化学结构与药物代谢PPT精选文档
药物化学结构与代谢
质、体内代谢情况以及排泄器官的功能状态等。
03
药物化学结构与代谢的关系
药物的结构决定其代谢特性
01
药物的化学结构决定了其理化 性质和生物活性,进而影响其 在体内的吸收、分布、代谢和 排泄过程。
02
药物的化学结构中的官能团、 空间构型和分子量等特征,决 定了其与酶的结合能力和代谢 速率。
03
药物的化学结构中的某些基团 ,如芳香环、羟基、羧基等, 能够与酶的活性位点结合,影 响药物的代谢过程。
学习和预测化合物与靶点的相互作用模式,加速药物设计和发现的过程。
05
药物代谢中的酶系统
肝药酶
定义
肝药酶是指主要在肝脏中表达的代谢酶 类,它们参与药物的代谢和转化。
功能
肝药酶能够将药物分子氧化、还原、 水解和结合,从而使其失去活性或改
变其药理作用。
种类
肝药酶主要包括细胞色素P450酶系、 醇脱氢酶、醛脱氢酶等。
,反应速率越快。
一级动力学
1
一级动力学是指反应速率与反应物浓度的一次方 成正比的动力学过程。
2
一级动力学是描述大多数化学和生物反应的简单 模型,适用于低浓度的反应体系。
3
一级动力学方程可以用来描述反应速率随时间的 变化,以及反应物的消耗或产物的生成情况。
米氏方程和酶促反应动力学
01
02
03
米氏方程是描述酶促反应动力学 的重要方程,它是由德国生物化 学家米切尔提出的。
药物代谢的研究方法
体外实验
通过使用酶或细胞模型来研究药 物的代谢过程,可以了解药物与 酶的相互作用和代谢产物的性质。
体内实验
通过动物或人体试验,可以研究药 物在体内的吸收、分布、代谢和排 泄过程,以及其疗效和副作用。
第三章+化学结构与药物代谢Ⅱ相(四)(五)
谷胱甘肽和酰卤的反应是体内的解毒反应。 当多卤代烃如氯仿在体内代谢生成酰卤或光气时会对体
内生物大分子进行酰化产生毒性。谷胱甘肽通过和酰卤 代谢物反应后生成酰化谷胱甘肽,解除了这些代谢物对 人体的毒害。
五、乙酰化轭合
乙酰化反应是含伯胺基(包括脂肪胺和芳香胺),氨基酸, 磺酰胺,肼,酰肼等基团药物或代谢物的一条重要的代 谢途径,前面讨论的几类结合反应,都是使亲水性增加, 极性增加,而乙酰化反应是将体内亲水性的氨基结合形 成水溶性小的酰胺。
二甲氧嘧啶
硫吡腙
磺酰胺类抗菌药物磺胺二甲氧嘧啶(Sulfadimethoxine,3-96)经轭合 反应后生成水溶性较高的代谢物,不会出现在肾脏中结晶的危险。 C-葡萄糖醛酸苷化反应通常是发生在含有1,3-二羰基结构活性碳原 子上,如:保泰松及硫吡腙(Sulfinpyrazone,3-97)。
一、葡萄糖醛酸的轭合
和葡萄糖醛酸的轭合反应是药物代谢中最普遍的轭合反应,生成 的轭合产物含有可解离的羧基(pKa3.2)和多个羟基,无生物活性, 易溶于水和排出体外。
葡萄糖醛酸通常是以活化型的尿苷二磷酸葡萄糖醛酸(UDPGA)作 为辅酶存在,在转移酶的催化下,使葡萄糖醛酸和药物或代谢物 轭合。在UDPGA中葡萄糖醛酸以α -糖苷键与尿苷二磷酸相联,而 形成葡萄糖醛酸轭合物后,则以β -糖苷键结合。轭合反应是亲 核性取代反应。
在硫酸酯化轭合反应中,只有酚羟基化合物和胺类化合物能生成稳 定的硫酸化轭合产物。醇和羟胺化合物形成硫酸酯后,由于硫酸酯有 一个很好的离去基团,会使轭合物生成正电中心,因后者具有亲电能 力,而显著增加药物的毒性。 酚羟基在形成硫酸酯化轭合反应时,具有较高的亲和力,反应较为 迅速。如:支气管扩张药沙丁醇胺(Albuterol,3-98),结构中有三个羟 基,只有酚羟基形成硫酸酯化结合物,而脂肪醇羟基硫酸酯化轭合反 应较低,且形成的硫酸酯易水解成为起始物。
药物化学药物的化学结构与体内代谢转化
药物化学药物的化学结构与体内代谢转化药物化学是研究药物的化学结构和活性关系,以及药物在体内吸收、分布、代谢和排泄的学科。
其中,药物的化学结构与其在体内的代谢转化过程是理解药物作用机制的关键。
本文将探讨药物化学药物的化学结构与体内代谢转化的关系。
药物的化学结构决定了其物理化学性质,进而影响其在体内的药动学和药效学。
例如,脂溶性药物容易通过细胞膜,而水溶性药物则更容易被肾排出。
药物的化学结构也决定了其是否能够被体内酶系代谢以及代谢产物的性质。
药物在体内的代谢转化主要涉及氧化、还原、水解和结合等反应。
这些反应主要在肝脏进行,由肝微粒体中的酶促反应完成。
药物的代谢产物通常比原药具有更低的活性,甚至可能产生不良反应。
因此,药物的代谢转化对于理解药物的作用机制和不良反应的发生至关重要。
药物的化学结构决定了其在体内的代谢转化路径。
例如,一些药物可以被肝脏中的CYP450酶系氧化,而其他药物则可能被其他酶系进行代谢。
了解药物的代谢转化路径可以更好地预测药物之间的相互作用,避免不良反应的发生。
药物的化学结构与体内代谢转化是理解药物作用机制的关键。
药物的化学结构决定了其物理化学性质和代谢转化路径,而代谢转化则影响了药物在体内的药动学和药效学。
因此,在药物设计和开发过程中,需要对药物的化学结构和体内代谢转化进行深入研究,以优化药物的疗效和安全性。
当我们回顾药物发现与发展的历史,不难发现天然药物在其中扮演了至关重要的角色。
然而,随着科技的进步,化学药物逐渐成为了现代医学的支柱。
本文将探讨天然药物向化学药物转化的历程,以及这一过程中所涉及的新思路和新技术的应用。
在过去的几个世纪里,天然药物向化学药物的转化经历了漫长的历程。
最早的天然药物,如吗啡和阿司匹林,都是从植物中提取的。
随着有机合成技术的不断发展,化学家们开始尝试合成这些天然药物及其类似物。
这一阶段的代表性成果包括合成抗生素和抗疟药等。
通过这一过程,人们逐渐认识到天然药物转化为化学药物的重要性和必要性,因为这不仅可以提高药物的产量和质量,还可以通过结构优化来实现药物效果的进一步提升。
第三章化学结构与药物代谢Ⅱ相四五
第三章化学结构与药物代谢Ⅱ相四五
➢第Ⅱ相生物转化又称轭合反应(Conjugation),是在酶的 催化下将内源性的极性小分子如葡萄糖醛酸、硫酸、氨基 酸、谷胱甘肽等结合到药物分子中或第Ⅰ相的药物代谢产 物中。 ➢通过结合使药物去活化以及产生水溶性的代谢物,有利 于从尿和胆汁中排泄。
第三章化学结构与药物代谢Ⅱ相四 五
➢ 谷胱甘肽和酰卤的反应是体内的解毒反应。 ➢ 当多卤代烃如氯仿在体内代谢生成酰卤或光气时会对体
内生物大分子进行酰化产生毒性。谷胱甘肽通过和酰卤 代谢物反应后生成酰化谷胱甘肽,解除了这些代谢物对 人体的毒害。
第三章化学结构与药物代谢Ⅱ相四 五
五、乙酰化轭合
➢ 乙酰化反应是含伯胺基(包括脂肪胺和芳香胺),氨基酸, 磺酰胺,肼,酰肼等基团药物或代谢物的一条重要的代 谢途径,前面讨论的几类结合反应,都是使亲水性增加, 极性增加,而乙酰化反应是将体内亲水性的氨基结合形 成水溶性小的酰胺。
第三章化学结构与药物代谢Ⅱ相四 五
溴苯那敏
例如:抗组胺药溴苯那敏(Brompheniramine,3-102)经生物转化的第Ⅰ 相反应代谢后形成羧酸化合物(3-103),然后和甘氨酸反应,形成甘氨 酸的结合物(3-104)。
第三章化学结构与药物代谢Ⅱ相四 五
马尿酸
水杨酰苷氨酸
➢在氨基酸轭合反应中,主要是取代的苯甲酸参加反应。如:苯甲酸和 水杨酸在体内参与结合反应后生成马尿酸(3-105)和水杨酰苷氨酸(3106)。
第三章化学结构与药物代谢Ⅱ相四 五
➢ 新生儿由于体内肝脏UDPG转移酶活性尚未健全,因此会有代谢上的 问题,导致药物在体内聚集产生毒性。如:新生儿在使用氯霉素时,由于 不能使氯霉素和葡萄糖醛酸形成结合物而排出体外,导致药物在体内聚 集,引起“灰婴综合症”。 ➢ 参予N-葡萄糖醛酸苷化反应的胺类化合物有芳香胺、脂肪胺、酰胺和 磺酰胺。芳香胺的反应性小,轭合反应也比较少。脂肪胺中碱性较强的 伯胺、仲胺结合能力强,反应较易进行。吡啶氮及具有1~2个甲基的叔 胺也能和葡萄糖醛酸进行糖苷化反应,生成极性较强的季铵化合物。
药物化学PPT课件完整版
对患者进行用药监测,及时发现并处理药物不良反应和治 疗效果不佳的情况,调整药物治疗方案。
THANKS
感谢观看
06
药物化学在医药领域的应用
Chapter
新药研究与开发
01
药物靶点的发现与验证
利用药物化学手段,研究生物大分子的结构与功能,寻找并验证药物作
用的靶点。
02
先导化合物的发现与优化
通过高通量筛选、虚拟筛选等方法,发现具有潜在药理活性的先导化合
物,并运用药物化学原理对其进行结构优化,提高药效和降低毒性。
药物制剂评价
对药物制剂进行质量评价、生物利用度评价和临床试验等,确保药物 制剂的安全性和有效性。
临床合理用药与个体化治疗
临床药物治疗方案制定
根据患者的病情、诊断结果和治疗目标,制定个性化的药 物治疗方案。
药物相互作用与配伍禁忌
了解药物之间的相互作用以及配伍禁忌,避免不合理用药 导致的不良反应和药源性疾病。
保护与脱保护策略
在合成过程中,对敏感官能团进行 保护,合成结束后再脱去保护基团 。
药物合成中的新技术与新方法
利用催化剂提高反应速率和选择 性,实现药物的高效、绿色合成 。
利用光化学反应合成药物,具有 条件温和、选择性高等优点。
不对称合成 催化合成
连续流合成 光化学合成
利用手性辅助剂或催化剂,实现 手性药物的高效合成。
化学合成法
通过化学反应将简单的化 合物逐步合成复杂的药物 分子。
生物合成法
利用生物体内的代谢途径 和酶催化反应合成药物。
组合化学法
利用组合原理,高通量地 合成大量化合物,并进行 活性筛选。
药物合成路线设计
逆合成分析
药物代谢
药物代谢的部位
肝:
血流量高 含大部分代谢酶
主要的代 谢场所
肝外代谢最常见的部位——胃肠道 胃肠道 肝外代谢最常见的部位 除此, 皮肤, 血浆, 除此,肺,皮肤,肾,血浆,脑中 也可. 也可.
生物药剂学
4.药物的代谢 4.药物的代谢
代谢( metabolism) 代谢(Drug metabolism)
药物被吸收后, 药物被吸收后,在体内受体液 pH,酶系统和肠道菌丛的作用,发 ,酶系统和肠道菌丛的作用, 生结构转变的过程. 生结构转变的过程. 化学结构改变 药物 → 代谢 → 化学结构改变 → 药物
多巴胺
左旋多巴
给药剂量和剂型的影响
与代谢反应的"饱和现象"相关 代谢反应的"饱和现象" 给药剂量↑ 血药浓度↑ 代谢物浓度~ 给药剂量↑,血药浓度↑,代谢物浓度~
剂型不同: 剂型不同:
药物代谢量: 药物代谢量:溶液剂 < 混悬剂 < 颗粒剂
通过增大给药剂量或 某种制剂技术, 利用 某种制剂技术, 造成代谢部位局部高 浓度, 浓度,使药酶饱和来 降低代谢的速度, 降低代谢的速度,增 加药物的吸收量. 加药物的吸收量.
Inducer:能使代谢加快的物质 能使代谢加快的物质.
酶诱导作用 → 促进代谢 → 药理作用
降低, 降低,加强
产生耐药性(自身促进代谢) 苯巴比妥) 产生耐药性(自身促进代谢)(苯巴比妥) 耐药性
左 旋 多 巴
恶心,呕心, 恶心,呕心,食欲不振 副作用增多
药物结构与药物代谢
酯的水解
空间位阻对水解的影响
Atropine, 阿托品
酰胺的水解
4.其它氧化
b.环氧化
5.还原
• 含羰基、硝基、偶氮的药物主要经历还原反应,生成极性 较强的羟基、氨基,然后进行第二相的轭合反应。 • 硝基的还原 • 芳香硝基药物在cyp-450消化细菌还原酶的作用下,生成 芳香胺。其还原过程是一个多步骤过程,经历亚硝基、羟 胺等中间体。 • 羰基的还原 • 在酮还原酶的催化下,还原为仲醇。脂肪族和芳香族不对 称酮的羰基,在酶的催化下,使立体专一性反应,主要以 S-构型为主。
• 第Ⅰ相:主要是官能团的反应,如氧化、还原、水解、 羟基化等。其目的是在药物分子中引入或使药物分子 暴露出极性基团,如羟基、羧基、巯基、氨基等,使 其极性增加。 • 第Ⅱ相:又称结合反应。将第一相药物分子中产生的 极性基团与体内的内源性成分,如醇、酚或胺等与葡 萄糖醛酸、硫酸、甘氨酸或谷胱甘肽经共价键结合, 生成极性更大、易溶于水的复合物排出体外。但有些 药物经第一相后,其产物就可以排出体外。
机理:
当氮原子上相邻的碳原子上有氢时,氢已被氧化为羟基,生成 羟胺。此中间体不稳定,在cyp-450酶的作用下,氮原子和碳原 子发生电子的转移,使碳氮键断裂。
丙咪嗪
地昔帕明
CI NHCH3 O NH
CI O
Ketamine 氯胺酮
CH3
O FAST
CH3
O SLOW
CH3
O
NHCCH2N(CH2CH3)2 CH3
脱卤素反应
• 氧化脱卤素反应是许多卤代烃的主要代谢途径。在cyp -450酶的催化下,生成过渡态的偕二醇;然后再消去 卤化氢,得到羰基化合物。
第Ⅱ相生物转化——结合反应
药物化学结构与代谢
H
环氧化物酶
R
O
OH
H
OH2
H
O
OH
谷胱甘肽-S-转移酶 OH
GSH
R
OH
SG
生物大分子 亲核基团X
R OH X
第I相的生物转化
生成的环氧化合物还会在谷胱甘肽-S-转移酶的作用下和谷胱 甘肽生成硫醚;促进代谢产物的排泄。环氧化合物若和体内生 物大分子如DNA、RNA中的亲核基团反应,生成共价键的结 合物,而使生物大分子失去活性,产生毒性。如苯并(α)芘
O
环 H O
O H
N C O N H2
CY P450
氧化N物C O N H2酶
N C O N H2
烯烃类药物经代谢生成环氧化合物后,可以被转化为二羟基 化合物,或者将体内生物大分子如蛋白质、核酸等烷基化, 从而产生毒性,导致组织坏死和致癌作用。如黄曲霉素B1。
第I相的生物转化
炔烃类反应活性比烯烃大,被酶催化氧化速度也比烯烃快。
四、水解酶
水解酶主要参与羧酸酯和酰胺类药物的代谢,这些非 特定的水解酶大多存在于血浆、肝、肾和肠中,因此 大部分酯和酰胺类药物在这些部位发生水解。然而哺 乳类动物的组织中也含有这些水解酶,使得药物发生 水解代谢。但是肝脏、消化道及血液具有更大的水解 能力。
酯水解酶包括酯酶,胆碱酯酶及许多丝氨酸内肽酯酶。 其他如芳磺酸酯酶,芳基磷酸二酯酶等,它们和酯水 解酶的作用相似。
药物代谢的酶
胺类,便于进入第II相的结合反应而排出体外。
参加体内生物转化还原反应的酶系主要是一些氧化— 还原酶系。这些酶具有催化氧化反应和催化还原反应 的双重功能,如CYP-450酶系除了催化药物分子在体 内的氧化外,在肝脏微粒体中的一些CYP-450酶还能 催化重氮化合物和硝基化合物的还原,生成伯胺。硝 基化合物的还原也经历亚硝基、羟胺等中间体过程, 因此CYP-450酶系对这些基团也有还原作用。
药物化学结构与药效的关系
药物的毒副作用
肝毒性
某些药物在代谢过程中会产生有害物质,对 肝脏造成损害。
肾毒性
某些药物可能导致肾脏损伤,影响肾功能。
心脏毒性
某些药物可能对心脏产生不良影响,如心律 失常、心肌缺血等。
免疫毒性
一些药物可能影响免疫系统的正常功能,导 致免疫系统疾病的发生。
药物的抗药性
02
药物化学结构与药物活性的 关系
药物受体结合
药物受体结合
药物通过与靶点受体结合而发挥药效,药物的化学结构决定了其与受 体的结合能力,进而影响药物的亲和力、选择性和作用强度。
亲和力
药物的化学结构与受体结合的紧密程度,决定了药物作用的强弱。亲 和力越高,药物与受体结合越牢固,药效越强。
选择性
药物的化学结构决定其与特定受体的结合能力,选择性越高,药物对 特定靶点的选择性越强,副作用越小。
感谢您的观看
THANKS
临床试验
通过临床试验,观察患者的反应,评估药物的耐受性。
提高药物耐受性的策略
优化药物设计
通过优化药物的化学结构,提高其在体内的代谢 稳定性和分布特性,从而提高药物的耐受性。
联合用药
通过与其他药物联合使用,降低药物的剂量和不 良反应,从而提高药物的耐受性。
基因治疗
通过基因治疗,改变患者的代谢酶的表达,提高 药物的代谢和耐受性。
作用强度
药物的化学结构影响其与受体结合后引发的生理效应大小,作用强度 决定了药物治疗效果。
药物代谢
代谢稳定性
药物的化学结构影响其在体 内的代谢稳定性,代谢稳定 性高的药物在体内作用时间 长,疗效更持久。
代谢途径
药物的化学结构决定了其代 谢途径和代谢产物的性质, 影响药物在体内的分布、活 化及排泄。
第二章 药物化学结构与代谢
实 求
药物和机体的相互作用
“为改变药代动力学性质而进行的分子改造,具 为改变药代动力学性质而进行的分子改造, 有很大的自由度, 有很大的自由度,药物的分布主要取决于化合物 的整体性质,如分配系数和极性等; 的整体性质,如分配系数和极性等;而药物和受 体的相互作用, 体的相互作用,通常需要有特定的立体特征和电 荷分布。 荷分布。”
2
实 求
上章内容提要
药物化学的起源 1. 天然产物 2. 合成药物 --- 锥虫红,砷凡纳明 锥虫红, --- 磺胺 --- 青霉素
3
实 求
上章内容提要
现代药物研究的新方法和技术 多学科、 多学科、交叉综合体 1 合理药物设计 —— 作用靶点,包括酶、受体、离子通道和核酸 作用靶点,包括酶、受体、 2 新的设计手段 —— CADD 新的合成和筛选手段 —— 组合化学,高通量筛选 组合化学,
16
实 求
药物的化学结构与吸收 1. 生物利用度 进入血液循环中药量份额 2. 首过效应 肝脏是对内、 肝脏是对内、外源性物质代谢的主要器官 3. 肝肠循环 小肠重吸收 药物长效的原因之一 4. P-糖蛋白逆转作用 糖蛋白逆转作用 透膜作用相关基因 多药耐药的重要原因
17
实 求
药物分子的性质
18
第二章 第二章 药物化学结构与代谢
学药
科学与
术学
上章内容提要
药物化学的定义
药物化学的研究内容和任务
建立在化学学科 医学、生物学科基础上 化学学科和 1. 建立在化学学科和医学、生物学科基础上 设计、合成新的活性化合物 2. 设计、合成新的活性化合物 研究构效关系 3. 研究构效关系 解析药物的作用机理 4. 解析药物的作用机理 5. 创制药物
药物化学药物的化学结构与体内代谢转化
药物化学药物的化学结构与体内代谢转化药物化学是研究药物的化学结构和性质,以及药物在体内代谢转化的学科。
在药物研发中,了解药物的化学结构和代谢转化对于评估药物的活性、药代动力学特性以及副作用具有重要意义。
本文将对药物化学和药物代谢转化进行详细探讨。
药物的化学结构是指药物在化学上所具有的特定的分子结构。
药物的化学结构决定了药物的药理活性、物化性质以及与靶标结合的方式。
药物的化学结构可以通过研究药物的组成元素、原子结构以及化学键进行探索。
药物的化学结构是药物研发的起点,研究者通过对化学结构的改造来提高药物的活性、选择性以及药物代谢特性。
药物的体内代谢转化是指药物在机体内的生物化学反应和代谢过程。
药物在体内代谢转化主要通过酶的催化作用完成。
药物代谢可以分为两个主要阶段,即相应的阶段Ⅰ反应和阶段Ⅱ反应。
阶段Ⅰ反应是指药物通过氧化、还原、水解、脱甲基等反应转化成更活性或更易代谢的物质。
其中最常见的反应是氧化反应,通过细胞色素P450(CYP)酶家族参与催化。
CYP酶催化的氧化反应通常发生在药物的碳、氮或硫原子上,从而形成药物的代谢产物。
其他的阶段Ⅰ反应还包括还原反应、水解反应和脱甲基反应等。
这些反应主要发生在肝脏中的内质网中,使药物转化为亲水性更强的代谢产物。
阶段Ⅰ代谢转化可以增加药物的药理活性、提高药物的水溶性,也可能产生毒性代谢产物。
阶段Ⅱ反应是指药物代谢产物通过与内源性物质(如葡萄糖、甘氨酸、硫酸等)结合,形成更极性、更易排泄的产物。
阶段Ⅱ代谢反应通常被称为“偶联反应”,其中最常见的是葡萄糖醛酸转移酶(GT)参与的糖基化反应。
阶段Ⅱ代谢转化可以大大增加药物的水溶性,使药物更容易排除。
药物的代谢转化对药物的活性、毒性以及体内停留时间有很大的影响。
药物代谢转化的主要作用是将药物从机体中排除,并减少药物的毒性。
然而,一些药物的代谢转化也可能产生活性代谢产物,并参与药物的药理作用。
药物的代谢转化的机制和调控对于药物疗效的评估和优化具有重要意义。
药物化学MedicinalChemstry
PPT文档演模板
药物化学MedicinalChemstry
药物化学的任务
(The purpose of medicinal chemistry)
v 1.不断探索研究和开发新药 发现具有进一步研究、开发价值 的先导化合物(Lead Compounds),对其进行结构改造和 优化,创制出疗效好,毒副作用小的新药;改造现有药物或 有效化合物,以期获得更为有效、安全的药物。
v The structure of the lead compound is then modified by synthesis to amplify the desired activity and to minimize or eliminate the unwanted properties.
of bioactive compounds
v The MW is over 500; v The lg P is over 5; v There are more than 10 rotary bonds; v There are more than 5 H-bond donors; v There are more than 10 H-bond acceptors.
v The lead compound is a prototype compound that has the desired biological or pharmacological activity, but may have many other undesirable characteristics, for example, high toxicity, other biological activities, insolubility, or metabolism problems.
《药物的代谢》课件
二相代谢酶系是一类能够催化药物进行结合反应的酶,如葡萄糖醛酸转移酶、氨基酸转运酶等。这些酶能够将药 物与葡萄糖醛酸、氨基酸等物质结合,使药物转化为更易排泄的物质,从而降低药物在体内的浓度和活性。
03
药物代谢的过程
药物的吸收
药物吸收是指药物从给药部位进入血液循环的过程,是药物起效的第一步。
药物代谢的重要性
药物代谢有助于将药物转化为水 溶性物质,使其易于排出体外, 从而降低药物在体内的浓度和毒
性。
通过药物代谢,可以改变药物的 性质和作用强度,使其更适合治
疗需要。
药物代谢对于药物的疗效和安全 性至关重要,不当的药物代谢可 能导致药物失效或产生不良反应
。
药物代谢的分类
01
02
03
一级代谢
一相代谢酶系
总结词
一相代谢酶系主要参与药物的氧化、还原和水解反应。
详细描述
一相代谢酶系是一类能够催化药物进行氧化、还原和水解反应的酶,如细胞色素 P450酶系、醇脱氢酶等。这些酶在药物代谢中起到重要作用,能够将药物转化 为水溶性较高的代谢物,便于排泄。
二相代谢酶系
总结词
二相代谢酶系主要参与药物的结合反应,将药物转化为更易排泄的物质。
高纤维饮食可能影响药物的吸收和代谢。
05
药物代谢的研究方法
体内研究方法
体内药代动力学研究
通过给动物或人体注射药物,测定不同时间点的药物浓度,计算 药物的吸收、分布、代谢和排泄等参数。
体内代谢产物研究
通过分析动物或人体内的代谢产物,了解药物在体内的代谢过程和 代谢产物的性质。
体内组织分布研究
通过测定药物在动物或人体不同组织中的浓度,了解药物在体内的 分布情况。
药物代谢
2 与硫酸结合
含有酚羟基、醇羟基、N-羟基及芳胺的药物或Phase I代
谢物可以与硫酸结合,排除体外,但不是药物代谢的主要形式。 内源性的化合物如甾类激素、儿茶酚、甲状腺素可通过此途 径代谢,与其结构类似的化合物通过该途径代谢。如抗哮喘
药沙丁醇胺和降压药异丙肾上腺素的代谢。
OH H N HO HO OH H N
化学结构与药物代谢
药物代谢是指药物分子被机体吸收后,在有机体内酶的作用下
发生一系列化学反应,排除体外。是机体对药物的处置。 药物代谢反应的类型:官能团反应(Phase I)和结合反应
(Phase II)。Phase I反应是指药物分子在体内进行的官能团 转化,在酶催化下进行氧化、还原、水解等反应,引入极性较 大的基团,如羟基、羧基、氨基和巯基等,增大药物分子的极 性。Phase II 是指在Phase I反应的基础上,与内源性的极性 小分子结合,增加水溶性,有利于排除体外。 意义:药物的代谢与药物的作用、副作用、给药剂量、方式、 药物作用时间和药物之间的相互作用密切相关。是药物化学研 究的重要领域之一。
代谢。
含有氨基的药物,经α-氧化代谢后,得到低一级的胺, 通常具有活性,但对中枢神经系统毒性也增强。
R1 N R2
H
R1 N R2
OH
R1 N R2 H
+
O
N
N
N
丙咪嗪
地西帕明
N H
OCH2CH2CH3 O N O
OCH2CH2CH3 O N O
O
丙哌维林
O
OH O 非那西丁
O HN 扑热息痛 H N OH
OH
二
结合反应
药物分子经PhaseI代谢反应,转化成羟基、氨基、羧
药物代谢动力学ppt课件精选全文完整版
●胞裂外排(exocytosis)
药物代谢动力学
跨膜转运(Membrane Transfer)
simple diffusion
carrier-mediated
active
facilitated
1. 药物理化性质; 2. 给药途径; 3. 药物剂型; 4. 影响药物从消化道内吸收的主要因素;
药物代谢动力学
1. 药物理化性质:
●分子量; ●脂溶性; ●解离度;
问题:什么样的药物容易被吸收?
药物代谢动力学
2. 给药途径
●常见的给药方式:
静脉 、吸入 、舌下和直肠、肌内注射 、皮下注射 、 口服 、皮肤
药物代谢动力学
(二)吸入(呼吸道给药,inhalation)
�定义:经口鼻吸入的药物从肺泡吸收的给药方式; 肺泡上皮细胞能吸收5 µm左右微粒, 肺泡表面积大(达200m2) ,
●适用于挥发性药物和气体药物,如鼻炎喷雾剂 ;
药物代谢动力学
(三)局部用药
●完整的皮肤吸收能力差 ; �适用于脂溶性高的药或加促皮吸收的药剂,如皮康王、无极膏 。 �问题生活当中,还有哪些是局部给药?
药物代谢动力学
6)药物通过胞膜的速度受药物理化性质的影响;
�药物分子大小; �药物脂溶性; �药物解离状况;
分子量小、脂溶性高、极性小、非解离型的药物容易透过细胞膜。
药物代谢动力学
7)药物通过细胞膜的速度受环境pH的影响
� --------------离子障 ion-trapping �大多数药物为弱酸性或弱碱性;
�原则:药物解离程度脂溶性 跨膜转运 效应。
药物代谢药物代谢
6
结合反应
与内源性的小分子结合
– 药物或代谢产物的极性基团 – 在酶的作用下 – 葡萄糖醛酸、硫酸盐、某些氨基酸,等 – 以酯、酰胺或苷的方式
结合物 都有极好的水溶性 可通过肾脏经尿排出体外
7
药物代谢
有较大的甚至决定性的影响
– 药物的作用、副作用、毒性 – 给药剂量,给药方式,药物作用的时间 – 药物的相互作用 等
在长期的进化过程中,机体发展出一定 的自我保护能力
– 避免机体受到毒物的伤害
4
代谢反应的分类
官能团化反应
– I相反应 (Phase I)
结合反应
– Ⅱ相反应(Phase Ⅱ)
5
官能团化反应
进行氧化、还原、水解等化学反应
– 在酶的催化下
使产生极性较大的官能团
– 如羟基、羧基、氨基和巯基等
代谢产物的极性增大 利于结合反应
15
一、氧化反应(Oxidation)
碳原子上形成 羟基、或 羧基; 氮、氧、硫原子上脱烃基或生成氮氧化 物、硫氧化物 药物代谢中最常见的反应
– 大多数药物都可能被 氧化
16
氧化反应分类
按药物的化学结构类型介绍
– 芳环 – 烯烃 – 烃基 – 脂环和杂环 –胺
17
(一)芳环的氧化
引入羟基,得相应的酚类 发生在芳环的对位
56
N-乙酰化种族差异
N-乙酰化转移酶的活性受遗传因素的影 响较大 故有些药物的疗效、毒性和作用时间在 不同民族的人群中有种族差异
57
四、甲基化反应(Methylation)
对一些儿茶酚胺的灭活代谢起着重大的 作用 肾上腺素
OH H N OH CH3 COMT HO OCH3 H N
化学结构与药物代谢
化学结构与药物代谢
(三)偶氮化合物的还原
• 偶氮基的还原在很多方面和硝基还原相似,
该反应是在CYP-450酶系、NADPH-CYP450还原酶及消化道某些细菌的还原酶的催
化下进行的。
PPT文档演模板
化学结构与药物代谢
三、脱卤素反应
• 常为氧化脱卤素(常见)和还原脱卤素代
谢,氯霉素中的二氯乙酰基代谢氧化为酰
羧基等,可在酶的催化下与内源性的极性
小分子,如葡萄糖醛酸、硫酸、氨基酸、
谷胱甘肽等结合,形成水溶性的代谢物。
这一过程称为结合反应,又称第Ⅱ相生物
结合。
PPT文档演模板
化学结构与药物代谢
一、葡萄糖醛酸轭合
• 与葡萄糖醛酸的结合反应(最普遍,有O、
N、S和C的葡萄糖醛苷化四种类型,特例:
新生儿使用氯霉素会引起“灰婴综合症”
唑代谢活化为亚砜化合物。
3.含硫羰基化合物的氧化脱硫代谢:如塞替哌体内
脱硫代谢活化生成替哌,硫喷妥氧化脱硫成戊巴
比妥。
4.亚砜类药物的代谢:氧化为砜或还原为硫醚,如
舒林酸代谢活化为硫醚化合物后发挥作用。氧化
为砜则无活性。
PPT文档演模板
化学结构与药物代谢
(六)醇和醛的氧化
• 含醇羟基药物在体内醇脱氢酶的催化下,
括得到电子,加氢反应,脱氧反应)的酶
系,通常是使药物结构中的羰基转变为羟
基,将含氮化合物还原成胺类,便于进入
第II相的结合反应而排出体外。
• 另一个重要的酶系是醛酮还原酶。一方面
催化醛、酮还原成醇,另一方面也会使醇
脱氢生成醛、酮。
PPT文档演模板
化学结构与药物代谢
三、过氧化物酶和其它单加氧酶
药物化学课件生物转化(药物代谢)PPT课件
药物的吸收方式有被动扩散和主 动转运两种方式,其中被动扩散 是最常见的吸收方式。
药物的吸收速率和程度受到药物 性质、给药途径、生理因素等多 种因素的影响。
药物的分布
药物分布是指药物在体内
1
的分布过程,是药物在靶
部位达到有效浓度的前提。
4
一些药物在体内的分布具 有选择性,例如某些药物 可以透过血脑屏障进入脑 组织。
重要性
药物化学是药物研发和医学领域的基础学科,对于新药发现、药物设计和治疗策略具有 至研究药物的化学结构与活性之间 的关系,设计并合成具有特定活 性或作用机制的新药。
药物评价与安全性
评估药物的疗效、安全性和药代 动力学特性,确保药物在临床应 用中的安全有效性。
近代药物化学的兴起
随着有机化学和生理学的快速发展, 人们开始系统地研究药物的化学结构 和活性之间的关系。
Part
02
药物代谢的生物转化过程
药物的吸收
药物吸收是指药物从给药部位进 入血液循环的过程,是药物起效 的前提。
口服给药是最常见的给药方式, 但药物在胃肠道的吸收会受到pH 值、胃肠蠕动等因素的影响。
药物代谢与生物转化
研究药物在体内的代谢过程,包 括药物的吸收、分布、代谢和排 泄等。
药物作用机制
研究药物如何与生物靶点相互作 用,产生治疗作用或副作用的机 制。
药物化学的发展历程
古代药物学
现代药物化学
人类在古代就开始使用天然药物来治 疗疾病,如草药、动物和矿物等。
随着分子生物学、计算机科学和基因 组学等学科的发展,药物化学的研究 领域不断拓展和深化。
药物化学课件生物转 化(药物代谢)ppt课件
• 药物化学概述 • 药物代谢的生物转化过程 • 药物代谢酶和代谢产物 • 药物代谢与药效学关系 • 药物代谢的研究方法和技术 • 药物代谢的研究意义和应用前景
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞色素P-450酶系
CYP-450催化的反应类型有烷烃和芳香化合物的 氧化反应,烯烃、多核芳烃及卤化苯的环氧化反 应,仲胺、叔胺及醚的脱烷基反应,胺类化合物 的脱胺反应,将胺转化为N-氧化物、羟胺及亚硝 基化合物以及卤代烃的脱卤反应。 CYP-450还催化有机硫代磷酸酯的氧化裂解,氧 化硫醚成亚砜等的反应。 CYP-450属于体内的氧化-还原酶系,是一组酶的 总称,由许多同工酶和亚型酶组成。
第I相的生物转化
二、还原反应 1. 羰基的还原 2. 硝基的还原 3. 偶氮基的还原 4. 其他基团的还原
第I相的生物转化
三、卤代烃的脱卤素反应
① 在体内一部分卤代烃和谷胱甘肽或硫醚氨酸 形成结合物代谢排出体外;
② 其余的在体内经氧化脱卤素反应和还原脱卤 素反应进行代谢。
在代谢过程中卤代烃生成一些活性中间体, 会和一些组织蛋白质分子反应,产生毒性。
如吸入性全身麻醉药氟烷
第I相的生物转化
四、水解反应
水解反应是具有酯和酰胺类药物在体内代谢的
主要途径,如羧酸酯、硝酸酯、磺酸酯、酰胺
等药物在体内代谢生成酸及醇或胺。
R-C O C R 1
R-OH + R1COOH
R-O NO 2
R-OH + HNO3
R-OS O3H
+ R-OH H2S O 4
R-NH-OO CR1
1. 利用药物代谢的知识设计更有效的药物 ① 通过修饰缩短药物的作用时间 ② 通过修饰延长药物的作用时间
2. 代谢在药物研究中的作用
二、对新药研究的指导作用 三、在药物研究中的意义
1. 提高生物利用度 2. 指导设计适当的剂型 3. 解释药物的作用机理
化学结构与药物代谢
概述
对人体而言,绝大多数药物是一类生物异 源物质。当药物进入机体后,
一方面药物对机体产生诸多生理药理作用,即 治疗疾病;
另一方面,机体也对药物产生作用,即对药物 的吸收、分布、排泄和代谢。
药物代谢既是药物在人体内发生的化学变 化,也是人体对自身的一种保护机能。
概述
药物代谢的定义:
+ R-NH2 R1C OOH
如:琥珀酰胆碱;阿司匹林;
酯和酰胺水解反应在酯酶和酰胺酶的催化下进
第I相的生物转化
体内酯酶水解有时具有一定选择性,有些水解脂 肪族酯基,有些只水解芳香羧酸酯。
如可卡因;
酯基水解代谢也受立体位阻的影响,立体位阻存 在使得水解速度降低,有时还不能发生水解。如 酰胺和酯相比,酰胺比酯更稳定而难以水解。
是指在酶的作用下将药物(通常是非极性分子) 转变成极性分子,再通过人体的正常系统排出 体外。
药物的代谢通常分为二相:第I相生物转化 和第II相生物转化。 不同化学结构的药物的代谢情况不同。
内容
药物代谢的酶
第I相的生物转化 第II相的生物转化
rest break
药物代谢的影响因素
药物代谢在药物研究中的作用
药物代谢的酶
第I相生物转化是官能团化反应,是在体 内多种酶系的催化下,对药物分子引入新 的官能团或改变原有的官能团的过程。 参与药物体内生物转化的酶类,主要是氧 化-还原酶和水解酶。
① 细胞色素P-450酶系 ② 还原酶系 ③ 过氧化物酶和其他单加氧酶 ④ 水解酶
第I相的生物转化
一、氧化反应 1. 芳环的氧化 2. 含烯烃和炔烃药物的代谢 3. 烃基的氧化 4. 脂环的氧化 5. 胺的氧化 6. 醚的氧化
如普鲁卡因酰胺和普鲁卡因; 体内酯酶和酰胺酶水解有立体专一性。这种酶的立体
专一性,会因器官不同而具有选择性,如丙胺卡因;
将具有刺激作用的羧基,不稳定的酚基或醇基设 计成酯的前药。
第II相的生物转化
定义:第II相生物转化又称轭合反应,是 在酶的催化下将内源性的极性小分子如葡 萄糖醛酸、硫酸、氨基酸、谷胱甘肽等结 合到药物分子中或第I相的药物代谢产物中。 通过结合使药物去活化以及产生水溶性的 代谢物,有利于从尿和胆汁中排泄。
第II相的生物转化
一、葡萄糖醛酸的轭合 二、硫酸酯化轭合 三、氨基酸轭合 四、谷胱甘肽轭合 五、乙酰化轭合 六、甲基化轭合
亲水性增加 亲水性减少
药物代谢的影响因素
1、种属差异性 2、个体差异性 3、年龄的差异 4、代谢性药物的相互作用
药物代谢在药物研究中的作用
通过对药物代谢原理和规律的认识,能合 理地设计新药,指导新药的研究和开发。 一、对新药分子合理设计研究的指导作用
第II相的生物转化
轭合反应的步骤:分两步进行
① 首先是内源性的小分子物质被活化,变成活 性形式;
② 然后经转移酶的催化与药物和药物在第I相的 代谢产物结合,形成代谢结合物。
药物或其代谢物中被结合的基团通常是羟 基、氨基、羧基、杂环氮原子及巯基。对 于有多个可结合基团的化合物,可进行不 同的结合反应,如对氨基水杨酸。
四、寻找和发现新药
官能团化反应
第I相主要是官能团化反应,包括对药物分 子的氧化、还原、水解和羟化等,在药物 分子中引入或使药物分子暴露出极性基团, 如羟基、羧基、巯基和氨基等。
轭合反应
第II相又称为轭合反应,将第I相中药物产生 的极性基团与体内的内源性成分,如葡萄 糖醛酸,经共价键结合,生成极性大、易 溶于水和易排出体外的化合物。但是也有 药物经第I相反应后,无需进行第II相的结合 反应,即可排出体外。
还原酶系
还原酶系主要是催化药物在体内进行还原反应 (包括得到电子、加氢反应、脱氧反应)的酶系, 通常是使药物结构中的羰基转变成羟基,将含氮 化合物还原成胺类,便于进入第II相的结合反应而 排出体外。
参加体内生物转化还原反应的酶系主要是一些氧 化—还原酶系。这些酶具有催化氧化反应和催化 还原反应的双重功能,如CYP-450酶系除了催 化药物分子在体内的氧化外,在肝脏微粒体中的 一些CYP-450酶还能催化重氮化合物和硝基化合 物的还原,生成伯胺。
细胞色素P-450酶系(CYP-450)
细胞色素P-450酶系是主要的药物代谢酶系,在药 物代谢、其他化学物质代谢和去毒性中起到重要 的作用。
CYP-450存在于肝脏及其他肝脏外组织的内质网 中,是一组由铁原卟晽偶联单加氧酶,需要 NADPH和分子氧共同参与,主要进行药物生物 转化中氧化反应。(包括失去电子、脱氢和氧化 反应)