中考数学模拟试题及答案8

合集下载

深圳市中考数学模拟试卷(八)含答案解析

深圳市中考数学模拟试卷(八)含答案解析

广东省深圳市中考数学模拟试卷(八)一、选择题.(本题共10小题,每小题3分,共30分,在每小题所给出的选项中,只有一项符合题目要求)1.2的倒数是()A.B.﹣C.2 D.﹣22.12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105B.7×106C.70×106D.7×1073.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20° B.40°C.50°D.60°4.下列立体图形中,俯视图是正方形的是()A.B.C.D.5.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)6.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.极差是40 B.众数是60 C.平均数是58 D.中位数是587.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣8.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为()A.3cm B.6cm C.9cm D.12cm9.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.csinA=a B.bcosB=c C.atanA=b D.ctanB=b10.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.二.填空题.(本大题共6小题,每小题4分,共24分)11.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=.12.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.13.一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,).14.点P在线段AB的垂直平分线上,PA=7,则PB=.15.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.16.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为.三.解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:|﹣2|+﹣4sin45°﹣1﹣2.18.化简:÷(1﹣).19.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.四、解答题(二)(本大题3小题,每小题7分,共21分)20.为响应我市“中国梦”•“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦•我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.等级频数频率一等奖 a 0.1二等奖10 0.2三等奖 b 0.4优秀奖15 0.3请你根据以上图表提供的信息,解答下列问题:(1)a=,b=,n=.(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.21.4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?22.宜宾是国家级历史文化名城,大观楼是标志性建筑之一(如图①).喜爱数学实践活动的小伟查资料得知:大观楼始建于明代(一说是唐代韦皋所建),后毁于兵火,乾隆乙酉年(1765年)重建,它是我国目前现存最高大、最古老的楼阁之一.小伟决定用自己所学习的知识测量大观楼的高度.如图②,他利用测角仪站在B处测得大观楼最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算大观楼的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.24.数学活动﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点C.求重叠部分(△DCG)的面积.(1)思考:请解答老师提出的问题.(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求出重叠部分(△DGH)的面积,请写出解答过程.(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.任务:请解决“爱心”小组所提出的问题,直接写出△DMN的面积是.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.广东省深圳市中考数学模拟试卷(八)参考答案与试题解析一、选择题.(本题共10小题,每小题3分,共30分,在每小题所给出的选项中,只有一项符合题目要求)1.2的倒数是()A.B.﹣C.2 D.﹣2【考点】倒数.【分析】根据倒数的概念求解.【解答】解:2的倒数是.故选A.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105B.7×106C.70×106D.7×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7 000 000有7位,所以可以确定n=7﹣1=6.【解答】解:7 000 000=7×106.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20° B.40°C.50°D.60°【考点】余角和补角.【专题】计算题.【分析】根据互余两角之和为90°即可求解.【解答】解:∵OA⊥OB,∠1=40°,∴∠2=90°﹣∠1=90°﹣40°=50°.故选C.【点评】本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键.4.下列立体图形中,俯视图是正方形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解;A、正方体的俯视图是正方形,故A正确;B、圆柱的俯视图是圆,故B错误;C、三棱锥的俯视图是三角形,故C错误;D、圆锥的俯视图是圆,故D错误,故选:A.【点评】本题考查了简单几何体的三视图,从上面看得到的图形是俯视图.5.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)【考点】二次函数的性质.【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.6.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.极差是40 B.众数是60 C.平均数是58 D.中位数是58【考点】众数;算术平均数;中位数;极差.【分析】分别计算该组数据的众数、平均数、中位数及极差后,选择正确的答案即可.【解答】解:A.极差是62﹣52=10,故此选项错误;B.62出现了2次,最多,所以众数为62,故此选项错误;C. =(52+60+62+54+58+62)÷6=58;故此选项正确;D.∵6个数据按大小排列后为:52,54,58,60,62,62;∴中位数为:(60+58)÷2=59;故此选项错误;故选:C.【点评】此题主要考查了平均数、众数、中位数及极差的知识,解题时分别计算出众数、中位数、平均数及极差后找到正确的选项即可.7.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=,求出 y1与y2的表达式,再根据 y1>y2则列不等式即可解答.【解答】解:将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=得,y1=﹣2m﹣3,y2=,∵y1>y2,∴﹣2m﹣3>,解得m<﹣,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,要知道,反比例函数图象上的点符合函数解析式.8.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为()A.3cm B.6cm C.9cm D.12cm【考点】圆锥的计算.【专题】压轴题.【分析】首先求得圆锥的底面周长,然后根据圆的周长公式即可求得母线长.【解答】解:圆锥的底面周长是:6πcm,设母线长是l,则lπ=6π,解得:l=6.故选B.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.csinA=a B.bcosB=c C.atanA=b D.ctanB=b【考点】勾股定理的逆定理;锐角三角函数的定义.【分析】由于a2+b2=c2,根据勾股定理的逆定理得到△ABC是直角三角形,且∠C=90°,再根据锐角三角函数的定义即可得到正确选项.【解答】解:∵a2+b2=c2,∴△ABC是直角三角形,且∠C=90°.A、sinA=,则csinA=a.故本选项正确;B、cosB=,则cosBc=a.故本选项错误;C、tanA=,则=b.故本选项错误;D、tanB=,则atanB=b.故本选项错误.故选A.【点评】本题考查了锐角三角函数的定义和勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【考点】二次函数的图象;正比例函数的图象.【专题】压轴题.【分析】根据正比例函数图象的性质确定m<0,则二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.【解答】解:∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第二、四象限,且m<0.∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.综上所述,符合题意的只有A选项.故选A.【点评】本题考查了二次函数图象、正比例函数图象.利用正比例函数的性质,推知m<0是解题的突破口.二.填空题.(本大题共6小题,每小题4分,共24分)11.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理可得点B是中点,由圆周角定理可得∠BOD=2∠BAC,继而得出答案.【解答】解:∵,⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.【点评】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.12.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.【考点】列表法与树状图法.【专题】压轴题.【分析】首先列出树状图,可以直观的看出总共有几种情况,再找出都是奇数的情况,根据概率公式进行计算即可.【解答】解:如图所示:取出的两个数字都是奇数的概率是: =,故答案为:.【点评】此题主要考查了画树状图,以及概率公式,关键是正确画出树状图.13.一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,).【考点】反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.【专题】压轴题.【分析】把点(1,2)代入一次函数解析式求得k的值.然后利用反比例函数图象上点的坐标特征来填空.【解答】解:∵一次函数y=kx+1的图象经过(1,2),∴2=k+1,解得,k=1.则反比例函数解析式为y=,∴当x=2时,y=.故答案是:.【点评】本题考查了一次函数、反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.14.点P在线段AB的垂直平分线上,PA=7,则PB=7.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得出PA=PB,代入即可求出答案.【解答】解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.【点评】本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.15.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【专题】压轴题;探究型.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为20.【考点】菱形的判定与性质;直角三角形斜边上的中线;勾股定理.【专题】压轴题.【分析】首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,故四边形BDFG的周长=4GF=20.故答案为:20.【点评】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.三.解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:|﹣2|+﹣4sin45°﹣1﹣2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=2+2﹣4×﹣1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.化简:÷(1﹣).【考点】分式的混合运算.【分析】先因式分解再约分求解即可.【解答】解:÷(1﹣)=×,=.【点评】本题主要考查了分式的混合运算,解题的关键是熟记因式分解的几种方法.19.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明BE=CD,把BE与CD分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用ASA可得出三角形ABE与三角形ACD全等,利用全等三角形的对应边相等可得证.【解答】证明:在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴BE=CD(全等三角形的对应边相等).【点评】此题考查了全等三角形的判定与性质,全等三角形的判定方法为:SSS;SAS;ASA;AAS;HL(直角三角形判定全等的方法),常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角等隐含条件的运用.四、解答题(二)(本大题3小题,每小题7分,共21分)20.为响应我市“中国梦”•“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦•我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.等级频数频率一等奖 a 0.1二等奖10 0.2三等奖 b 0.4优秀奖15 0.3请你根据以上图表提供的信息,解答下列问题:(1)a=5,b=20,n=144.(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【专题】图表型.【分析】(1)首先利用频数、频率之间的关系求得参赛人数,然后乘以一等奖的频率即可求得a 值,乘以三等奖的频率即可求得b值,用三等奖的频率乘以360°即可求得n值;(2)列表后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【解答】解:(1)观察统计表知,二等奖的有10人,频率为0.2,故参赛的总人数为10÷0.2=50人,a=50×0.1=5人,b=50×0.4=20.n=0.4×360°=144°,故答案为:5,20,144;(2)列表得:A B C 王李A ﹣AB AC A王A李B BA ﹣BC B王B李C CA CB ﹣C王C李王王A 王B 王C ﹣王李李李A 李B 李C 李王﹣∵共有20种等可能的情况,恰好是王梦、李刚的有2种情况,∴恰好选中王梦和李刚两位同学的概率P==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?【考点】二元一次方程组的应用.【专题】应用题.【分析】设规定时间为x天,生产任务是y顶帐篷,根据不提速在规定时间内只能完成任务的90%,即提速后刚好提前一天完成任务,可得出方程组,解出即可.【解答】解:设规定时间为x天,生产任务是y顶帐篷,由题意得,,解得:.答:规定时间是6天,生产任务是800顶帐篷.【点评】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,设出未知数,利用等量关系得出方程组,难度一般.22.宜宾是国家级历史文化名城,大观楼是标志性建筑之一(如图①).喜爱数学实践活动的小伟查资料得知:大观楼始建于明代(一说是唐代韦皋所建),后毁于兵火,乾隆乙酉年(1765年)重建,它是我国目前现存最高大、最古老的楼阁之一.小伟决定用自己所学习的知识测量大观楼的高度.如图②,他利用测角仪站在B处测得大观楼最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算大观楼的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题.【分析】设大观楼的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=12米,可得出方程,解出即可得出答案.【解答】解:设大观楼的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=12m,即x﹣x=12,解得:x=18+6,故大观楼的高度OP=18+6≈28(米).答:大观楼的高度约为28米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.【考点】全等三角形的判定与性质;菱形的判定;旋转的性质.【专题】证明题.【分析】(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)根据对角相等的四边形是平行四边形,可证得四边形ABFE是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.【解答】(1)证明:∵△ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=40°.∵∠BAE=∠BAD+∠DAE=140°,∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,∴∠BAE=∠BFE,∴四边形ABFE是平行四边形,∵AB=AE,∴平行四边形ABFE是菱形.【点评】此题考查了全等三角形的判定与性质,等腰三角形的性质、旋转的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.24.数学活动﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点C.求重叠部分(△DCG)的面积.(1)思考:请解答老师提出的问题.(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求出重叠部分(△DGH)的面积,请写出解答过程.(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.任务:请解决“爱心”小组所提出的问题,直接写出△DMN的面积是.【考点】几何变换综合题.【分析】(1)确定点G为AC的中点,从而△ADC为等腰三角形,其底边AC=8,底边上的高GD=BC=3,从而面积可求;(2)本问解法有多种,解答中提供了三种不同的解法.基本思路是利用相似三角形、勾股定理求解;(3)对于爱心小组提出的问题,如答图4所示,作辅助线,利用相似三角形、勾股定理、等腰三角形的性质,列方程求解.【解答】解:(1)【思考】∵∠ACB=90°,D是AB的中点,∴DC=DA=DB,∴∠B=∠DCB.又∵△ABC≌△FDE,∴∠FDE=∠B.∴∠FDE=∠DCB,∴DG∥BC.∴∠AGD=∠ACB=90°,∴DG⊥AC.又∵DC=DA,∴G是AC的中点,∴CG=AC=×8=4,DG=BC=×6=3,∴S△DGC=CG•DG=×4×3=6.(2)【合作交流】如下图所示:∵△ABC≌△FDE,∴∠B=∠1.∵∠C=90°,ED⊥AB,∴∠A+∠B=90°,∠A+∠2=90°,∴∠B=∠2,∴∠1=∠2,∴GH=GD.∵∠A+∠2=90°,∠1+∠3=90°,∴∠A=∠3,∴AG=GD,∴AG=GH,即点G为AH的中点.在Rt△ABC中,AB===10,∵D是AB中点,∴AD=AB=5.在△ADH与△ACB中,∵∠A=∠A,∠ADH=∠ACB=90°,∴△ADH∽△ACB,∴,即,解得DH=,∴S△DGH=S△ADH=××DH•AD=××5=.(3)【提出问题】解决“希望”小组提出的问题.如答图4,过点D作DK⊥AC于点K,则DK∥BC,又∵点D为AB中点,∴DK=BC=3.∵DM=MN,∴∠MND=∠MDN,由(2)可知∠MDN=∠B,∴∠MND=∠B,又∵∠DKN=∠C=90°,∴△DKN∽△ACB,∴,即,得KN=.设DM=MN=x,则MK=x﹣.在Rt△DMK中,由勾股定理得:MK2+DK2=MD2,即:(x﹣)2+32=x2,解得x=,∴S△DMN=MN•DK=××3═.【点评】本题是几何综合题,考查了相似三角形、全等三角形、等腰三角形、勾股定理、图形面积计算、解方程等知识点.题干信息量大,篇幅较长,需要认真读题,弄清题意与作答要求.试题以图形旋转为背景,在旋转过程中,重叠图形的形状与面积不断发生变化,需要灵活运用多种知识予以解决,有利于培养同学们的研究与探索精神,激发学习数学的兴趣,是一道好题.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.【考点】二次函数综合题.【专题】压轴题.【分析】(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)根据(1)中解析式求出M点坐标,再利用锐角三角函数关系求出∠FOM=30°,进而得出答案;(3)分别根据当△ABC1∽△AOM以及当△C2BA∽△AOM时,利用相似三角形的性质求出C点坐标即可.【解答】解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴OE=,AE=1,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)当点C在x轴负半轴上时,则∠BAC=150°,而∠ABC=30°,此时∠C=0°,故此种情况不存在;当点C在x轴正半轴上时,∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,∵MO==,∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2BA∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).【点评】此题主要考查了锐角三角函数的应用以及待定系数法求二次函数解析式和相似三角形的性质等知识,利用分类讨论思想以及数形结合得出是解题关键.。

中考数学模拟试题及答案8

中考数学模拟试题及答案8

2011年中考模拟题数 学 试 卷(八)*考试时间120分钟 试卷满分120分一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若b a <,则下列各式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac <2.一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是( )A .AB=CDB .AB ≤CDC .CD AB > D .AB ≥CD3.如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点 C ,则AB 的长为( ) A .4cm B .5cm C .6cm D .8cm4.下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是 双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时, OAB △的面积将会A .逐渐增大B .不变C .逐渐减小D7.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )A . 甲B . 乙C . 丙AD.不能确定8.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A833m B.4 mC.43D.8 m9.在同一直角坐标系中,函数y mx m=+和函数222y mx x=-++(m是常数,且0m≠)的图象可能..是()10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是()A.20 B.22C.24 D.2611.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()12.小强从如图所示的二次函数2y ax bx c=++的图象中,观察得出了下面五条信息:(1)0a<;(2)1c>;(3)0b>;(4)0a b c++>;(5)0a c-+>.你认为其中正确信息的个数有()A.2个 B.3个C.4个D.5个xOyx-2- 4A DCBO42yO 2- 4yxO4- 2yx取相反数×2+4输入x输出yC D150°hx1y21O-1二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.比较大小:-6 -8.(填“<”、“=”或“>”)14.矩形内有一点P 到各边的距离分别为1、3、5、7,则该矩形的最大面积为 平方单位.15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:体温(℃) 36.1 36.2 36.3 36.4 36.5 36.6 36.7 次 数2346312则这些体温的中位数是 ℃.16.观察下列等式: 221.4135-=⨯;222.5237-=⨯; 223.6339-=⨯ 224.74311-=⨯;…………则第n (n 是正整数)个等式为________.17.如图,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _.三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分) 先化简,再求值:232224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.AB CDE A ′电视机月销量扇形统计图第一个月 15%第二个月 30%第三个月 25%第四个月图11-120.(本小题满分8分)某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.21.(本小题满分9分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是 ; (2)在图11-2中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求 抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断 该商店应经销哪个品牌的电视机.22.(本小题满分9分)月图11-2第一 第二 第三 第四电视机月销量折线统计图某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB 、OB 分别表示父、子俩送票、取票过程中,离体育馆的路程.......S (米)与所用时间t (分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变): (1)求点B 的坐标和AB 所在直线的函数关系式; (2)小明能否在比赛开始前到达体育馆?23.(本小题满分10分)已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 上的点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D .(1)求证:BC =CD ; (2)求证:∠ADE =∠ABD ;(3)设AD =2,AE =1,求⊙O 直径的长.•ABCD EO24.(本小题满分10分)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE 的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM = MH,FM⊥MH;(2)将图-1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)图1AHC(M) D E BF G(N)G图2AHCDEBF NMAHCD图3BF GMN25.(本小题满分12分)如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,26.(本小题满分12分)如图,平行四边形ABCD 中,AB =5,BC =10,BC 边上的高AM =4,E 为BC 边上的一个动点(不与B 、C 重合).过E 作直线AB 的垂线,垂足为F . FE 与DC 的延长线相交于点G ,连结DE ,DF . (1) 求证:ΔBEF ∽ΔCEG . (2)当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之间有什么关系?并说明你的理由. (3)设BE =x ,△DEF 的面积为y ,请你求出y 和x 之间的函数关系式,并求出当x 为何值时,y 有最大值,最大值是多少?MBDCEF Gx A2011年中考模拟题(八) 数学试题参考答案及评分标准一、选择题二、填空题13.>; 14.64; 15.36.4; 16.22(3)3(23)n n n +-=⨯+; 17.3; 18. 三、解答题 19.解:322xx x x ⎛⎫-⎪-+⎝⎭÷224x x -=()()()()()()32222222x x x x x x x x x +---+-+. ······················· 3分 =x +4 ·························································································· 5分 当x =3时,原式=3+4 =7 ······························································································· 8分20.解:抽中一等奖的概率为161, ···································································· 3分抽中二等奖的概率为163, ·········································································· 5分抽中三等奖的概率为43. ··········································································· 8分21.解:(1)30%; (2)如图1; (3)8021203=; (4)由于月销量的平均水平相同,从折线的走势看, A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势. 所以该商店应经销B 品牌电视机.22.解:(1)解法一:从图象可以看出:父子俩从出发到相遇时花费了15分钟 1分电视机月销量折线统计图设小明步行的速度为x 米/分,则小明父亲骑车的速度为3x 米/分 依题意得:15x+45x =3600. ·························· 2分 解得:x =60.所以两人相遇处离体育馆的距离为 60×15=900米.所以点B 的坐标为(15,900). ···················· 3分 设直线AB 的函数关系式为s =kt+b (k ≠0). ······· 4分由题意,直线AB 经过点A (0,3600)、B (15,900)得:360015900b k b =⎧⎨+=⎩,解之,得1803600k b =-⎧⎨=⎩,.∴直线AB 的函数关系式为:1803600S t =-+. ·········································· 6分 解法二:从图象可以看出:父子俩从出发到相遇花费了15分钟. ·································· 1分 设父子俩相遇时,小明走过的路程为x 米. 依题意得:360031515x x-=····································································· 2分 解得x =900,所以点B 的坐标为(15,900) ·················································· 3分以下同解法一.(2)解法一:小明取票后,赶往体育馆的时间为:9005603=⨯ ·································· 7分 小明取票花费的时间为:15+5=20分钟. ∵20<25∴小明能在比赛开始前到达体育馆.················································ 9分解法二:在1803600S t =-+中,令S =0,得01803600t =-+. 解得:t =20.即小明的父亲从出发到体育馆花费的时间为20分钟,因而小明取票的时间也为20分钟. ∵20<25,∴小明能在比赛开始前到达体育馆. ··································· 9分23.解:(1)∵∠ABC =90°,∴OB ⊥BC . ·················································· 1分 ∵OB 是⊙O 的半径,∴CB 为⊙O 的切线. ········································ 2分 又∵CD 切⊙O 于点D ,∴BC =CD ; ·················································· 3分 (2)∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠ADE +∠CDB =90°. ································ 4分 又∵∠ABC =90°,∴∠ABD +∠CBD =90°. ································································ 5分 由(1)得BC =CD ,∴∠CDB =∠CBD .∴∠ADE =∠ABD ; ······································································· 6分 (3)由(2)得,∠ADE =∠ABD ,∠A =∠A .•ABCD EO∴△ADE ∽△ABD . ······································································· 7分 ∴AD AB =AEAD . ············································································· 8分 ∴21BE +=12,∴BE =3,······························································· 9分 ∴所求⊙O 的直径长为3. ······························································ 10分24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形.(3)是.25.解:(1) M (12,0),P (6,6). ····································································· 2分 (2) 设抛物线解析式为:6)6(2+-=x a y . ························································· 3分∵抛物线6)6(2+-=x a y 经过点(0,0), ∴6)60(02+-=a ,即61-=a 4分 ∴抛物线解析式为:x x y x y 261,6)6(6122+-=+--=即 . 5分(3)设A (m ,0),则B (12-m ,0),)261,12(2m m mC +--,)261,(2m m m D +-. ······························ 7分 ∴“支撑架”总长AD+DC+CB = )261()212()261(22m m m m m +-+-++-图2AHCDEBFG N MP=15)3(311223122+--=++-m m m . ·························································· 10分 ∵ 此二次函数的图象开口向下.∴ 当m = 3米时,AD+DC+CB 有最大值为15米. ··················································· 12分 26. (1) 因为四边形ABCD 是平行四边形, 所以AB DG ································ 1分 所以,B GCE G BFE ∠=∠∠=∠所以BEF CEG △∽△ ················································································· 3分 (2)BEF CEG △与△的周长之和为定值.······················································ 4分 理由一:过点C 作FG 的平行线交直线AB 于H ,因为GF ⊥AB ,所以四边形FHCG 为矩形.所以 FH =CG ,FG =CH 因此,BEF CEG △与△的周长之和等于BC +CH +BH由 BC =10,AB =5,AM =4,可得CH =8,BH =6, 所以BC +CH +BH =24 ·················································································· 6分 理由二:由AB =5,AM =4,可知在Rt △BEF 与Rt △GCE 中,有:4343,,,5555EF BE BF BE GE EC GC CE ====,所以,△BEF 的周长是125BE , △ECG 的周长是125CE又BE +CE =10,因此BEF CEG 与的周长之和是24. ······································ 6分(3)设BE =x ,则43,(10)55EF x GC x ==- 所以21143622[(10)5]2255255y EF DG x x x x ==-+=-- ································ 8分 配方得:2655121()2566y x =--+. 所以,当556x =时,y 有最大值. ·································································· 10分最大值为1216.····························································································· 12分A M xH GFED CB。

中考综合模拟检测 数学卷 附答案解析

中考综合模拟检测 数学卷 附答案解析
∴∠CAB=120°,
∵AB和AC与⊙O相切,
∴∠OAB=∠OAC=∠ CAB=60°,
∴∠AOB=30°,
∵AB=3cm,
∴OA=6cm,

所以直径为2OB=6 cm
故答案为:6 .
【点睛】本题考查了切线长定理,勾股定理,解答本题的关键是熟练掌握切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式 后继续应用平方差公式分解即可: .
10.若关于 的方程 有实数根,则 的取值范围是________.
【答案】 .
(3)在(2)的条件下,设AM= x,两块三角形板重叠面积为 ,求 与 的函数关系式.(图2,图3供解题用)
答案与解析
一、选择题(共8个小题,每小题4分,共32分)
1.一个数的倒数是-2,则这个数是()
A.-2B.2C. D.
【答案】C
【解析】
【分析】
根据倒数的定义可知-2和 互为倒数.
【详解】解:一个数的倒数是-2,则这个数是 .
5.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是( )
A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格
C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格
【答案】C
【解析】
【分析】
根据题意,结合图形,由平移的概念求解.
【详解】由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.

中考仿真模拟考试 数学试题 附答案解析

中考仿真模拟考试 数学试题 附答案解析
A. B.
C. D.
10.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是【】
A. B. C. D.
二、填空题(本大题共 6 小题,共 24 分)
【详解】由题意,可得 .
故答案为:5.
【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.
15.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
【答案】(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
17.化简: ÷(a-4)- .
18.已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
20.已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
【解析】
【分析】
由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.
【详解】∵在矩形ABCD中,BD=8,
A.21×10-4B.2.1×10-6C.2.1×10-5D.2.1×10-4

2022年陕西省西安市雁塔区高新一中中考数学八模试题及参考答案

2022年陕西省西安市雁塔区高新一中中考数学八模试题及参考答案

2022年陕西省西安市雁塔区高新一中中考数学八模试卷一、选择题(本大题共7小题,共21.0分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,数轴上点A所表示的数的相反数是( )A. −2B. 2C. 12D. −122. 如图是一个正方体的平面展开图,把展开图折叠成正方体后,“我”字一面相对面上的字是( )A. 了B. 我C. 的D. 国3. 面积为4的正方形的边长是( )A. 4开平方的结果B. 4的平方根C. 4的立方根D. 4的算术平方根4. 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A. 60°B. 65°C. 75°D. 85°5. 将正比例函数y=kx向右平移2个单位,再向下平移4个单位,平移后依然是正比例函数,则k的值为( )A. −4B. −2C. 2D. 46. 如图,⊙O是△ABC的外接圆,AD为⊙O直径,交BC于点E,若点C为半圆AD的中点,弦AB=√3DO,则∠BED的度数为( )A. 60°B. 65°C. 70°D. 75°7. 在同一平面直角坐标系中,有两条抛物线关于y轴对称,且它们的顶点与原点的连线互相垂直,若其中一条抛物线的表达式为y=x2−4x+m,则m的值为( )A. 2或−6B. −2或6C. 2或6D. −2或−6二、填空题(本大题共6小题,共18.0分)8. 分解因式:2ab2−8a=.9. 若正多边形的一个外角等于45°,则这个多边形是正______边形.10. 如图,点P是▱ABCD的对角线AC上一点,过点P作EF//BC,分别交AB,CD于点E,F,连接PB,PD.若AE=2,PF=8,∠ABC=60°,则图中阴影部分面积为______.11. 已知:点P(m,n)在直线y=−x+2上,也在双曲线y=−1x上,则m2+n2的值为______。

中考数学模拟试题(含答案)

中考数学模拟试题(含答案)

中考数学模拟试题(含答案)中考数学模拟试题本试卷共8页,考试时间100分钟,满分120分。

选择题(共10小题,每小题3分,共30分)1.求-3的倒数。

()A。

-1/3 B。

-1/-3 C。

1/-3 D。

1/32.函数y=1/(x-8),x的取值范围是()。

A。

x8 D。

x≥83.国家游泳中心“水立方”的外层膜展开面积约为平方米,科学记数法表示为()。

A。

2.6×10^5 B。

26×10^4 C。

0.26×10^6 D。

2.6×10^64.下列简单几何体的左视图是()。

A。

B。

C。

D.5.某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数和众数分别是()。

A。

32、31 B。

31、32 C。

31、31 D。

32、356.下列命题中,错误的是()。

A。

矩形的对角线互相平分且相等 B。

对角线互相垂直的四边形是菱形 C。

等腰梯形的两条对角线相等 D。

等腰三角形两底角相等7.下列图形中,能肯定∠1>∠2的是()。

A。

B。

C。

D.8.下列各式计算结果正确的是()。

A。

2a+a=3a B。

(3a)^2=9a^2 C。

(a-1)^2=a^2-1 D。

a×a=a^2非选择题9.已知△ABC中,∠A=60°,AB=√3,AC=2.求BC的长度。

10.已知函数y=2x^2-x-3,求其对称轴的方程。

答案区:1.1/(-3)2.x>83.2.6×10^54.C5.31、316.A7.D8.a×a=a^29.BC=210.x=1/49、在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为12.10、圆柱底面直径为2cm,高为4cm,则圆柱的侧面积为8π cm²。

11、一对互为相反数的数为x和-x。

12、b²-2b可以分解为b(b-2)。

2023年中考数学模拟考试试题含答案解析

2023年中考数学模拟考试试题含答案解析

2023年中考数学模拟试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A.0B.2a2C.﹣6a2D.﹣4a23.(3分)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外4.(3分)如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.2个或3个B.3个或4个C.4个或5个D.5个或6个5.(3分)设有反比例函数,(x1,y1)、(x2,y2)为其图象上的两点,若x1<0<x2时y1>y2,则k的取值范围是()A.k>0B.k<0C.k>﹣1D.k<﹣16.(3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)据相关报道,近5年中国农村年均脱贫1370万人.1370万可用科学记数法表示为.8.(3分)不等式组的解集是.9.(3分)分解因式:x3﹣x=.10.(3分)如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=度.11.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为.12.(3分)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO =2,则满足题意的OC长度为整数的值可以是.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:+=1.(2)计算:14.(6分)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.15.(6分)如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD与CE相交于点O,请仅用无刻度的直尺,分别按下列要求作图.(保留作图痕迹,不写作法)(1)在图①中作线段BC的中点P;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC.16.(6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.17.(6分)深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1)根据上述统计图可得此次采访的人数为人,m=,n=;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有人.四、(本大题共3小题,每小题8分,共24分)18.(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)19.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.20.(8分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.22.(9分)若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y =2x﹣4,求此“路线”L的解析式;(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.六、(本大题共12分)23.(12分)课题:两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题.实验与论证:设旋转角∠A1A0B1=α(α<∠A1A0A2),θ3、θ4、θ5、θ6所表示的角如图所示.(1)用含α的式子表示角的度数:θ3=,θ4=,θ5=;(2)图1﹣图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想:设正n边形A0A1A2…A n﹣1与正n边形A0B1B2…B n﹣1重合(其中,A1与B1重合),现将正多边形A0B1B2…B n﹣1绕顶点A0逆时针旋转α(0°<α<°);(3)设θn与上述“θ3、θ4、…”的意义一样,请直接写出θn的度数;(4)试猜想在正n边形的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.2023年中考数学模拟试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A.0B.2a2C.﹣6a2D.﹣4a2【分析】根据单项式的乘法法则,积的乘方的性质,合并同类项的法则,计算后直接选取答案.【解答】解:(﹣2a)•a﹣(﹣2a)2,=﹣2a2﹣4a2,=﹣6a2.故选:C.【点评】本题考查积的乘方,单项式的乘法,要注意符号的运算,是同学们容易出错的地方.3.(3分)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【分析】先找出与点A的距离为2的点1和5,再根据“点与圆的位置关系的判定方法”即可解.【解答】解:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选:A.【点评】本题考查点与圆的位置关系的判定方法.若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.4.(3分)如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.2个或3个B.3个或4个C.4个或5个D.5个或6个【分析】根据题意,主视图以及俯视图都是由3个小正方形组成,利用空间想象力可得出该几何体由4或5个小正方形组成.【解答】解:根据本题的题意,由主视图可设计该几何体如图:想得到题意中的俯视图,只需在图(2)中的A位置添加一个或叠放1个或两个小正方形,故组成这个几何体的小正方形的个数为4个或5个.故选:C.【点评】本题考查了由几何体的视图获得几何体的方法.在判断过程中要寻求解答的好思路,不要被几何体的各种可能情况所困绕.5.(3分)设有反比例函数,(x1,y1)、(x2,y2)为其图象上的两点,若x1<0<x2时y1>y2,则k的取值范围是()A.k>0B.k<0C.k>﹣1D.k<﹣1【分析】若x1<0<x2时,则对应的两个点(x1,y1)、(x2,y2)分别位于两个不同的象限,当y1>y2时,反比例系数一定小于0,从而求得k的范围.【解答】解:根据题意得:k+1<0;解得:k<﹣1.故选:D.【点评】本题容易出现的错误是,简单利用y随x的增大而减小,而错误的认为反比例系数是正数,忘记反比例函数的性质,叙述时的前提是:在每个象限内.6.(3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.【解答】解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.【点评】本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)据相关报道,近5年中国农村年均脱贫1370万人.1370万可用科学记数法表示为 1.37×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1370万=13700000=1.37×107,故答案为:1.37×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)不等式组的解集是x>.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>,由②得,x>﹣2,故此不等式组的解集为:x>.故答案为:x>.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.10.(3分)如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=90度.【分析】根据三角形的内心的定义知内心是三角形三角平分线的交点,根据三角形内角和定理可以得到题目中的三个角的和.【解答】解:∵点P是△ABC的内心,∴PB平分∠ABC,PA平分∠BAC,PC平分∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∴∠PBC+∠PCA+∠PAB=90°,故答案为:90°【点评】本题考查了三角形的内心的性质,解题的关键是正确的理解三角形的内心的定义,是三角形三内角的平分线的交点.11.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为(6053,2).【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+12×504=6053,∴P2017(6053,2),故答案为(6053,2).【点评】本题考查坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.12.(3分)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO =2,则满足题意的OC长度为整数的值可以是2,3,4.【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A、O、B、C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理、等边△MAO的性质来求OC的长度.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A、O、B、C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM、AM、AB、MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.【点评】本题考查了垂径定理、等边三角形的判定与性质.此题需要分类讨论,以防漏解.在解题时,还利用了圆周角定理,圆周角、弧、弦间的关系.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:+=1.(2)计算:【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:(1)方程两边同乘以(x+2)(x﹣2),得(x﹣2)2+4=x2﹣4,解得:x=3,检验:当x=3时,(x+2)(x﹣2)=5≠0,则x=3是原分式方程的解;(2)原式=3﹣1+2=4.【点评】此题考查了解分式方程,以及实数的运算,解分式方程利用了转化的思想,解分式方程注意要检验.14.(6分)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.【分析】(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.【解答】解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.【点评】此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.15.(6分)如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD与CE相交于点O,请仅用无刻度的直尺,分别按下列要求作图.(保留作图痕迹,不写作法)(1)在图①中作线段BC的中点P;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC.【分析】(1)在图①中作线段BC的中点P即可;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC即可.【解答】解:(1)如解图①所示,点P即为所求;(2)如解图②所示,MN即为所求.【点评】本题考查了作图﹣复杂作图,解决本题的关键是综合运用全等三角形的判定与性质、线段垂直平分线的性质、等腰三角形的判定与性质准确画图.16.(6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为4,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.【解答】解:(1)∵点A的坐标为(2,0),∴AO=2,在直角三角形OAB中,AO2+OB2=AB2,即22+OB2=(),∴OB=3,∴B(0,3);(2)∵△ABC的面积为4∴4=BC×OA,即4=BC×2,∴BC=4,∴OC=BC﹣OB=4﹣3=1,∴C(0,﹣1),设l2的解析式为y=kx+b,则,解得,直线L2所对应的函数关系式为y=x﹣1.【点评】本题主要考查了两条直线的交点问题和坐标与图形的性质、三角形的面积,属于基础题,解题的关键是掌握勾股定理以及待定系数法.17.(6分)深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1)根据上述统计图可得此次采访的人数为200人,m=20,n=0.15;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有1500人.【分析】(1)根据频数÷频率,求得采访的人数,根据频率×总人数,求得m的值,根据30÷200,求得n的值;(2)根据m的值为20,进行画图;(3)根据0.1×15000进行计算即可.【解答】解:(1)此次采访的人数为100÷0.5=200(人),m=0.1×200=20,n=30÷200=0.15;(2)如图所示;(3)高度关注东进战略的深圳市民约有0.1×15000=1500(人).【点评】本题主要考查了条形统计图以及频数与频率,解决问题的关键是掌握:频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=.解题时注意,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.四、(本大题共3小题,每小题8分,共24分)18.(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)【分析】如图,作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.【解答】解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=8×4=32(米),∴AD=CD=16(米),BD=AB•cos30°=16(米),∴BC=CD+BD=(16+16)米,则BH=BC•sin30°=(8+8)米.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.19.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值42,3(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为:4;2,3.(2)根据题意得:=,解得:m=2,所以m的值为2.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(8分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.【分析】(1)过点C作CE⊥AB于点E,根据HL证Rt△AOD≌Rt△BEC,求出OA=BE =2,即可求出C的坐标,代入反比例函数的解析式求出k即可;(2)得出B′的坐标是(6,m),代入反比例函数的解析式,即可求出答案.【解答】解:(1)过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE,∵∠DOA=∠CEO=90°,在Rt△AOD和Rt△BEC中∵,∴Rt△AOD≌Rt△BEC(HL),∴AO=BE=2,∵BO=6,∴DC=OE=4,∴C(4,3),∵设反比例函数的解析式y=,根据题意得:3=,解得k=12,∴反比例函数的解析式;答:点C坐标是(4,3),反比例函数的解析式是y=.(2)将等腰梯形ABCD向上平移m个单位后得到梯形A′B′C′D′,∴点B′(6,m),∵点B′(6,m)恰好落在双曲线y=上,∴当x=6时,y==2,即m=2.【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,全等三角形的性质和判定,等腰梯形的性质的应用,通过做此题培养学生运用性质进行计算的能力,题型较好,难度也适中.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.【分析】(1)连接OC,根据翻折的性质求出OM,CD⊥OA,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出PC,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;(3)连接GA、AF、GB,根据等弧所对的圆周角相等可得∠BAG=∠AFG,然后根据两组角对应相等两三角相似求出△AGE和△FGA相似,根据相似三角形对应边成比例可得=,从而得到GE•GF=AG2,再根据等腰直角三角形的性质求解即可.【解答】(1)解:如图,连接OC,∵沿CD翻折后,点A与圆心O重合,∴OM=OA=×2=1,CD⊥OA,∵OC=2,∴CD=2CM=2=2=2;(2)证明:∵PA=OA=2,AM=OM=1,CM=CD=,∠CMP=∠OMC=90°,∴PC===2,∵OC=2,PO=2+2=4,∴PC2+OC2=(2)2+22=16=PO2,∴∠PCO=90°,∴PC是⊙O的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH∴△OGE∽△FGH∴=∴GE•GF=OG•GH=2×4=8.【点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.22.(9分)若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y =2x﹣4,求此“路线”L的解析式;(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.【分析】(1)找出直线y=mx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出n的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;(2)找出直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;(3)由抛物线解析式找出抛物线与y轴的交点坐标,再根据抛物线的解析式找出其顶点坐标,由两点坐标结合待定系数法即可得出与该抛物线对应的“带线”l的解析式,找出该直线与x、y轴的交点坐标,结合三角形的面积找出面积S关于k的关系上,由二次函数的性质即可得出结论.【解答】解:(1)令直线y=mx+1中x=0,则y=1,即直线与y轴的交点为(0,1);将(0,1)代入抛物线y=x2﹣2x+n中,得n=1.∵抛物线的解析式为y=x2﹣2x+1=(x﹣1)2,∴抛物线的顶点坐标为(1,0).将点(1,0)代入到直线y=mx+1中,得:0=m+1,解得:m=﹣1.答:m的值为﹣1,n的值为1.(2)将y=2x﹣4代入到y=中有,2x﹣4=,即2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3.∴该“路线”L的顶点坐标为(﹣1,﹣6)或(3,2).令“带线”l:y=2x﹣4中x=0,则y=﹣4,∴“路线”L的图象过点(0,﹣4).设该“路线”L的解析式为y=m(x+1)2﹣6或y=n(x﹣3)2+2,由题意得:﹣4=m(0+1)2﹣6或﹣4=n(0﹣3)2+2,解得:m=2,n=﹣.∴此“路线”L的解析式为y=2(x+1)2﹣6或y=﹣(x﹣3)2+2.(3)令抛物线L:y=ax2+(3k2﹣2k+1)x+k中x=0,则y=k,即该抛物线与y轴的交点为(0,k).抛物线L:y=ax2+(3k2﹣2k+1)x+k的顶点坐标为(﹣,),设“带线”l的解析式为y=px+k,∵点(﹣,)在y=px+k上,∴=﹣p+k,解得:p=.∴“带线”l的解析式为y=x+k.令“带线”l:y=x+k中y=0,则0=x+k,解得:x=﹣.即“带线”l与x轴的交点为(﹣,0),与y轴的交点为(0,k).∴“带线”l与x轴,y轴所围成的三角形面积S=|﹣|×|k|,∵≤k≤2,∴≤≤2,∴S===,当=1时,S有最大值,最大值为;当=2时,S有最小值,最小值为.故抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围为≤S≤.【点评】本题考查了反比例函数与一次函数的交点问题已经二次函数的应用,解题的关键是:(1)根据“一带一路”关系找出两函数的交点坐标;(2)根据直线与反比例函数的交点设出抛物线的解析式;(3)找出“带线”l与x轴、y轴的交点坐标.本题属于中档题,(1)(2)难度不大;(3)数据稍显繁琐,解决该问时,借用三角形的面积公式找出面积S与k之间的关系式,再利用二次函数的性质找出S的取值范围.六、(本大题共12分)23.(12分)课题:两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题.实验与论证:设旋转角∠A1A0B1=α(α<∠A1A0A2),θ3、θ4、θ5、θ6所表示的角如图所示.(1)用含α的式子表示角的度数:θ3=60°﹣α,θ4=α,θ5=36°﹣α;(2)图1﹣图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想:设正n边形A0A1A2…A n﹣1与正n边形A0B1B2…B n﹣1重合(其中,A1与B1重合),现将正多边形A0B1B2…B n﹣1绕顶点A0逆时针旋转α(0°<α<°);(3)设θn与上述“θ3、θ4、…”的意义一样,请直接写出θn的度数;(4)试猜想在正n边形的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.【分析】(1)由正三角形的性质得α+θ3=60°,再由正方形的性质得θ4=45°﹣(45°﹣α)=α,最后由正五边形的性质得θ5=108°﹣36°﹣36°﹣α=36°﹣α;(2)存在,如在图1中直线A0H垂直且平分的线段A2B1,△A0A1A2≌△A0B1B2,推得A2H=B1H,则点H在线段A2B1的垂直平分线上;由A0A2=A0B1,则点A0在线段A2B1的垂直平分线上,从而得出直线A0H垂直且平分的线段A2B1。

2023年吉林省长春市新解放学校初中部中考数学模拟试卷及答案解析

2023年吉林省长春市新解放学校初中部中考数学模拟试卷及答案解析
18.(8 分)图①、图②、图③均是 5×5 的正方形网格,每个小正方形的边长均为 1,点 A、B 均在格点上,用无刻度的直尺在给定的网格中按要求画图.
(1)在图①中作△ABC,使 tan∠A=1.
(2)在图②中作△ABD,使

(3)在图⑧中作△ABE,使 tan∠A=2.
试卷第 3页,总 5 页
19.(8 分)如图,在矩形 ABCD 中,AB=3,BC=10,点 E 在 BC 边上,DF⊥AE,垂足为
请根据图象解答下列问题:
(1)轿车的速度是
千米/小时.
(2)求轿车出发后,轿车离甲地距离 y(千米)与时间 x
(小时)之间的函数关系式.
(3)在整个过程中(0≤x≤5),当轿车与货车之间的距
为 30 千米时,直接写出 x 的值.
试卷第 4页,总 5页
22.(8 分)在菱形 ABCD 中,
,∠ABC=60°,点 E 是对角线 BD 上的一动点,
连接 BD,若∠P=40°,则∠ADB 的度数是( )
A.65°
B.60°
C.55°
试卷第 1页,总 5 页
D.50°
7.(3 分)如图,在△ABC 中,AB<AC,将△ABC 以点 A 为中心逆时针旋转得到△ADE, 点 D 在 BC 边上,DE 交 AC 于点 F.下列结论:①△AFE∽△DFC;②DA 平分∠BDE; ③∠CDF=∠BAD,其中正确结论的个数是( )
C.x>3
D.x>7
5.(3 分)小华将一张纸对折后做成的纸飞机如图 1,纸飞机机尾的横截是一个轴对称图形,
其示意图如图 2,若 CD=CE=5,∠DCE=40°,则 DE 的长为( )
A.5sin20°
B.10sin20°

中考数学模拟测试题(附有答案)

中考数学模拟测试题(附有答案)

中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。

在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。

中考模拟检测《数学试题》含答案解析

中考模拟检测《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-12016的相反数是( ) A. 2016 B. ﹣2016 C. 12016 D. -120162.下列各式化简后的结果为32 的是( )A. 6B. 12C. 18D. 363.下列运算正确的是( )A. 22x y xy +=B. 2222x y xy ⋅=C. 222x x x ÷=D. 451x x -=- 4.不等式组-32-13x x <⎧⎨≤⎩,的解集在数轴上表示正确的是( ) A. B. C. D. 5.下列判断错误的是( )A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形6.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为( )A. 67、68B. 67、67C. 68、68D. 68、67 7.关于x 一元二次方程20ax bx c ++=()0a ≠的两根为11x =,21x =-那么下列结论一定成立的是( )A. 240b ac ->B. 240b ac -=C. 240b ac -<D. 240b ac -≤ 8.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A. 360°B. 540°C. 720°D. 900°9.关于抛物线y =x 2﹣2x +1,下列说法错误是( )A. 对称轴是直线x=1B. 与x轴有一个交点C. 开口向上D. 当x>1时,y随x的增大而减小10.如图,小明利用测角仪和旗杆拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆PA的高度为( )A.11sinα-m B.11sinα+m C.11cosα-m D.11cosα+m二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上.11.将正比例函数y=2x的图象向左平移3个单位,所得的直线不经过第____象限.12.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为____.13.如图,AB∥CD,CB平分∠ACD,若∠BCD = 28°,则∠A的度数为_________.14.某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=_____.x …﹣2﹣1.5 ﹣1﹣0.50 0.5 1 1.5 2 …y … 2 0.75 0﹣0.25 0﹣0.250 m 2 …15.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数3yx=-的图象上有一些整点,请写出其中一个整点的坐标______.16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)17.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.18.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是___枚.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.计算:()031321223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭. 20.先化简,再求值:2211()111x x x x -÷+--,其中12x =-. 21.如图,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连接AF ,CE.求证:AF =CE.22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a = ,b = ,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人? (3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生概率是多少?23.初一五班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)学校决定派该班30名学生勤工俭学,练习制作乐高零件,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少需要派多少名男学生?24.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.25.如图,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD周长最小,求出P点的坐标.26.如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD 的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为,求cos 的值.答案与解析一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-12016的相反数是( ) A. 2016B. ﹣2016C. 12016D. -12016【答案】C【解析】【分析】 直接利用相反数的定义分析得出答案. 【详解】12016-的相反数是-(1)2016-=1 2016. 故答案是:C.【点睛】此题主要考查了相反数的定义,正确把握定义是解题关键.2.下列各式化简后的结果为 的是( )【答案】C【解析】A 不能化简;B ;C ,故正确;D ,故错误; 故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.3.下列运算正确的是( )A. 22x y xy +=B. 2222x y xy ⋅=C. 222x x x ÷=D. 451x x -=- 【答案】B【解析】分析:直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.详解:A 、2x+y 无法计算,故此选项错误;B 、x•2y 2=2xy 2,正确;C 、2x÷x 2=2x,故此选项错误;D、4x-5x=-x,故此选项错误;故选B.点睛:此题主要考查了合并同类项和整式的乘除运算等知识,正确掌握运算法则是解题关键.4.不等式组-32-13xx<⎧⎨≤⎩,的解集在数轴上表示正确的是( )A. B. C. D. 【答案】A【解析】【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【详解】解:3213xx-<⎧⎨-≤⎩①②,由①得,x>-3,由②得,x≤2,故不等式组解集为:-3<x≤2,在数轴上表示为:.故选A.点睛:本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5.下列判断错误的是()A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B 、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C 、四条边都相等的四边形是菱形,符合菱形的判定,,故本选项正确,不符合题意;D 、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D .【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.6.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为( )A. 67、68B. 67、67C. 68、68D. 68、67【答案】C【解析】【分析】根据次数出现最多的数是众数,根据中位数的定义即可解决问题.【详解】解:因为68出现了3次,出现次数最多,所以这组数据的众数是68.将这组数据从小到大排列得到:66,67,67,68,68,68,69,71,所以这组数据的中位数为68. 故选C .【点睛】本题考查众数、中位数定义,记住众数、中位数的定义是解决问题的关键,属于中考常考题型. 7.关于x 的一元二次方程20ax bx c ++=()0a ≠的两根为11x =,21x =-那么下列结论一定成立的是( )A. 240b ac ->B. 240b ac -=C. 240b ac -<D. 240b ac -≤ 【答案】A【解析】【分析】由一元二次方程有两个不相等的实数根,确定出根的判别式的符号即可.【详解】解:∵关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两根为x 1=1,x 2=-1,∴方程有两个不相等的实数根∴b 2-4ac >0,故选A .【点睛】此题考查了根与系数的关系,以及根的判别式,熟练掌握根的判别式的意义是解本题的关键.8.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A. 360°B. 540°C. 720°D. 900°【答案】D【解析】根据题意列出可能情况,再分别根据多边形的内角和定理进行解答即可.解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:180°+540°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°,故选D.9.关于抛物线y=x2﹣2x+1,下列说法错误的是( )A. 对称轴是直线x=1B. 与x轴有一个交点C. 开口向上D. 当x>1时,y随x的增大而减小【答案】D【解析】【分析】利用二次函数的性质来解题即可.【详解】解:抛物线y=x2﹣2x+1,对称轴是直线21221bxa-=-=-=⨯,故A选项内容正确,不符合题意;△=b2﹣4ac=(﹣2)2﹣4×1×1=0,所以抛物线与x轴只有一个交点,故B选项内容正确,不符合题意; 抛物线a=1>0,所以开口向上,故C选项内容正确,不符合题意;因为抛物线开口向上,所以在对称轴右侧,即x>1时,y随x的增大而增大,所以D选项错误.符合题意,故选D.【点睛】此题考察二次函数的性质,熟记性质才能熟练运用.10.如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆PA的高度为( )A. 11sin α-mB. 11sin α+mC. 11cos α- mD. 11cos α+ m 【答案】A【解析】【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sinα=PC PB ',列出方程即可解决问题. 【详解】设PA=PB=PB′=x ,在RT △PCB′中,sinα=PC PB ', ∴1x x-=sinα, ∴x-1=xsinα,∴(1-sinα)x=1,∴x=11sin α-. 故选A .【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上. 11.将正比例函数y =2x 的图象向左平移3个单位,所得的直线不经过第____象限.【答案】四【解析】【详解】根据上加下减自变量,得:2(+3)2+6y x x == ,过一、二、三象限. 即所得的直线不经过第四象限.故答案:四.12.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为____. 【答案】23 【解析】【分析】列举出所有情况,看甲没排在中间的情况占所有情况的多少即为所求的概率.【详解】解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,有4种甲没在中间, 所以甲没排在中间的概率是42=63. 故答案为:23. 【点睛】本题考查列举法求概率,正确理解题意列举出所有的情况是解题关键.13.如图,AB ∥CD ,CB 平分∠ACD ,若∠BCD = 28°,则∠A 的度数为_________.【答案】124°【解析】试题分析:根据平行线的性质得到∠ABC=∠BCD=28°,根据角平分线的定义得到∠ACB=∠BCD=28°,根据三角形的内角和即可得到∠A=180°﹣∠ABC ﹣∠ACB=124°,故答案为124°.考点:平行线的性质14.某学习小组为了探究函数y =x 2﹣|x |的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =_____. x … ﹣2 ﹣1.5 ﹣1﹣0.50 0.5 1 1.5 2 … y … 2 0.75 0 ﹣0.25﹣0.25 0 m 2 …【答案】0.75【解析】当x >0时,函数2y x x =-=2x x -,当x =1.5时,y =21.5 1.5-=0.75,则m =0.75.故答案为0.75.点睛:本题考查了二次函数图象上点的坐标特征以及绝对值,解题的关键是找出当x >0时,函数的关系式.本题属于基础题,难度不大,解决该题型题目时,根据绝对值的性质找出当x >0时y 关于x 的函数关系式是关键.15.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数3yx=-的图象上有一些整点,请写出其中一个整点的坐标______.【答案】(答案不唯一)如(1,-3)等【解析】【详解】解:根据整点的定义可得x、y均为整数,即x是3的约数,当x=3时,y=-13、-1均为整数,故3yx=-图象上的整点为(3,-1),故答案为:(答案不唯一)如(1,-3)等16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)【答案】24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.17.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P =40°,则∠ADC=____°.【答案】115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D 的度数,本题得以解决. 【详解】解:连接OC ,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB ,∴∠OCB=∠OBC=65°,∵四边形ABCD 是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件. 18.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是___枚.【答案】13【解析】设第n 个图形有a n 个旗子,观察,发现规律:a 1=1,a 2=1+2=3,a 3=3+1=4,a 4=4+2=6,a 5=6+1=7,…,a 2n+1=3n+1,a 2n+2=3(n+1)(n 为自然数),当n=4时,a 9=3×4+1=13, 故答案13.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.计算:()031321223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭. 【答案】16【解析】分析:原式利用乘方的意义,绝对值的代数意义,零指数幂法则计算即可得到结果.详解:原式=121123⎛⎫-+-⨯- ⎪⎝⎭=1223-+=16. 点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:2211()111x x x x-÷+--,其中12x =-. 【答案】2x-,4. 【解析】【分析】 先括号内通分,然后计算除法,最后代入化简即可.【详解】原式=()2221112=-1x x x x x x--+-⨯- . 当12x =-时,原式=4. 【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.21.如图,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连接AF ,CE.求证:AF =CE.【答案】见解析【解析】试题分析:首先证明AE ∥CF ,△ABE ≌△CDF ,再根据全等三角形的性质可得AE =CF ,然后再根据一组对边平行且相等的四边形是平行四边形可得四边形AECF 是平行四边形,根据平行四边形的性质可得AF =CE .试题解析:证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF .又∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°,AE ∥CF .在△ABE 和△CDF 中,{ABE CDFAEB CFDAB CD∠∠∠∠===,∴△ABE ≌△CDF (AAS),∴AE =CF .∵AE ∥CF ,∴四边形AECF 是平行四边形,∴AF =CE . 22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a = ,b = ,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【答案】(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-015-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.初一五班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)学校决定派该班30名学生勤工俭学,练习制作乐高零件,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少需要派多少名男学生? 【答案】(1)女生15人,男生27人;(2)至少派22人【解析】【分析】(1)设该班男生有x人,女生有y人,根据男女生人数的关系以及全班共有42人,可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设派m名男学生,则派的女生为(30-m)名,根据”每天加工零件数=男生每天加工数量×男生人数+女生每天加工数量×女生人数”,即可得出关于m的一元一次不等式,解不等式即可得出结论.【详解】(1)设该班男生有x人,女生有y人,依题意得:4223 x yx y⎨⎩+-⎧==,解得:2715xy⎧⎨⎩==.∴该班男生有27人,女生有15人.(2)设派m名男学生,则派的女生为(30-m)名,依题意得:50m+45(30-m)≥1460,即5m+1350≥1460,解得:m≥22,答:至少需要派22名男学生.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)根据数量关系列出二元一次方程组;(2)根据数量关系列出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.24.在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【答案】84.【解析】试题分析:根据题意利用勾股定理表示出AD 2的值,进而得出等式求出答案.试题解析:作AD ⊥BC 于D ,如图所示:设BD = x ,则14CD x =-.在Rt △ABD 中,由勾股定理得:2222215AD AB BD x =-=-,在Rt △ACD 中,由勾股定理得:()222221314AD AC CD x =-=--,∴2215x -= ()221314x --,解之得:9x =.∴12AD =. ∴1·2ABC S BC AD ∆= 11412842=⨯⨯=. 25.如图,顶点为A 31)的抛物线经过坐标原点O ,与x 轴交于点B .(1)求抛物线对应的二次函数的表达式;(2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ;(3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.【答案】(1)y=﹣13x2+33x;(2)证明见解析;(3)P(﹣35,0).【解析】【分析】(1)用待定系数法求出抛物线解析式;(2)先求出直线OA对应的一次函数的表达式为y 3.再求出直线BD的表达式为y3﹣2.最后求出交点坐标C,D即可;(3)先判断出C'D与x轴的交点即为点P,它使得△PCD的周长最小.作辅助线判断出△C'PO∽△C'DQ即可.【详解】解:(1)∵抛物线顶点为A31),设抛物线解析式为y=a(x32+1,将原点坐标(0,0)在抛物线上,∴0=a3)2+1∴a=﹣13,∴抛物线的表达式为:y=﹣13x223x.(2)令y=0,得0=﹣13x2+23x,∴x=0(舍),或x3∴B点坐标为:(3,0),设直线OA的表达式为y=kx.∵A31)在直线OA上,3=1,∴k3∴直线OA 对应的一次函数的表达式为y =33x . ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y =33x +b .∵B (23,0)在直线BD 上,∴0=33×23+b ,∴b =﹣2, ∴直线BD 的表达式为y =33x ﹣2. 由2321233y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩得交点D 的坐标为(33),令x =0得,y =﹣2,∴C 点的坐标为(0,﹣2),由勾股定理,得:OA =2=OC ,AB =2=CD ,OB 3OD .在△OAB 与△OCD 中,OA OC AB CD OB OD =⎧⎪=⎨⎪=⎩,∴△OAB ≌△OCD .(3)点C 关于x 轴的对称点C '的坐标为(0,2),∴C 'D 与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,∴PO ∥DQ ,∴△C 'PO ∽△C 'DQ ,∴''PO C O DQ C Q =253=,∴PO 23, ∴点P 的坐标为(23,0). 【点睛】本题是二次函数综合题,主要考查了待定系数法求函数解析式,全等三角形的性质和判定,相似三角形的性质和全等,解答本题的关键是确定函数解析式.26.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为,求cos α的值.【答案】3矩形移动距离为38时,矩形与△CBD 3313+ 【解析】 分析:(1)根据已知,由直角三角形的性质可知AB=2,从而求得AD ,CD ,利用中位线的性质可得EF ,DF ,利用三角函数可得GF ,由矩形的面积公式可得结果;(2)首先利用分类讨论的思想,分析当矩形与△CBD 重叠部分为三角形时(0<x ≤14),利用三角函数和三角形的面积公式可得结果;当矩形与△CBD 重叠部分为直角梯形时(14<x ≤12),列出方程解得x; (3)作H 2Q ⊥AB 于Q ,设DQ=m ,则H 2Q 3m ,又DG 1=14,H 2G 1=12,利用勾股定理可得m ,在Rt △QH 2G 1中,利用三角函数解得cosα.详解:(1)如图①,在ABC ∆中,∠ACB =90°,∠B =30°,AC =1,∴AB =2,又∵D 是AB 的中点,∴AD =1,112CD AB ==. 又∵EF 是ACD ∆的中位线,∴12EF DF ==, 在ACD ∆中,AD=CD, ∠A =60°, ∴∠ADC =60°.在FGD ∆中,sin GF DF =⋅60°34=, ∴矩形EFGH 的面积133248S EF GF =⋅=⨯=. (2)如图②,设矩形移动的距离为则102x <≤,当矩形与△CBD 重叠部分为三角形时,则104x <≤, 1332S x x ==, ∴214x =>.(舍去). 当矩形与△CBD 重叠部分为直角梯形时,则1142x <≤, 重叠部分的面积3113324x -⨯=, ∴38x =. 即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316. (3)如图③,作2H Q AB ⊥于Q .设DQ m =,则23H Q m =,又114DG =,2112H G =. 在Rt △H 2QG 1中,)22211342m m ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭ , 解之得113m -±=负的舍去). ∴1211131313164cos 12QG H G α-+++===. 点睛:本题主要考查了直角三角形的性质,中位线的性质和三角函数定义等,利用分类讨论的思想,构建直角三角形是解答此题的关键.。

浙江初二初中数学中考模拟带答案解析

浙江初二初中数学中考模拟带答案解析

浙江初二初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、填空题1.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.2.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是.3.三角形两边长分别为3和6,第三边是方程x2-6x+8=0的解,则此三角形周长是.4.在直角坐标系中,已知点A (0,2),B(1,3),则线段AB的长度是____.5.已知,,则的值为___________.6.甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S甲2=0.90平方环,S乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是__.7.已知数据2,3,4,4,a,1的平均数是3,则这组数据的众数是__.8.下列二次根式,不能与合并的是__(填写序号即可).①;②;③.9.同学们对公园的滑梯很熟悉吧!如图是某公园新增设的一台滑梯,该滑梯高度AC=2米,滑梯AB的坡比是1:2(即AC:BC=1:2),则滑梯AB的长是米.二、解答题1.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.2.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.3.(1)计算:×-4××(1-)0;(2)已知三角形两边长为3,5,要使这个三角形是直角三角形,求出第三边的长.4.解下列方程(1)x2﹣4x=0;(2)x2﹣6x+8=0.5.某单位欲招聘一名员工,现有三人竞聘该职位,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表一和图一.请将表一和图一中的空缺部分补充完整;竞聘的最后一个程序是由该单位的名职工进行投票,三位竞聘者的得票情况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数;.若每票计分,该单位将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功.6.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.7.已知实数a满足|2012﹣a|+=a,则a﹣20122=.8.若方程(x﹣1)(x2﹣2x+m)=0的三个根可以作为一个三角形的三边之长,则m的取值范围:.9.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于.10.一次选拔考试的及格率为25%,及格者的平均分数比规定的及格分数多15分,不及格者的平均分数比规定的及格分数少25分,又知全体考生的平均分数是60分,求这次考试规定的及格分数是多少?三、单选题1.下列根式中,不能与合并的是 ( )A.B.C.D.2.下列方程是一元二次方程的是()A.x﹣3=2x B.x2﹣2=0C.x2﹣2y=1D.3.若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.20B.30C.40D.604.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35B.50,35C.50,50D.15,505.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形B.矩形C.菱形D.梯形6.将方程x2+4x+3=0配方后,原方程变形为()A.(x+2)2=1B.(x+4)2=1C.(x+2)2=﹣3D.(x+2)2=﹣17.已知实数x,y满足+x2+4y2=4xy,则(x-y)2017的值为()A.0B.-1C.1D.20168.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两相异实根,则k的取值范围是()A.k<B.k<且k≠1C.0<k<D.k≠19.若α,β是方程x2﹣2x﹣2=0的两个实数根,则α2+β2的值为()A.10B.9C.8D.7四、选择题已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是().A.当时,方程无解B.当时,方程有两个相等的实数解C.当时,方程有一个实数解D.当时,方程总有两个不相等的实数解浙江初二初中数学中考模拟答案及解析一、填空题1.如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为 米.【答案】1.【解析】设小道进出口的宽度为x 米,依题意得(30-2x )(20-x )=532, 整理,得x 2-35x+34=0. 解得,x 1=1,x 2=34.∵34>30(不合题意,舍去), ∴x=1.答:小道进出口的宽度应为1米. 【考点】一元二次方程的应用.2.关于x 的一元二次方程(a ﹣1)x 2+x+(a 2﹣1)=0的一个根是0,则a 的值是 . 【答案】-1.【解析】试题解析:∵关于x 的一元二次方程(a ﹣1)x 2+x+(a 2﹣1)=0的一个根是0, ∴x=0满足该方程,且a ﹣1≠0. ∴a 2﹣1=0,且a≠1. 解得a=﹣1.【考点】一元二次方程的解.3.三角形两边长分别为3和6,第三边是方程x 2-6x+8=0的解,则此三角形周长是 . 【答案】13.【解析】试题解析:x 2-6x+8=0, (x-2)(x-4)=0, x-2=0,x-4=0, x 1=2,x 2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去, 当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13 【考点】1.解一元二次方程-因式分解法;2.三角形三边关系.4.在直角坐标系中,已知点A (0,2),B (1,3),则线段AB 的长度是____. 【答案】 【解析】在平面直角坐标系中有两点和,则两点之间的距离为:,则根据公式可得:AB=.5.已知,,则的值为___________.【答案】【解析】根据平方差公式可得:原式=(x+y)(x-y)=[(+1)+(-1)] [(+1)-(-1)]=4.6.甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S 甲2=0.90平方环,S 乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是__. 【答案】甲【解析】当两人的平均成绩相同时,如果方差越小则说明这个人的成绩越稳定.7.已知数据2,3,4,4,a ,1的平均数是3,则这组数据的众数是__. 【答案】4【解析】根据平均数的计算法则可得:(2+3+4+4+a+1)÷6=3,则a=4,则这组数据的众数为4.8.下列二次根式,不能与合并的是__(填写序号即可). ①; ②; ③.【答案】②【解析】首先根据二次根式的化简法则将二次根式化简,经化简后如果被开方数相同,则能进行合并.;①、原式=4;②、原式=3;③就是最简二次根式.点睛:本题主要考查的就是二次根式的化简法则以及同类二次根式的定义.同类二次根式是指经化简后被开方数相同的二次根式.在二次根式的化简时,如果里面是整数,则这个整数不能含有完全平方数的因数;如果被开方数为分数,则需要同乘以分母进行分解;如果分母含有二次根式,则可以利用平方差公式进行化简.9.同学们对公园的滑梯很熟悉吧!如图是某公园新增设的一台滑梯,该滑梯高度AC=2米,滑梯AB的坡比是1:2(即AC:BC=1:2),则滑梯AB的长是米.【答案】.【解析】根据坡比求出BC,在Rt△ABC中,根据勾股定理可求出斜边AB的长度:由题意知,AC:BC=1;2,且AC=2,故BC=4.在Rt△ABC中,,即滑梯AB的长度为米.【考点】解直角三角形的应用-坡度坡角问题.二、解答题1.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.【答案】(1)2;(2)k=3或4,△ABC的周长为14或16.【解析】(1)根据题意得出AB、AC的长,再由根与系数的关系得出k的值;(2)根据等腰三角形的性质,分三种情况讨论:①AB=AC,②AB=BC,③BC=AC;后两种情况相同,则可有另种情况,再由根与系数的关系得出k的值.试题解析: (1)∵△ABC是以BC为斜边的直角三角形,BC=5,∴AB2+AC2=25,∵AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,∴AB+AC=2k+3,AB•AC=k2+3k+2,∴AB2+AC2=(AB+AC)2-2AB•AC,即(2k+3)2-2(k2+3k+2)=25,解得k=2或-5(不合题意舍去);(2)∵△ABC是等腰三角形;∴当AB=AC时,△=b2-4ac=0,∴(2k+3)2-4(k2+3k+2)=0解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6∴△ABC的周长为14或16.【考点】1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.勾股定理的逆定理.2.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【答案】见解析【解析】(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF ∴AF=BC ,在Rt △AFE 和Rt △BCA 中,,∴Rt △AFE ≌Rt △BCA (HL ), ∴AC=EF ;(2)∵△ACD 是等边三角形, ∴∠DAC=60°,AC=AD , ∴∠DAB=∠DAC+∠BAC=90° 又∵EF ⊥AB , ∴EF ∥AD ,∵AC=EF ,AC=AD , ∴EF=AD ,∴四边形ADFE 是平行四边形.【点评】此题考查了平行四边形的判定、等边三角形的性质以及全等三角形的判定与性质.注意证得Rt △AFE ≌Rt △BCA 是关键.3.(1)计算:×-4××(1-)0;(2)已知三角形两边长为3,5,要使这个三角形是直角三角形,求出第三边的长. 【答案】(1);(2)第三边的长为或【解析】(1)、根据二次根式的乘法法则和0次幂的计算法则求出各式的值,然后进行求和得出答案;(2)、本题需要分两种情况来进行讨论,即当5为直角边和斜边两种情况,然后根据勾股定理进行求解. 试题解析:(1)、原式=2×-4××1=2-=.(2)、设第三边成为,下面分两种情况讨论: ①、当为斜边时,由勾股定理,得②、当为直角边时,由勾股定理得故第三边的长为或4.解下列方程(1)x 2﹣4x=0;(2)x 2﹣6x+8=0.【答案】(1)x 1=0,x 2=4;(2)x 1=2,x 2=4.【解析】(1)、利用提取公因式法来进行解方程;(2)、利用十字相乘法来进行因式分解,从而得出方程的解. 试题解析:(1)x 2﹣4x=0, x (x ﹣4)=0, x=0,x ﹣4=0, x 1=0,x 2=4;(2)x 2﹣6x+8=0, (x ﹣2)(x ﹣4)=0, x ﹣2=0,x ﹣4=0, x 1=2,x 2=4.5.某单位欲招聘一名员工,现有三人竞聘该职位,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表一和图一.请将表一和图一中的空缺部分补充完整;竞聘的最后一个程序是由该单位的名职工进行投票,三位竞聘者的得票情 况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数; .若每票计分,该单位将笔试、口试、得票三项测试得分按的比例确定 个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功.【答案】(1)请将表一和图一中的空缺部分补充完整;90;补充后的图如下:(2).竞聘的最后一个程序是由该单位的名职工进行投票,三位竞聘者的得票情 况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数; A : B : C : …………4分 (3).若每票计分,该单位将笔试、口试、得票三项测试得分按的比例确定 个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功. A :(分) B :(分)C :(分)所以,能竞聘成功.………………………………6分 【解析】略6.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x 元时,每天可销售 件,每件盈利 元;(用x 的代数式表示) (2)每件童装降价多少元时,平均每天赢利1200元. (3)要想平均每天赢利2000元,可能吗?请说明理由. 【答案】(1)(20+2x ),(40﹣x );(2)每件童装降价20元或10元,平均每天赢利1200元; (3)不能,理由见解析.【解析】(1)、根据降价1元多售出2件可得:降价x 元多售出2x 件,从而得出答案;(2)、根据总利润=单件利润×数量列出方程方程,从而求出方程的解得出答案;(3)、根据题意列出方程,根据方程是否有解得出答案. 试题解析:(1)设每件童装降价x 元时,每天可销售20+2x 件,每件盈利40﹣x 元, 故答案为:(20+2x ),(40﹣x );(2)根据题意,得:(20+2x )(40﹣x )=1200 解得:x 1=20,x 2=10答:每件童装降价20元或10元,平均每天赢利1200元; (3)不能,∵(20+2x )(40﹣x )=2000 此方程无解, 故不可能做到平均每天盈利2000元.7.已知实数a 满足|2012﹣a|+=a ,则a ﹣20122= . 【答案】2013【解析】首先根据二次根式的性质得出a 的取值范围,然后进行去绝对值计算将原式进行化简,最后两边平方得出a 的值,从而得出代数式的值.试题解析:∵a ﹣2013≥0, ∴a≥2013, ∴|2012﹣a|+=a ,a ﹣2012+=a , =2012, a ﹣2013=20122,∴a ﹣20122=2013点睛:本题主要考查的就是二次根式的性质以及绝对值的化简问题.同学们在解答含有二次根式的题目时,我们首先就是要根据二次根式有意义的性质得出字母的取值范围,然后根据绝对值或者非负数的性质来进行解答.无论题目中出现几个二次根式,我们都需要对每一个二次根式进行求取值范围,这是解决二次根式题目的首要条件.8.若方程(x﹣1)(x2﹣2x+m)=0的三个根可以作为一个三角形的三边之长,则m的取值范围:.【答案】<m≤1【解析】首先根据题意得出方程的一个根为1,然后设另一个一元二次方程的两个根为a和b,根据根的判别式△=4﹣4m≥0和三角形三边的关系得出m的取值范围.试题解析:∵(x﹣1)(x2﹣2x+m)=0,∴x﹣1=0或x2﹣2x+m=0,∴原方程的一个根为1,设x2﹣2x+m=0的两根为a、b,则△=4﹣4m≥0,a+b=2,ab=m,又∴|a﹣b|==<1,∴4﹣4m<1,解得m>,∴<m≤1.故答案为:<m≤1.9.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于.【答案】a=﹣9【解析】首先根据m和b的值得出和的值,从而得出和的值,然后利用整体代入求出a的值.试题解析:由m=1+,得(m﹣1)2=2,即m2﹣2m=1,故7m2﹣14m=7,同理,得3n2﹣6n=3,代入已知等式,得(7+a)(3﹣7)=8,解得a=﹣9.10.一次选拔考试的及格率为25%,及格者的平均分数比规定的及格分数多15分,不及格者的平均分数比规定的及格分数少25分,又知全体考生的平均分数是60分,求这次考试规定的及格分数是多少?【答案】这次考试规定的及格分数是75分.【解析】首先设考生人数为a人,及格分数为x分,根据总人数×25%×(平均分+15)+总人数×75%×(平均分-25)=平均分×60列出方程,从而求出x的值得出答案.试题解析:设考生人数为a人,及格分数为x分.则:25%a(x+15)+75%a(x﹣25)=60a解得:x=75.答:这次考试规定的及格分数是75分.点睛:本题主要考查的就是一元一次方程的应用.这个题目中出现了两个未知数,很多同学对于两个未知数就感觉有点怕,不敢下手去做.对于这个问题的关键就是设出两个未知数,然后根据题意列出方程.对于方程的应用问题,我们要学会大胆去设未知数,不能局限于一个或两个未知数.三、单选题1.下列根式中,不能与合并的是 ( )A.B.C.D.【答案】A【解析】首先根据二次根式的化简法则将二次根式化简,经化简后如果被开方数相同,则能进行合并.A、原式=;B、原式=2;C、原式=3;D、原式=3.2.下列方程是一元二次方程的是()A.x﹣3=2x B.x2﹣2=0C.x2﹣2y=1D.【答案】B【解析】只含有一个未知数,且未知数的最高次数为2次的整式方程为一元二次方程.A选项的最高次数为1次;B 是一元二次方程;C选项含有两个未知数;D选项不是整式方程.3.若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.20B.30C.40D.60【答案】B【解析】根据直角三角形的勾股定理可得:另一条直角边=,则S=12×5÷2=30.4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35B.50,35C.50,50D.15,50【答案】C【解析】众数是在一组数据中,出现次数最多的数据;将一组数据按照从小到大的顺序进行排列,处于中间的数就是中位数.根据定义可得:众数为50;中位数为50.5.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形B.矩形C.菱形D.梯形【答案】B【解析】∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).6.将方程x2+4x+3=0配方后,原方程变形为()A.(x+2)2=1B.(x+4)2=1C.(x+2)2=﹣3D.(x+2)2=﹣1【答案】A【解析】首先进行移项,然后在等式的两边同时加上一次项系数一半的平方,从而得出完全平方式.,,则.7.已知实数x,y满足+x2+4y2=4xy,则(x-y)2017的值为()A.0B.-1C.1D.2016【答案】C【解析】几个非负数的和为零,则每一个非负数都为零,则根据题意可得:,解得:,则.8.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两相异实根,则k的取值范围是()A.k<B.k<且k≠1C.0<k<D.k≠1【答案】B【解析】当△=时,方程有两个不相等的实数根;当△=时,方程有两个相等的实数根;当△=时,方程没有实数根.根据题意可得:,解得:且k 1.点睛:本题主要考查的是一元二次方程根的判别式.对于一元二次方程当△=时,方程有两个不相等的实数根;当△=时,方程有两个相等的实数根;当△=时,方程没有实数根.如果题目中出现有根且二次项系数含有参数时,我们需要考虑是一元一次方程还是一元二次方程,然后分别进行讨论得出答案;如果题目中出现有两个根,则这个方程就是一元二次方程.9.若α,β是方程x2﹣2x﹣2=0的两个实数根,则α2+β2的值为()A.10B.9C.8D.7【答案】C【解析】根据韦达定理可得:,,则原式==4=2×(-2)=8.点睛:本题主要考查的是一元二次方程的韦达定理以及完全平方式的转化公式.对于一元二次方程的两根为和,则+,.对于完全平方公式的变形为:,,韦达定理里面只有两根之和与两根之积,则我们在化简的时候必须转化为和与积.四、选择题已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是().A.当时,方程无解B.当时,方程有两个相等的实数解C.当时,方程有一个实数解D.当时,方程总有两个不相等的实数解【答案】B.【解析】关于x的方程kx2+(1-k)x-1=0,A、当k=0时,x-1=0,则x=1,故此选项错误;B、当k=-1时,-x2+2x-1=0,则(x-1)2=0,此时方程有两个相等的实数解,故此选项正确;C、当k=1时,x2-1=0方程有两个实数解,故此选项错误;D、由C得此选项错误.故选B.【考点】1.根的判别式;2.一元一次方程的解.。

中考综合模拟考试 数学卷 含答案解析

中考综合模拟考试 数学卷 含答案解析
(1)当 时,求证: ;
(2)顺次连接 、 、 、 ,设四边形 的面积为 ,求出 与自变量 之间的函数关系式,并求 的最小值.
22.如图,直线y=﹣ x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣ x2+bx+c经过A、B两点,与x轴的另一个交点为C.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上 点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ的比值为y,求y与m的关系式,并求出PQ与OQ的比值的最大值;
【答案】 .
【解析】
【分析】
根据零次幂和负指数幂的运算法则计算即可.
【详解】原式=1﹣ = .
故答案为: .
【点睛】本题考查零次幂与负指数幂,熟记 , ,是解题的关键.
12.写出一个满足 的整数a的值为_____.
【答案】答案不唯一:2、3、4.
【解析】
【分析】
根据算术平方根性质估计两个无理数的大小,即1< < = 5,便可得出答案.
∴- =-1,a+b+c=0,
∴b=2a,c=-3a,
∵a>0,
∴b>0,c<0,
∴abc<0,故①错误,
∵抛物线对称轴x=-1,经过(1,0),
可知抛物线与x轴还有另外一个交点(-3,0)
∴抛物线与x轴有两个交点,
∴b2-4ac>0,故②正确,
∵抛物线与x轴交于(-3,0),
∴9a-3b+c=0,故③正确,
19.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.
(1)从2015年到2017年,该地投入异地安置资金 年平均增长率为多少?

2020-2021学年陕西省西安市中考数学八模试卷(及答案解析)

2020-2021学年陕西省西安市中考数学八模试卷(及答案解析)

陕西省中考数学八模试卷一、选择题1.5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A.﹣3吨B.+3吨C.﹣5吨D.+5吨2.下面几个几何体,主视图是圆的是()A.B.C.D.3.下列计算中,不正确的是()A.a2•a5=a10B.a2﹣2ab+b2=(a﹣b)2C.﹣(a﹣b)=b﹣a D.3a3b2÷a2b2=3a4.如图,AB∥CD,AD=CD,∠1=70°30',则∠2的度数是()A.40°30' B.39°30' C.40°D.39°5.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影=()A.πB.2πC.D.π6.若正比例函数y=(1﹣2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>7.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD 于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:18.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B. C.D.9.如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为()A.16 B.20 C.18 D.2210.在平面直角坐标系中,二次函数图象交x轴于(﹣5,0)、(1,0)两点,将此二次函数图象向右平移m个单位,再向下平移n个单位后,发现新的二次函数图象与x轴交于(﹣1,0)、(3,0)两点,则m的值为()A.3 B.2 C.1 D.0二、填空题11.在四个实数,0,﹣1,中,最大的是.请从12,13两个小题中任选一个作答,若多选,则按第12题计分.12.正多边形的一个外角是72°,则这个多边形的内角和的度数是.13.等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为.(用科学计算器计算,结果精确到0.1°)14.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C 在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.15.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.三、解答题16.计算:•3tan60°++.17.先化简,再求值:﹣(1﹣),其中,x=﹣1.18.如图,请用尺规作出圆O的内接正方形(保留作图痕迹,不写作法)19.某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练后都进行了测训练后篮球定点投篮测试进行球赛进球统计表进球数(个)876543人数214782请你根据图表中信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为多少个?(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加蓝球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.20.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.21.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)22.如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价0<x≤22a剩余部分a+1.1(1)某用户1月用水10立方米,共交水费23元,则a= 元/m3;(2)若该用户2月用水25立方米,则需交水费元;(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?23.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.24.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C 两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)判断△ADC的形状,并说明理由;(3)若点P是第四象限抛物线上的一点,是否存在一点P使以P、A、D、C为顶点的四边形面积最大?若存在,求点P的坐标及四边形的最大面积,若不存在,说明理由.26.问题探究:(1)如图①,△ABC为等腰三角形,AB=AC=a,∠BAC=120°,则△ABC的面积为(用含a的代数式表示)(2)如图②,△AOD与△BOC为两个等腰直角三角形,两个直角顶点O重合,OA=OB=OC=OD=a.若△AOD与△BOC不重合,连接AB,CD,求四边形ABCD面积最大值.问题解决:如图③,点O为某电视台所在位置,现要在距离电视台5km的地方修建四个电视信号中转站,分别记为A、B、C、D.若要使OB与OC夹角为150°,OA与OD夹角为90°(∠AOD与∠BOC不重合且点O、A、B、C、D在同一平面内),则符合题意的四个中转站所围成的四边形面积有无最大值?如果有,求出最大值,如果没有,请说明理由.参考答案与试题解析一、选择题1.5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A.﹣3吨B.+3吨C.﹣5吨D.+5吨【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∵+3吨表示运入仓库的樱桃吨数,∴运出5吨樱桃表示为﹣5吨.故选C.2.下面几个几何体,主视图是圆的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别判断A,B,C,D的主视图,即可解答.【解答】解:A、主视图为正方形,故错误;B、主视图为圆,正确;C、主视图为三角形,故错误;D、主视图为长方形,故错误;故选:B.3.下列计算中,不正确的是()A.a2•a5=a10B.a2﹣2ab+b2=(a﹣b)2C.﹣(a﹣b)=b﹣a D.3a3b2÷a2b2=3a【考点】整式的除法;合并同类项;去括号与添括号;同底数幂的乘法.【分析】根据同底数幂的乘法、完全平方公式、单项式的除法进行计算即可.【解答】解:A、a2•a5=a7,不合题意,故A正确;B、a2﹣2ab+b2=(a﹣b)2,符合题意,故B错误;C、﹣(a﹣b)=b﹣a,符合题意,故C错误;D、3a3b2÷a2b2=3a,符合题意,故D错误;故选A.4.如图,AB∥CD,AD=CD,∠1=70°30',则∠2的度数是()A.40°30' B.39°30' C.40°D.39°【考点】等腰三角形的性质;平行线的性质.【分析】先根据平行线的性质求出∠ACD的度数,再由AC=CD得出∠CAD的度数,根据三角形内角和定理即可得出结论.【解答】解:∵AB∥CD,∠1=70°30',∴∠ACD=∠1=70°30'.∵AD=CD,∴∠CAD=∠ACD=7030'°,∴∠2=180°﹣∠ACD﹣∠CAD=180°﹣7030'°﹣70°30'=39°.故选D.5.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影=()A.πB.2πC.D.π【考点】扇形面积的计算;勾股定理;垂径定理.【分析】求出CE=DE,OE=BE=1,得出S△BED=S△OEC,所以S阴影=S扇形BOC.【解答】解:如图,CD⊥AB,交AB于点E,∵AB是直径,∴CE=DE=CD=,又∵∠CDB=30°∴∠COE=60°,∴OE=1,OC=2,∴BE=1,∴S△BED=S△OEC,∴S阴影=S扇形BOC==.故选:D.6.若正比例函数y=(1﹣2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>【考点】正比例函数的性质.【分析】根据正比例函数的大小变化规律判断k的符号.【解答】解:根据题意,知:y随x的增大而减小,则k<0,即1﹣2m<0,m>.故选D.7.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD 于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.8.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B. C.D.【考点】关于原点对称的点的坐标;在数轴上表示不等式的解集.【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案.【解答】解:∵点P(a+1,﹣+1)关于原点的对称点坐标为:(﹣a﹣1,﹣1),该点在第四象限,∴,解得:a<﹣1,则a的取值范围在数轴上表示为:.故选:C.9.如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为()A.16 B.20 C.18 D.22【考点】平行四边形的判定与性质;勾股定理;三角形中位线定理.【分析】根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而不难求得其周长.【解答】解:在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=16.故选:A.10.在平面直角坐标系中,二次函数图象交x轴于(﹣5,0)、(1,0)两点,将此二次函数图象向右平移m个单位,再向下平移n个单位后,发现新的二次函数图象与x轴交于(﹣1,0)、(3,0)两点,则m的值为()A.3 B.2 C.1 D.0【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】根据平移前后抛物线对称轴的变化即可得出答案.【解答】解:∵二次函数图象交x轴于(﹣5,0)、(1,0)两点,∴原二次函数的对称轴为=﹣2,∵新的二次函数图象与x轴交于(﹣1,0)、(3,0)两点,∴原二次函数的对称轴为x==1,∴原抛物线向右平移了3个单位,即m=3,故选:A.二、填空题11.在四个实数,0,﹣1,中,最大的是.【考点】实数大小比较.【分析】根据实数的大小比较法则比较即可.【解答】解:四个实数,0,﹣1,中,最大的是;故答案为:.请从12,13两个小题中任选一个作答,若多选,则按第12题计分.12.正多边形的一个外角是72°,则这个多边形的内角和的度数是540°.【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:多边形的边数:360°÷72°=5,正多边形的内角和的度数是:(5﹣2)•180°=540°.故答案为:540°.13.等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为49.5°.(用科学计算器计算,结果精确到0.1°)【考点】计算器—三角函数;近似数和有效数字;等腰三角形的性质.【分析】首先画出图形,再利用cosB==,结合计算器求出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵腰和底的长分别是10和13,∴BD=,∴cosB===,∴∠B≈49.5°.故答案为:49.5°.14.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C 在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为 2 .【考点】反比例函数图象上点的坐标特征;解一元二次方程﹣因式分解法.【分析】先确定B点坐标(1,6),根据反比例函数图象上点的坐标特征得到k=6,则反比例函数解析式为y=,设AD=t,则OD=1+t,所以E点坐标为(1+t,t),再利用根据反比例函数图象上点的坐标特征得(1+t)•t=6,利用因式分解法可求出t的值.【解答】解:∵OA=1,OC=6,∴B点坐标为(1,6),∴k=1×6=6,∴反比例函数解析式为y=,设AD=t,则OD=1+t,∴E点坐标为(1+t,t),∴(1+t)•t=6,整理为t2+t﹣6=0,解得t1=﹣3(舍去),t2=2,∴正方形ADEF的边长为2.故答案为:2.15.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.【考点】相似三角形的判定与性质;垂线段最短;勾股定理;平行四边形的性质.【分析】以PA,PC为邻边作平行四边形PAQC,由平行四边形的性质可知O是AC 中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,然后根据△P′OC和△ABC相似,利用相似三角形的性质即可求出PQ的最小值.【解答】解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故答案为:.三、解答题16.计算:•3tan60°++.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣3×3+1+2=1﹣7.17.先化简,再求值:﹣(1﹣),其中,x=﹣1.【考点】分式的化简求值.【分析】先化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:﹣(1﹣)====,当x=﹣1时,原式===.18.如图,请用尺规作出圆O的内接正方形(保留作图痕迹,不写作法)【考点】作图—应用与设计作图;正多边形和圆.【分析】先作直径AC,再作AC的垂直平分线交⊙O于B、D,则四边形ABCD为圆O 的内接正方形【解答】解:如图,正方形ABCD为所作.19.某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练后都进行了测训练后篮球定点投篮测试进行球赛进球统计表进球数(个)876543人数214782请你根据图表中信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为多少个?(2)选择长跑训练的人数占全班人数的百分比是10% ,该班共有同学40 人;(3)根据测试资料,参加蓝球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.【考点】扇形统计图;统计表.【分析】(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解.【解答】解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人).训练后篮球定时定点投篮人均进球数==5(个);(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,则全班同学的人数为24÷60%=40(人),故答案是:10%,40;(3)设参加训练之前的人均进球数为x个,则x(1+25%)=5,解得x=4.即参加训练之前的人均进球数是4个.20.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】根据在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证△AED≌△ACD,然后利用等量代换即可求的结论.【解答】证明:∵AD平分∠EDC,∴∠ADE=∠ADC,在△AED和△ACD中,∵∴△AED≌△ACD(SAS),∴∠C=∠E,又∵∠E=∠B.∴∠C=∠B,∴AB=AC.21.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据已知和余弦的概念求出DF的长,得到CG的长,根据正切的概念求出AG的长,求和得到答案.【解答】解:∵cos∠DBF=,∴BF=60×0.85=51,FH=DE=9,∴EG=HC=110﹣51﹣9=50,∵tan∠AEG=,∴AG=50×2.48=124,∵sin∠DBF=,∴DF=60×0.53=31.8,∴CG=31.8,∴AC=AG+CG=124+31.8=155.8米.22.如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价0<x≤22a剩余部分a+1.1(1)某用户1月用水10立方米,共交水费23元,则a= 2.3 元/m3;(2)若该用户2月用水25立方米,则需交水费60.8 元;(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?【考点】一元一次方程的应用.【分析】(1)由单价=总价÷数量就可以得出结论;(2)设该用户2月份水费=0<x≤22的水费+x大于22部分的水费,列出算式计算即可求解;(3)设该用户3月份实际用水m吨,由70%的水量的水费为71元=单价×数量建立方程求出其解即可.【解答】解:(1)a=23÷10=2.3(元/m3);(2)2.3×22+(2.3+1.1)×(25﹣22)=50.6+3.4×3=50.6+10.2=60.8(元).答:需交水费60.8元;(3)设该用户实际用水m立方米,由题意,得2.3×22+(2.3+1.1)×(70%m﹣22)=71,解得:m=.故该用户实际用水立方米.故答案为:2.3;.23.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到10 元购物券,至多可得到50 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.【考点】列表法与树状图法.【分析】(1)如果摸到0元和10元的时候,得到的购物券是最少,一共10元.如果摸到20元和30元的时候,得到的购物券最多,一共是50元;(2)列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.【解答】解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=;解法二(列表法):第二次0102030第一次0﹣﹣1020301010﹣﹣3040202030﹣﹣5030304050﹣﹣(以下过程同“解法一”)24.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.【考点】相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;垂径定理;切线的性质.【分析】(1)连接OD,只要证明∠EFD=∠EDF即可解决问题.(2)先求得EF=1,设DE=EF=x,则OF=x+1,在Rt△ODE中,根据勾股定理求得DE=4,OE=5,根据切线的性质由AG为⊙O的切线得∠GAE=90°,再证明Rt△EOD∽Rt△EGA,根据相似三角形对应边成比例即可求得.【解答】(1)证明:连接OD,∵OC=OD,∴∠C=∠ODC,∵OC⊥AB,∴∠COF=90°,∴∠OCD+∠CFO=90°,∵GE为⊙O的切线,∴∠ODC+∠EDF=90°,∵∠EFD=∠CFO,∴∠EFD=∠EDF,∴EF=ED.(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠EFD=∠EDF,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=OE2,∴32+x2=(x+1)2,解得x=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴=,即=,∴AG=6.25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C 两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)判断△ADC的形状,并说明理由;(3)若点P是第四象限抛物线上的一点,是否存在一点P使以P、A、D、C为顶点的四边形面积最大?若存在,求点P的坐标及四边形的最大面积,若不存在,说明理由.【考点】二次函数综合题.【分析】(1)根据经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),可以求得抛物线的解析式,进而得到顶点D的坐标;(2)根据(1)中的函数解析式可以求得点A、D、C的坐标,从而可以求得AD、AC、CD的长,然后根据勾股定理的逆定理即可判断△ADC的形状;(3)先判断是否存在,然后再根据题意和题目中的数据,利用分类讨论的数学思想进行解答即可.【解答】解:(1)∵经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点,∴,得,∴抛物线的解析式为:y=x2﹣2x﹣6,∵y=x2﹣2x﹣6=,∴顶点D的坐标为(2,﹣8),即抛物线的函数关系式为y=x2﹣2x﹣6,顶点D的坐标为(2,﹣8);(2)△ACD的形状是直角三角形,理由:∵抛物线的解析式为y=x2﹣2x﹣6,∴当y=0时,0=x2﹣2x﹣6,解得,x1=﹣2,x2=6,∴点C的坐标为(6,0),又∵点A(0,﹣6),点D(2,﹣8),∴AC=,AD=,CD=,∵,∴△ACD是直角三角形,AC⊥AD,即△ADC的形状是直角三角形;(3)存在一点P使以P、A、D、C为顶点的四边形面积最大,如右图所示,当点P1在AD之间时,设P1的坐标为(a,a2﹣2a﹣6),∵AC⊥AD,AC=6,AD=2,CD=4,∴△ACD的面积是:,设过点A(0,﹣6),点D(2,﹣8)的直线解析式为y=kx+b,,得,∴过点A(0,﹣6),点D(2,﹣8)的直线解析式为y=﹣x﹣6,∴△AP1D的面积为:=||,∴=12+||,∵0<a<2,∴当a=1时,四边形面积取得最大值,此时四边形的面积是18.5,当a=1时,y=a2﹣2a﹣6=,即P1的坐标为(1,﹣7.5);当点P2在DC之间时,设P2的坐标为(m,m2﹣2m﹣6),∵AC⊥AD,AC=6,AD=2,CD=4,∴△ACD的面积是:,设过点C(6,0),点D(2,﹣8)的直线解析式为y=cx+d,,得,∴过点C(6,0),点D(2,﹣8)的直线解析式为y=2x﹣12,∴△CP2D的面积为:=2||,∴=12+2||,∵2<m<6,∴当m=4时,四边形的面积最大,此时四边形的面积是16,当m=4时,y=m2﹣2m﹣6=﹣6,即点P2的坐标为(4,﹣6);由上可得,点P的坐标为(1,﹣7.5),四边形的最大面积是18.5.26.问题探究:(1)如图①,△ABC为等腰三角形,AB=AC=a,∠BAC=120°,则△ABC的面积为(用含a的代数式表示)(2)如图②,△AOD与△BOC为两个等腰直角三角形,两个直角顶点O重合,OA=OB=OC=OD=a.若△AOD与△BOC不重合,连接AB,CD,求四边形ABCD面积最大值.问题解决:如图③,点O为某电视台所在位置,现要在距离电视台5km的地方修建四个电视信号中转站,分别记为A、B、C、D.若要使OB与OC夹角为150°,OA与OD夹角为90°(∠AOD与∠BOC不重合且点O、A、B、C、D在同一平面内),则符合题意的四个中转站所围成的四边形面积有无最大值?如果有,求出最大值,如果没有,请说明理由.【考点】三角形综合题;等腰三角形的性质;等边三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】问题探究:(1)根据等腰三角形的性质,求得底边上的高,进而得到△ABC 的面积;(2)过点C作CE⊥OD于E,则CE≤CO,当点E与点O重合时,CE=CO=a,此时∠COD=90°,即△COD是等腰直角三角形,进而得到四边形ABCD是正方形,再根据OA=OB=OC=OD=a,求得四边形ABCD的面积即可;问题解决:将△COD绕着点O按顺时针方向旋转150°,得到△BOE,过A作AG⊥OB 于G,过E作EF⊥OB于F,连接AE交OB于H,则AG≤AH,EF≤EH,当点G、点F 都与点H重合时,AG+EF=AE(最大),而OB长不变,故四边形ABEO的面积最大,此时OB⊥AE,进而得出△AOB和△COD都是等边三角形,最后根据△AOB和△COD 的面积都为:×5×=,△AOD的面积为:×5×5=,△BOC的面积为:×5×=,求得四边形ABCD的面积的最大值.【解答】解:问题探究:(1)如图①,过A作AD⊥BC于D,则Rt△ABD中,AD=AB=a,BD=a,∴BC=a,∴△ABC的面积=BC×AD=×a×a=,故答案为:;(2)如图②,过点C作CE⊥OD于E,则CE≤CO,当点E与点O重合时,CE=CO=a,此时∠COD=90°,即△COD是等腰直角三角形,∴∠AOB=360°﹣3×90°=90°,∴△AOB是等腰直角三角形,∴四边形ABCD是正方形,∵OA=OB=OC=OD=a,∴AB=BC=CD=AD=a,∴四边形ABCD面积最大值为:(a)2=2a2;问题解决:四边形ABCD面积有最大值.如图所示,将△COD绕着点O按顺时针方向旋转150°,得到△BOE,∵OB与OC夹角为150°,OA与OD夹角为90°,∴∠AOB+∠COD=120°,∴∠AOB+∠BOE=120°,即∠AOE=120°,过A作AG⊥OB于G,过E作EF⊥OB于F,连接AE交OB于H,则AG≤AH,EF≤EH,∴当点G、点F都与点H重合时,AG+EF=AE(最大),而OB长不变,故四边形ABEO 的面积最大,此时,OB⊥AE,又∵OA=OE,∴等腰三角形AOE中,OH平分∠AOE,∴∠AOB=60°,∠COD=60°,又∵OA=OB=OC=OD=5,∴△AOB和△COD都是等边三角形,∵△AOB和△COD的面积都为:×5×=,△AOD的面积为:×5×5=,△BOC的面积为:×5×=,∴四边形ABCD的面积=×2++=+.。

2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(8)——二次函数及答案

2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(8)——二次函数及答案

2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(8)——二次函数一.选择题(共8小题)1.(2020•包河区校级一模)如图,是二次函数y =ax 2+bx +c 图象的一部分,下列结论中:①abc >0; ②a ﹣b +c <0; ③ax 2+bx +c +1=0有两个相等的实数根; ④9a +3b +c >0.其中正确的结论的序号为( )A .①②B .①③C .②③D .①④2.(2019•包河区校级二模)已知二次函数y =﹣x 2+mx +m (m 为常数),当﹣2≤x ≤4时,y 的最大值是15,则m 的值是( )A .﹣10和6B .﹣19和315C .6和315D .﹣19和63.(2020•蜀山区校级一模)已知函数y =−y 2+yy −y 4+12,若函数在0≤x ≤1上的最大值是2,则a 的值为( )A .﹣2B .﹣6C .﹣2或3D .﹣6或103 4.(2020•长丰县二模)若(﹣2,0)是二次函数y =ax 2+bx (a >0)图象上一点,则抛物线y =a (x ﹣2)2+bx ﹣2b 的图象可能是( )A .B .C .D .5.(2020•肥东县一模)已知二次函数y =﹣(x ﹣1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( )A .12B .32C .2D .52 6.(2019•合肥二模)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (﹣5,0),对称轴为直线x =﹣2,给出四个结论:①abc >0;②4a ﹣b =0;③若点B (﹣3,y 1).C (0,y 2)为函数图象上的两点,则y 1<y 2;④a +b +c =0 其中,正确结论的个数是( )A .1B .2C .3D .47.(2019•庐阳区二模)已知y 关于x 的函数表达式是y =ax 2﹣2x ﹣a ,下列结论不正确的是( )A .若a =1,函数的最小值是﹣2B .若a =﹣1,当x ≤﹣1时,y 随x 的增大而增大C .不论a 为何值时,函数图象与x 轴都有两个交点D .不论a 为何值时,函数图象一定经过点(1,﹣2)和(﹣1,2)8.(2018•长丰县一模)将抛物线y =2(x ﹣1)2+7先沿x 轴方向向左平移2个单位长度,再沿y 轴方向向下平移5个单位长度后,得到的二次函数的表达式为( )A .y =2x 2+4x +4B .y =2x 2﹣12x +20C .y =2x 2+4x +14D .y =2x 2﹣12x +30二.填空题(共6小题)9.(2020•肥东县二模)如图,在平面直角坐标系中,正比例函数y =kx 的图象与二次函数y =−12x 2﹣x +4的图象交于P 点(P 在第二象限),经过P 点与x 轴垂直的直线l 与一次函数y =x +4的图象交于Q 点,当PQ =32时,则k 的值为 .10.(2020•包河区一模)已知实数a 、b 、c 满足(a ﹣b )2=ab =c ,有下列结论:①当c ≠0时,y y +y y =3; ②当c =5时,a +b =5; ③当a ,b ,c 中有两个相等时,c =0;④二次函数y =x 2+bx ﹣c 与一次函数y =ax +1的图象有2个交点.其中正确的有 .11.(2020•庐阳区校级模拟)在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(﹣2,3),(3,2),若抛物线y =ax 2﹣x +2(a ≠0)与线段MN 有两个不同的交点,则a 的取值范围是 .12.(2018•合肥二模)已知二次函数y =x 2﹣2ax (a 为常数).当﹣1≤x ≤4时,y 的最小值是﹣12,则a 的值为13.(2018•合肥一模)若关于x 的二次函数y =ax 2+a 2的最小值为4,则a 的值为 .14.(2019•长丰县二模)如图,菱形ABCD 的三个顶点在二次函数y =ax 2+2ax +2(a <0)的图象上,点A ,B 分别是该抛物线的顶点和抛物线与y 轴的交点,则点D 的坐标为 .三.解答题(共22小题)15.(2020•庐阳区校级一模)合肥市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?16.(2020•肥东县二模)某水果店计划购进甲、乙两种高档水果共400千克,每千克的售价、成本与购进数量(千克)之间关系如表:每千克售价(元)每千克成本(元)甲﹣0.1x+100 50乙﹣0.2x+120(0<x≤200)606000+50(200<x≤400)y(1)若甲、乙两种水果全部售完,求水果店获得总利润y(元)与购进乙种水果x(千克)之间的函数关系式(其他成本不计);(2)若购进两种水果都不少于100千克,当两种水果全部售完,能获得的最大利润是多少?17.(2020•包河区一模)经销商购进某种商品,当购进量在20千克~50千克之间(含20千克和50千克)时,每千克进价是5元;当购进量超过50千克时,每千克进价是4元,此种商品的日销售量y(千克)与销售价x(元/千克)的影响较大,该经销商试销一周后获得如下数据:x(元/千克)5 5.5 6 6.5 7y(千克)90 75 60 45 30解决下列问题:(1)求y关于x的一次函数表达式;(2)若每天购进的商品能够全部销售完,且当日销售价不变,日销售利润w元,那么销售价定为多少时,该经销商销售此种商品的当日利润最大?最大利润是多少?此时购进量应该为多少千克?【注:当日利润=(销售价﹣进货价)×日销售量】18.(2020•包河区校级一模)为鼓励下岗工人再就业,某地市政府规定,企业按成本价提供产品给下岗人员自主销售,成本价与出厂价之间的差价由政府承担,老李按照政策投资销售本市生产的一种儿童面条.已知这种儿童面条的成本价为每袋12元,出厂价为每袋16元,每天销售y(袋)与销售单价x(元)之间的关系近似满足y=﹣3x+90.(1)老李在开始创业的第1天将销售单价定为17元,那么政府这一天为他承担的总差价为多少元?(2)设老李获得的利润为w(元),当销售单价为多少元时,每天可获得最大利润?(3)物价部门规定,这种面条的销售单价不得高于24元,如果老李想要每天获得的利润不低于216元,那么政府每天为他承担的总差价最少为多少元?19.(2020•庐阳区校级一模)已知二次函数y=mx2+(1﹣2m)x+1﹣3m.(1)当m=2时,求二次函数图象的顶点坐标;(2)已知抛物线与x轴交于不同的点A、B.①求m的取值范围;②若3≤m≤4时,求线段AB的最大值及此时二次函数的表达式.20.(2020•庐阳区校级一模)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)21.(2019•瑶海区校级三模)已知抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣3,0)和B(1,0)两点(点A在点B的左边),点D为抛物线的顶点.(1)求抛物线的函数解析式;(2)画出此二次函数的大致图象;(3)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,求当矩形PQMN的周长最大时点M的横坐标.22.(2019•安徽三模)“疾驰臭豆腐”是长沙知名地方小吃,某分店经理发现,当每份臭豆腐的售价为6元时,每天能卖出500份;当每份臭豆腐的售价每增加0.5元时,每天就会少卖出20份,设每份臭豆腐的售价增加x元时,一天的营业额为y元.(1)求y与x的函数关系式(不要求写出x的取值范围);(2)考虑到顾客可接受价格a元/份的范围是6≤a≤9,且a为整数,不考虑其他因素,则该分店的臭豆腐每份多少元时,每天的臭豆腐营业额最大?最大营业额是多少元?23.(2019•庐阳区校级一模)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲﹣0.1m+100 50乙﹣0.2m+120(0<m<200)606000+50(200≤m≤400)y(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元.(2)若所有的T恤都能售完,求该店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;(3)在(2)的条件下已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能获得的利润最大?24.(2019•庐阳区校级模拟)商场里某产品每月销售量y(只)与销售单价x(元)满足一次函数关系,经调查部分数据如表:(已知每只进价为10元,每只利润=销售单价﹣进价)销售单价x(元)21 23 25 …月销售额y(只)29 27 25 …(1)求出y与x之间的函数表达式;(2)这产品每月的总利润为w元,求w关于x的函数表达式,并指出销售单价为多少元时利润最大,最大利润是多少元?(3)由于该产品市场需求量较大,进价在原有基础上提高了a元(a<10),但每月销售量与销售价仍满足上述一次函数关系,此时,随着销售量的增大,所得的最大利润比(2)中的最大利润减少了144元,求a的值.25.(2019•蜀山区校级三模)如图,二次函数=ax2+bx﹣3的图象与x轴相交于A(﹣1,0),B(3,0)两点.与y轴相交于点C(1)求这个二次函数的解析式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点AM,请问:当点P的坐标为多少时,线段PM的长最大?并求出这个最大值.26.(2019•合肥模拟)某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?27.(2019•包河区一模)如图,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(4,0).E是线段OB上一动点(点E不与O、B重合),过点E作x轴的垂线交抛物线于点D,交线段BC于点G、过点D作DF⊥BC,垂足为点F.(1)求该抛物线的解析式;(2)试求线段DF的长h关于点E的横坐标x的函数解析式,并求出h的最大值.28.(2019•长丰县二模)某公司销售一种产品,产品成本为40元/千克,经市场调查,若按50元/千克销售,每月可销售500kg,销售单价每上涨2元,月销售量就减少20kg(1)写出月销售利润y(单位:元)与销售单价x(单位:元/千克)之间的函数解析式(不要求写出x 的取值范围);(2)当销售单价定为60元时,计算月销售量和月销售利润;(3)当销售单价定为多少元时能获得最大利润?最大利润是多少?29.(2019•合肥二模)水库90天内的日捕捞量y(kg)与时间第x(天)满足一次函数的关系,部分数据如表:时间第x(天)1 3 6 10日捕捞量(kg)198 194 188 180(1)求出y与x之间的函数解析式;(2)水库前50天采用每天降低水位的办法减少捕捞成本,到达最低水位标准后,后40天水库维持最低水位进行捕捞.捕捞成本和时间的关系如下表:时间第x(天)1≤x<50 50≤x≤90捕捞成本(元/kg)60﹣x10已知鲜鱼销售单价为每千克70元,假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.设销售该鲜鱼的当天收入w元(当天收入=日销售额﹣日捕捞成本),①请写出w与x之间的函数解析式,并求出90天内哪天收入最大?当天收入是多少?②若当天收入不低于4800元,请直接写出x的取值范围?30.(2019•蜀山区一模)某公司生产A种产品,它的成本是6元/件,售价是8元/件,年销售量为5万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x万元,产品的年销售量将是原销售量的y倍,且y与x之间满足我们学过的二种函数(即一次函数和二次函数)关系中的一种,它们的关系如下表:x(万元)0 0.5 1 1.5 2 …y 1 1.275 1.5 1.675 1.8 …(1)求y与x的函数关系式(不要求写出自变量的取值范围)(2)如果把利润看作是销售总额减去成本费用和广告费用,试求出年利润W(万元)与广告费用x(万元)的函数关系式,并计算每年投入的广告费是多少万元时所获得的利润最大?(3)如果公司希望年利润W(万元)不低于14万元,请你帮公司确定广告费的范围.31.(2019•瑶海区一模)家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件,为了增加销量,公司决定采取降价的办法,经过市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售利润W(万元)与销售单价x(元)之间的函数关系式.(2)为了获得最大销售利润,每件产品的售价定为多少元?此时最大月销售利润是多少?(3)请你通过(1)中函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于480万元.32.(2018•长丰县一模)已知二次函数y=﹣x2+4x(1)求出该二次函数图象的顶点坐标和对称轴方程;(2)在所给坐标系中画出该函数的图象;(3)根据图象直接写出不等式﹣x2+4x>3的解集.33.(2020•长丰县二模)随着新冠肺炎的暴发,市场对口罩的需求量急剧增大.某口罩生产商自二月份以来,一直积极恢复产能,每日口罩生产量y(百万个)与天数x(1≤x≤29,且x为整数)的函数关系图象如图所示,而该生产商对口供应市场对口罩的需求量z(百万个)与天数x呈抛物线型,第1天市场口罩缺口(需求量与供应量差)就达到7.5(百万个),之后若干天,市场口罩需求量不断上升,在第10天需求量达到最高峰60(百万个).(1)求出y与x的函数解析式;(2)当市场供应量不小于需求量时,市民买口罩才无需提前预约,那么在整个二月份,市民无需预约即可购买口罩的天数共有多少天?34.(2019•合肥二模)国家支持大学生创新办实业,提供小额无息贷款,学生王亮享受国家政策贷款36000元用于代理某品牌服装销售,已知该店代理的品牌服装的进价为每件40元,该品牌服装售量y(件)与销售价x(元/件)之间的关系可用图中的一条线段(实线)来表示.(1)求日销售量y与销售价x之间的函数关系式,并写出x的取值范围;(2)该品牌服装售价x为多少元时,每天的销售利润W最大,且最大销售利润W为多少?(3)若该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含贷款).现该店只有2名员工,则该店至少需要多少天才能还清所有贷款?35.(2019•合肥模拟)某公司向市场投放一款研发成本为10千万元新产品,经调研发现,其销售总利润y (千万元)与销售时间x(月)成二次函数,其函数关系式为y=﹣x2+20x(x为整数).求:(1)投入市场几个月后累计销售利润y开始下降;(2)累计利润达到8.1亿时,最快要几个月(利润=销售总利润﹣研发成本);(3)当月销售利润小于等于3千万时应考虑推出替代产品,问该公司何时推出替代产品最好?36.(2019•合肥模拟)某实验器材专营店为迎接我市理化生实验的到来,购进一批电学实验盒子,一台电学实验盒的成本是30元,当售价定为每盒50元时,每天可以卖出20盒.但由于电学实验盒是特殊时期的销售产品,专营店准备对它进行降价销售.根据以往经验,售价每降低3元,销量增加6盒.设售价降低了x(元),每天销量为y(盒).(1)求y与x之间的函数表达式;(2)总利润用W(元)来表示,请说明售价为多少元时获得最大利润,最大利润是多少?2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(8)——二次函数参考答案与试题解析一.选择题(共8小题)1.【解答】解:①由抛物线的开口方向向上可推出a >0,与y 轴的交点为在y 轴的负半轴上可推出c =﹣1<0,对称轴为x =−y 2y >1>0,a >0,得b <0,故abc >0,故①正确;②由对称轴为直线x =−y 2y >1,抛物线与x 轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(﹣1,0)之间,所以当x =﹣1时,y >0,所以a ﹣b +c >0,故②错误;③抛物线与y 轴的交点为(0,﹣1),由图象知二次函数y =ax 2+bx +c 图象与直线y =﹣1有两个交点, 故ax 2+bx +c +1=0有两个不相等的实数根,故③错误;④x =3时,y =ax 2+bx +c =9a +3b +c >0,故④正确;故选:D .2.【解答】解:∵二次函数y =﹣x 2+mx +m =﹣(x −y 2)2+y 24+m ,∴当y 2<−2时,即m <﹣4, ∵当﹣2≤x ≤4时,y 的最大值是15,∴当x =﹣2时,﹣(﹣2)2﹣2m +m =15,得m =﹣19;当﹣2≤y 2≤4时,即﹣4≤m ≤8时,∵当﹣2≤x ≤4时,y 的最大值是15,∴当x =y 2时,y 24+m =15,得m 1=﹣10(舍去),m 2=6; 当y 2>4时,即m >8, ∵当﹣2≤x ≤4时,y 的最大值是15,∴当x =4时,﹣42+4m +m =15,得m =315(舍去); 由上可得,m 的值是﹣19或6;故选:D .3.【解答】解:∵y =−y 2+yy −y 4+12, ∴其对称为x =12a ,开口向下,当12a <0即a <0时,在0≤x ≤1上y 随x 的增大而减小, ∴当x =0时有最大值,最大值=−14a +12=2,解得a =﹣6<0,符合题意;当0≤12a ≤1即0≤a ≤2时,y 的最大值=−14a 2+12a 2−14a +12=2,∴a =3(不合题意,舍去),或a =﹣2(舍去);当12a >1即a >2时,在0≤x ≤1上y 随x 的增大而增大, ∴当x =1时,有最大值=﹣1+a −14a +12=2,∴a =103,综上可知a 的值为﹣6或103. 故选:D .4.【解答】解:∵(﹣2,0)是y =ax 2+bx (a >0)图象上一点,∴b =2a ,∴y =a (x ﹣2)2+bx ﹣2b =a (x ﹣2)2+2ax ﹣4a =ax 2﹣2ax ,∴函数的对称轴为x =1,当x =0时,y =0,∴函数经过原点,故选:D .5.【解答】解:二次函数y =﹣(x ﹣1)2+5的大致图象如下:.①当m <0≤x ≤n <1时,当x =m 时,y 取最小值,即2m =﹣(m ﹣1)2+5,解得:m =﹣2.当x =n 时,y 取最大值,即2n =﹣(n ﹣1)2+5,解得:n =2或n =﹣2(均不合题意,舍去);②当m <0≤x ≤1≤n 时,当x =m 时,y 取最小值,即2m =﹣(m ﹣1)2+5,解得:m =﹣2.当x =1时,y 取最大值,即2n =﹣(1﹣1)2+5,解得:n =2.5,或x =n 时,y 取最小值,x =1时,y 取最大值,2m =﹣(n ﹣1)2+5,n =2.5,∴m =118, ∵m <0,∴此种情形不合题意,所以m +n =﹣2+2.5=0.5.故选:A .6.【解答】解:由图象可知:开口向下,故a <0,抛物线与y 轴交点在x 轴上方,故c >0,∵对称轴x =−y 2y <0,∴b <0,∴abc >0,故①正确;∵对称轴为x =﹣2,∴−y 2y =−2,∴b =4a ,∴4a ﹣b =0,故②正确;当x <﹣2时,此时y 随x 的增大而增大,∵点B (﹣3,y 1)与对称轴的距离比C (0,y 2)与对称轴的距离小,∴y 1>y 2,故③错误;∵图象过点A (﹣5,0),对称轴为直线x =﹣2,∴点A 关于x =﹣2对称点的坐标为:(1,0)令x =1代入y =ax 2+bx +c ,∴y =a +b +c =0,故④正确,故选:C .7.【解答】解:∵y =ax 2﹣2x ﹣a ,∴当a =1时,y =x 2﹣2x ﹣1=(x ﹣1)2﹣2,则当x =1时,函数取得最小值,此时y =﹣2,故选项A 正确,当a =﹣1时,该函数图象开口向下,对称轴是直线x =−−22y =1y =−1,则当x ≤﹣1时,y 随x 的增大而增大,故选项B 正确,当a =0时,y =﹣2x ,此时函数与x 轴有一个交点,故选项C 错误,当x =1时,y =a ×12﹣2×1﹣a =﹣2,当x =﹣1时,y =a ×(﹣1)2﹣2×(﹣1)﹣a =2,故选项D 正确,故选:C .8.【解答】解:按照“左加右减,上加下减”的规律,向左平移2个单位,将抛物线y =2(x ﹣1)2+7先变为y =2(x +1)2+7,再沿y 轴方向向下平移5个单位抛物线y =2(x +1)2+7﹣5,即变为:y =2(x +1)2+2.故所得抛物线的解析式是:y =2x 2+4x +4.故选:A .二.填空题(共6小题)9.【解答】解:设P (m ,−12m 2﹣m +4),则Q (m ,m +4),由题意:−12m 2﹣m +4﹣m ﹣4=32,解得m =﹣1或﹣3,∴P (﹣1,92)或(﹣3,52),∵点P 在直线y =kx 上,∴k =−92或−56,故答案为−92或−56. 10.【解答】解:当c ≠0时,ab ≠0,由(a ﹣b )2=ab ,可得a 2+b 2=3ab ,两边除以ab 得到:y y +y y =3,故①正确,当c =5时,(a +b )2=5ab =25,∴a +b =±5,故②错误,当a =b 时,可得c =0,当a =c 时,(c ﹣b )2=bc =c ,若c =0则a =b =c =0,若c ≠0,则(c ﹣1)2=c ,解得c =3±√52,故③错误,由x 2+bx ﹣c =ax +1,可得x 2+(b ﹣a )x ﹣(c +1)=0,∴△=(b ﹣a )2+4(c +1)=(b ﹣a )2+4c +4=5(b ﹣a )2+4>0,∴二次函数y =x 2+bx ﹣c 与一次函数y =ax +1的图象有2个交点,故④正确.故答案为①④11.【解答】解:设直线MN 的解析式为y =kx +b (k ≠0),则 {−2y +y =33y +y =2, ∴{y =−15y =135, ∴MN 的解析式为y =−15y +135,∵抛物线y =ax 2﹣x +2(a ≠0),观察图象可知,当a <0时,x =﹣2时,y =4a +4≤3,且抛物线与直线MN 有2个交点,且−−12y ≥−2,∴a ≤−14,联立方程组{y =−15y +135y =yy 2−y +2,消去y ,得5ax 2﹣4x ﹣3=0,∵△=16+60a >0,∴y >−415,∴−415<y ≤−14,当a >0时,x =3时,y =9a ﹣1≥2,且−−12y ≤3,∴y ≥13, 综上,a 的取值范围是y ≥13或−415<y ≤−14.故答案为:y ≥13或−415<y ≤−14. 12.【解答】解:∵y =x 2﹣2ax =(x ﹣a )2﹣a 2,当﹣1≤x ≤4时,y 的最小值是﹣12,∴当a >4时,x =4取得最小值,则﹣12=(4﹣a )2﹣a 2,解得,a =3.5(舍去),当﹣1≤a ≤4时,x =a 取得最小值,则﹣12=(a ﹣a )2﹣a 2,解得,a =2√3,当a <﹣1时,x =﹣1取得最小值,则﹣12=(﹣1﹣a )2﹣a 2,解得,a =﹣6.5,故答案为:2√3或﹣6.5.13.【解答】解:∵关于x 的二次函数y =ax 2+a 2的最小值为4,∴a 2=4,a >0,解得,a =2,故答案为:2.14.【解答】解:∵y =ax 2+2ax +2(a <0)的对称轴是x =−2y 2y =−1,与y 轴的交点坐标是(0,2), ∴点B 的坐标是(0,2),∵菱形ABCD 的三个顶点在二次函数y =ax 2+2ax +2(a <0)的图象上,点A 、B 分别是该抛物线的顶点和抛物线与y 轴的交点,∴点B 与点D 关于直线x =﹣1对称,∴点D 的坐标为(﹣2,2).故答案为:(﹣2,2).三.解答题(共22小题)15.【解答】解:(1)设y 与x 之间的函数关系式为y =ax 2,1000=a ×1002,得a =110, 即y 与x 之间的函数关系式为y =110x 2(0≤x ≤100);设z 与x 的函数关系式为z =kx +b ,{y =30100y +y =20,得{y =−110y =30, 即z 与x 的函数关系式为z =−110x +30(0≤x ≤100);(2)由题意可得,W =zx ﹣y =(−110x +30)x −110x 2=−15(x ﹣75)2+1125,即W 与x 之间的函数关系式为W =−15(x ﹣75)2+1125(0≤x ≤100),∵W =−15(x ﹣75)2+1125, ∴当x =75时,W 取得最大值,此时W =1125,即年产量75万件时,所获毛利润最大;(3)∵今年投入生产的费用不会超过360万元,∴y ≤360,即110x 2≤360,∴x ≤60,∵W =−15(x ﹣75)2+1125, ∴当x =60时,W 取得最大值,此时W =1080,即今年最多可获得1080万元的毛利润.16.【解答】解:(1)当0<x <200时,y =(﹣0.2x +120﹣60)x +[﹣0.1x +100﹣50]×(400﹣x )=﹣0.1x 2﹣30x +20000;当200≤x ≤400时,y =(6000y +50﹣60)x +[﹣0.1x +100﹣50]×(400﹣x )=0.1x 2﹣100x +26000;(2)由题意得:{y ≥100400−y ≥100,解得:100≤x ≤300, 若100≤x ≤200,则y =﹣0.1x 2﹣30x +20000,函数的对称轴在y 轴左侧,故当x =100时,y 的最大值为16000;若200<x ≤300时,y =0.1x 2﹣100x +26000,函数的对称轴为x =−y 2y=500, ∵x <500时,y 随x 的增大而减小,∴当x =200时,y 取得最大值,最大值为10000元,∵16000>10000,故x =100,综上,当购进甲种水果300千克、乙种水果100千克时,才能使获得的利润最大,最大利润为16000元.17.【解答】解:(1)设函数表达式为:y =kx +b , 在表格取两组数值(5,90),(6,60)代入上式得{5y +y =906y +y =60,解得{y =−30y =240, 故函数表达式为:y =﹣30x +240;(2)①当20≤y ≤50时,w =(x ﹣5)y =(x ﹣5)(﹣30x +240)=﹣30(x ﹣6.5)2+67.5,故销售价x =6.5元时,利润的最大值为67.5元,日销售量y =45千克;②当y >50时,w =(x ﹣4)y =(x ﹣4)(﹣30x +240)=﹣30(x ﹣6)2+120,即销售价x =6元时,利润的最大值w 为120元,日销售量y =60千克;综上,当销售价为6元时,利润最大,故当销售价为6元时,获利最大,最大利润为120元,此时购买量为60千克.18.【解答】解:(1)当x =17时,y =﹣3x +90=﹣3×17+90=39,39×(16﹣12)=156(元),即政府这一天为他承担的总差价为156元.(2)依题意得,w =(x ﹣12)(﹣3x +90)=﹣3(x ﹣21)2+243(x ≥12),∵a =﹣3<0,∴当x =21时,w 有最大值243.∴当销售单价定为21元时,每天可获得最大利润243元.(3)由题意得:﹣3(x ﹣21)2+243=216,解得:x 1=18,x 2=24.∵a =﹣3<0,抛物线开口向下,∴当18≤x ≤24时,w ≥216.∵y =﹣3x +90,﹣3<0,∴y 随x 的增大而减小,∴当x =24时,y 最小=﹣3×24+90=18(元),∴18×(16﹣12)=72(元).即销售单价定为24元时,政府每天为他承担的总差价最少为72元.19.【解答】解:(1)当m =2时,y =mx 2+(1﹣2m )x +1﹣3m =2x 2﹣3x ﹣5,函数的对称轴为直线x =−y 2y =−−32×2=34, 当x =34时,y =x 2﹣3x ﹣5=−498,故顶点坐标为(34,−498);(2)①△=b 2﹣4ac =(1﹣2m )2﹣4m (1﹣3m )=(4m ﹣1)2>0,故4m ﹣1≠0,解得:m ≠14;而y =mx 2+(1﹣2m )x +1﹣3m 为二次函数,故m ≠0,故m 的取值范围为:m ≠0且m ≠14;②y =mx 2+(1﹣2m )x +1﹣3m =(mx ﹣3m +1)(x +1), 令y =0,则x =3−1y 或﹣1,则AB =|4−1y |,∵3≤m ≤4,∴113≤AB ≤154, 故AB 的最大值为154,此时m =4,当m =4时,y =mx 2+(1﹣2m )x +1﹣3m =4x 2﹣7x ﹣11.20.【解答】解:(1)当销售单价为70元时,每天的销售利润=(70﹣50)×[50+5×(100﹣70)]=4000元;(2)由题得 y =(x ﹣50)[50+5(100﹣x )]=﹣5x 2+800x ﹣27500(x ≥50).∵销售单价不得低于成本,∴50≤x .且销量>0,5(100﹣x )+50≥0,解得x ≤110,∴50≤x ≤100.(3)∵该企业每天的总成本不超过7000元∴50×[50+5(100﹣x )]≤7000(8分)解得x ≥82.由(2)可知 y =(x ﹣50)[50+5(100﹣x )]=﹣5x 2+800x ﹣27500∵抛物线的对称轴为x =80且a =﹣5<0∴抛物线开口向下,在对称轴右侧,y 随x 增大而减小.∴当x =82时,y 有最大,最大值=4480,即 销售单价为82元时,每天的销售利润最大,最大利润为4480元.21.【解答】解:(1)把A (﹣3,0)、B (1,0)两点坐标分别代入y =﹣x 2+bx +c 得,{−9−3y +y =0−1+y +y =0∴{y =−2y =3, ∴抛物线的解析式为y =﹣x 2﹣2x +3;(2)由(1)知,抛物线的解析式为y =﹣x 2﹣2x +3,∴点C (0,3),当y =﹣5时,则﹣x 2﹣2x +3=﹣5,∴x =﹣4或x =2,∴点(﹣4,﹣5),(2,﹣5)也在抛物线上,描点,A (﹣3,0),B (1,0),C (0,3),D (﹣1,4),(﹣4,﹣5),(2,﹣5),连线,即二次函数的大致图象,如图1所示;(3)如图2,由(1)知,抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为直线x =﹣1,设M 点的坐标为(m ,0)∵PM ⊥x 轴,∴P (m ,﹣m 2﹣2m +3),∵OQ ∥x 轴,∴点Q (﹣m ﹣2,﹣m 2﹣2m +3),∵QN ⊥x 轴,∴N (﹣m ﹣2,0)则PM =﹣m 2﹣2m +3,MN =﹣m ﹣2﹣m =﹣2m ﹣2,∴矩形PMNQ 的周长=2(PM +MN )=(﹣m 2﹣2m +3﹣2m ﹣2)×2=﹣2m 2﹣8m +2=﹣2(m +2)2+10, ∴当m =﹣2时,矩形的周长最大,此时点M (﹣2,0).22.【解答】解:(1)由题意得:y =(500−y12×20)(6+x )=(x +6)(500﹣40x ); (2)6≤a ≤9,即0≤x ≤3,y =(x +6)(500﹣40x )=﹣40(x +6)(x ﹣12.5),函数的对称轴为:x =3.25,∵﹣40<0,函数有最大值,当x <3.25时,函数随x 的增大而增大,而0≤x ≤3,故x =3时,y 最大,此时,y 最大值为:3420,即每份9元时,营业额最大,最大营业额是3420元.23.【解答】解:(1)当甲种T 恤进货250件时,乙种T 恤进货150件,根据题意知两种T 恤全部售完的利润是(﹣0.1×250+100﹣50)×250+(﹣0.2×150+120﹣60)×150=10750(元);(2)当0<x <200时,y =(﹣0.2x +120﹣60)x +[﹣0.1(400﹣x )+100﹣50]×(400﹣x )=﹣0.3x 2+90x +4000; 当200≤x ≤400时,y =(6000y +50﹣60)x +[﹣0.1(400﹣x )+100﹣50]×(400﹣x )=﹣0.1x 2+20x +10000;(3)若100≤x <200,则y =﹣0.3x 2+90x +4000=﹣0.3(x ﹣150)2+10750,当x =150时,y 的最大值为10750;若200≤x ≤300时,y =﹣0.1x 2﹣16x +10000=﹣0.1(x ﹣100)2+11000,∵x >100时,y 随x 的增大而减小,∴当x =200时,y 取得最大值,最大值为10000元;综上,当购进甲种T 恤250件、乙种T 恤150件时,才能使获得的利润最大.24.【解答】解:(1)设y =kx +b (k ≠0),根据题意代入点(21,29),(25,25),∴{21y +y =2925y +y =25 解得{y =−1y =50, ∴y =﹣x +50.(2)依题意得,w =(x ﹣10)(﹣x +50)=﹣x 2+60x ﹣500=﹣(x ﹣30)2+400,∵a =﹣1<0,∴当x =30时,w 有最大值400,即当销售单价定为30元时,每月可获得最大利润400元.(3)最新利润可表示为﹣x 2+60x ﹣500﹣a (﹣x +50)=﹣x 2+(60+a )x ﹣500﹣50a ,∴此时最大利润为4(500+50y )−(60+y )2−4=400﹣144,解得a 1=8,a 2=72,∵当a =72时,销量为负数舍去.∴a =8.25.【解答】解:(1)由题意得:{y −y −3=09y +3y −3=0,解得{y =1y =−2, ∴这个二次函数的解析式为y =x 2﹣2x ﹣3,(2)当x =0时,y =3,则C 为(0,﹣3),易得直线BC 的函数解析式为:y =x ﹣3,设P 的坐标为(t ,t 2﹣2t ﹣3)(0<t <3),则M 的坐标为(t ,t ﹣3),∴PM =t ﹣3﹣(t 2﹣2t ﹣3)=﹣t 2+3t=﹣(t −32)2+94, ∵﹣1<0且0<t <3,∴当t =32时,PM 取得最大值,最大值为94,此时P 的坐标为(32,−154). 26.【解答】解:(1)根据题意,绿化区的宽为:[30﹣(50﹣2x )]÷2=x ﹣10∴y =50×30﹣4x (x ﹣10)=﹣4x 2+40x +1500,∵4个出口宽度相同,其宽度不小于14m ,不大于26m ,∴12≤x ≤18,∴y =﹣4x 2+40x +1500(12≤x ≤18);(2)y =﹣4x 2+40x +1500=﹣4(x ﹣5)2+1600,∵a =﹣4<0,抛物线的开口向下,当12≤x ≤18时,y 随x 的增大而减小,∴当x =12时,y 最大=1404,答:活动区的最大面积为1404m 2.(3)设投资费用为w 元,由题意得,w =50(﹣4x 2+40x +1500)+40×4x (x ﹣10)=﹣40(x ﹣5)2+76000,∴当w =72000时,解得:x 1=﹣5(不符合题意舍去),x 2=15,∵a =﹣40<0,∴当x ≥15时,w ≤72000,又∵12≤x ≤18,∴15≤x ≤18,∴当x =18时,投资费用最少,此时出口宽度为50﹣2x =50﹣2×18=14(m ),答:投资最少时活动区的出口宽度为14m .27.【解答】解:(1)∵抛物线y =ax 2+bx +3经过点A (﹣1,0)、B (4,0), ∴{y −y +3=016y +4y +3=0, 解得{y =−34y =94, ∴该抛物线的解析式y =−34y 2+94y +3;(2)∵DE ⊥AB ,OC ⊥AB ,∴OC ∥DE ,∴∠DGF =∠OCB ,∵DF ⊥BC ,∴sin ∠OCB =sin ∠DGF ,∴yy yy =yy yy ,DF =yy yy •DG , ∵OC =3,OB =4,∴BC =5,∴DF =45DG , ∵B (4,0)、C (0,3),∴直线BC :y =−34y +3,设G (x ,−34y +3−),则D (x ,−34y 2+94y +3), ∴DG =−34y 2+94y +3−(−34y +3)=−34y 2+3yh =45(−34y 2+3y )=−35(y −2)2+125∴当x =2时,h 有最大值,最大值为125. 28.【解答】解:(1)由题意得:y =(x ﹣40)(500−y −502×20)=﹣10x 2+1400x ﹣40000, 即月销售利润y (单位:元)与销售单价x (单位:元/千克)之间的函数解析式为:y =﹣10x 2+1400x ﹣40000.(2)当x =60元,月销量为500﹣(60﹣50)÷2×20=400(kg ),将x =60代入y =﹣10x 2+1400x ﹣40000,解得y =8000,故月销售利润为8000元.(3)y =﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000,当x =70时,y =9000.故当销售单价定位70元时可获得最大利润,最大利润为9000元.29.【解答】解:(1)设y 与x 之间的函数解析式为y =kx +b (k ≠0),将(1,198)、(3,194)代入y =kx +b 中,{198=y +y 194=3y +y ,解得:{y =−2y =200, ∴y 与x 之间的函数解析式为y =﹣2x +200.(2)①当1≤x <50时,w =70(﹣2x +200)﹣(﹣2x +200)(60﹣x )=﹣2x 2+180x +2000; 当50≤x ≤90时,w =70(﹣2x +200)﹣10(﹣2x +200)=﹣120x +12000.∴w 与x 之间的函数解析式为w ={−2y 2+180y +2000(1≤y <50)−120y +12000(50≤y ≤90). ∵w =﹣2x 2+180x +2000=﹣2(x ﹣45)2+6050,∴当x =45时,w =﹣2x 2+180x +2000(1≤x <50)取最大值,最大值为6050;∵w =﹣120x +12000中﹣120<0,∴当x =50时,w =﹣120x +12000(50≤x ≤90)取最大值,最大值为6000.∵6050>6000,∴第45天当天收入最大,最大收入为6050元.②令﹣2x 2+180x +2000≥4800,解得:20≤x ≤70,∵20≤x <50,∴20≤x <50;令﹣120x +12000≥4800,解得:x ≤60,∵50≤x ≤70,∴50≤x ≤60.综上所述:当20≤x ≤60时,当天收入不低于4800元.30.【解答】解:(1)设y 与x 的函数关系式为y =ax 2+bx +c ,由题意,得{1=y 1.5=y +y +y 1.8=4y +2y +y ,解得:{y =−0.1y =0.6y =1,∴y =﹣0.1x 2+0.6x +1;(2)由题意,得W =(8﹣6)×5(﹣0.1x 2+0.6x +1)﹣x ,W =﹣x 2+5x +10,W =﹣(x ﹣2.5)2+16.25.∴a =﹣1<0,∴当x =2.5时,W 最大=16.25.答:年利润W (万元)与广告费用x (万元)的函数关系式为W =﹣x 2+5x +10,每年投入的广告费是2.5万元时所获得的利润最大为16.25万元.(3)当W =14时,﹣x 2+5x +10=14,解得:x 1=1,x 2=4,∴1≤x ≤4时,年利润W (万元)不低于14万元.31.【解答】解:(1)W =(x ﹣18)[20+2(40﹣x )]=﹣2x 2+136x ﹣1800;(2)W =﹣2x 2+136x ﹣1800=﹣2(x ﹣34)2+512,∵a =﹣2<0,W 有最大值512∴当x =34时,W 有最大值512万元,所以当每件产品的售价定为34元时,最大月销售利润是512万元;(3)令W =480,则﹣2(x ﹣34)2+512=480,解得x 1=30,x 2=38,此函数的图象大致为:观察图象可得,当30≤x ≤38时,W ≥480,所以销售单价范围为不低于30元不高于38元时,月销售利润不低于480万元.32.【解答】解:(1)y =﹣x 2+4x =﹣x 2+4x ﹣4+4=﹣(x ﹣2)2+4,∴抛物线的顶点坐标为(2,4),对称为x =2.(2)当y =0时,﹣x 2+4x =0,解得:x =0或x =4,∴抛物线与x 轴的交点坐标为(0,0)和(4,0).所以抛物线的图象如图所示: (3)不等式﹣x 2+4x >3的解集为抛物线位于直线y =3下方时,自变量x 的取值范围,∴﹣x 2+4x >3的解集1<x <3.33.【解答】解:(1)当0≤x ≤18时,设y =kx +b ,把(0,10)、(18,46)代入,得:{18y +y =46y =10, 解得{y =2y =10, ∴y =2x +10;当18≤x ≤29时,y =46;综上,y ={2y +10(1≤y ≤18,y 为整数)46(18<y ≤29,y 为整数); (2)由题意可设z =a (x ﹣10)2+60,当x =1时,代入y =2x +10,得y =12,此时口罩需求量为12+7.5=19.5(百万个),将(1,19.5)代入z =a (x ﹣10)2+60中,得:81a +60=19.5, 解得a =−12,∴z =−12(x ﹣10)2+60,。

苏教版2020年中考数学模拟卷(含答案解析)

苏教版2020年中考数学模拟卷(含答案解析)

2020年中考数学模拟试卷一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.12.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×1064.下图几何体的主视图是()A.B.C.D.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.56.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=3007.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα二.填空题(共8小题)9.=.10.分解因式:x3﹣x=.11.已知一个多边形的内角和为540°,则这个多边形是边形.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是cm2.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.三.解答题(共10小题)17.计算或化简:(1)(2)18.解方程:+=1.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案与试题解析一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<1,∴各数中最小的数是﹣3.故选:A.2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.3.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.4.下图几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的几何体的左边有3个正方形,中间只有2个正方形,右边有1个正方形.故选:C.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.5【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.7.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折【分析】根据题意和函数图象中的数据可以列出相应的方程,从而可以求得超过500元的部分可以享受的优惠,本题得以解决.【解答】解:设超过500元的部分可以享受的优惠是x折,(1000﹣500)×+500=900,解得,x=8,故选:C.8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.二.填空题(共8小题)9.= 2 .【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).11.已知一个多边形的内角和为540°,则这个多边形是五边形.【分析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5.则这个多边形是五边形.故答案为:五.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.【分析】先写出3种等可能的结果数,然后根据三角形三边的关系确定三条线段能构成三角形的结果数,再根据概率公式求解.【解答】解:共有3种等可能的结果数,它们是:2、3、3,2、3、4,2、3、5,其中三条线段能构成三角形的结果数为2种,所以能构成三角形的概率=.故答案为:.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是35πcm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【解答】解:底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为3<x≤9 .【分析】由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围.【解答】解:如图,∵抛物线y=﹣x2+2x+8,∴抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(﹣2,0)、C(4,0),分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1﹣2,1)、Q(1+2,1).可知,点A在不含端点的抛物线内时,∠BAC<90°,且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.则A的横坐标取值范围是3<x≤9.故答案为:3<x≤9.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为15 .【分析】将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt△CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=×BC×AD,进行计算即可【解答】解:如图,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠FAQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠FAQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.且AB=AQ,AC=AC∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=5,设AD=x,则QE=x﹣3,CE=x﹣2.在Rt△CQE中,CE2+QE2=CQ2∴(x﹣2)2+(x﹣3)2=52解得:x1=6,x2=﹣1(舍去),∴AD=6,∴△ABC的面积为=×BC×AD=15故答案为:15三.解答题(共10小题)17.计算或化简:(1)(2)【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质分别化简得出答案;(2)首先利用分式的混合运算法则进而化简得出答案.【解答】解:(1)原式=﹣2+2×+1=﹣2++1=1;(2)原式=1﹣×=1﹣=﹣.18.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)(x+1)﹣4=x2﹣1,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【解答】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人),其中商人占百分比为×100%=12.5%;故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×=9000(人次).20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.【分析】要证明BC=ED,只要证明△ABC≌△CED即可,根据题意目中的条件和平行线的性质可以得到证明两个三角形全等的条件,本题得以解决.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.【分析】(1)应用列表法,求出两次抽取数字和为5的概率是多少即可.(2)应用列表法,求出所抽取数字和为5的概率是多少即可.【解答】解:(1)1 32 (1,2)(3,2)4 (1,4)(3,4)∵共有4种可能性,且每种可能性都相同,数字和为5有两种可能性,∴两次抽取数字和为5的概率为:=.(2)1 2 3 41 ﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣∵共有12种可能性,且每种可能性都相同,数字和为5的有4种可能性,∴抽取数字和为5概率为:=.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)【分析】(1)直接作出平行线和垂线进而得出∠EDF的值;(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.【解答】解:(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,由题意可得,四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,则AC=AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°===0.26,解得:EF=3.9,故台灯的高为:3.9+41.76≈45.7(cm).24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【分析】(1)利用tan∠ABC=3,得出C点坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF =(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c =0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。

中考数学仿真模拟测试题(附答案解析)

中考数学仿真模拟测试题(附答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。

苏教版中考综合模拟检测《数学试题》含答案解析

苏教版中考综合模拟检测《数学试题》含答案解析

苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填在( )内)1.12-的相反数是( )A. B. 2 C.12- D. 122.下列计算结果为a6的是( )A. a7﹣aB. a2•a3C. a8÷a2D. (a4)23.如图是某个几何体的展开图,该几何体是( )A. 三棱柱B. 三棱锥C. 圆柱D. 圆锥4.2x-x的取值范围( )A. x≥2B. x≤2C. x>2D. x<25.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )A. (﹣5,3)B. (1,﹣3)C. (2,2)D. (5,﹣1)6.下列命题中,真命题是()A. 四边都相等的四边形是矩形B. 对角线相等的四边形是矩形C. 对角线互相垂直的平行四边形是正方形D. 对角线互相垂直的平行四边形是菱形7.如图,已知点A、B在反比例函数4yx=图像上,AB经过原点O,过点A做轴的垂线与反比例函数2yx=-的图像交于点C,连接BC,则△ABC的面积是()A. 8B 6C. 4D. 38.如图,已知正方形ABCD 的边长为,点是AB 边上-动点,连接ED ,将ED 绕点顺时针旋转90︒到EF ,连接DF CF 、,则DF CF +的最小值是( )A. 35B. 43C. 52D. 13二、填空题.9.计算:-3+(-1)=________.10.化简:11x x x+-=_________. 11.分解因式:22mx my -=_____________.12.已知点M (1,2),则点M 关于轴的对称点的坐标是________.13.”可燃冰”作为新型能源,有着巨大的开发使用潜力,1千克”可燃冰”完全燃烧放出的热量约为420000000焦耳,数据420000000用科学记数法表示为_____.14.数轴上点A 、B 、C 分别表示数2、4、6,在线段AC 上任取一点P ,使得点P 到点B 的距离不大于1的概率是_______.15.如图,在ABC 中,CD 平分ACB ∠交AB 于点,过点作//DE BC 交AC 于点.若54A ∠=︒,48B ∠=︒,则CDE ∠=______.16.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为弧BD 的中点,若∠DAB =40°,则∠ABC =______.17.如图,在Rt ABC ∆中,90, 6ACB AC BC AB ︒∠===,,点,D E 分别在边AB AC 、上,2, 22AD AE ==,点从点出发沿DB 向点运动,运动到点结束,以EF 为斜边作等腰直角三角形 EFP (点E F P 、、按顺时针排列) ,在点运动过程中点经过的路径长是 __________18.如图,已知在菱形ABCD 中,460//, 6,55A DE BF sinE DE EF BF ︒∠=====,,, 则菱形ABCD 的边长等于____________三、解答题(本大题共10小题,共84分,如无特殊说明,解答应写出文字说明、演算步骤或推理过程).19.计算:014(21)6sin30-︒-20.解方程组和不等式组:(1)20 35 x yx y-=⎧⎨+=⎩(2)33062xx x+>⎧⎨-≤-⎩.21.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)不在原图添加字母和线段,对△ABC只加一个条件使得四边形AFBD是菱形,写出添加条件并说明理由.22.江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生”最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从”篮球”、”羽毛球”、”自行车”、”游泳”和”其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表根据以上信息,请回答下列问题:(1)这次调查样本容量是,a b+=;(2)扇形统计图中”自行车”对应的扇形的圆心角为度;(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.23.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).24.如图,一次函数y x b =+与反比例函数k y x=(为常数,0k ≠)的图像在第一象限内交于点()1,2A ,且与轴、轴分别交于, B C 两点.(1)求一次函数和反比例函数的表达式; (2)点在轴上,且BCP ∆的面积等于,求点的坐标.25.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向的B 处,求此时轮船所在的B 处与灯塔P 的距离.(参考数据:6≈2.449,结果保留整数)26.如图,已知CD 是ABC ∆的高, 1, 4, 2.AD BD CD ===直角AEF ∠的顶点是射线CB 上一动点,AE 交直线CD 于点, G EF 所在直线交直线AB 于点F .(1)判断△ABC 的形状,并说明理由;(2)若G 为AE 的中点,求tan ∠EAF 的值;(3)在点E 的运动过程中,若13BE BC =,求EF EG 的值.27.阅读材料并解答下列问题:如图1,把平面内一条数轴绕原点逆时针旋转角00)90(θ︒︒<<得到另一条数轴,y x 轴和轴构成一个平面斜坐标系.xOy规定:过点作轴的平行线,交轴于点,过点作轴的平行线,交轴于点,若点在轴对应的实数为,点在轴对应的实数为,则称有序实数对(),a b 为点在平面斜坐标系xOy 中的斜坐标.如图2,在平面斜坐标系xOy 中,已知60θ︒=,点的斜坐标是()3,6,点的斜坐标是()0,6.(1)连接OP ,求线段OP 的长;(2)将线段OP 绕点顺时针旋转60︒到OQ (点Q 与点对应),求点Q 的斜坐标; (3)若点是直线OP 上一动点,在斜坐标系xOy 确定的平面内以点为圆心,DC 长为半径作D ,当⊙与轴相切时,求点的斜坐标,28.如图,已知二次函数212y x bx =+的图像经过点()4,0A -,顶点为一次函数 122y x =+的图像交轴于点,M P 是抛物线上-一点,点M 关于直线AP 的对称点恰好落在抛物线的对称轴直线BH 上(对称轴直线BH 与轴交于点).(1)求二次函数表达式;(2)求点的坐标;(3)若点是第二象限内抛物线上一点,关于抛物线的对称轴的对称点是,连接OG ,点是线段OG 上一点,点是坐标平面内一点,若四边形BDEF 是正方形,求点的坐标.答案与解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填在( )内)1.12-的相反数是( )A. B. 2 C.12- D. 12【答案】D 【解析】【详解】因为-12+12=0,所以-12的相反数是12.故选D.2.下列计算结果为a6的是( )A. a7﹣aB. a2•a3C. a8÷a2D. (a4)2【答案】C【解析】【分析】根据同底数幂的乘除法法则、幂的乘方法则、合并同类项法则进行计算,判断即可.【详解】A、a7与a不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、a8÷a2=a6,故C符合题意;D、(a4)2=a8,故D不符合题意,故选C.【点睛】本题考查了合并同类项、同底数幂的乘除法、幂的乘方等运算,熟练掌握各运算的运算法则是解题的关键.3.如图是某个几何体的展开图,该几何体是( )A. 三棱柱B. 三棱锥C. 圆柱D. 圆锥【答案】A【解析】【分析】侧面为长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故本题选择A【点睛】会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.4.x的取值范围( )A. x≥2B. x≤2C. x>2D. x<2【答案】A【解析】【分析】二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.∴x−2≥0,解得x≥2.故答案选A.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.5.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )A. (﹣5,3)B. (1,﹣3)C. (2,2)D. (5,﹣1)【答案】C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.6.下列命题中,真命题是()A. 四边都相等的四边形是矩形B. 对角线相等的四边形是矩形C. 对角线互相垂直的平行四边形是正方形D. 对角线互相垂直的平行四边形是菱形【答案】D【解析】【分析】利用矩形、正方形、菱形的判定定理分别判断后即可确定正确的选项.【详解】A、四边都相等的四边形是菱形,不是矩形,故错误,是假命题;B、矩形的对角线相等,等腰梯形的对角线也相等,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形,不一定是正方形,故错误,是假命题;D、对角线互相垂直的平行四边形是菱形,正确,是真命题,故选D.【点睛】本题考查了命题与定理知识,解题的关键是了解矩形、正方形、菱形的判定定理及菱形的性质,难度不大.7.如图,已知点A、B在反比例函数4yx=的图像上,AB经过原点O,过点A做轴的垂线与反比例函数2yx=-的图像交于点C,连接BC,则△ABC的面积是()A. 8B. 6C. 4D. 3【分析】过点B 作BE ⊥AC ,交AC 的延长线于点E ,设A (x ,4x )则有B (-x ,-4x ),C (x ,-2x ),AC=6x ,BE=2x ,再根据三角形的面积公式求解即可.【详解】过点B 作BE ⊥AC ,交AC 的延长线于点E ,如图:设A (x ,4x )则有B (-x ,-4x),C (x ,-2x ), ∴AC=4x +|2x -|=6x, BE=x-(-x)=2x ,∴S △ABC =12AC×BE=12×2x×6x=6. 故选B.【点睛】本题考查了反比例函数和正比例函数的性质.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.8.如图,已知正方形ABCD 的边长为,点是AB 边上-动点,连接ED ,将ED 绕点顺时针旋转90︒到EF ,连接DF CF 、,则DF CF +的最小值是( )A. 35B. 43C. 52D. 13【答案】A连接 BF,过点F作FG⊥AB交AB延长线于点G,通过证明△AED≌△GFE(AAS),确定F点在BF的射线上运动;作点C关于BF的对称点C',由三角形全等得到∠CBF=45°,从而确定C'点在AB的延长线上;当D、F、C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,求出DC'=35即可.【详解】解:连接 BF,过点F作FG⊥AB交AB延长线于点G,∵将ED绕点E顺时针旋转90°到EF,∴EF⊥DE,且EF=DE,∴△AED≌△GFE(AAS),∴FG=AE,∴F点在BF的射线上运动,作点C关于BF的对称点C',∵EG=DA,FG=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴C'点在AB的延长线上,当D、F、C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,∴DC'=35,∴DF+CF的最小值为35,故选:A.【点睛】本题考查了旋转的性质,正方形的性质,轴对称求最短路径;能够将线段的和通过轴对称转化为共线线段是解题的关键.二、填空题.9.计算:-3+(-1)=________.【答案】-4【解析】【分析】利用同号两数相加取相同的符号,然后把绝对值相加即可得解.【详解】-3+(-1)=-(3+1)=-4.故答案为-4.【点睛】本题考查了有理数的加法,比较简单,属于基础题.10.化简:11x x x+-=_________. 【答案】1【解析】11111x x x x x++--==. 故答案是:1.11.分解因式:22mx my -=_____________.【答案】()()m x y x y +-【解析】【分析】先提取公因式m ,再对余下的多项式利用平方差公式继续进行因式分解.【详解】mx 2-my 2=m(x 2-y 2)= ()()m x y x y +-.故答案为()()m x y x y +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.已知点M (1,2),则点M 关于轴的对称点的坐标是________.【答案】(1,-2)【解析】【分析】直接利用关于x轴对称点的性质得出横坐标相等,纵坐标互为相反数进而得出答案.【详解】∵点M(1,2),∴点M关于x轴的对称点的坐标是(1,-2).故答案为(1,-2).【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.13.”可燃冰”作为新型能源,有着巨大的开发使用潜力,1千克”可燃冰”完全燃烧放出的热量约为420000000焦耳,数据420000000用科学记数法表示为_____.【答案】4.2×108【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:420000000的小数点向左移动8位得到4.2,所以420000000用科学记数表示为:4.2×108.故答案为4.2×108【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.数轴上点A、B、C分别表示数2、4、6,在线段AC上任取一点P,使得点P到点B的距离不大于1的概率是_______.【答案】1 2【解析】【分析】先求出点P到点B的距离不大于1的点的线段的长,再求出AB的长,最后利用概率公式解答即可.【详解】如图,∵点P到距离不大于1的点在线段DE上,DE=2,AC=4,∴点P到点B的距离不大于1的概率是21 42 .故答案为12.【点睛】此题考查了概率公式,关键是求出点P 到点B 的距离不大于1的线段长,用到的知识点为:概率=相应的线段长与总线段长之比.15.如图,在ABC 中,CD 平分ACB ∠交AB 于点,过点作//DE BC 交AC 于点.若54A ∠=︒,48B ∠=︒,则CDE ∠=______.【答案】39°.【解析】【分析】利用三角形的内角和定理以及角平分线的定义求出DCB ∠即可解决问题.【详解】解:54A ∠=︒,48B ∠=︒,180544878ACB ∴∠=︒-︒-︒=︒, CD 平分ACB ∠, 1392DCB ACB ∴∠=∠=︒, //DE BC ,39CDE DCB ∴∠=∠=︒,故答案为:39°.【点睛】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为弧BD 的中点,若∠DAB =40°,则∠ABC =______.【答案】70°【解析】【详解】解:连接AC ,∵点C 为弧BD 的中点,∴∠CAB =12∠DAB =20°, ∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠ABC =70°,故答案为70°.【点睛】本题主要考查了圆周角定理以及推论,连接AC 是解本题的关键.17.如图,在Rt ABC ∆中,90, 6ACB AC BC AB ︒∠===,,点,D E 分别在边AB AC 、上,2, 22AD AE ==,点从点出发沿DB 向点运动,运动到点结束,以EF 为斜边作等腰直角三角形 EFP (点E F P 、、按顺时针排列) ,在点运动过程中点经过的路径长是 __________【答案】2【解析】【分析】根据题意,当点F 从点D 开始运动,到达点B 结束,点P 的运动路径为'PP ,由等腰直角三角形的性质和勾股定理,先求出BE 的长度,然后求出'EP 的长度,然后求出PE 的长度,再证明'90EPP ∠=︒,再利用勾股定理,即可求出'PP 的长度.【详解】解:如图:当点F 从点D 开始运动,到达点B 结束,点P 的运动路径为'PP ,在Rt ABC ∆中,90, 6ACB AC BC AB ∠=︒==,, ∴32AC BC == ∵22AE = ∴32222EC ==,由勾股定理,得: 2222(32)(2)25BE BC EC =+=+=,∵EBP '∆是等腰直角三角形, ∴''10EP BP ==, ∵2222AD AE ==,2cos 452=°, ∴在△ADE 中,有2cos 452AD AE ︒==, ∴DE ⊥AB ,即△ADE 是直角三角形; ∴22(22)22DE =-=,∵△PDE 是等腰直角三角形, ∴2DP EP ==∵∠AED=∠DEP=45°,∴∠AEP=90°,∵点D P P '、、三点共线,∴'90EPP ∠=︒,在Rt EPP '∆中,由勾股定理,得2222'(10)(2)22PP EP PE '=-=-=∴点经过的路径长是22.故答案为:22.【点睛】本题考查了点的运动轨迹问题,也考查了等腰直角三角形的判定和性质,解直角三角形,勾股定理,解题的关键是熟练掌握解直角三角形,等腰直角三角形的性质进行解题,以及运用勾股定理求出所需边长的长度.18.如图,已知在菱形ABCD中,460//,6,55A DE BF sinE DE EF BF︒∠=====,,,则菱形ABCD 的边长等于____________【答案】405 11【解析】【分析】作BG⊥EF,连接BD,与EF相交于点H,由三角函数求出BG和GF的长度,然后得到EG的长度,由DE∥BF,则△DEH∽△BFH,则65EH DEFH BF==,设GH=x,则EH=2+x,FH=3-x,代入求出GH,再由勾股定理求出BH,得到BD的长度,即可得到菱形的边长.【详解】解:作BG⊥EF,连接BD,与EF相交于点H,如图:∵DE∥BF,∴∠F=∠E,∴sin∠F=sin∠E=45,∵BG ⊥EF , ∴4sin 5BG F BF ∠==, ∵BF=EF=5,∴BG=4,∴3=,∴EG=532-=;∵DE ∥BF ,∴△DEH ∽△BFH , ∴65EH DE FH BF ==, 设GH=x ,则EH=2+x ,FH=3-x , ∴2635x x +=-, 解得:811x =, ∴811GH =; 在Rt △BGH 中,由勾股定理,得BH ==,∴2BD BH ==; ∵∠A=60°,AB=AD ,∴△ABD 是等边三角形,∴AB BD ==;故答案为:11. 【点睛】本题考查了相似三角形的判定和性质,菱形的性质,解直角三角形,勾股定理,以及等边三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.三、解答题(本大题共10小题,共84分,如无特殊说明,解答应写出文字说明、演算步骤或推理过程).19.计算:011)6sin30-︒-【答案】-1【解析】【分析】直接利用绝对值、算术平方根、零指数幂的性质以及特殊角的三角函数值分别化简得出答案.【详解】011)6sin30-︒-=11+2162--⨯=2-3=-1.【点睛】本题主要考查了实数运算,正确化简各数是解题关键.20.解方程组和不等式组:(1)2035x y x y -=⎧⎨+=⎩ (2)33062x x x +>⎧⎨-≤-⎩. 【答案】(1)12x y =⎧⎨=⎩;(2)12x -<≤. 【解析】【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)先求出每个不等式的解集,然后取公共部分,即可得到解集. 【详解】解:(1)2035x y x y -=⎧⎨+=⎩, 由两式相加,得:55=x ,∴1x =,把1x =代入,得:2y =,∴方程组的解为:12x y =⎧⎨=⎩;(2)33062x x x +>⎧⎨-≤-⎩①②,解不等式①,得1x >-, 解不等式②,得2x ≤,∴不等式的解集为:12x -<≤.【点睛】本题考查了解一元一次不等式组,解二元一次方程组,解题的关键是掌握解不等式组的方法和加减消元法解二元一次方程组.21.如图,在△ABC 中,D 是BC 边上一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连接BF . (1)求证:BD =CD ;(2)不在原图添加字母和线段,对△ABC 只加一个条件使得四边形AFBD 是菱形,写出添加条件并说明理由.【答案】(1) 【解析】 【分析】(1)由AF 与BC 平行,利用两直线平行内错角相等得到一对角相等,再一对对顶角相等,且由E 为AD 的中点,得到AE=DE ,利用AAS 得到三角形AFE 与三角形DCE 全等,利用全等三角形的对应边相等即可得证;(2)根据”有一组邻边相等的平行四边形是菱形”进行判断即可. 【详解】(1)∵AF ∥BC ∴∠AFE =∠DCE ∵E 是AD 的中点∴AE =DE 在△AFE 和△DCE 中,AFE DCE AEF DEC AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DCE (AAS ), ∴AF =CD , ∵AF =BD ∴BD =CD ;(2)当△ABC 满足:∠BAC =90°时,四边形AFBD 菱形, 理由如下:∵AF ∥BD ,AF =BD , ∴四边形AFBD 是平行四边形, ∵∠BAC =90°,BD =CD , ∴BD =AD ,∴平行四边形AFBD 是菱形.【点睛】此题考查了全等三角形的判定与性质,以及矩形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.22.江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生”最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从”篮球”、”羽毛球”、”自行车”、”游泳”和”其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表. 最喜爱的省运会项目的人数调查统计表根据以上信息,请回答下列问题:(1)这次调查的样本容量是 ,a b += ; (2)扇形统计图中”自行车”对应的扇形的圆心角为 度;(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【答案】(1)50人,11a b +=;(2)072;(3)该校最喜爱的省运动会项目是篮球的学生人数为480人. 【解析】分析:(1)依据9÷18%,即可得到样本容量,进而得到a+b 的值; (2)利用圆心角计算公式,即可得到”自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.详解:(1)样本容量是9÷18%=50, a+b=50-20-9-10=11, 故答案为50,11;(2)”自行车”对应的扇形的圆心角=1050×360°=72°, 故答案为72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×2050=480(人). 点睛:本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【答案】(1)23;(2)见解析,13【解析】 【分析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【详解】(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个, ∴指针所指扇形中的数字是奇数的概率为23. 故答案为:23; (2)列表如下: 1 2 3 1 (1,1) (2,1) (3,1) 2 (1,2) (2,2) (3,2) 3 (1,3)(2,3)(3,3)由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种, 所以这两个数字之和是3的倍数的概率为3193=. 【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 24.如图,一次函数y x b =+与反比例函数ky x=(为常数,0k ≠)的图像在第一象限内交于点()1,2A ,且与轴、轴分别交于, B C 两点. (1)求一次函数和反比例函数的表达式;(2)点在轴上,且BCP ∆的面积等于,求点的坐标.【答案】(1)1y x =+;2y x=;(2)点P 的坐标为(3,0)或(,0); 【解析】 【分析】(1)把点A (1,2)分别代入解析式,求出k 和b 的值,即可得到答案;(2)先求出点B 、C 的坐标,然后得到OC ,设点P 为(x ,0),则1PB x =+,利用三角形的面积公式,即可求出答案.【详解】解:(1)把点A (1,2)代入ky x=,则2k =, ∴反比例函数的解析式为:2y x=; 把点A (1,2)代入y x b =+,则1b =, ∴一次函数的解析式为:1y x =+; (2)在一次函数1y x =+中, 令0x =,则1y =, ∴点C 的坐标为(0,1), ∴OC=1;令0y =,则1x =-, ∴点B 的坐标为(,0); 设点P (x ,0), ∴1PB x =+,∴1111222BCP S PB OC x ∆=••=•+•=; ∴+=14x , ∴13x =,25x =-,∴点P 的坐标为(3,0)或(,0);【点睛】本题考查了反比例函数与一次函数的综合问题,求函数的解析式,一次函数的性质,以及三角形的面积公式,解题的关键是正确求出函数的解析式,以及利用三角形的面积公式进行解题.25.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向的B 处,求此时轮船所在的B 处与灯塔P 的距离.(参考数据:6≈2.449,结果保留整数)【答案】此时轮船所在的B 处与灯塔P 的距离是98海里. 【解析】【分析】过点P 作PC ⊥AB ,则在Rt △APC 中易得PC 的长,再在直角△BPC 中求出PB 的长即可. 【详解】作PC ⊥AB 于C 点,∴∠APC=30°,∠BPC=45° ,AP=80(海里), 在Rt △APC 中,cos ∠APC=PCPA, ∴PC=PA•cos ∠3海里), 在Rt △PCB 中,cos ∠BPC=PCPB, ∴PB=403cos PC BPC =∠6≈98(海里), 答:此时轮船所在的B 处与灯塔P 的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.26.如图,已知CD 是ABC ∆的高, 1, 4, 2.AD BD CD ===直角AEF ∠的顶点是射线CB 上一动点,AE 交直线CD 于点, G EF 所在直线交直线AB 于点F .(1)判断△ABC 的形状,并说明理由; (2)若G 为AE 的中点,求tan ∠EAF 的值;(3)在点E 的运动过程中,若13BE BC =,求EFEG 的值.【答案】(1)△ABC 是直角三角形,理由见详解;(2)3tan 4EAF ∠=;(3)14EF EG = 【解析】 【分析】(1)证明△ADC ∽△CDB 可得结论.(2)如图1中,作EH ⊥AB 于H .求出EH ,AH 即可解决问题. (3)如图2中,作EH ⊥AB 于H .由EH ∥CD ,推出13EH BH BE CD BD BC ===,可得EH=23,BH=43,利用勾股定理求出AE ,再利用相似三角形的性质求出EF 即可解决问题. 【详解】解:(1)结论:△ABC 是直角三角形. 理由:∵CD ⊥AB , ∴∠CDA=∠CDB=90°, ∵AD=1,CD=2,BD=4, ∴CD 2=AD•BD , ∴=CD BDAD CD, ∴△ADC ∽△CDB , ∴∠ACD=∠B , ∵∠B+∠DCB=90°, ∴∠ACD+∠BCD=90°, ∴∠ACB=90°,∴△ABC 是直角三角形. (2)如图1中,作EH ⊥AB 于H .∵AD⊥AB,EH⊥AB,∴DG∥HE,∵AG=GE,∵AD=DH=1,∵DB=4,∴BH=DB-DH=3,∵EH∥CD,∴BH EH BD CD=,∴342EH =,∴EH=32,∴332tan24EHEAFAH∠===.(3)如图2中,作EH⊥AB于H.∵CD⊥AB,EH⊥AB,∴EH∥CD,∴13 EH BH BECD BD BC===,∵CD=2,BD=4,∴EH=23,BH=43,∴AH=AB-BH=453-=113,DH=AH-AD=83,在Rt △AEH中,AE ===∵DG ∥EH , ∴GE DHAE AH=,83113=,∴GE =, ∵AE ⊥EF ,EH ⊥AF , ∴△AEH ∽△EFH , ∴AE AHEF EH=,∴113323EF=,∴33EF =∴14EF EG ==; 【点睛】本题属于三角形综合题,考查了相似三角形的判定和性质,平行线分线段成比例定理,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.27.阅读材料并解答下列问题:如图1,把平面内一条数轴绕原点逆时针旋转角00)90(θ︒︒<<得到另一条数轴,y x 轴和轴构成一个平面斜坐标系.xOy规定:过点作轴的平行线,交轴于点,过点作轴的平行线,交轴于点,若点在轴对应的实数为,点在轴对应的实数为,则称有序实数对(),a b 为点在平面斜坐标系xOy 中的斜坐标.如图2,在平面斜坐标系xOy 中,已知60θ︒=,点的斜坐标是()3,6,点的斜坐标是()0,6. (1)连接OP ,求线段OP 的长;(2)将线段OP 绕点顺时针旋转60︒到OQ (点Q 与点对应),求点Q 的斜坐标;(3)若点是直线OP 上一动点,在斜坐标系xOy 确定的平面内以点为圆心,DC 长为半径作D ,当⊙与轴相切时,求点的斜坐标,【答案】(1)37OP =2)点Q 的斜坐标为(9,3-);(3)点D 的斜坐标为:(32,3)或(6,12). 【解析】 【分析】(1)过点P 作PC ⊥OA ,垂足为C ,由平行线的性质,得∠PAC=60θ=︒,由AP=6,则AC=3,33PC =再利用勾股定理,即可求出OP 的长度;(2)根据题意,过点Q 作QE ∥OC ,QF ∥OB ,连接BQ ,由旋转的性质,得到OP=OQ ,∠COP=∠BOQ ,则△COP ≌△BOQ ,则BQ=CP=3,∠OCP=∠OBQ=120°,然后得到△BEQ 是等边三角形,则BE=EQ=BQ=3,则OE=9,OF=3,即可得到点Q 的斜坐标;(3)根据题意,可分为两种情况进行分析:①当OP 和CM 恰好是平行四边形OMPC 的对角线时,此时点D 是对角线的交点,求出点D 的坐标即可;②取OJ=JN=CJ ,构造直角三角形OCN ,作∠CJN 的角平分线,与直线OP 相交与点D ,然后由所学的性质,求出点D 的坐标即可. 【详解】解:(1)如图,过点P 作PC ⊥OA ,垂足为C ,连接OP ,∵AP∥OB,∴∠PAC=60θ=︒,∵PC⊥OA,∴∠PCA=90°,∵点的斜坐标是()3,6,∴OA=3,AP=6,∴1 cos602ACAP︒==,∴3AC=,∴226333PC=-=,336OC=+=,在Rt△OCP中,由勾股定理,得226(33)37OP=+=;(2)根据题意,过点Q作QE∥OC,QF∥OB,连接BQ,如图:由旋转的性质,得OP=OQ,∠POQ=60°,∵∠COP+∠POA=∠POA+∠BOQ=60°,∴∠COP=∠BOQ,∵OB=OC=6,∴△COP≌△BOQ(SAS);∴CP=BQ=3,∠OCP=∠OBQ=120°,∴∠EBQ=60°,∵EQ∥OC,∴∠BEQ=60°,∴△BEQ是等边三角形,∴BE=EQ=BQ=3,∴OE=6+3=9,OF=EQ=3,∵点Q在第四象限,∴点Q的斜坐标为(9,3);(3)①取OM=PC=3,则四边形OMPC是平行四边形,连接OP、CM,交点为D,如图:由平行四边形的性质,得CD=DM,OD=PD,∴点D为OP的中点,∵点P的坐标为(3,6),∴点D的坐标为(32,3);②取OJ=JN=CJ,则△OCN是直角三角形,∵∠COJ=60°,∴△OCJ是等边三角形,∴∠CJN=120°,作∠CJN的角平分线,与直线OP相交于点D,作DN⊥x轴,连接CD,如图:。

2020年中考数学模拟试题(八)有答案

2020年中考数学模拟试题(八)有答案

2020年中考模拟试题(八)数学注意事项:1. 本试卷共8页,26个小题,满分为120分,考试时间为120分钟。

2. 根据阅卷需要,本试卷中的所有试题均按要求在答题卡上作答,答在本试卷上的答案无效。

3. 考试结束后,将本试卷保管好并将答题卡上交。

一、选择题(本大题包括10个小题,每小题3分,共30分,每小题只有一个正确选项,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣12.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b23.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105 4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12 B.6C.4D.38.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.29.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4 10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本题包括7个小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.在函数y=中,自变量x的取值范围是.12.分解因式:a2b+4ab+4b=.13.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为.三、解答题(本题包括9个小题,共69分,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;19.先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地458024.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.2020年中考数学模拟试题(八)参考答案一.选择题(共10小题)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣1【分析】由于正数大于0,0大于负数,要求最小实数,只需比较﹣2020与﹣1即可.【解答】解:∵﹣2020<﹣1<0<,∴最小的数是﹣2020.故选:A.2.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b2【分析】根据合并同类项、积的乘方、单项式的除法和完全平方公式判断即可.【解答】解:A、5ab与﹣3b不是同类项,不能合并,选项错误,不符合题意;B、(﹣3a2b)2=9a4b2,选项错误,不符合题意;C、a3•b÷a=a2b,选项正确,符合题意;D、(2a+b)2=4a2+4ab+b2,选项错误,不符合题意;故选:C.3.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:19.71万=19710000=1.971×105,故选:D.4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.【分析】根据几何体的主视图确定A、B、C选项,然后根据俯视图确定D选项即.【解答】解:A、B、D选项的主视图符合题意;C选项的主视图和俯视图都不符合题意,D选项的俯视图符合题意,综上:对应的几何体为D选项中的几何体.故选:D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用6个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量﹣6,由此可得到所求的方程.【解答】解:根据题意,得:.故选:C.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12B.6C.4D.3【分析】设点A的坐标,利用矩形的面积,表示矩形的边长,再根据对称中心表示E的坐标,由点A、E都在反比例函数的图象上,由反比例函数k的几何意义求解即可.【解答】解:设矩形的对称中心为E,连接OA、OE,过E作EF⊥OC垂足为F,∵点E是矩形ABCD的对称中心,∴BF=FC=BC,EF=AB,设OB=a,AB=b,∵ABCD的面积为12,∴BC=,BF=FC=,∴点E(a+,b),∵S△AOB=S△EOF=k,∴ab=(a+)×b=k,即:ab=6=k,故选:B.8.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.2【分析】根据矩形的性质和折叠的性质可得∠ADE=∠EDF=∠CDF=30°,再根据三角形面积公式可求AD的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵直线PQ是矩形ABCD的一条对称轴,∴∠DGF=90°,CD∥PQ,DG=AD,由折叠得∠EFD=∠A=90°,DF=AD,∠EDF=∠ADE,∴∠CFD=90°,∵EF=CF,∴∠EDF=∠CDF,∴∠ADE=∠EDF=∠CDF=30°,∴EF=DF,∴EC=AD,∵S△DEC=4,∴AD×AD÷2=4,解得AD=2.故选:D.9.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4【分析】由韦达定理得:x1•x2=6,而x2﹣x1=4,求出x1、x2的值,函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即可求解.【解答】解:函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,∴x1•x2=6,而x2﹣x1=4,解得:x1=﹣2±(舍去负数),则x2=2+,∵x1+x2=﹣2b,∴b=﹣;函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即m=y=x2+2bx+6=15+6b,故选:C.10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.【分析】根据图象的对称性,确定图象的对称性即可求解.【解答】解:由题意知,FP+PB1关于BB1对称,故可知y关于x的函数图象关于直线x=1对称,故选:B.二.填空题(共7小题)11.在函数y=中,自变量x的取值范围是x≥0且x≠3.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.分解因式:a2b+4ab+4b=b(a+2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2+4a+4)=b(a+2)2,故答案为:b(a+2)213.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为π.【分析】连接OB,根据菱形性质求出OB=OC=BC,求出△BOC是等边三角形,求出∠COB=60°,根据弧长公式求出即可.【解答】解:连接OB,∵四边形OABC是菱形,∴OC=BC=AB=OA=2,∴OC=OB=BC,∴△OBC是等边三角形,∴∠COB=60°,∴劣弧的长为=π,故答案为:π.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为16或22.【分析】先计算判别式的值得到△=(k﹣1)2≥0,利用求根公式得到x1=k+1,x2=2k,根据等腰三角形的性质讨论:当k+1=2k或k+1=6或2k=6时,分别计算出对应的k的值得到b、c的值,然后根据三角形三边的关系和三角形周长的定义求解.【解答】解:根据题意得△=(3k+1)2﹣4(2k2+2k)=(k﹣1)2≥0,所以x=,则x1=k+1,x2=2k,当k+1=2k时,解得k=1,则b、c的长为2,而2+2<6,不合题意舍去;当k+1=6时,解得k=5,则2k=10,此时三角形的周长为6+6+10=22;当2k=6时,解得k=3,则k+1=4,此时三角形的周长为6+6+4=16.综上所述,△ABC的周长为16或22.故答案为16或22.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.【分析】根据AB是⊙O的直径,OF⊥CD,和垂径定理可得CF=DF,再根据30度角所对直角边等于斜边一半,和勾股定理即可求出EF的长,进而可得CD的长.【解答】解:∵AB是⊙O的直径,OF⊥CD,根据垂径定理可知:CF=DF,∵∠CEA=30°,∴∠OEF=30°,∴OE=2,EF=,∴DF=DE﹣EF=5﹣,∴CD=2DF=10﹣2.故答案为:10﹣2.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为2.【分析】依据S△P AB=S△PCD,即可得出点P在BC的垂直平分线上,进而得到PB=PC,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,依据勾股定理求得BD的长,即可得到PC+PD的最小值为2.【解答】解:∵点P是矩形ABCD内一动点,且S△P AB=S△PCD,AB=CD,∴点P到AB的距离等于点P到CD的距离,∴点P在BC的垂直平分线上,∴PB=PC,∴PC+PD=BP+PD,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,又∵AB=CD=4,BC=6,∴对角线BD===2,∴PC+PD的最小值为2,故答案为:2.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为()2019.【分析】根据图形的变化发现规律即可求解.【解答】解:∵菱形OAA1B的边长为1,∠AOB=60°,对角线OA1为:2cos30°•OA=;∴菱形OA1A2B2的边长为:菱形OA2A3B3的边长为()2菱形OA3A4B4的边长为()3……,发现规律:则菱形OA2019A2020B2020的边长为()2019.故答案为:()2019.三.解答题(共23小题)18.(1)计算:(﹣)﹣1+﹣|π﹣3|﹣;(2)因式分解:a3﹣2a2b+ab2.【分析】(1)原式利用负整数指数幂法则,绝对值的代数意义,二次根式性质,以及特殊角的三角函数值计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=﹣3+﹣(π﹣3)﹣=﹣3+﹣π+3﹣=﹣π;(2)原式=a(a2﹣2ab+b2)=a(a﹣b)2.19.(1)计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;(2)先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.【分析】(1)直接利用零指数幂的性质以及二次根式的性质、负整数指数幂的性质分别化简得出答案;(2)直接利用将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=1+﹣1﹣2×+﹣1=﹣1;(2)原式====,由不等式组,解得:﹣2≤x≤2,∵x+1≠0,(2+x)(2﹣x)≠0,∴x≠﹣1,x≠±2,∴当x=0时,原式==1.(或当x=1时,原式==).20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意豆花的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵DC=13m,BD=5m,∴CB==12(m).答:CB的长度为12m.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?【分析】(1)求出参加高中声乐的人数即可补充条形统计图;由参加器乐和声乐的总人数看分别求出其所占的百分比则扇形统计图可补充完整;(2)首先求出参加各个项目的初中总人数即可得到参加“书法”项目的学生所占的百分比;(3)求出参加“器乐”项目的高中学生所占百分比,即可估计1500名学生中参加“器乐”项目的高中学生的人数;(4)记两名高中学生为A,B,两名初中学生为a,b.列表得到所有可能结果,进而可求出正好抽到一名初中学生和一名高中学生的概率.【解答】解:(1)补全条形统计图和扇形统计图如下:(2).答:该校初中学生中,参加“书法”项目的学生占45%.(3)(人).答:该校参加“器乐”项目的高中学生约有375人.(4)记两名高中学生为A,B,两名初中学生为a,b.列表如下:A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)由上表可知,共有12种等可能结果,其中能抽到一名初中学生和一名高中学生的结果有8种,∴P(抽到一名初中学生和一名高中学生)=.答:正好抽到一名初中学生和一名高中学生的概率是.22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【解答】解:过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=32cm,∠CBM=30°,∴CM=BC•sin∠CBM=16cm.在Rt△ABF中,AB=42cm,∠BAD=60°,∴BF=AB•sin∠BAD=21cm.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=16+21+2=21+18(cm).答:此时灯罩顶端C到桌面的高度CE是(21+18)cm.23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地4580【分析】(1)根据题意即可得调运16吨消毒液的总运费y关于x的函数关系式;(2)根据一次函数的性质即可求出总运费最低的调运方案和最低运费.【解答】解:(1)由题意可知:y=70x+120(7﹣x)+45(6﹣x)+80[(9﹣(6﹣x)]=﹣15x+1350(0<x≤6).(2)由(1)的函数可知:k=﹣15<0,所以函数的值随x的增大而减小,当x=6时,有最小值y=﹣15×6+1350=1260(元).答:总运费最低的调运方案是从M地调运6吨到A地,1吨到B地,最低运费为1260元.24.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:DE∥BC,DE=BC.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.【分析】(1)利用“边角边”证明△ADE和△CEF全等,根据全等三角形对应边相等可得AD=CF,然后判断出四边形BCFD是平行四边形,根据平行四边形的性质可得;(2)先判断出△AEG≌△DEH(ASA)进而判断出EF垂直平分GH,即可得出结论.【解答】解:DE∥BC,DE=BC,证明:如图,延长DE到点F,使得EF=DE,连接CF在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DE∥BC,DE=BC.故答案为:DE∥BC,DE=BC.(2)如图2,延长GE、FD交于点H,∵E为AD中点,∴EA=ED,且∠A=∠EDH=90°,在△AEG和△DEH中,,∴△AEG≌△DEH(ASA),∴AG=HD=2,EG=EH,∵∠GEF=90°,∴EF垂直平分GH,∴GF=HF=DH+DF=2+3=5.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.【分析】(1)连接OF,利用等角的余角相等证明∠MFG=∠MGF即可解决问题.(2)连接EF.证明△EGF∽△FGM,可得结论,(3)连接OB.证明∠M=∠FOD,推出tan∠M=tan∠FOD==,由DF=6,推出OF=8,再由tan∠M=tan∠ABH==,假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,根据OH2+BH2=OB2,构建方程即可解决问题.【解答】(1)证明:连接OF.∵DM是⊙O的切线,∴DM⊥OF,∴∠MFG+∠OF A=90°,∵BM⊥AD,∴∠AHG=90°,∴∠OAF+∠AGH=90°,∵OF=OA,∴∠OF A=∠OAF,∵∠MGF=∠AGH,∴∠MFG=∠AGF,∴MF=MG,∴△MFG是等腰三角形.(2)证明:连接EF.∵AB∥DM,∴∠MF A=∠F AB,∵∠F AB=∠FEG,∠MFG=∠MGF,∴∠FEG=∠MFG,∵∠EGF=∠MGF,∴△EGF∽△FGM,∴=,∴FG2=EG•GM,∵MF=MG,∴FG2=EG•MF.(3)解:连接OB.∵∠M+∠D=90°,∠FOD+∠D=90°,∴∠M=∠FOD,∴tan M=tan∠FOD==,∵DF=6,∴OF=8,∵DM∥AB,∴∠M=∠ABH,∴tan M=tan∠ABH==,∴可以假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,∵OH2+BH2=OB2,∴(8﹣3k)2+(4k)2=82,解得k=,∴AG=.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y 轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,解方程可求出点A坐标为(a,0),点B坐标为(1,0);(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,再由△ABC 的面积得到a的值即可;②本题分两种情况讨论:当点P在x轴上方时,直线OP的函数表达式为y=3x,则直线与抛物线的交点P可求出;当点P在x轴下方时,直线OP的函数表达式为y=﹣3x,则直线与抛物线的交点P即可求出.【解答】解:(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a.∵点A位于点B的左侧,与y轴的负半轴交于点C,∴a<0,∴点B坐标为(1,0).(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,∴AB=1﹣a,OC=﹣a,∵△ABC的面积为6,∴,∴a1=﹣3,a2=4.∵a<0,∴a=﹣3,∴y=x2+2x﹣3.②存在,理由如下:∵点B的坐标为(1,0),点C的坐标为(0,﹣3),∴设直线BC的解析式为y=kx﹣3,则0=k﹣3,∴k=3.∵∠POB=∠CBO,∴当点P在x轴上方时,直线OP∥直线BC,∴直线OP的函数解析式y=3x,则∴(舍去),,∴点的P坐标为当点P在x轴下方时,直线OP'与直线OP关于x轴对称,则直线OP'的函数解析式为y=﹣3x,则∴(舍去),,∴点P'的坐标为综上可得,点P的坐标为或.。

福州市福清市中考数学模拟试卷(八)含答案解析

福州市福清市中考数学模拟试卷(八)含答案解析

福建省福州市福清市中考数学模拟试卷(八)一.选择题(共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列函数的解析式中是一次函数的是()A.y=B.y=x+1 C.y=x2+1 D.y=2.(4分)当k>0时,正比例函数y=kx的图象大致是()A. B. C. D.3.(4分)在下列性质中,平行四边形不一定具有的是()A.对边相等B.对边平行C.对角互补D.内角和为360°4.(4分)如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A.5 B.10 C.6 D.85.(4分)在一次数学阶段考试中,某小组7名同学的成绩(单位:分)分别是65,80,70,90,95,100,70,这组数据的众数是()A.90 B.85 C.80 D.706.(4分)甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么()A.甲的波动比乙的波动大B.乙的波动比甲的波动大C.甲,乙的波动大小一样D.甲,乙的波动大小无法确定7.(4分)已知一次函数y=(m﹣1)x﹣4的图象经过(2,4),则m的值为()A.7 B.5 C.8 D.28.(4分)一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.(4分)如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BC D.AB∥DC,AB=DC10.(4分)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组二.填空题(本题共6题,每小题4分,满分24分)11.(4分)正比例函数y=﹣5x中,y随着x的增大而.12.(4分)已知函数y=﹣x+3,当x=时,函数值为0.13.(4分)在矩形ABCD中,再增加条件(只需填一个)可使矩形ABCD 成为正方形.14.(4分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=.15.(4分)将直线向下平移3个单位,得到直线.16.(4分)某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为分.三.解答题(共8小题,满分86分.)17.(8分)已知:函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x的增大而增大?18.(8分)已知样本数据为1,2,3,4,5,求这个样本的:(1)平均数;(2)方差S2.(提示:S2= [x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2])19.(10分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(﹣1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.20.(10分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD 的长.21.(12分)为了培养学生勤俭节约的意识,从小养成良好的生活习惯.某校随机抽查部分初中生对勤俭节约的态度(态度分为:赞成、无所谓、反对),并对抽查对象的态度绘制成了图1和图2两个统计图(统计图不完整),请根据图中的信息解答下列问题:(1)此次共抽查名学生;(2)持反对意见的学生人数占整体的%,无所谓意见的学生人数占整体的%;(3)估计该校1200名初中生中,大约有名学生持反对态度.22.(12分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.23.(12分)某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润W关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.24.(14分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.福建省福州市福清市中考数学模拟试卷(八)参考答案与试题解析一.选择题(共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列函数的解析式中是一次函数的是()A.y=B.y=x+1 C.y=x2+1 D.y=【解答】解:A、是反比例函数,故此选项错误;B、是一次函数,故此选项正确;C、是二次函数,故此选项错误;D、不是一次函数,故此选项错误;故选:B.2.(4分)当k>0时,正比例函数y=kx的图象大致是()A. B. C. D.【解答】解:正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.故选:A.3.(4分)在下列性质中,平行四边形不一定具有的是()A.对边相等B.对边平行C.对角互补D.内角和为360°【解答】解:A、平行四边形的对边相等,故A选项正确;B、平行四边形的对边平行,故B选项正确;C、平行四边形的对角相等不一定互补,故C选项错误;D、平行四边形的内角和为360°,故D选项正确;故选:C.4.(4分)如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A.5 B.10 C.6 D.8【解答】解:设AC与BD相交于点O,由菱形的性质知:AC⊥BD,OA=AC=3,OB=BD=4在Rt△OAB中,AB===5所以菱形的边长为5.故选:A.5.(4分)在一次数学阶段考试中,某小组7名同学的成绩(单位:分)分别是65,80,70,90,95,100,70,这组数据的众数是()A.90 B.85 C.80 D.70【解答】解:依题意得70出现了2次,次数最多,故这组数据的众数是70.故选:D.6.(4分)甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么()A.甲的波动比乙的波动大B.乙的波动比甲的波动大C.甲,乙的波动大小一样D.甲,乙的波动大小无法确定【解答】解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.故选:A.7.(4分)已知一次函数y=(m﹣1)x﹣4的图象经过(2,4),则m的值为()A.7 B.5 C.8 D.2【解答】解:∵一次函数y=(m﹣1)x﹣4的图象经过点A(2,4),∴4=2(m﹣1)﹣4,解得m=5.故选:B.8.(4分)一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选:D.9.(4分)如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BC D.AB∥DC,AB=DC【解答】解:根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C 则不能判定是平行四边形.故选:C.10.(4分)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组【解答】解:A、该学校教职工总人数是4+6+11+10+9+6+4=50(人),故正确;B、在40≤x<42小组的教职工人数占该学校全体教职工总人数的比例是:×100%=20%,故正确;C、教职工年龄的中位数一定落在40≤x<42这一组,正确;D、教职工年龄的众数一定在38≤x<40这一组.错误.故选:D.二.填空题(本题共6题,每小题4分,满分24分)11.(4分)正比例函数y=﹣5x中,y随着x的增大而减小.【解答】解:∵正比例函数y=﹣5x中k=﹣5<0,∴y随着x的增大而减小.故答案为:减小.12.(4分)已知函数y=﹣x+3,当x=3时,函数值为0.【解答】解:当y=0时,﹣x+3=0,解得:x=3.故答案为:3.13.(4分)在矩形ABCD中,再增加条件AB=BC(只需填一个)可使矩形ABCD 成为正方形.【解答】解:∵AB=BC,∴矩形ABCD为正方形,故答案为:AB=BC.14.(4分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=5.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.15.(4分)将直线向下平移3个单位,得到直线y=x﹣3.【解答】解:原直线的k=,b=0;向下平移3个单位长度得到了新直线,那么新直线的k=,b=0﹣3=﹣3.∴新直线的解析式为y=x﹣3.故答案为:y=x﹣316.(4分)某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为88分.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.三.解答题(共8小题,满分86分.)17.(8分)已知:函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x的增大而增大?【解答】解:(1)∵y=(1﹣3k)x+2k﹣1经过原点(0,0),∴0=(1﹣3k)×0+2k﹣1,解得,k=0.5,即当k=0.5时,图象过原点;(2)∵函数y=(1﹣3k)x+2k﹣1,y随x的增大而增大,∴1﹣3k>0,解得,k<,即当k<时,y随x的增大而增大.18.(8分)已知样本数据为1,2,3,4,5,求这个样本的:(1)平均数;(2)方差S2.(提示:S2= [x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2])【解答】解:(1)=(1+2+3+4+5)=3;(2)S2= [(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.19.(10分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(﹣1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.【解答】解:(1)设一次函数的表达式为y=kx+b,则,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(﹣1,1)代入函数解析式,1≠﹣2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=﹣,此函数与x轴、y轴围成的三角形的面积为:×1×=.20.(10分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD 的长.【解答】解:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=2,∴BD=2BO=4,在Rt△BAD中,AD=.21.(12分)为了培养学生勤俭节约的意识,从小养成良好的生活习惯.某校随机抽查部分初中生对勤俭节约的态度(态度分为:赞成、无所谓、反对),并对抽查对象的态度绘制成了图1和图2两个统计图(统计图不完整),请根据图中的信息解答下列问题:(1)此次共抽查200名学生;(2)持反对意见的学生人数占整体的10%,无所谓意见的学生人数占整体的15%;(3)估计该校1200名初中生中,大约有120名学生持反对态度.【解答】解:(1)根据题意得:=200(名),答:此次共抽查了200名学生;(2)持反对意见的学生人数是200﹣150﹣30=20(名),持反对意见的学生人数占整体的×100%=10%;无所谓意见的学生人数占整体的×100%=15%;故答案为:10%,15%;(3)根据题意得:1200×10%=120(名),答:大约有120名学生持反对态度.故答案为:120.22.(12分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,又∵E、F分别是边AB、CD的中点,∴BE=DF,∵在△BEC和△DFA中,,∴△BEC≌△DFA(SAS).(2)由(1)得,CE=AF,AD=BC,故可得四边形AECF是平行四边形.23.(12分)某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润W关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.【解答】解:(1)y与x之间的函数关系式为y=50﹣x;(2)W=(63﹣55)x+(42﹣36)(50﹣x),整理得:W=2x+300;(3)根据题意得:55x+36(50﹣x)≤2000整理得:19x≤200.∴x≤10.∴x的最大值为10.又∵W=2x+300,W随着x的增大而增大.∴当x=10时,W有最大值,最大值为320.24.(14分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.【解答】解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,=×4×(4﹣t)=8﹣2t;当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(t﹣4)=2t﹣8;当t>4时,OM=AM﹣OA=t﹣4,S△OCM(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).。

初中数学】中考数学模拟试题(10套) 人教版8

初中数学】中考数学模拟试题(10套) 人教版8

初中数学】中考数学模拟试题(10套) 人教版82017年中考模拟数学试题(十)第I卷(选择题部分共30分)一、选择题(每小题3分,共30分。

每小题只有一个正确选项,请把正确选项的字母代号填在下面的表格内)。

1.下列各运算中,正确的是(。

)。

A。

3a+2a=5aB。

-3a=-9aC。

a÷a=1D。

(a+2)2=a2+4a+42.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是(。

)。

A。

B。

C。

D。

3.如图是巴西世界杯吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是(。

)。

A。

27B。

29C。

31D。

304.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=(。

)。

A。

4B。

6C。

8D。

不能确定5.已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值范围在数轴上表示正确的是(。

)。

A。

B。

C。

D。

6.如图,在直角坐标系中,点A的坐标是(2,3),则tanα的值是(。

)。

A。

B。

C。

D。

7.在不透明的盒子中装有3个红球,2个白球,它们除颜色外均相同,则从盒中子任意摸出一个球是白球的概率是(。

)。

A。

B。

C。

D。

8.如图,在直径AB=12的⊙O中,弦CD⊥AB于M,且M是半径OB的中点,则弦CD的长是(。

)。

A。

3B。

3√3C。

6D。

6√39.如图,△XXX的外角∠CBD和∠XXX的平分线相交于点F,则下列结论正确的是(。

)。

A。

点F在BC边的垂直平分线上B。

点F在∠BAC的平分线上C。

△BCF是等腰三角形D。

△BCF是直角三角形10.如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年中考模拟题数 学 试 卷(八)*考试时间120分钟 试卷满分120分一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若b a <,则下列各式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac <2.一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是( )A .AB=CDB .AB ≤CDC .CD AB > D .AB ≥CD3.如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点 C ,则AB 的长为( ) A .4cm B .5cm C .6cm D .8cm4.下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是 双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时, OAB △的面积将会A .逐渐增大B .不变C .逐渐减小D .先增大后减小7.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )A . 甲B . 乙C . 丙D .不能确定A8.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A833m B.4 mC.43m D.8 m9.在同一直角坐标系中,函数y mx m=+和函数222y mx x=-++(m是常数,且0m≠)的图象可能..是()10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是()A.20 B.22C.24 D.2611.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()12.小强从如图所示的二次函数2y ax bx c=++的图象中,观察得出了下面五条信息:(1)0a<;(2)1c>;(3)0b>;(4)0a b c++>;(5)0a b c-+>.你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个xOyx-2- 4A DCBO42yO 2- 4yxO4- 2yx取相反数×2+4输入x输出yC D150°hx1y2-11O-1二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.比较大小:-6 -8.(填“<”、“=”或“>”)14.矩形内有一点P 到各边的距离分别为1、3、5、7,则该矩形的最大面积为 平方单位.15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:体温(℃) 36.1 36.2 36.3 36.4 36.5 36.6 36.7 次 数2346312则这些体温的中位数是 ℃.16.观察下列等式:221.4135-=⨯; 222.5237-=⨯; 223.6339-=⨯ 224.74311-=⨯;…………则第n (n 是正整数)个等式为________.17.如图,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _.三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分) 先化简,再求值:232224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.AB CDE A ′电视机月销量扇形统计图第一个月 15%第二个月 30%第三个月25%第四个月图11-120.(本小题满分8分)某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.21.(本小题满分9分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是 ; (2)在图11-2中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求 抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断 该商店应经销哪个品牌的电视机.22.(本小题满分9分)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,月 图11-2第一 第二 第三 第四 电视机月销量折线统计图于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB 、OB 分别表示父、子俩送票、取票过程中,离体育馆的路程.......S (米)与所用时间t (分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变): (1)求点B 的坐标和AB 所在直线的函数关系式;(2)小明能否在比赛开始前到达体育馆?23.(本小题满分10分)已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 上的点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D .(1)求证:BC =CD ; (2)求证:∠ADE =∠ABD ;(3)设AD =2,AE =1,求⊙O 直径的长.•ABCD EO在图1至图3中,点B是线段AC的中点,点D 是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G 重合时,点M与点C重合,求证:FM = MH,FM⊥MH;(2)将图-1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)图1AHC(M) D E BF G(N)G图2AHCDEBF NMAHCD图3BF GMN如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,26.(本小题满分12分)如图,平行四边形ABCD 中,AB =5,BC =10,BC 边上的高AM =4,E 为 BC 边上的一个动点(不与B 、C 重合).过E 作直线AB 的垂线,垂足为F . FE 与DC 的延长线相交于点G ,连结DE ,DF . (1) 求证:ΔBEF ∽ΔCEG .(2) 当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之间有什么关系?并说明你的理由.(3)设BE =x ,△DEF 的面积为 y ,请你求出y 和x 之间的函数关系式,并求出当x 为何值时,y 有最大值,最大值是多少?MBDCEF Gx A2011年中考模拟题(八) 数学试题参考答案及评分标准一、选择题二、填空题13.>; 14.64; 15.36.4; 16.22(3)3(23)n n n +-=⨯+; 17.3; 18..三、解答题19.解:322xx x x ⎛⎫- ⎪-+⎝⎭÷224x x -=()()()()()()32222222x x x x x x x x x +---+-+. ······················· 3分 =x +4 ··································································· 5分 当x =3时,原式=3+4 =7····················································································· 8分20.解:抽中一等奖的概率为161, ···································································· 3分抽中二等奖的概率为163, ·········································································· 5分抽中三等奖的概率为43. ··········································································· 8分21.解:(1)30%; (2)如图1; (3)8021203=; (4)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势. 所以该商店应经销B 品牌电视机.22.解:(1)解法一:从图象可以看出:父子俩从出发到相遇时花费了15分钟1分设小明步行的速度为x米/分,则小明父亲骑车的速度为3x 米/分依题意得:15x+45x =3600. ··························2分 解得:x =60./月图1电视机月销量折线统计图所以两人相遇处离体育馆的距离为 60×15=900米.所以点B 的坐标为(15,900). ····················3分 设直线AB 的函数关系式为s =kt+b (k ≠0). ····4分 由题意,直线AB 经过点A (0,3600)、B (15,900)得:360015900b k b =⎧⎨+=⎩,解之,得1803600k b =-⎧⎨=⎩,. ∴直线AB 的函数关系式为:1803600S t =-+. ······································· 6分 解法二:从图象可以看出:父子俩从出发到相遇花费了15分钟. ································ 1分 设父子俩相遇时,小明走过的路程为x 米. 依题意得:360031515x x-=···································································· 2分 解得x =900,所以点B 的坐标为(15,900) ··············································· 3分以下同解法一.(2)解法一:小明取票后,赶往体育馆的时间为:9005603=⨯ ································· 7分 小明取票花费的时间为:15+5=20分钟. ∵20<25∴小明能在比赛开始前到达体育馆.··············································· 9分解法二:在1803600S t =-+中,令S =0,得01803600t =-+. 解得:t =20.即小明的父亲从出发到体育馆花费的时间为20分钟,因而小明取票的时间也为20分钟. ∵20<25,∴小明能在比赛开始前到达体育馆. ······························· 9分23.解:(1)∵∠ABC =90°,∴OB ⊥BC . ·················································· 1分 ∵OB 是⊙O 的半径,∴CB 为⊙O 的切线. ······································· 2分 又∵CD 切⊙O 于点D ,∴BC =CD ; ·················································· 3分 (2)∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠ADE +∠CDB =90°. ······························· 4分 又∵∠ABC =90°,∴∠ABD +∠CBD =90°. ······························································· 5分 由(1)得BC =CD ,∴∠CDB =∠CBD .∴∠ADE =∠ABD ; ······································································ 6分 (3)由(2)得,∠ADE =∠ABD ,∠A =∠A .∴△ADE ∽△ABD . ······································································ 7分•ABCD EO∴AD AB =AEAD . ············································································ 8分 ∴21BE +=12,∴BE =3,······························································ 9分 ∴所求⊙O 的直径长为3. ·························································· 10分24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形.(3)是.25.解:(1) M (12,0),P (6,6). ··································································· 2分 (2) 设抛物线解析式为:6)6(2+-=x a y . ····················································· 3分∵抛物线6)6(2+-=x a y 经过点(0,0), ∴6)60(02+-=a ,即61-=a 4分 ∴抛物线解析式为:x x y x y 261,6)6(6122+-=+--=即 . 5分(3) 设A (m ,0),则B (12-m ,0),)261,12(2m m mC +--,)261,(2m m m D +-. ····························· 7分 ∴“支撑架”总长AD+DC+CB = )261()212()261(22m m m m m +-+-++-=15)3(311223122+--=++-m m m . ························································ 10分图2AHCDEBFG N MP∵ 此二次函数的图象开口向下.∴ 当m = 3米时,AD+DC+CB 有最大值为15米. ············································· 12分 26. (1) 因为四边形ABCD 是平行四边形, 所以AB DG ·························· 1分 所以,B GCE G BFE ∠=∠∠=∠所以BEF CEG △∽△ ··············································································· 3分 (2)BEF CEG △与△的周长之和为定值.····················································· 4分 理由一:过点C 作FG 的平行线交直线AB 于H ,因为GF ⊥AB ,所以四边形FHCG 为矩形.所以 FH =CG ,FG =CH 因此,BEF CEG △与△的周长之和等于BC +CH +BH由 BC =10,AB =5,AM =4,可得CH =8,BH =6, 所以BC +CH +BH =24 ··············································································· 6分 理由二:由AB =5,AM =4,可知在Rt △BEF 与Rt △GCE 中,有:4343,,,5555EF BE BF BE GE EC GC CE ====,所以,△BEF 的周长是125BE , △ECG 的周长是125CE又BE +CE =10,因此BEF CEG 与的周长之和是24. ···································· 6分(3)设BE =x ,则43,(10)55EF x GC x ==- 所以21143622[(10)5]2255255y EF DG x x x x ==-+=-- ······························· 8分 配方得:2655121()2566y x =--+. 所以,当556x =时,y 有最大值. ································································ 10分最大值为1216.···························································································· 12分A M xH GFED CB。

相关文档
最新文档