极点对系统性能的影响闭环零

合集下载

闭环零极点及偶极子对系统性能的影响

闭环零极点及偶极子对系统性能的影响

闭环零极点及偶极子对系统性能的影响1. 综述在自动控制系统中,对系统各项性能如稳定性,动态性能和稳态性能等有一定的要求,稳定性是控制系统的本质,指的是控制系统偏离平衡状态后自动恢复到平衡状态的能力。

系统动态性能是在零初始条件下通过阶跃响应来定义的,对于稳定的系统,动态性能一般指系统的超调量、超调时间、上升时间、调整时间,描述的是系统的最大偏差以及反应的快速性;稳态性能指的是系统的稳态误差,描述的是系统的控制精度。

在本文中,采用增加或减少零极点以及高阶零极点的分布来研究高阶系统的各项性能指标,并借助工程软件matlab通过编程来绘制系统的冲激响应、阶跃响应、斜坡响应及速度响应曲线,研究系统的零极点及偶极子对系统性能的影响。

2. 稳定性分析稳定性是指控制系统偏离平衡状态后,自动恢复到平衡状态的能力。

系统稳定是保证系统能正常工作的首要条件。

稳定性是控制系统最基本的性质。

线性定常系统稳定的充分必要条件:闭环系统特征方程的所有根都具有负实部,或者说闭环传递函数的所有极点均位于为S平面的左半部分(不包括虚轴)。

因此研究零极点及偶极子对系统稳定性的影响即研究系统的极点是否都具有负实部,而不必关心系统的零点情况。

若系统的极点都具有负实部,则系统是稳定的。

否则,系统就不稳定。

为了用matlab对上述结论进行验证并根据上述稳定性的定义,下面用 ,(t)函数作为扰动来讨论系统的稳定性。

如果当t趋于?时,系统的输出响应c(t) lim()0ct,收敛到原来的零平衡状态,即,该系统就是稳定的。

t,,设系统的闭环传递函数为: s10, ,=2 (1)(22)sss,,,当系统分别增加(s+5),(s-5),1/(s+2),1/(s-2),(s+3)/(s+3.01),(s-3)/(s-3.01)等环节时,画出各自的冲激响应曲线如图1.注:matlab源程序见附录1.图1由以上matlab仿真结果可以看出,当增加(s+5),(s-5),1/(s+2),(s+3)/(s+3.01)等环节时,c(s)最终能收敛到原来的零平衡状态,系统稳定。

分析零点,极点,偶极子对系统性能的影响

分析零点,极点,偶极子对系统性能的影响
分析零点,极点,偶极子对系统性能的影响
一. 高阶系统暂态性能分析
1.1.当闭环系统的零极点都位于 s 平面的左半部分时,则闭 环系统是稳定的。但当闭环极点距离虚轴的距离不同时,对系 统的暂态性能影响不同 高阶系统闭环传递函数:
高阶系统单位阶跃响应:
高阶系统单位阶跃响应:
1.2 设闭环传递函数 原闭环传递函数 1.1 φ s = 5/(s ∗ s + 2 ∗ s + 2)(s + 3) 增加零点传递函数 1.2 φ1 s = 5(s + 1)/(s ∗ s + 2 ∗ s + 2)(s + 3) 增加极点传递函数 1.3 φ2 s = 5/(s ∗ s + 2 ∗ s + 2)(s + 10)(s + 3) 增加偶极子传递函数 1.4 φ3 s = 5(s + 0.95)/(s ∗ s + 2 ∗ s + 2)(s + 1)(s + 3) 1.3 系统单位阶跃响应曲线如图 1-1 所示 实线������(������ ) 虚线 -----------------������1(������ ) 点画线 ������2(s ) 1.4 1.3 1.2����� ������������ 主要取决这些极点所对应的分量。
增加较远的零点图 1-2 1.4.2 增加极点 对比图 1-1 中������(������ ) ,������2(������ ) 对应的响应曲线,发现二者十分接近, 其暂态性能指标 ������������ 2 = 2.85������������ 2 = 3.66������������2 = 4.45 与������1(������ ) 的性能指标几乎相等。增加的极点为 s=-10,离虚轴较远,对系 统的暂态性能较小。 增加极点的距离虚轴的距离不同对系统的动态性 能影响也不同。图 1-3 增加的极点为 s=-1,离虚轴较近,对系统的暂态 性能影响较大。其动态性能指标如下

闭环传递函数的零点和极点

闭环传递函数的零点和极点

任务名称:闭环传递函数的零点和极点一、引言闭环控制系统在工程中发挥着重要的作用,而传递函数则是描述该系统的重要工具之一。

闭环传递函数的零点和极点是评估系统性能和稳定性的重要指标。

本文将对闭环传递函数的零点和极点进行全面、详细、深入地探讨。

二、传递函数简介1.传递函数概念传递函数是闭环控制系统中的重要概念,描述了输入和输出之间的关系。

它是输出与输入的比值,通常采用符号G(s)表示。

2.传递函数的形式传递函数的一般形式为:G(s) = N(s)/D(s),其中N(s)和D(s)分别表示分子和分母多项式。

3.零点和极点的定义传递函数的零点和极点是使其分子和分母等于零的解,分别用zi和pi表示。

零点是使传递函数等于零的输入,极点则是使传递函数的值无穷大的输入。

三、零点的影响1.零点对系统稳定性的影响零点的位置决定了系统的稳定性。

当零点位于左半平面时,系统是稳定的;当零点在右半平面时,系统是不稳定的。

2.零点对系统频率响应的影响零点的位置还会影响系统的频率响应特性。

当零点位于高频处时,系统对高频信号具有抑制作用;当零点位于低频处时,系统对低频信号具有抑制作用。

3.零点对系统阶数的影响零点的个数也会决定系统的阶数。

零点的个数等于传递函数的分子多项式的阶数,系统的阶数等于分子多项式的阶数减去分母多项式的阶数。

四、极点的影响1.极点对系统稳定性的影响极点的位置同样决定了系统的稳定性。

当极点位于左半平面时,系统是稳定的;当极点在右半平面时,系统是不稳定的。

2.极点对系统频率响应的影响极点的位置会进一步影响系统的频率响应特性。

当极点位于高频处时,系统对高频信号具有增益;当极点位于低频处时,系统对低频信号具有增益。

3.极点对系统阶数的影响极点的个数等于传递函数的分母多项式的阶数,系统的阶数等于分母多项式的阶数。

五、总结闭环传递函数的零点和极点是评估系统性能和稳定性的重要指标。

对零点和极点的研究可以帮助我们理解系统的频率响应特性、稳定性以及阶数等方面的问题。

现代控制工程知识点

现代控制工程知识点

现代操纵工程 复习资料知识点汇总:1.自动操纵系统有两种根本操纵方法,当操纵装置与受控对象之间只有顺向作用而无反向联系时,称为开环操纵系统;当操纵装置与受控对象之间不但有顺向作用而且还有反向联系时,称为 闭环操纵系统;含有测速发电机的电动机速度操纵系统,属于闭环操纵系统。

2.对操纵系统的根本要求有系统的稳定性,响应的快速性,响应的X 性。

3.关于传递函数,只适用于线性定常系统;传递函数一般是为复变量s 的真分式;闭环传递函数的极点决定了系统的稳定性。

错误的说法是传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响。

4.关于系统零极点位置对系统性能的影响,观点正确的选项是如果闭环极点全部位于S 左半平面,则系统肯定是稳定的。

稳定性与闭环零点位置无关。

5.关于奈氏判据及其辅助函数 F(s)= 1 + G(s)H(s),F(s)的极点就是开环传递函数的极点,F(s)的零点数与极点数相同,F(s)的零点就是闭环传递函数的极点。

错误的说法是F(s)的零点就是开环传递函数的极点 。

6.关于线性系统稳定性的判定,如果系统闭环系统特征方程某项系数为负数,系统不稳定。

7.关于系统频域校正,一个设计良好的系统,相角裕度应为45度左右;开环频率特性,在中频段对数幅频特性斜率应为20/dB dec -;利用超前网络进行串联校正,是利用超前网络的相角超前特性。

观点错误的选项是低频段,系统的开环增益主要由系统动态性能要求决定。

8.已知单位反响系统的开环传递函数为2210(21)()(6100)s G s s s s +=++,当输入信号是2()22r t t t =++时,系统的稳态误差是20 。

9.增加微分环节措施对改善系统的精度没有效果。

10.已知负反响系统的开环传递函数为221()6100s G s s s +=++,则该系统的闭环特征方程为2(6100)(21)0s s s ++++= 。

11.一阶系统的闭环极点越靠近S 平面原点,则响应速度越慢。

实验六开环增益与零极点对系统性能影响

实验六开环增益与零极点对系统性能影响

实验六 开环增益与零极点对系统性能的影响一.实验目的1.研究闭环、开环零极点对系统性能的影响; 2.研究开环增益对系统性能的影响。

二.实验内容1.搭建原始系统模拟电路,观测系统响应波形,记录超调量σ%、峰值时间tp 和调节时间ts ;2.分别给原始系统在闭环和开环两种情况下加入不同零极点,观测加入后的系统响应波形,记录超调量σ%和调节时间ts ;3.改变开环增益K ,取值1,2,4,5,10,20等,观测系统在不同开环增益下的响应波形,记录超调量σ%和调节时间ts 。

三.实验步骤在实验中观测实验结果时,可选用普通示波器,也可选用本实验台上的虚拟示波器。

如果选用虚拟示波器,只要运行ACES 程序,选择菜单列表中的相应实验项目,再选择开始实验,就会打开虚拟示波器的界面,点击开始即可使用本实验台上的虚拟示波器CH1、CH2两通道观察被测波形。

具体用法参见用户手册中的示波器部分。

1.原始二阶系统实验中所用到的功能区域:阶跃信号、虚拟示波器、实验电路A1、实验电路A2、实验电路A3。

原始二阶系统模拟电路如图1-6-1所示,系统开环传递函数为:0.1(0.21)Ks s ,图1-6-1原始二阶系统模拟电路(1) 设置阶跃信号源:A .将阶跃信号区的选择开关拨至“0~5V ”;B .将阶跃信号区的“0~5V ”端子与实验电路A3的“IN32”端子相连接;C .按压阶跃信号区的红色开关按钮就可以在“0~5V ”端子产生阶跃信号。

(2) 搭建原始二阶系统模拟电路:A .将A3的“OUT3”与A1的“IN11”、“IN13”同时连接,将A1的“OUT1”与A2的“IN21”相连接,将A2的“OUT2”与A3的“IN33”相连接;B.按照图1-6-1选择拨动开关:图中:R1=200K、R2=200K、R3=200K、R4=100K、R5=64K、R6=200K、R7=10K、R8=10K、C1=1.0uF、C2=1.0uF将A3的S5、S6、S10,A1的S3、S6、S9,A2的S3、S8、S13拨至开的位置;(3)连接虚拟示波器:将实验电路A2的“OUT2”与示波器通道CH1相连接。

零、极点对控制系统的影响

零、极点对控制系统的影响

广西大学实验报告纸姓名:指导老师:成绩:学院:电气工程学院专业:自动化班级:实验内容:零、极点对控制系统的影响年月日其他组员及各自发挥的作用:【实验时间】【实验地点】【实验目的】1.学会判断最小相位和非最小相位;2. 学会使用根轨迹分析系统的特性;3. 学会分析系统的响应特性;4. 学会分析最小相位和非最小相位系统的幅频特性和相频特性。

【实验设备与软件】1.MATLAB/SIMULINK软件2.计算机一台【实验原理】1、最小相位与非最小相位系统传递函数中所有极点和零点的实部均为负值时的一类线性定常系统,称为最小相位系统。

反之,传递函数中至少有一个极点或零点的实部值为正值的,称为非最小相位系统。

在具有相同幅频特性的系统中,最小相位系统的相角变化范围为最小。

最小相位和非最小相位之名即出于此。

最小相位系统特点有:(1)如果两个系统有相同的幅频特性,那么对于大于零的任何频率,最小相位系统的相角总小于非最小相位系统;(2)最小相位系统的幅频特性和相频特性直接关联,也就是说,一个幅频特性只能有一个相频特性与之对应,一个相频特性只能有一个幅频特性与之对应。

对于最小相位系统,只根据对数幅频曲线就能写出系统的传递函数。

2、180°根轨迹的画法根据教材的180°根轨迹的九条规则,画根轨迹,注意理解各条规则的正确性。

3、系统响应的求取给定的线性系统的传递函数和输入信号,其输出的复频域表示很容易得到,再对其进行反Laplace变换得到系统响应。

从系统可以看出系统的稳定性、快速性和准确性的各项指标。

4、幅频和相频特性及其判稳幅频特性表现的是各种频率信号在通过系统时的幅值增益程度;相频特性表现的是各种频率信号在通过系统时的相角滞后/超前程度。

其表现形式是Bode图。

从Bode图可以基于图判据判定相应闭环系统的稳定性。

【实验内容、方法、过程与分析】实验内容1、已知二阶系统 )15.0)(1(+++-s s c c s ,分析c 的取值对系统单位阶跃响应的影响(各种情况都要考虑周全),要求有理论分析与仿真验证。

零极点对系统的影响

零极点对系统的影响

增加零极点以及零极点分布对系统的影响一般说来,系统的极点决定系统的固有特性,而零点对于系统的暂态响应和频率响应会造成很大影响。

以下对于零极点的分布研究均是对于开环传递函数。

零点一般是使得稳定性增加,但是会使调节时间变长,极点会使调节时间变短,是系统反应更快,但是也会使系统的稳定性变差。

在波特图上反应为,增加一个零点会在幅频特性曲线上增加一个+20db/10倍频的曲线,幅频曲线上移,增加一个极点,会在幅频特性曲线上增加一个-20db/10倍频的曲线,幅频曲线下移。

在s左半平面增加零点时,会增加系统响应的超调量,带宽增大,能够减小系统的调节时间,增快反应速度,当零点离虚轴越近,对系统影响越大,当零点实部远大于原二阶系统阻尼系数ξ时,附加零点对系统的影响减小,所以当零点远离虚轴时,可以忽略零点对系统的影响。

从波特图上来看,增加一个零点相当于增加一个+20db/10倍频的斜率,可以使的系统的相角裕度变大,增强系统的稳定性。

在s右半平面增加零点,也就是非最小相位系统,非最小相位系统的相位变化范围较大,其过大的相位滞后使得输出响应变得缓慢。

因此,若控制对象是非最小相位系统,其控制效果特别是快速性一般比较差,而且校正也困难。

对于非最小相位系统而言,当频率从零变化到无穷大时,相位角的便变化范围总是大于最小相位系统的相角范围,当ω等于无穷大时,其相位角不等于-(n-m)×90º。

非最小相位系统存在着过大的相位滞后,影响系统的稳定性和响应的快速性。

在s左半平面增加极点时,系统超调量%pσ减小,调整时间st(s)增大,从波特图上看,s左半平面增加一个极点时,会在幅频特性曲线上增加一个-20db/10倍频的曲线,也就意味着幅频特性曲线会整体下移,导致相角域度减小,从而使得稳定性下降。

当极点离原点越近,就会增大系统的过渡时间,使得调节时间增加,稳定性下降,当系统影响越大当极点实部远大于原二阶系统阻尼系数ξ时,附加极点对系统的影响减小,所以当极点远离虚轴时可以忽略极点对系统的影响。

闭环系统零、极点位置对时间响应性能指标的影响

闭环系统零、极点位置对时间响应性能指标的影响

闭环系统零、极点位置对时间响应性能指标的影响
稳定性:
如果闭环极点全部位于s左半平⾯。

则系统⼀定稳定;
运动形式:
如果闭环系统⽆零点,且闭环极点均为实数极点,则时间响应⼀定是单调的;如果闭环系统极点均为复数极点,则时间响应⼀般是震荡的。

超调量:
超调量主要取决于闭环复数主导极点的衰减率,并与其它闭环零极点接近坐标原点的程度有关。

调节时间:
调节时间主要取决于最靠近虚轴的闭环复数极点的复数的实部绝对值;如果实数极点距离虚轴最近,并且它没有实数零点,则调节时间主要取决于该实数的模值。

实数零极点的影响:
零点减⼩系统阻尼,使峰值时间提前,超调量增⼤;极点增⼤系统阻尼,使峰值之间迟后,超调量减⼩,它们的作⽤,随着它们本⾝接近坐标原点的程度⽽增强。

偶极⼦及其处理:
远离原点的偶极⼦,其影响可忽略;接近原点的偶极⼦其影响必须考虑
主导极点:
在s平⾯上,最靠近虚轴⽽附近有闭环零点的⼀些闭环极点,对系统的影响最⼤。

结合偶极⼦的处理原则,将⾼阶系统简化为⼆、三个主导极点和⼀两个零点,然后估算系统的单位阶跃响应的性能指标。

极点对系统性能的影响闭环零

极点对系统性能的影响闭环零
闭环极点的模值越大,对系统动态性能 的影响越小
• 全部零点仅影响幅度和相位,对波形无影响; • 若有重根,则时间函数可能具有t,t2,……与 指数相乘的形式,同样满足上述结论
第四章 线性系统的根轨迹法
13
4-4-1 闭环零、极点对系统性能的影响
相距很近的一对闭环零、极点可以相消, 不会影响系统的动态性能
-1
-0.1-0.995j
进行等效变换
s 1 Ta s(s 0.2) 1 0
Ta变化时的根轨迹
其等效开环传递函数为
G1 ( s) H1 ( s)

Ta
s(s

s 0.2)
1
有两个开环极点,一个开环零点
第四章 线性系统的根轨迹法
3
2 附加开环零点的作用
j ×
G(
s)
H
(s)
K* s(s2
j 1
பைடு நூலகம்
i1
( ji)
第四章 线性系统的根轨迹法
8
3 零度根轨迹…
零度根轨迹绘制法则(续)
7 根轨迹于虚轴的交点 8 根之和
根轨迹与虚轴交点的K*值和 值,
可用劳思判据确定.
n
n
si pi
i 1
i 1
第四章 线性系统的根轨迹法
9
3 零度根轨迹…
R(s)
例9:
正反馈,K*>0为零度根轨迹
近原点,其模值较大则影响系统增益,从而 影响稳定性。
第四章 线性系统的根轨迹法
25
第四章 线性系统的根轨迹法
21
4-4-2 根据闭环零、极点分布求系统动态性能
系统闭环零、极点分布根轨迹图图 解法求极点上的留数拉氏变换求系统 动态响应

5闭环系统的极点和零点

5闭环系统的极点和零点
G0 ( s ) = Kg 0
∏ ( s + zi ) ∏ (s + p )
j =1 j i =1 n1
m1
H ( s ) = Kg H
m1 i
∏ (s + z
k =1 n2 l =1
m2
k
)
∏ (s + z )
Kg 0
i =1 n1 j =1 j m1
∏ (s + p )
l
G (s) =
G0 ( s ) = 1 + G0 ( s ) H ( s ) 1 + Kg 0 Kg H
R(s) G(s) C(s)

,H ( s) = ( s + 1)( s + 3) ,求闭环系统的极零点
H0(s)H1(s)
【例 2】设系统 G ( s ) =
Kg s ( s + 1)( s + 2)
方法一:直接使用1/H(s),变换
GH = Kg ( s + 3) s ( s + 2)
1/ H = ( s + 1)( s + 3)
j =1 l =1 i =1 k =1
n1
n2
m1
m2
∏ (s + p ) ∏ (s + p )
(二) 闭环极点的求解 单位反馈系统: H ( s) = 1
∏ (s + z )
Kg 0 G ( s) = G0 ( s ) = 1 + G0 ( s )
m1
∏ (s + p j )
j =1
i =1 n1
§4-5 闭环系统的零、极点
(一) 前言
由第三章内容可知,系统的阶跃响应与闭环零、极点的分布密 切相关,闭环零、极点分布决定了系统的稳定性、动态性能、 静态性能。因此要使用根轨迹方法全面地分析系统,需要根据 根轨迹求解闭环系统的零、极点。然后根据闭环系统零、极点 分布情况估算出系统的动态性能和静态性能指标。 闭环极点求解:对于一个具体的控制系统,绘制出其根轨迹后, 可以利用幅值条件或通过试探法在根轨迹上求出相应于已知参 数(例如Kg值)下的全部闭环极点。 闭环零点求解:可通过传递函数的分析而求得。

闭环系统零极点和单位圆关系

闭环系统零极点和单位圆关系

闭环系统零极点和单位圆关系
闭环系统的零极点分析是控制系统分析的重要内容之一。

对于闭环系统而言,在单位圆上的极点会对系统的稳定性和动态响应产生重要影响。

闭环系统的单位圆上的零极点分布主要与系统的稳定性和动态响应有关。

1. 对于系统的稳定性而言,如果闭环系统的极点在单位圆内部,则系统是不稳定的,这是因为系统的输出信号会无限增长,从而导致系统失控。

同样的,如果闭环系统的极点在单位圆外部,则系统是稳定的。

2. 对于系统的动态响应而言,如果闭环系统的极点靠近单位圆上的某些点,例如互补角位置上的点,这时系统的动态响应会比较迅速,因为它们具有较小的时间常数。

此外,当闭环系统的零点和极点越靠近单位圆时,系统的动态响应会变得越快,这是因为它们有更快的响应速度。

因此,在控制系统设计中,确保闭环系统的稳定性和动态响应是非常重要的。

在确定闭环系统的控制系统参数时,需要进行准确的零极点分析,以确保系统的稳定性和动态响应符合设计要求。

零极点对系统性能的影响分析_课程设计

零极点对系统性能的影响分析_课程设计

设计任务书学生: 梅浪奇 专业班级: 自动化1002班 指导教师: 肖纯 工作单位: 自动化学院题 目: 零极点对系统性能的影响分析 初始条件:系统开环传递函数为1)s (s 1)(s/a 21+++=(s)G 或1)s 1](s [(s/p)122+++=(s)G ,其中G 1(s )是在阻尼系数5.0=ξ的归一化二阶系统的传递函数上增加了一个零点得到的,G 2(s )是在阻尼系数5.0=ξ的归一化二阶系统的传递函数上增加了一个极点得到的。

要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)(1) 当开环传递函数为G 1(s )时,绘制系统的根轨迹和奈奎斯特曲线; (2) 当开环传递函数为G 1(s )时,a 分别取0.01,1,100时,用Matlab 计算系统阶跃响应的超调量和系统频率响应的谐振峰值,并分析两者的关系; (3) 画出(2)中各a 值的波特图;(4) 当开环传递函数为G 2(s )时,绘制系统的根轨迹和奈奎斯特曲线; (5) 当开环传递函数为G 2(s )时,p 分别取0.01,1,100时,绘制不同p 值时的波特图;(6) 对比增加极点后系统带宽和原二阶系统的带宽,分析增加极点对系统带宽的影响;(7) 用Matlab 画出上述每种情况的在单位反馈时对单位阶跃输入的响应; (8) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过程,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。

时间安排:指导教师签名:年月日系主任(或责任教师)签名:年月日目录1综述 (1)2增加零极点对系统稳定性的影响 (1)2.1增加零点对系统稳定性的影响 (2)2.1.1开环传递函数G1(s)的根轨迹曲线 (2)2.1.2开环传递函数G1(s)的奈奎斯特曲线 (3)2.2增加极点对系统稳定性的影响 (3)2.2.1开环传递函数G2(s)的根轨迹曲线 (3)2.2.2开环传递函数G2(s)的奈奎斯特曲线 (5)3增加零极点对系统暂态性能的影响 (7)3.1增加零点对系统暂态性能的影响 (7)3.1.1零点a=0.01时的阶跃响应和伯德图 (7)3.1.2零点a= 1时的阶跃响应和伯德图 (9)3.1.3零点a= 100时的阶跃响应和伯德图 (10)3.1.4原系统的阶跃响应和伯德图 (12)3.1.5综合分析 (13)3.2增加极点对系统暂态性能的影响 (14)3.2.1极点p=0.01时的阶跃响应和伯德图 (14)3.2.2极点p=1时的阶跃响应和伯德图 (15)3.2.3极点p=100时的阶跃响应和伯德图 (17)3.2.4综合分析 (18)4增加零极点对系统稳态性能的影响 (19)4.1增加的零极点在s的左半平面 (19)4.2增加的零极点在s的虚轴上 (23)5设计心得体会 (26)6参考文献 (27)附录1:课程设计中所用到的程序 (28)附录2:本科生课程设计成绩评定表 (40)零极点对系统性能的影响分析1综述在自动控制系统中,对系统各项性能如稳定性,动态性能和稳态性能等有一定的要求,稳定性是控制系统的本质,指的是控制系统偏离平衡状态后自动恢复到平衡状态的能力。

零点、极点和偶极子对系统性能的影响

零点、极点和偶极子对系统性能的影响

零点、极点和偶极子对系统性能的影响我们知道在系统之中,适当的加入零点,极点还有偶极子,可以在某些方面提升系统的性能。

但是加入某项时候,到底是如何提升的呢?为此,我们用matlab 软件来帮助我们分析,以方便我们进行比较。

为了方便我们的比较,我们还将零点,极点还有偶极子对系统性能的影响分开来进行一个一个的讨论。

这样我们可以更加直观的感受到他们的影响。

(在分析的时候选择稳定的原始系统)在分析的时候我们选择的原系统的闭环传递函数为:通过matlab 编程和绘图我们可以得到()s G的单位阶跃响应曲线如下图:现在我们开始分析加入零点,极点和偶极子对系统性能的影响!一、零点为了在方程之中添加一个零点,我们将系统的闭环传递函数变为:我们可以通过matlab 编程,绘出()1s G 和()s G的响应曲线,通过分析相应的响应曲线,我们就可以得出相应的结论!matlab 的编程为: n=4; d=[4,1,4]; t1=0:0.1:15; y1=step(n,d,t1); n1=[3,4]; y2=step(n1,d,t1);plot(t1,y1,'-r',t1,y2,'-g'),grid xlabel('t'),ylabel('c(t)'); title('单位阶跃响应')两者的响应曲线为:通过对两条响应曲线的分析我们不难得出以下的结论: (1)系统的稳定性没变,还是稳定系统; (2)系统的上升时间r t减小; (3)系统的超调时间pt 减小; (4)系统的超调量%p 变长;(5)系统的调节时间s t 变长;但是在某些情况下,我们增加零点,会带来某些我们所不希望带来的结线和原始闭环函数的响应曲线的异同点。

通过matlab绘制的响应曲线如下:可以看出如果添加的零点正好与原点重合的时候,系统虽然最后还是稳态系统,但是系统最后的稳态值为0,这显然不合实际的要求。

闭环传递函数的零点和极点

闭环传递函数的零点和极点

闭环传递函数的零点和极点
闭环传递函数是指系统的输出通过反馈回路再次输入系统,并与系统
的原始输入进行比较来产生具有某些稳定属性的输出的函数。

其零点
和极点是评价闭环传递函数性能的重要指标。

零点是指传递函数中,使传递函数等于零的那些点,通常用于衡量系
统的抑制能力。

在闭环传递函数中,如果系统具有零点,那么当受到
与零点相同的输入信号时,输出将为零,这是我们常用的消除干扰的
方法。

拥有多个零点的闭环传递函数具有更强的排干扰能力。

极点是指传递函数中,使传递函数无限大的那些点,通常用于描述系
统的稳定性。

系统的极点决定了其响应的快速度和稳定性,较高的极
点通常意味着更快的响应,但也意味着更低的稳定性。

当闭环传递函数具有稳定性时,其极点必须位于左半平面,这是因为
右半平面的极点会导致无法达到稳定状态,从而使系统不稳定。

同时,当闭环传递函数具有零点时,其零点也应当在左半平面内,以确保系
统具有更好的抗扰性和抑制能力。

总的来说,闭环传递函数的零点和极点是评估系统性能的重要特征。

它们共同决定着系统的稳定性、响应速度和抑制能力,对于控制系统的设计和优化至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
闭环极点的模值越大,对系统动态性能 的影响越小
• 全部零点仅影响幅度和相位,对波形无影响; • 若有重根,则时间函数可能具有t,t2,……与 指数相乘的形式,同样满足上述结论
第四章 线性系统的根轨迹法
13
4-4-1 闭环零、极点对系统性能的影响
相距很近的一对闭环零、极点可以相消, 不会影响系统的动态性能
本节内容:
闭环零、极点对系统性能的影响 闭环零、极点分布求动态响应 开环零、极点对根轨迹图的影响
11
4-4-1 闭环零、极点对系统性能的影响
闭环极点的类型确定了系统的动态响应 的类型
闭环实极点指数型动态过程 闭环复极点指数型振荡动态过程
第四章 线性系统的根轨迹法
12
4-4-1 闭环零、极点对系统性能的影响
(k 0,1,, n m 1)
n
m
pi z j
a

i 1
j 1
nm
第四章 线性系统的根轨迹法
7
3 零度根轨迹…
零度根轨迹绘制法则(续)
实轴上某一区域,若其右方开环实数
4 根轨迹在实轴的分布 零极点个数之和为偶数,则该区域必 是根轨迹
根轨迹的分离点 5 与分离角
L条根轨迹分支相遇,分离点坐标满足
j 1
i1
( ji)
第四章 线性系统的根轨迹法
8
3 零度根轨迹…
零度根轨迹绘制法则(续)
7 根轨迹于虚轴的交点 8 根之和
根轨迹与虚轴交点的K*值和 值,
可用劳思判据确定.
n
n
si pi
i 1
i 1
第四章 线性系统的根轨迹法
9
3 零度根轨迹…
R(s)
例9:
正反馈,K*>0为零度根轨迹
m
1
n

1
j1 d z j i1 d pi
分离角等于 (2k 1) / l
m
n
6
根轨迹的起始角和终 止角
起始角: pi 2k ( z j pi ) pj pi
j 1
j 1
( ji)
m
n
终止角: zi 2k ( z j pi ) pj pi
偶极子
相距很近的闭环零、极点,即闭环零、 极点之间的距离比它们本身的模值小 一个数量级。
第四章 线性系统的根轨迹法
14
4-4-1 闭环零、极点对系统性能的影响
R(s)
G(S)
C(s) R(s)
A P(s)
C(s)
Q(s)
H(s)
系统的特征方程为 1 G(s)H(s) 0
等效变换
A P(s) 1 Q(s)
A为除K*外系统任意变化参数.
P(s)和Q(s)为与A无关的首一多项式.
两系统的闭环极点相同,但闭环零点不同
第四章 线性系统的根轨迹法
2
1 参数根轨迹
例7: 系统的开环传递函数为 R(s)
5(1 Ta s)
C(s)
s(5s 1)
G(s)H (s) 5(1 Tas) s(1 5s)
闭环传递函数为:
(s)

s(1
5(1 Tas) 5s) 5(1 Tas)
-3
j -0.1+0.995j
1
o -2 -1
系统的闭环特征方程为 s(1 5s) 5(1 Tas) 0
4-3 广义根轨迹
常规根轨迹: 将负反馈系统中K*变化时的根轨迹 广义根轨迹: 参数根轨迹
开环零点个数多于开环极点个数时的根轨迹 零度根轨迹
本节内容:
参数根轨迹 附加开环零点的作用 零度根轨迹
1
1 参数根轨迹
参数根轨迹: 以非开环增益为可变参数绘制的根轨迹.
绘制方法:引入等效单位反馈系统和等效传递函数的概念
j
p1
1

z1
1
p2 1 d 0.8
临界开环增益Kc对应坐标原点,由模值条件
Kc*

0 (1
j)
0 (1 0 (2)
j)
0 (3)
3
Kc 1系K统c 稳1时定,.
第四章 线性系统的根轨迹法
10
4-4 系统性能的分析
闭环零、极点拉氏反变换阶跃响应性能指标 初步设计时,由闭环零、极点定性分析

K(s 2)
C(s)
(s 3)(s2 2s 2)
开环极点为p1,2=-1±j,p3=-3 开环零点为z1=2 系统有3条根轨迹分支,2条渐近线
起始角: p1 p1z1 p1 p2 p1 p3 71.56o
p3

分离点d: 1 1 1 1
d 2 d 3 d 1 j d 1 j
根轨迹方程:
K
j 1 n
1
(s pi )
i 1
相角条件:
m
n
(s z j )
j1
i 1
n
模值条件:
K*
s

i 1 m
pi
s zj
j 1
(s pi ) 2k
k 0, 1, 2,
第四章 线性系统的根轨迹法
5
3 零度根轨迹…
例8: R(s)
b 0,b 0
6
3 零度根轨迹…
零度根轨迹绘制法则
序号
内容
法则
1 根轨迹的起点和终点 根轨迹起于开环极点,终于开环零点
根轨迹的分支数,对 根轨迹的分支数=max(开环极点数,
2 称性和连续性
零点数),根轨迹对称于实轴且连续.
3 根轨迹渐近线
渐近线n-m条,与实轴的交角和交点为
a

2k
nm
(s 2s
z1) 2)
j
×
× 0
×
z1
j
×
×
× 0 z1 2
× 0
×
z1 3
j ×
×
z1 0 × 0
第四章 线性系统的根轨迹法
4
3 零度根轨迹
来源: 1. 非最小相位系统中包含s最高次幂的系数为负的因子.
2. 控制系统中包含-1
-0.1-0.995j
进行等效变换
s 1 Ta s(s 0.2) 1 0
Ta变化时的根轨迹
其等效开环传递函数为
G1 ( s) H1 ( s)

Ta
s(s

s 0.2)
1
有两个开环极点,一个开环零点
第四章 线性系统的根轨迹法
3
2 附加开环零点的作用
j ×
G(
s)
H
(s)
K* s(s2
K *(1 s) s(s 2)
C(s)
R(s)
K *(s 2) s(s 2)
C(s)
K* 0, K* 0
R(s)
K *(s 1) s(s 2)
C(s)
K* 0, K* 0
R(s)
(s b) C(s)
s(s 10)
K* 0, K* 0
第四章 线性系统的根轨迹法
相关文档
最新文档