADF ≌△ADE (ASA ),∴DF =DE =4,∵DF DC =23, ∴DC =6,∵∠DCE =∠ABD =∠DBC ,∠CDE =∠CDE ,∴△CDE ∽△BDC ,∴CD DB =DE CD ,即6BD =46, ∴BD =9,∴BE =DB ﹣DE =9﹣5=5.24.(13分)(2020•孝感)在平面直角坐标系中,已知抛物线y =ax 2+4ax +4a ﹣6(a >0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)当a =6时,直接写出点A ,B ,C ,D 的坐标:A (﹣3,0) ,B (﹣1,0) ,C (0,18) ,D (﹣2,﹣6) ;(2)如图1,直线DC 交x 轴于点E ,若tan ∠AED =43,求a 的值和CE 的长;(3)如图2,在(2)的条件下,若点N 为OC 的中点,动点P 在第三象限的抛物线上,过点P 作x 轴的垂线,垂足为Q ,交AN 于点F ;过点F 作FH ⊥DE ,垂足为H .设点P 的横坐标为t ,记f =FP +FH .①用含t 的代数式表示f ;②设﹣5<t ≤m (m <0),求f 的最大值.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x=﹣2,故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);故答案为:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a﹣6),函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,令y=0,则x=3a−2,故点E(3a−2,0),则OE=3a−2,tan∠AED=OCOE=4a−63a−2=43,解得:a=23,故点C、E的坐标分别为(0,−103)、(52,0),则CE=√(103)2+(52)2=256;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y =23x 2+83x −103, 故点A 、C 的坐标分别为(﹣5,0)、(0,−103),则点N (0,−53),由点A 、N 的坐标得,直线AN 的表达式为:y =−13x −53; 设点P (t ,23t 2+83t −103),则点F (t ,−13t −53); 则PF =−23t 2﹣3t +53,由点E (52,0)、C 的坐标得,直线CE 的表达式为:y =43x −103, 则点J (t ,43t −103),故FJ =−53t +53, ∵FH ⊥DE ,JF ∥y 轴,故∠FHJ =∠EOC =90°,∠FJH =∠ECO ,∴△FJH ∽△ECO ,故FH OE =FJ CE , 则FH =OE CE×FJ =−t +1, f =PF +FH =−23t 2﹣3t +53+(﹣t +1)=−23t 2﹣4t +83;②f =−23t 2﹣4t +83=−23(t +3)2+263(﹣5<t ≤m 且m <0); ∴当﹣5<m <﹣3时,f max =−23m 2﹣4m +83;当﹣3≤m <0时,f max =263.。

2020年湖北孝感中考数学试卷(解析版)

2020年湖北孝感中考数学试卷(解析版)

2020年湖北孝感中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)1.如果温度上升,记作,那么温度下降记作( ).A. B. C. D.2.如图,直线,相交于点,,垂足为点,若,则的度数为( ).A. B. C. D.3.下列计算正确的是( ).A. B. C. D.4.如图是由个相同的正方体组成的几何体,则它的左视图是( ).主视方向A.B.C.D.5.某公司有名员工,每人年收入数据如下表:年收入/万元人数/人则他们年收入数据的众数与中位数分别为( ).A.,B.,C.,D.,6.已知,,那么代数式的值是( ).A.B.C.D.7.已知蓄电池的电压为定值,使用蓄电池时,电流(单位:)与电阻(单位: )是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为( ).A.C.D.8.将抛物线:向左平移个单位长度,得到抛物线,抛物线与抛物线关于轴对称,则抛物线的解析式为( ).A.B.C.D.9.如图,在四边形中,,,,,.动点沿路径从点出发,以每秒个单位长度的速度向点运动.过点作,垂足为.设点运动的时间为(单位:),的面积为,则关于的函数图象大致是( ).A.B.C.D.10.如图,点在正方形的边上,将绕点顺时针旋转到的位置,连接,过点作的垂线,垂足为点,与交于点.若,,则的长为().A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到万年以上误差不超过秒.数据万用科学记数法表示为 .12.有一列数,按一定的规律排列成,,,,,,.若其中某三个相邻数的和是,则这三个数中第一个数是 .13.某型号飞机的机翼形状如图所示,根据图中数据计算的长为 .(结果保留根号)14.在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(类:总时长分钟;类:分钟总时长分钟;类:分钟总时长分钟;类:总时长分钟),将调查所得数据整理并绘制成如下两幅不完整的统计图.人数类别该校共有名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过分钟且不超过分钟的学生约有 人.图图15.如图,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,在此图形中连接四条线段得到如图的图案,记阴影部分的面积为,空白部分的面积为,大正方形的边长为,小正方形的边长为,若,则的值为 .16.如图,已知菱形的对角线相交于坐标原点,四个顶点分别在双曲线和上,.平行于轴的直线与两双曲线分别交于点,,连接,,则的面积为 .xyO三、解答题(本大题共8小题,共72分)17.计算:.18.如图,在平行四边形中,点在的延长线上,点在的延长线上,满足.连接,分别与,交于点,.求证:.(1)(2)19.有张看上去无差别的卡片,上面分别写有数,,,.随机抽取一张卡片,则抽取到的数是偶数的概率为 .随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于的概率.(1)(2)(3)20.如图,在平面直角坐标系中,已知点,和,请按下列要求画图并填空.x–6–5–4–3–2–11234567y7–6–5–4–3–2–1123456平移线段,使点平移到点,画出平移后所得的线段,并写出点的坐标为 .将线段绕点逆时针旋转,画出旋转后所得的线段,并直接写出的值为 .在轴上找出点,使的周长最小,并直接写出点的坐标为 .(1)(2)21.已知关于的一元二次方程.求证:无论为何实数,方程总有两个不相等的实数根.若方程的两个实数根,,满足,求的值.(1)(2)22.某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品.已知乙产品的售价比甲产品的售价多元,丙产品的售价是甲产品售价的倍,用元购买丙产品的数量是用元购买乙产品数量的倍.求甲、乙、丙三种农产品每千克的售价分别是多少元?电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共,其中乙产品的数量是丙产品数量的倍,且甲、丙两种产品数量之和不超过乙产品数量的倍.请你帮忙计算,按此方案购买农产品最少要花费多少元?12(1)(2)23.已知内接于⊙,,的平分线与⊙交于点,与交于点,连接并延长与⊙过点的切线交于点,记.如图,若.图直接写出的值为 .当⊙的半径为时,直接写出图中阴影部分的面积为 .如图,若,且,,求的长.图(1)(2)1(3)24.在平面直角坐标系中,已知抛物线与轴交于,两点(点在点的左侧),与轴交于点,顶点为点.当时,直接写出点,,,的坐标: , ,,.如图,直线交轴于点,若,求的值和的长.图如图,在()的条件下,若点为的中点,动点在第三象限的抛物线上,过点作轴的垂线,垂足为,交于点;过点作,垂足为.设点的横坐标为,记.图用含的代数式表示.【答案】解析:温度上升为“”,温度下降为“”,故温度下降为.故选.解析:∵,∴,∵,,∴.故选.解析:左视图指从左侧所看到的视图,故第列有个,第列有个小正方形,故选.2设,求的最大值.A1.B2.C3.C4.B5.数据从小到大排序为:、、、、、、、、,∴众数为:,中位数为:.解析:原式,∵,,∴原式,故选:.解析:设反比例函数解析式为,由图象可得点在反比例函数图象上,将,代入解析式,得,解得,故反比例函数解析式为.故选.解析:由题知,∵与关于轴对称,∴,即.故选.、D 6.C 7.A 8.解析:①当点在上时,即时,在中,,,∴,,∴,即,且当时,.②当点在上时,即时,如图,过点作于,在中,,,∴,∴,,∵,∴,∴,∴,∴,即,且当时,.③当点在上时,即时,点和点重合,∴,∵,∴,∴,∴,即,且当时,.故选.解析:连接,由旋转性质可知≌,∴,,∵,∴垂直平分,∴,∵,,∴,∵四边形是正方形,∴,,设,则,∴,在中,,∴解得,∴.故选.解析:万用科学记数法表示为:.B10.11.12.解析:设这三个数中第一个数是,则第二个数是,第三个数是,∴.故答案为:.13.解析:如下图所示,延长作交延长线于点,作交延长线于点,、交于点.则,∵,,∴为等腰直角三角形,∴,又∵,,∴为等腰直角三角形,∴,又∵,,∴为等腰直角三角形,则,∴,,∴.14.解析:抽样调查中,类的人数为人,占比为,∴抽样调查的总人数为:人,∴类占比:,∴类占比:,∴样本估量总体,全校做眼保健操总时长超过分钟且不超过分钟的学生约有人.解析:由题意得,,设,,∴,,∴,∴,∴..∵,∴,,,15.正方形,∴,,∴.16.解析:过点作轴于点,过点作轴于点,设于轴相交于点,yxO∵四边形是菱形,∴菱形的对角线与垂直且互相平分,即,是、的中点,∴,,∴,∵,,∴,∴,∴,∵,∴,而,∴,∵,即,∵平行于轴,∴与都是直角三角形,∴(1)(2).故的面积为.解析:.解析:∵四边形为平行四边形,∴,,∴,.在和中,,∴≌.∴.解析:随机抽取张卡片,有四种等可能的结果,其中是偶数的结果有两种,所以抽取到的数是偶数的概率.列表如下:.17.证明见解析.18.(1)(2).19.(1)(2)第次第次∵差的绝对值有种可能,绝对值大于的有种可能,∴差的绝对值大于的概率.解析:由、两点位置可知:点向右平移了五个单位,再向下平移了五个单位得到点,故点也需向右平移个单位,再向下平移个单位得到点,然后连结即可,故,,即.x –6–5–4–3–2–1123456y –6–5–4–3–2–1123456将绕点逆时针旋转可得,如图所示,连结,,因为,,所以,又因为,(1)画图见解析,.(2)画图见解析,.(3)画图见解析,.20.(3)(1),故可得,所以为直角三角形,故.x –6–5–4–3–2–1123456y –6–5–4–3–2–1123456O 作点(或点)关于轴的对称点(或),然后连接(或), (或)与轴的交点即为点,观察可得,,此时的周长最小.x –6–5–4–3–2–11234567y –6–5–4–3–2–1123456O 解析:,∵无论为何实数,,∴,∴无论为何实数,方程总有两个不相等的实数根.(1)证明见解析.(2)或.21.(2)(1)(2)由一元二次方程根与系数的关系得:,,∵,∴,∴,∴,化简得:,解得或.解析:设甲产品的售价为元,则乙产品的售价为元,丙产品的售价为元,由题意有:.解得:.经检验,既符合方程,也符合题意.∴,.故:甲、乙、丙三种农产品每千克的售价分别是元、元、元.设的甲、乙、丙三种农产品搭配中丙种农产品有,则乙种农产品有,甲种农产品有,∴,∴.设按此销售方案购买农产品所需费用元,则.∵随的增大而增大,∴当时,取最小值,且.故:按此方案购买农产品最少要花费元.(1)元、元、元.(2)元.22.最小12(1)(2).23.12(1)解析:如图,连接,,∵平分,∴,∵,,∴是等边三角形,∴,∵是直径,∴,∴,∴,∵是⊙的切线,∴,又∵,∴,∴,∴.又∵,∴.连接,∵点是的中点,∴,∵,,∴,(2)∴,又∵,∴四边形是平行四边形,∴,∴,∴,,,,,.如图,连接,连接并延长交⊙于点,连接,则,∴.∵与⊙相切,∴.∴.∵平分,∴.∴,∴.∵,.∵四边形内接于⊙,∴.又∵,∴.又∵,扇形扇形阴扇形扇形阴(1)(2)∴.又∵公共,∴≌,∴.∵,∴.∵,公共,∴.∴,即,∴.∴.解析:当时,,令,解得,,∴,,当时,,∴,∴,∴.如图,作轴于点.图(1); ; ; (2),.12(3)..24.1(3)在和中,∵,,∴,,,,∴,∴,∴.如图,作与的延长线交于点.图∵,∴,∴,,∴,∵,,∴,∵,∴,∴,∵,,∴,∴,∴,∵,轴,∴,.∴,∴,2∴,∴,∴.∵,,∴当时,,当时,.最大最大。

2020湖北省孝感市中考数学试卷及答案解析

2020湖北省孝感市中考数学试卷及答案解析

2020年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)如果温度上升3℃,记作+3℃,那么温度下降2℃记作( )A .﹣2℃B .+2℃C .+3℃D .﹣3℃2.(3分)如图,直线AB ,CD 相交于点O ,OE ⊥CD ,垂足为点O .若∠BOE =40°,则∠AOC 的度数为( )A .40°B .50°C .60°D .140°3.(3分)下列计算正确的是( )A .2a +3b =5abB .(3ab )2=9ab 2C .2a •3b =6abD .2ab 2÷b =2b4.(3分)如图是由5个相同的正方体组成的几何体,则它的左视图是( )A .B .C .D .5.(3分)某公司有10名员工,每人年收入数据如下表:年收入/万元 4 6 8 10人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为( )A .4,6B .6,6C .4,5D .6,56.(3分)已知x =√5−1,y =√5+1,那么代数式x 3−xy 2x(x−y)的值是( )A .2B .√5C .4D .2√57.(3分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=24R B.I=36R C.I=48R D.I=64R8.(3分)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+29.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P 作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C .D .10.(3分)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( )A .54B .154C .4D .92 二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为 .12.(3分)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是 .13.(3分)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为 m .(结果保留根号)14.(3分)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C类:10分钟<总时长≤15分钟;D类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有人.15.(3分)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则nm的值为.16.(3分)如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=4 x和y=kx(k<0)上,ACBD=23,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(6分)计算:√−83+|√3−1|﹣2sin60°+(14)0. 18.(8分)如图,在▱ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE=DF .连接EF ,分别与BC ,AD 交于点G ,H .求证:EG =FH .19.(7分)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为 ;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20.(8分)如图,在平面直角坐标系中,已知点A (﹣1,5),B (﹣3,1)和C (4,0),请按下列要求画图并填空.(1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为 ;(2)将线段AB 绕点A 逆时针旋转90°,画出旋转后所得的线段AE ,并直接写出cos ∠BCE 的值为 ;(3)在y 轴上找出点F ,使△ABF 的周长最小,并直接写出点F 的坐标为 .21.(10分)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0.(1)求证:无论k 为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值.22.(10分)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg 乙产品的售价比1kg 甲产品的售价多5元,1kg 丙产品的售价是1kg 甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg ,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg 农产品最少要花费多少元?23.(10分)已知△ABC 内接于⊙O ,AB =AC ,∠ABC 的平分线与⊙O 交于点D ,与AC 交于点E ,连接CD 并延长与⊙O 过点A 的切线交于点F ,记∠BAC =α.(1)如图1,若α=60°,①直接写出DF DC 的值为 ;②当⊙O 的半径为2时,直接写出图中阴影部分的面积为 ;(2)如图2,若α<60°,且DF DC =23,DE =4,求BE 的长.24.(13分)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A,B,C,D;(2)如图1,直线DC交x轴于点E,若tan∠AED=43,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P 的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.2020年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃【解答】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作﹣2℃.故选:A.2.(3分)如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°﹣40°=50°,∴∠AOC=∠BOD=50°.故选:B.3.(3分)下列计算正确的是()A.2a+3b=5ab B.(3ab)2=9ab2C.2a•3b=6ab D.2ab2÷b=2b【解答】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a•3b=6ab,因此选项C符合题意;2ab 2÷b =2ab ,因此选项D 不符合题意;故选:C .4.(3分)如图是由5个相同的正方体组成的几何体,则它的左视图是( )A .B .C .D .【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C 的图形符合题意,故选:C .5.(3分)某公司有10名员工,每人年收入数据如下表:年收入/万元4 6 8 10 人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为( )A .4,6B .6,6C .4,5D .6,5【解答】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6, 将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6, 故选:B .6.(3分)已知x =√5−1,y =√5+1,那么代数式x 3−xy 2x(x−y)的值是( ) A .2B .√5C .4D .2√5 【解答】解:原式=x(x+y)(x−y)x(x−y) =x +y当x =√5−1,y =√5+1,原式=√5−1+√5+1=2√5.故选:D .7.(3分)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=24R B.I=36R C.I=48R D.I=64R【解答】解:设I=KR,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I=48 R.故选:C.8.(3分)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+2【解答】解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,﹣2),∴抛物线C3的解析式为y=﹣x2﹣2,故选:A.9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P 作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C.D.【解答】解:①当点P在AB上运动时,y=12AH×PH=12×AP sin A×AP cos A=12×x2×√34=√38x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=AB sin A=4×12=2,同理AH′=2√3,则y=12×AH×PH=12(2√3+x﹣4)×2=2√3−4+x,为一次函数;③当点P 在CD 上运动时,同理可得:y =12×(2√3+6)×(4+6+2﹣x )=(3+√3)(12﹣x ),为一次函数; 故选:D .10.(3分)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( )A .54B .154C .4D .92【解答】解:如图所示,连接EG ,由旋转可得,△ADE ≌△ABF , ∴AE =AF ,DE =BF , 又∵AG ⊥EF , ∴H 为EF 的中点, ∴AG 垂直平分EF , ∴EG =FG ,设CE =x ,则DE =5﹣x =BF ,FG =8﹣x , ∴EG =8﹣x , ∵∠C =90°,∴Rt △CEG 中,CE 2+CG 2=EG 2,即x 2+22=(8﹣x )2, 解得x =154, ∴CE 的长为154,故选:B .二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为 1×106 . 【解答】解:100万=1000000=1×106, 故答案:1×106.12.(3分)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是 ﹣81 .【解答】解:设这三个数中的第一个数为x ,则另外两个数分别为﹣3x ,9x , 依题意,得:x ﹣3x +9x =﹣567, 解得:x =﹣81. 故答案为:﹣81.13.(3分)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为 (53√3−1.6)m .(结果保留根号)【解答】解:如图,在Rt △DEA 中,∵cos ∠EDA =DE DA, ∴DA =5cos45°=5√2(m );在Rt △BCF 中,∵cos ∠BCF =CF CB , ∴CB =5cos30°=10√33(m ), ∴BF =12BC =5√33(m ), ∵AB +AE =EF +BF ,∴AB =3.4+5√33−5=5√33−1.6(m ). 答:AB 的长为(53√3−1.6)m .故答案为:(53√3−1.6),14.(3分)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A 类:总时长≤5分钟;B 类:5分钟<总时长≤10分钟;C 类:10分钟<总时长≤15分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有 336 人.【解答】解:本次抽取的学生有:10÷10%=100(人), B 类学生有:100﹣10﹣41﹣100×21%=28(人), 1200×28100=336(人), 即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人, 故答案为:336.15.(3分)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S 1,空白部分的面积为S 2,大正方形的边长为m ,小正方形的边长为n ,若S 1=S 2,则nm 的值为 √3+12.【解答】解:设直角三角形另一条直角边为x ,依题意有 2x 2=12m 2, 解得x =12m ,由勾股定理得(12m )2+(n +12m )2=m 2,m 2﹣2mn ﹣2n 2=0,解得m 1=(﹣1−√3)n (舍去),m 2=(﹣1+√3)n , 则nm 的值为√3+12. 故答案为:√3+12. 16.(3分)如图,已知菱形ABCD 的对角线相交于坐标原点O ,四个顶点分别在双曲线y =4x和y =kx(k <0)上,ACBD=23,平行于x 轴的直线与两双曲线分别交于点E ,F ,连接OE ,OF ,则△OEF 的面积为 132.【解答】解:作AM ⊥x 轴于M ,DN ⊥x 轴于N , ∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴∠AOM +∠DON =∠ODN +DON =90°, ∴∠AOM =∠ODN , ∵∠AMO =∠OND =90°, ∴△AOM ∽△ODN ,∴S △AOM S △ODN=(OAOD)2,∵A 点在双曲线y =4x ,AC BD=23,∴S △AOM =12×4=2,OA OD =23,∴2S △ODN=(23)2,∴S △ODN =92,∵D 点在双曲线y =k x(k <0)上, ∴12|k |=92,∴k =﹣9,∵平行于x 轴的直线与两双曲线分别交于点E ,F , ∴S △OEF =12×4+12×9=132, 故答案为132.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上) 17.(6分)计算:√−83+|√3−1|﹣2sin60°+(14)0.【解答】解:原式=﹣2+√3−1−√3+1 =﹣2.18.(8分)如图,在▱ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE =DF .连接EF ,分别与BC ,AD 交于点G ,H . 求证:EG =FH .【解答】证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∠ABC =∠CDA , ∴∠EBG =∠FDH ,∠E =∠F ,在△BEG 与△DFH 中,{∠E =∠FBE =DF ∠EBG =∠FDH ,∴△BEG ≌△DFH (ASA ), ∴EG =FH .19.(7分)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8. (1)随机抽取一张卡片,则抽取到的数是偶数的概率为12;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为24=12,故答案为:12;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种, ∴P (差的绝对值大于3)=616=38.20.(8分)如图,在平面直角坐标系中,已知点A (﹣1,5),B (﹣3,1)和C (4,0),请按下列要求画图并填空.(1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为 (2,﹣4) ;(2)将线段AB 绕点A 逆时针旋转90°,画出旋转后所得的线段AE ,并直接写出cos ∠BCE 的值为√55; (3)在y 轴上找出点F ,使△ABF 的周长最小,并直接写出点F 的坐标为 (0,4) .【解答】解:(1)如图所示,线段CD 即为所求,点D 的坐标为(2,﹣4); (2)如图所示,线段AE 即为所求,cos ∠BCE =CE BC =√1050=√55; (3)如图所示,点F 即为所求,点F 的坐标为(0,4).故答案为:(2,﹣4);√55;(0,4). 21.(10分)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0. (1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值.【解答】解:(1)∵△=[﹣(2k +1)]2﹣4×1×(12k 2﹣2)=4k 2+4k +1﹣2k 2+8 =2k 2+4k +9=2(k +1)2+7>0,∵无论k 为何实数,2(k +1)2≥0, ∴2(k +1)2+7>0,∴无论k 为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x 1+x 2=2k +1,x 1x 2=12k 2﹣2, ∵x 1﹣x 2=3, ∴(x 1﹣x 2)2=9, ∴(x 1+x 2)2﹣4x 1x 2=9, ∴(2k +1)2﹣4×(12k 2﹣2)=9,化简得k 2+2k =0, 解得k =0或k =﹣2.22.(10分)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg 乙产品的售价比1kg 甲产品的售价多5元,1kg 丙产品的售价是1kg 甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍. (1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg ,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg 农产品最少要花费多少元?【解答】解:(1)设1kg 甲产品的售价为x 元,则1kg 乙产品的售价为(x +5)元,1kg 丙产品的售价为3x 元,根据题意,得:2703x=60x+5×3,解得:x =5,经检验,x =5既符合方程,也符合题意, ∴x +5=10,3x =15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg 的甲、乙、丙三种农产品搭配中丙种产品有xkg ,则乙种产品有2mkg ,甲乙种产品有(40﹣3m )kg , ∴40﹣3m +m ≤2m ×3, ∴m ≥15,设按此方案购买40kg 农产品所需费用为y 元,根据题意,得: y =5(40﹣3m )+20m +15m =20m +200, ∵20>0,∴y 随m 的增大而增大,∴m =5时,y 取最小值,且y 最小=300,答:按此方案购买40kg 农产品最少要花费300元.23.(10分)已知△ABC 内接于⊙O ,AB =AC ,∠ABC 的平分线与⊙O 交于点D ,与AC 交于点E ,连接CD 并延长与⊙O 过点A 的切线交于点F ,记∠BAC =α. (1)如图1,若α=60°, ①直接写出DF DC的值为12;②当⊙O 的半径为2时,直接写出图中阴影部分的面积为 3√32−23π ;(2)如图2,若α<60°,且DF DC=23,DE =4,求BE 的长.【解答】解:(1)如图1,连接OA ,AD ,∵AF 是⊙O 的切线,∴∠OAF =90°,∵AB =AC ,∠BAC =60°,∴△ABC 是等边三角形,∴∠ABC =∠ACB =∠BAC =60°,∵BD 平分∠ABC ,∴∠ABD =∠CBD =30°,∵∠ADB =∠ACB =60°,∴∠BAD =90°,∴BD 是⊙O 的直径,∵OA =OB =OD ,∴∠ABO =∠OAB =30°,∠OAD =∠ADO =60°,∵∠BDC =∠BAC =60°,∴∠ADF =180°﹣60°﹣60°=60°=∠OAD ,∴OA ∥DF ,∴∠F =180°﹣∠OAF =90°,∵∠DAF =30°,∴AD =2DF ,∵∠ABD =∠CBD ,∴AD̂=CD ̂, ∴AD =CD ,∴CD =2DF ,∴DF DC =12,故答案为:12; ②∵⊙O 的半径为2,∴AD =OA =2,DF =1,∵∠AOD =60°,∴阴影部分的面积为:S 梯形AODF ﹣S 扇形OAD =12⋅AF ⋅(DF +OA)−60π×22360=12×√3(1+2)−60π×4360=3√32−23π;故答案为:3√32−23π; (2)如图2,连接AD ,连接AO 并延长交⊙O 于点H ,连接DH ,则∠ADH =90°,∴∠DAH +∠DHA =90°,∵AF 与⊙O 相切,∴∠DAH +∠DAF =∠F AO =90°,∴∠DAF =∠DHA ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵AD̂=CD ̂, ∴∠CAD =∠DHA =∠DAF ,∵AB =AC ,∴∠ABC =∠ACB ,∵四边形ABCD 内接于⊙O ,∴∠ABC +∠ADC =180°,∵∠ADF +∠ADC =180°,∴∠ADF =∠ABC ,∵∠ADB =∠ACB =∠ABC ,∴∠ADF =∠ADB ,在△ADF 和△ADE 中∵{∠DAF =∠DAE AD =AD ∠ADF =∠ADE,∴△ADF ≌△ADE (ASA ),∴DF =DE =4,∵DF DC =23, ∴DC =6,∵∠DCE =∠ABD =∠DBC ,∠CDE =∠CDE ,∴△CDE ∽△BDC ,∴CD DB =DE CD ,即6BD =46, ∴BD =9,∴BE =DB ﹣DE =9﹣5=5.24.(13分)在平面直角坐标系中,已知抛物线y =ax 2+4ax +4a ﹣6(a >0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)当a =6时,直接写出点A ,B ,C ,D 的坐标:A (﹣3,0) ,B (﹣1,0) ,C (0,18) ,D (﹣2,﹣6) ;(2)如图1,直线DC 交x 轴于点E ,若tan ∠AED =43,求a 的值和CE 的长;(3)如图2,在(2)的条件下,若点N 为OC 的中点,动点P 在第三象限的抛物线上,过点P 作x 轴的垂线,垂足为Q ,交AN 于点F ;过点F 作FH ⊥DE ,垂足为H .设点P 的横坐标为t ,记f =FP +FH .①用含t 的代数式表示f ;②设﹣5<t ≤m (m <0),求f 的最大值.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x=﹣2,故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);故答案为:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a﹣6),函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,令y=0,则x=3a−2,故点E(3a−2,0),则OE=3a−2,tan∠AED=OCOE=4a−63a−2=43,解得:a=23,故点C、E的坐标分别为(0,−103)、(52,0),则CE=√(103)2+(52)2=256;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y =23x 2+83x −103, 故点A 、C 的坐标分别为(﹣5,0)、(0,−103),则点N (0,−53),由点A 、N 的坐标得,直线AN 的表达式为:y =−13x −53; 设点P (t ,23t 2+83t −103),则点F (t ,−13t −53); 则PF =−23t 2﹣3t +53,由点E (52,0)、C 的坐标得,直线CE 的表达式为:y =43x −103, 则点J (t ,43t −103),故FJ =−53t +53, ∵FH ⊥DE ,JF ∥y 轴,故∠FHJ =∠EOC =90°,∠FJH =∠ECO ,∴△FJH ∽△ECO ,故FH OE =FJ CE , 则FH =OE CE×FJ =−t +1, f =PF +FH =−23t 2﹣3t +53+(﹣t +1)=−23t 2﹣4t +83;②f =−23t 2﹣4t +83=−23(t +3)2+263(﹣5<t ≤m 且m <0); ∴当﹣5<m <﹣3时,f max =−23m 2﹣4m +83;当﹣3≤m <0时,f max =263.。

2020孝感中考数学试卷

2020孝感中考数学试卷

选择题:
1. 下列哪一个函数是一个二次函数?
a) y = 2x - 1
b) y = x^3
c) y = x^2 + 3x - 2
d) y = 1/x
2. 若a为正整数,且a - 5 > 0,下列哪个不等式成立?
a) a > 5
b) a < 5
c) a > 0
d) a < 0
3. 在直角三角形ABC中,AB = 3 cm,BC = 4 cm,AC = 5 cm,那么∠B的度数是多少?
a) 30°
b) 45°
c) 60°
d) 90°
填空题:
1. 若a:b = 2:3,且b = 9,求a的值是____。

答案:6
2. 已知函数y = 2x + 3,当x = 4时,y的值是____。

答案:11
3. 已知平行四边形的一边长为5 cm,高为3 cm,它的面积是____平方厘米。

答案:15
应用题:
1. 已知三角形的两条边长分别为5 cm、8 cm,它们夹角的正弦值是多少?
答案:三角形夹角的正弦值为8/10,即4/5.
2. 一个正方体的体积是64立方厘米,它的边长是多少厘米?
答案:正方体的边长是4厘米.
3. 在梯形ABCD中,AB平行于CD,AB = 3 cm,CD = 5 cm,高为4 cm,求梯形的面积是多少平方厘米?
答案:梯形的面积为(AB+CD) * 高/ 2 = (3+5) * 4 / 2 = 16平方厘米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年湖北省孝感市中考数学试卷学校:班级:姓名:得分:一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)1.(3分)(2020•孝感)计算﹣19+20等于()A.﹣39B.﹣1C.1D.392.(3分)(2020•孝感)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°3.(3分)(2020•孝感)下列立体图形中,左视图是圆的是()A.B.C.D.4.(3分)(2020•孝感)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式5.(3分)(2020•孝感)下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(+)(﹣)=b﹣a 6.(3分)(2020•孝感)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=7.(3分)(2020•孝感)已知二元一次方程组,则的值是()A.﹣5B.5C.﹣6D.68.(3分)(2020•孝感)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)9.(3分)(2020•孝感)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.10.(3分)(2020•孝感)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF 交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)(2020•孝感)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为.12.(3分)(2020•孝感)方程=的解为.13.(3分)(2020•孝感)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.14.(3分)(2020•孝感)董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.15.(3分)(2020•孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=.16.(3分)(2020•孝感)如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y =(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.三、用心做一做,显显自己的能力!(本大题8小题,满分72分)17.(6分)(2020•孝感)计算:|﹣1|﹣2sin60°+()﹣1+.18.(8分)(2020•孝感)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.19.(7分)(2020•孝感)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.20.(8分)(2020•孝感)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC 的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.21.(10分)(2020•孝感)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.22.(10分)(2020•孝感)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B 两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?23.(10分)(2020•孝感)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O 交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.24.(13分)(2020•孝感)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a 与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.2020年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)1.(3分)(2020•孝感)计算﹣19+20等于()A.﹣39B.﹣1C.1D.39【考点】有理数的加法.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:﹣19+20=1.故选:C.2.(3分)(2020•孝感)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°【考点】垂线;平行线的性质.【分析】根据平行线的性质和垂直的定义解答即可.【解答】解:∵l1∥l2,∴∠1=∠CAB=70°,∵BC⊥l3交l1于点B,∴∠ACB=90°,∴∠2=180°﹣90°﹣70°=20°,故选:B.3.(3分)(2020•孝感)下列立体图形中,左视图是圆的是()A.B.C.D.【考点】简单几何体的三视图.【分析】左视图是从物体左面看,所得到的图形.【解答】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;B、圆柱的左视图是矩形,故此选项不合题意;C、三棱柱的左视图是矩形,故此选项不合题意;D、球的左视图是圆形,故此选项符合题意;故选:D.4.(3分)(2020•孝感)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式【考点】命题与定理;全面调查与抽样调查;众数;方差;随机事件.【分析】分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.【解答】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.5.(3分)(2020•孝感)下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(+)(﹣)=b﹣a【考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法;二次根式的混合运算.【分析】根据同底数幂的除法法则判断A;根据积的乘方法则判断B;根据同底数幂的乘法法则判断C;根据平方差公式以及二次根式的性质判断D.【解答】解:A、x7÷x5=x2,故本选项正确;B、(xy2)2=x2y4,故本选项错误;C、x2•x5=x7,故本选项错误;D、(+)(﹣)=a﹣b,故本选项错误;故选:A.6.(3分)(2020•孝感)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=【考点】反比例函数的应用.【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F=.故选:B.7.(3分)(2020•孝感)已知二元一次方程组,则的值是()A.﹣5B.5C.﹣6D.6【考点】解二元一次方程组.【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+y=1,解得,∴=.故选:C.8.(3分)(2020•孝感)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)【考点】坐标与图形变化﹣旋转.【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.9.(3分)(2020•孝感)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.【考点】函数的图象.【分析】根据实际问题结合四个选项确定正确的答案即可.【解答】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选:A.10.(3分)(2020•孝感)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF 交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.【考点】全等三角形的判定与性质;LE:正方形的性质.【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)(2020•孝感)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为 1.25×109.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数1250 000 000用科学记数法可表示为1.25×109.故答案为:1.25×109.12.(3分)(2020•孝感)方程=的解为x=1.【考点】解分式方程.【分析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.【解答】解:两边同时乘2x(x+3),得x+3=4x,解得x=1.经检验x=1是原分式方程的根.13.(3分)(2020•孝感)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=(20﹣20)米.【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据正切的定义求出BD,根据等腰直角三角形的性质求出CD,结合图形计算,得到答案.【解答】解:在Rt△PBD中,tan∠BPD=,则BD=PD•tan∠BPD=20,在Rt△PBD中,∠CPD=45°,∴CD=PD=20,∴BC=BD﹣CD=20﹣20,故答案为:(20﹣20).14.(3分)(2020•孝感)董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是108°.【考点】扇形统计图;条形统计图.【分析】先由A类别人数及其所占百分比求得总人数,再由各类别人数之和等于总人数求出B类别人数,继而用360°乘以B类别人数占总人数的比例即可得.【解答】解:∵被调查的总人数为9÷15%=60(人),∴B类别人数为60﹣(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.15.(3分)(2020•孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=0.14.【考点】数学常识;正多边形和圆.【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.【解答】解:∵⊙O的半径为1,∴⊙O的面积S=3.14,∴圆的内接正十二边形的中心角为=30°,∴圆的内接正十二边形的面积S1=12××1×1×sin30°=3,∴则S﹣S1=0.14,故答案为:0.14.16.(3分)(2020•孝感)如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y =(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.【考点】反比例函数的性质;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn=.【解答】解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m,n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S△BEF=BE•BF=mn=故答案为.三、用心做一做,显显自己的能力!(本大题8小题,满分72分)17.(6分)(2020•孝感)计算:|﹣1|﹣2sin60°+()﹣1+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=﹣1﹣2×+6﹣3=2.18.(8分)(2020•孝感)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.【考点】全等三角形的判定与性质.【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.【解答】证明:∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,在Rt△ACB和Rt△BDA中,,∴Rt△ACB≌Rt△BDA(HL),∴∠ABC=∠BAD,∴AE=BE.19.(7分)(2020•孝感)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.【考点】概率公式;列表法与树状图法.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)在﹣2,﹣1,0,1中正数有1个,∴摸出的球上面标的数字为正数的概率是,故答案为:.(2)列表如下:﹣2﹣101﹣2(﹣2,﹣2)(﹣1,﹣2)(0,﹣2)(1,﹣2)﹣1(﹣2,﹣1)(﹣1,﹣1)(0,﹣1)(1,﹣1)0(﹣2,0)(﹣1,0)(0,0)(1,0)1(﹣2,1)(﹣1,1)(0,1)(1,1)由表知,共有16种等可能结果,其中点M落在四边形ABCD所围成的部分内(含边界)的有:(﹣2,0)、(﹣1,﹣1)、(﹣1,0)、(0,﹣2)、(0,﹣1)、(0,0)、(0,1)、(1,0)这8个,所以点M落在四边形ABCD所围成的部分内(含边界)的概率为.20.(8分)(2020•孝感)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC 的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是CD=CE;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.【考点】全等三角形的判定与性质;角平分线的性质;作图—复杂作图;解直角三角形.【分析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE=90°知∠CEB=∠CDE,从而得出答案;(2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB==13,知sin∠DAF==,即=,解之求得x=,结合BC=BF=5可得答案.【解答】解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB==13,∴sin∠DAF==,即=,解得x=,∵BC=BF=5,∴tan∠DBF==×=.21.(10分)(2020•孝感)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.【考点】根的判别式;根与系数的关系.【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;(2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.【解答】解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣x1x2=16,∴[﹣2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.22.(10分)(2020•孝感)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B 两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.23.(10分)(2020•孝感)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O 交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.【考点】圆周角定理;三角形的外接圆与外心;三角形的内切圆与内心.【分析】(1)根据三角形内心的性质得∠2=∠7,再利用圆内接四边形的性质得∠ADF =∠ABC,则∠1=∠2,从而得到∠1=∠3,则可判断DG∥AC;(2)根据三角形内心的性质得∠5=∠6,然后证明∠4=∠DAI得到DA=DI;(3)证明△DAE∽△DBA,利用相似比得到AD=6,则DI=6,然后计算BD﹣DI即可.【解答】(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠ADE=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.24.(13分)(2020•孝感)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a 与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为(﹣2,0),点B的坐标为(4,0),线段AC的长为2,抛物线的解析式为y=x2﹣x﹣4.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.【考点】二次函数综合题.【分析】(1)由题意得:﹣8a=﹣4,故a=,即可求解;(2)分BC是平行四边形的一条边时、BC是平行四边形的对角线时,两种情况分别求解即可.(3)证明△EPH∽△CAO,∴,即:,则EP=PH,即可求解.【解答】解:(1)由题意得:﹣8a=﹣4,故a=,故抛物线的表达式为:y=x2﹣x﹣4,令y=0,则x=4或﹣2,即点A、B的坐标分别为(﹣2,0)、(4,0),则AC=2,故答案为:(﹣2,0)、(4,0)、2、y=x2﹣x﹣4;(2)①当BC是平行四边形的一条边时,如图所示,点C向右平移4个单位、向上平移4个单位得到点B,设:点P(n,n2﹣n﹣4),点Q(m,0),则点P向右平移4个单位、向上平移4个单位得到点Q,即:n+4=m,n2﹣n﹣4+4=0,解得:m=4或6(舍去4),即点Q(6,0);②当BC是平行四边形的对角线时,设点P(m,n)、点Q(s,0),其中n=m2﹣m﹣4,由中心公式可得:m+s=﹣2,n+0=4,解得:s=2或4(舍去4),故点Q(2,0);故点Q的坐标为(2,0)或(6,0);(3)如图2,过点P作PH∥x轴交BC于点H,∵GP∥y轴,∴∠HEP=∠ACB,∵PH∥x轴,∴∠PHO=∠AOC,∴△EPH∽△CAO,∴,即:,则EP=PH,设点P(t,y P),点H(x H,y P),则t2﹣t﹣4=x H﹣4,则x H=t2﹣t,f=PH=[t﹣(t2﹣t)]=﹣(t2﹣4t),当t=m时,f1=(m2﹣4m),当t=4﹣m时,f2=﹣(m2﹣2m),则f1﹣f2=﹣m(m﹣),则0<m<2,∴f1﹣f2>0,f1>f2.。

相关文档
最新文档