奥数数的整除讲义、练习含答案

合集下载

六年级下册奥数试题 数的整除特征(一) 全国通用(含答案)

六年级下册奥数试题  数的整除特征(一)   全国通用(含答案)

第1讲数的整除特征(一)知识网络数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。

(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。

(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(7)个位上是0、2、4、6、8的数都能被2整除。

(8)个位上是0或者5的数都能被5整除。

(9)若一个整数各位数字之和能被3整除,则这个整数能被3整除。

(10)若一个整数末尾两位数能被4整除,则这个数能被4整除。

(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。

(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除。

重点·难点数的整除概念、性质及整除特征为解决一些整除问题带来了很大方便,在实际问题中应用广泛。

要学好数的整除问题,就必须找到规律,牢记上面的整除性质,不可似是而非。

学法指导能被2和5,4和25,8和125整除的数的特征是分别看这个数的末一位、末两位、末三位。

我们可以综合推广成一条:末n位数能被(或)整除的数,本身必能被(或)整除;反过来,末n位数不能被(或)整除的数,本身必不能被(或)整除。

例如,判断253200、371601能否被16整除,因为,所以只要看各数的末四位数能否被16整除。

学习这一讲知识要学会举一反三。

经典例题[例1]在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。

思路剖析这个六位数分别被3、4、5整除,故它应满足如下三个条件:(1)各位数字和是3的奇数;(2)末两位数组成的两位数是4的倍数;(3)末位数为0或5。

小学生奥数数的整除问题知识点及练习题

小学生奥数数的整除问题知识点及练习题

小学生奥数数的整除问题知识点及练习题1.小学生奥数数的整除问题知识点数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数。

“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0)。

下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数。

又因为4|64,所以1864能被4整除。

但因为2564,所以1864不能被25整除。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

例如:29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数。

又因为125|375,所以29375能被125整除。

但因为8375,所以829375。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

例如:判断123456789这九位数能否被11整除?解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20。

因为25—20=5,又因为115,所以11123456789。

再例如:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。

因为0是任何整数的倍数,所以11|0。

因此13574是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

例如:判断1059282是否是7的倍数?解:把1059282分为1059和282两个数。

因为1059-282=777,又7|777,所以7|1059282。

六年下册奥数试题:数的整除特征(一)全国通用(含答案)

六年下册奥数试题:数的整除特征(一)全国通用(含答案)

第1讲数的整除特征(一)知识网络数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。

(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。

(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(7)个位上是0、2、4、6、8的数都能被2整除。

(8)个位上是0或者5的数都能被5整除。

(9)若一个整数各位数字之和能被3整除,则这个整数能被3整除。

(10)若一个整数末尾两位数能被4整除,则这个数能被4整除。

(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。

(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除。

重点·难点数的整除概念、性质及整除特征为解决一些整除问题带来了很大方便,在实际问题中应用广泛。

要学好数的整除问题,就必须找到规律,牢记上面的整除性质,不可似是而非。

学法指导能被2和5,4和25,8和125整除的数的特征是分别看这个数的末一位、末两位、末三位。

三位。

我们可以综合推广成一条:我们可以综合推广成一条:我们可以综合推广成一条:末末n 位数能被(或)整除的数,整除的数,本身必能被本身必能被(或)整除;反过来,末n 位数不能被(或)整除的数,本身必不能被(或)整除。

例如,判断253200、371601能否被16整除,因为,所以只要看各数的末四位数能否被16整除。

学习这一讲知识要学会举一反三。

经典例题[例1]在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。

思路剖析这个六位数分别被3、4、5整除,故它应满足如下三个条件:(1)各位数字和是3的奇数;(2)末两位数组成的两位数是4的倍数;的倍数;(3)末位数为0或5。

高斯小学奥数五年级上册含答案_整除问题初步

高斯小学奥数五年级上册含答案_整除问题初步

第一讲整除问题初步从这一讲开始,我们将会进入一个神奇而美妙的世界:数论.什么是数论呢?人类从学会数数开始,就一直和整数打交道.人们在对整数的应用和研究中,探索出很多奇妙的数学规律,正是这些富有魅力的规律,吸引了古往今来的许多数学家,于是就出现了数论这门学科.确切的说,数论就是一门研究整数性质的学科.我们就从最基本的性质——整除开始,一起在数论的海洋中遨游吧.数论在数学中的地位是独特的,伟大的数学家高斯曾经说过:“数学是科学的皇后,数论是数学的皇冠”.一、整除的定义如果整数a除以整数b(0b),除得的商是整数且没有余数,我们就说a能被b整除,也可以说b能整除a,记作|b a.如果除得的结果有余数,我们就说a不能被b整除,也可以说b不能整除a.二、整除的一些基本性质:1.尾数判断法(1)能被2,5整除的数的特征:个位数字能被2或5整除.(2)能被4,25整除的数的特征:末两位能被4或25整除.(3)能被8,125整除的数的特征:末三位能被8或125整除.2.数字求和法能被3,9整除的数的特征:各位数字之和能被3或9整除.3.奇偶位求差法能被11整除的数的特征:“奇位和...”的差能被11整除....”与“偶位和我们把一个数从右往左数的第1、3、5位,……,统称为奇数位,把一个数从右往左数的第2、4、6位,……,统称为偶数位.我们把“奇数位上的数字之和”简称为“奇位和”,把“偶数位上的数字之和”简称为“偶位和”.下面我们来看一下如何运用这些性质.例题1.判断下面11个数的整除性:23487,3568,8875,6765,5880,7538,198954,6512,93625,864,407(1)这些数中,有哪些数能被4整除?哪些数能被8整除?(2)哪些数能被25整除?哪些数能被125整除?(3)哪些数能被3整除?哪些数能被9整除?(4)哪些数能被11整除?【分析】关于4、8、25、125以及3、9、11的整除特征刚才都已经介绍过了,大家不妨根据整除特性判断一下.练习1.在数列3124、312、3823、45235、5289、5588、661、7314中哪些数能被4整除,哪些数能被3整除,哪些数能被11整除?如果将例题1中能被3整除的数相加或相减,会发现得到的结果还能被3整除;同样的,如果将其中能被11整除的数相加或相减,会发现得到的结果同样能被11整除.从中我们可以总结出如下规律:和整除性与差整除性:两个数如果都能被自然数a整除,那它们的和与差也都能被a 整除.例题2.173是一个四位数.文老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9,11,8整除.”问:文老师在方框中先后填入的3个数字之和是多少?【分析】本题包括三个小问题,我们逐个分析.需要分别用到9、11和8的整除特性.练习2.在23的方框内先后填上3个数字,分别组成3个三位数,使它们依次被3、4、5整除.上面我们已经学习了如何利用“整除特征”,解决单个数的整除问题.下面我们再来看一看,涉及多个数的整除问题应该如何解决.例题3.牛叔叔给45名工人发完工资后,将总钱数记在一张纸上.但是记账的那张纸破了两个洞,上面只剩下“678”,其中方框表示破了的洞.牛叔叔记得每名工人的工资都一样,并且都是整数元.请问:这45名工人的总工资有可能是多少元呢?【分析】这45名员工的工资都一样,所以总工资就能被45整除.我们没有学过被45整除的数的特征.但注意到4559,于是678应该能同时被5和9整除,那么先考虑哪一个数的整除特征比较好呢?练习3.四位数33能被36整除,那么这个四位数可能是多少?在例3中,我们并不知道45的整除特征,但是,能被45整除的数,也能被5和9整除,那么只需考虑5和9的整除特征即可.请同学们注意,虽然,但是在考虑能否被45整除时,不能只考虑被3和15整除.你能想明白为什么吗?例题4.一天,王经理去电信营业厅为公司安装一部电话.服务人员告诉他,目前只有形如“123468”的号码可以申请.也就是说,在申请号码时,方框内的两个数字可以随意选择,而其余数字不得改动.王经理打算申请一个能同时被8和11整除的号码.请问:他申请的号码可能是多少?【分析】要被8整除,说明号码的后三位68是8的倍数.想一下,这样的三位数是唯一的吗?练习4.七位数22333能被44整除,那么这个七位数是多少?有时候满足题目条件的答案会非常多.如果只要求找出最大的或最小的,我们只需要从极端情况考虑即可.例题5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?最大是多少?【分析】要想让五位数最大且数字不重复,每个数位上的数字应该依次是9、8、….如果想让五位数尽量小,是不是应该依次是1、2、…呢?例题6.由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】要想能被11整除,奇位和与偶位和的差应该是11的倍数.那么奇位和与偶位和的和又是什么呢?453154559课堂内外天才未必事事都聪明牛顿小时候的一个故事告诉我们,天才有时也傻乎乎的.一次,粮仓里闹鼠灾了,大人让牛顿在粮仓的门底开一个洞让猫进出.结果他开了两个洞——大的给老猫,小的给小猫.其实在整除性的问题当中也有类似情况.比如要在200的方框中填入两个数字使得这个五位数同时能被4、5、8整除,实际根本不用考虑4,只要考虑5和8即可,因为能被8整除的也必然能被4整除.如果你还要再考虑4的整除性,那就多此一举了.作业1.下面有9个自然数:48,75,90,122,650,594,4305,7836,4100.其中能被4整除的有哪些?能被25整除的有哪些?2.有如下5个自然数:12345,189,72457821,333666,54289.其中能被9整除的有哪些?3.有如下5个自然数:3124,3823,45235,5289,5588.其中能被11整除的有哪些?4.125是一个四位数.王老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9,11,8整除.”问:王老师在方框中先后填入的3个数字之和是多少?5.阿呆买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:11.4元(表示不明数字).请问总价应该是多少?第一讲整除问题初步例题1.答案:(1)能被4整除的有3568、5880、6512、864;能被8整除的有3568、5880、6512、864.(2)能被25整除的有8875、93625;能被125整除的有8875、93625.(3)能被3整除的有23487、6765、5880、198954、864;能被9整除的有198954、864.(4)能被11整除的有407、6765、6512.例题2.答案:21详解:要想让四位数能被9整除,数字和得是9的倍数,空格中要填7.要想让四位数能被11整除,奇位和与偶位和的差得是11的倍数,空格中要填8.要想让四位数能被8整除,需要后三位即73是8的倍数,空格中要填6.三个数字之和是21.例题3.答案:67680或67185详解:根据题意,这个数能被45整除,即能同时被5和9整除,个位只能是0或5,对应的百位是6或1.例题4.答案:12345608、12341648、12348688详解:末三位被8整除,十位数字只能是0、4、8.要满足号码能被11整除对应的千位数字只能是5、1、8.例题5.答案:10395;98730详解:要被45整除,五位数既得是5的倍数,也得是9的倍数.那么五位数的末尾只能是0或5.先来看最小的数.要让前面数位上的数字尽量小,可以是105.要满足它是9的倍数且最小,应该是10395.再来看最大,要让前面数位上的数字尽量大,可以是985或980.要满足它是9的倍数且最大,应该是98730.例题6.答案:875413详解:要想是11的倍数,奇位和与偶位和的差得是11的倍数.这六个数字的和是28,而最大的三个数的和是20,也就是说无论是奇位还是偶位之和都不会超过20,所以只能把28分成两个14,偶位为8、5、1,奇位为7、4、3.练习1.答案:能被4整除的数有3124、312、5588;能被3整除的数有312、5289、7314;能被11整除的数有3124、5588.练习2.答案:本题的答案不止一种,要想被3整除,空格中可以填1、4、7.要想被4整除,空格中可填2或6.要想被5整除,空格中可填0或5.练习3.答案:3132或3636简答:要想被36整除,这个四位数要既是4的倍数,也是9的倍数.要想是4的倍数,个位上的空格中可填2或6.要想满足四位数是9的倍数,百位上的空格对应要填1或6.练习4.答案:2213332或2283336简答:这个七位数既是4的倍数,也是11的倍数.要想是4的倍数,个位上的空格中可填2或6,剩下的空格中对应可填1或8.作业1.答案:48,7836,4100;75,650,4100简答:4和25看末两位.作业2.答案:189,72457821,333666简答:被9整除看数字和.作业3.答案:3124,5588简答:被11整除看奇位和与偶位和的差.作业4.答案:11简答:填入的三个数字分别为1,4,6,数字和为11.作业5.答案:811.44元简答:7289,分别考虑8和9的整除特性.。

小学五年级数学奥数数的整除(附练习及详解)

小学五年级数学奥数数的整除(附练习及详解)

一、基本概念和知识1.整除例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.②能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

③能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

④能被5整除的数的特征:个位是0或5。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是0或11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

练习及详解例题1. 四位数“3AA1”是9的倍数,那么A=_____。

(小五奥数)解析:已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之。

练习(1)在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____。

五年级下册数学奥数讲义-思维训练:数的整除-通用版

五年级下册数学奥数讲义-思维训练:数的整除-通用版

知识点一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;总结:2、5配零,4、25配二零,8、125配三零。

2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;总结:3、9见数和3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.总结:11跳和减4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.总结:7、11、13跳位段和减。

5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

总结:二切法,三切法。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题【例 1】在下面的数中,哪些能被4整除?哪些能被8整除?1164、2450、3248、6644、363656□中,被盖住的十位数分别等于几时,这个四位数分别能被8,4整除?【巩固】在四位数2【例 2】在方框中填上两个数字,可以相同也可以不同,使432是9的倍数. 请随便填出一种,并检查自己填的是否正确。

五年级下册数学试题- 奥数第02讲:整除 人教版(含答案)

五年级下册数学试题- 奥数第02讲:整除    人教版(含答案)

第2讲:数的整除内容概述:掌握整除的概念和基本性质,掌握能被某些特殊数整除的数的特征。

通过分析整除特征解决数的补填问题,以及多位数的构成问题等。

典型问题:兴趣篇1.下面有9个自然数:14,35,80,152,650,434,4375,9064,24125。

在这些自然数中,请问:(1)有哪些数能被2整除?哪些能被4整除?哪些能被8整除?(2)有哪些数能被5整除?哪些能被25整除?哪些能被125整除?【分析】(1)能被2整除的数末位应是2的倍数,有:14,80,152,650,434,9064,;能被4整除的末两位应为4的倍数,有:80,152,9064;能被8整除的末三位应为8的倍数,有:80,152,9064;(2)能被5整除的末位应为5的倍数,有35,80,650,4375,24125;能被25整除的末两位应为25的倍数,有:650,4375,24125;能被125整除的末三位应为125的倍数,有:4375,24125;2.有如下9个三位数:452,387,228,975,525,882,715,775,837。

这些数中哪些能被3整除?哪些能被9整除?哪些能同时被2和3整除?【分析】能被3整除的应为数字和为3的倍数,有:387,228,975,525,882,837;能被9整除的数字和应为9的倍数,有:387,882,837;能同时被2和3整除的数有:228、882。

3.一个三位数64的十位数字未知。

请分别根据下列要求找出“”中合适的取值:(1)如果要求这个三位数能被3整除,“”可能等于多少?(2)如果要求这个三位数能被4整除,“”可能等于多少?(3)这个三位数有没有可能同时被3和4整除,如果有可能,“”可能等于多少?【分析】 (1)数字和保证是3的倍数,则可填写2,5,8;(2)能被4整除,则末两位能被4整除,则可填写0、2、4、6、8;(3)既能被3又能被4整除,则两者均需符合,应填2或者84.新学年开学了,同学们要改穿新的校服。

数的整除问题奥数题及答案

数的整除问题奥数题及答案

数的整除问题奥数题及答案数的整除问题奥数题及答案数的整除问题奥数题及答案1试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.考点:数的整除特征.分析:根据题意,可采用假设的方法进行分析,100个自然数任意的5个数相连,可以分成20个组,使得在任何5个相连的数中,都至少有两个数可被3整除,那么会有40个数是3的倍数,事实上在1至100的自然数中只有33个是3倍数,所以不能.解答:假设能够按照题目要求在圆周上排列所述的100个数,按所排列顺序将它们每5个分为一组,可得20组,其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3的倍数.小学五年级数的整除问题奥数题及答案:从而一共会有不少于40个数是3的倍数.但事实上在1至100的这100个自然数中只有33个数是3的倍数,导致矛盾,所以不能.答:不能.数的整除问题奥数题及答案2数的整除性规律【能被2或5整除的数的特征】一个数的末位能被2或5整除,这个数就能被2或5整除【能被3或9整除的数的特征】一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。

例如,1248621各位上的数字之和是1+2+4+8+6+2+1=243|24,则3|1248621。

又如,372681各位上的数字之和是3+7+2+6+8+1=279|27,则9|372681。

【能被4或25整除的数的特征】一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。

例如,173824的末两位数为24,4|24,则4|173824。

43586775的末两位数为75,25|75,则25|43586775。

【能被8或125整除的数的特征】一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。

六年级奥数的整除问题及答案

六年级奥数的整除问题及答案

六年级奥数的整除问题及答案
六年级奥数的整除问题及答案
整除问题:(高等难度)
一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数。

整除问题答案:
这是一道古算题.它早在《孙子算经》中记有:"今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?"
关于这道题的解法,在明朝就流传着一首解题之歌:"三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知."意思是,用除以3的余数乘以70,用除以5的余数乘以21,用除以7的'余数乘以15,再把三个乘积相加.如果这三个数的和大于105,那么就减去105,直至小于105为止.这样就可以得到满足条件的解.其解法如下:方法1:2×70+3×21+2×15=233
233-105×2=23
符合条件的最小自然数是23。

数的整除答案

数的整除答案

数的整除答案【篇一:奥数数的整除讲义及答案】=txt>教室:姓名:学号:【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a必能被数c整除。

(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。

(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。

反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。

整除特征:(1)若一个数的末两位数能被4(或25)整除,则这个数能被4(或25)整除。

(2)若一个数的末三位数能被8(或125)整除,则这个数能被8(或125)整除。

(3)若一个数的各位数字之和能被3(或9)整除,则这个数能被3(或9)整除。

(4)若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11整除,则这个数能被11整除。

(5)若一个数的末三位数字所表示的数与末三位以前的数字所表示的数之差(大数减小数)能被7(或13)整除,则这个数能被7(或13)整除。

【典型例题】例1:一个三位数能被3整除,去掉它的末尾数后,所得的两位数是17的倍数,这样的三位数中,最大是几?例2:1~200这200个自然数中,能被6或8整除的数共有多少个?例3:任意取出1998个连续自然数,它们的总和是奇数还是偶数?解:任意取出的1998个连续自然数,其中奇数、偶数各占一半,即999个奇数和999个偶数。

999个奇数的和是奇数,999个偶数的和是偶数,奇数加上偶数和为奇数,所以它们的和是奇数。

解:根据能被7整除的数的特征,555555与999999都能被7因为上式中等号左边的数与等号右边第一个数都能被7整除,所以等号右边第二个数也能被7整除,推知55□99能被7整除。

根据能被7整除的数的特征,□99-55=□44也应能被7整除。

高斯小学奥数五年级上册含答案_整除问题初步

高斯小学奥数五年级上册含答案_整除问题初步

第一讲整除问题初步从这一讲开始,我们将会进入一个神奇而美妙的世界:数论. 什么是数论呢?人类从学会数数开始,就一直和整数打交道.人们在对整数的应用和研究中, 探索出很 多奇妙的数学规律,正是这些富有魅力的规律, 吸引了古往今来的许多数学家, 于是就出现 了数论这门学科.确切的说,数论就是一门研究整数性质的学科.我们就从最基本的性质一一整除开始,一起在数论的海洋中遨游吧.X:: 数论在数学中的地位是独特的,伟大的数学家高斯曾经说过: “数学是科学的皇后,数;论是数学的皇冠” •整除的定义「丁 M 丄[EfiAI邑九牛城帀,琴百捨 吧円样的方式冉境 OOOKH3C01B.以G 、乩出卞城布 可胯号毀離00001 'oooowjja 序谏 次脫锂A- B- C, 懵快.軒iHflt 反应境 闻瞭面丈旳埠茶逾稲 伸只记聲车壇忙¥2. 鼻、4. $、隔一亍・ 貝侔的推列浚记件yrmir =Flf 面丈谥氓功了毡 豪酊r.舌方境 出了颯珂停!* w<«帀的T /整除的一些基本性质:1. 尾数判断法3.奇偶位求差法|能被ii 整除的数的特征:“奇位和”与“偶位和”的差能被ii 整除HI 我们把一个数从右往左数的第1、3、5位,……,统称为奇数位,把一个数从右往左数的第2、4、6位, ,统称为偶数位.我们把“奇数位上的数字之和”简称为“奇位和” 把“偶数位上的数字之和”简称为“偶位和”.F 面我们来看一下如何运用这些性质.例题1.判断下面11个数的整除性:23487, 3568, 8875, 6765, 5880, 7538, 198954, 6512, 93625, 864, 407 (1) 这些数中,有哪些数能被 4整除?哪些数能被 8整除? (2) 哪些数能被25整除?哪些数能被125整除? (3) 哪些数能被3整除?哪些数能被 9整除? (4) 哪些数能被11整除?【分析】关于4、8、25、125以及3、9、11的整除特征刚才都已经介绍过了,大家不 妨根据整除特性判断一下.练习 1.在数列 3124、312、3823、45235、5289、5588、661、7314 中哪些数能被 4 整除,哪些数能被3整除,哪些数能被11整除?如果将例题1中能被3整除的数相加或相减,会发现得到的结果还能被 3整除;同样的, 如果将其中能被11整除的数相加或相减, 会发现得到的结果同样能被 11整除.从中我们可以总结出如下规律:(1) (2) (3)2.例题2. 17石是一个四位数•文老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除问:文老师在方框中先后填入的3个数字之和是多少?【分析】本题包括三个小问题,我们逐个分析.需要分别用到9、11和8的整除特性.练习2.在2S 的方框内先后填上3个数字,分别组成3个三位数,使它们依次被3、4、5整除.上面我们已经学习了如何利用“整除特征”,解决单个数的整除问题•下面我们再来看一看,涉及多个数的整除问题应该如何解决.例题3.牛叔叔给45名工人发完工资后,将总钱数记在一张纸上•但是记账的那张纸破了两个洞,上面只剩下“ 6dd ”,其中方框表示破了的洞. 牛叔叔记得每名工人的工资都一样,并且都是整数元.请问:这45名工人的总工资有可能是多少元呢?【分析】这45名员工的工资都一样,所以总工资就能被45整除•我们没有学过被45整除的数的特征.但注意到45 5 9,于是6dd应该能同时被5和9整除,那么先考虑哪一个数的整除特征比较好呢?练习3.四位数CC 能被36整除,那么这个四位数可能是多少?在例3中,我们并不知道45的整除特征,但是45 5 9,能被45整除的数,也能被5和9整除,那么只需考虑5和9的整除特征即可.请同学们注意,虽然45 3 15,但是在考虑能否被45整除时,不能只考虑被3和15 整除•你能想明白为什么吗?例题4. 一天,王经理去电信营业厅为公司安装一部电话. 服务人员告诉他,目前只有形如“ 1234 口6口8 ”的号码可以申请•也就是说,在申请号码时,方框内的两个数字可以随意选择,而其余数字不得改动. 王经理打算申请一个能同时被8和11整除的号码.请问:他申请的号码可能是多少?【分析】要被8整除,说明号码的后三位Q8是8的倍数•想一下,这样的三位数是唯一的吗?练习4.七位数22 333 能被44整除,那么这个七位数是多少?有时候满足题目条件的答案会非常多. 如果只要求找出最大的或最小的,我们只需要从极端情况考虑即可.例题5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?最大是多少?【分析】要想让五位数最大且数字不重复,每个数位上的数字应该依次是9、&….如果想让五位数尽量小,是不是应该依次是1、2、…呢?例题6.由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】要想能被11整除,奇位和与偶位和的差应该是11的倍数.那么奇位和与偶位和的和又是什么呢?天才未必事事都聪明牛顿小时候的一个故事告诉我们,天才有时也傻乎乎的.一次,粮仓里闹鼠灾了,大人让牛顿在粮仓的门底开一个洞让猫进出.结果他开了两个洞一一大的给老猫,小的给小猫.其实在整除性的问题当中也有类似情况. 比如要在200 □匚的方框中填入两个数字使得这个五位数同时能被4、5、8整除,实际根本不用考虑4,只要考虑5和8即可,因为能被8整除的也必然能被4整除.如果你还要再考虑4的整除性,那就多此一举了.作业1. 下面有9 个自然数:48, 75, 90, 122, 650, 594, 4305, 7836, 4100 .其中能被4 整除的有哪些?能被25整除的有哪些?2. 有如下5个自然数:12345, 189, 72457821, 333666, 54289•其中能被9整除的有哪些?3. 有如下5个自然数:3124, 3823, 45235, 5289, 5588 •其中能被11整除的有哪些?4. 是一个四位数•王老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除• ”问:王老师在方框中先后填入的3个数字之和是多少?5. 阿呆买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:匚111.C 元(表示不明数字).请问总价应该是多少?第一讲整除问题初步例题1. 答案:(1)能被4整除的有3568、5880、6512、864;能被8整除的有3568、5880、6512、864 .(2)能被25 整除的有8875、93625 ;能被125 整除的有8875、93625 . ( 3) 能被 3 整除的有23487、6765、5880、198954、864;能被9 整除的有198954、864. (4) 能被11整除的有407、6765、6512.例题2.答案:21详解:要想让四位数能被9整除,数字和得是9的倍数,空格中要填7 •要想让四位数能被11整除,奇位和与偶位和的差得是11的倍数,空格中要填8•要想让四位数能被8整除,需要后三位即7C 是8的倍数,空格中要填6 .三个数字之和是21 .例题3. 答案:67680或67185详解:根据题意,这个数能被45整除,即能同时被5和9整除,个位只能是0或5,对应的百位是6或1 .例题 4. 答案:12345608、12341648、12348688详解:末三位被8整除,十位数字只能是0、4、8 .要满足号码能被11整除对应的千位数字只能是5、1、&例题 5. 答案:10395; 98730详解:要被45整除,五位数既得是5的倍数,也得是9的倍数.那么五位数的末尾只能是0或5 •先来看最小的数•要让前面数位上的数字尽量小,可以是1CD5 •要满足它是9的倍数且最小,应该是10395 •再来看最大,要让前面数位上的数字尽量大,可以是98口口5或9CD0 •要满足它是9的倍数且最大,应该是98730.例题6. 答案:875413详解:要想是11的倍数,奇位和与偶位和的差得是11的倍数.这六个数字的和是28 , 而最大的三个数的和是20,也就是说无论是奇位还是偶位之和都不会超过20,所以只能把28分成两个14,偶位为& 5、1,奇位为7、4、3.练习1. 答案:能被4整除的数有3124、312、5588;能被3整除的数有312、5289、7314 ; 能被11整除的数有3124、5588.练习2. 答案:本题的答案不止一种,要想被3整除,空格中可以填1、4、7.要想被 4 整除,空格中可填 2 或6.要想被 5 整除,空格中可填0或5.练习 3. 答案:3132 或3636简答:要想被36整除,这个四位数要既是4的倍数, 也是9的倍数. 要想是 4 的倍数, 个位上的空格中可填 2 或6.要想满足四位数是9的倍数,百位上的空格对应要填1或6.练习 4. 答案:2213332 或2283336简答:这个七位数既是4的倍数,也是11的倍数.要想是 4 的倍数,个位上的空格中可填2或6,剩下的空格中对应可填1或8.作业 1. 答案:48, 7836, 4100;75, 650, 4100简答: 4 和25 看末两位.作业 2. 答案:189, 72457821, 333666简答:被9 整除看数字和.作业 3. 答案:3124, 5588简答:被11 整除看奇位和与偶位和的差.作业4. 答案:11简答:填入的三个数字分别为1, 4, 6,数字和为11.作业 5. 答案:811.44 元简答:72 8 9 ,分别考虑8和9的整除特性.。

小学奥数数的整除数论知识讲解及习题

小学奥数数的整除数论知识讲解及习题

小学奥数数的整除数论知识讲解及习题1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

4. 能被3、9整除:各个数位上数字的和能被3、9整除。

5. 能被7整除:①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

例题:在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?解:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除; 如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

六年级下册奥数试题数的整除特征(一)全国通用(含答案)

六年级下册奥数试题数的整除特征(一)全国通用(含答案)

第1讲数的整除特征(一)知识网络数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。

(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。

(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(7)个位上是0、2、4、6、8的数都能被2整除。

(8)个位上是0或者5的数都能被5整除。

(9)若一个整数各位数字之和能被3整除,则这个整数能被3整除。

(10)若一个整数末尾两位数能被4整除,则这个数能被4整除。

(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。

(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除。

重点·难点数的整除概念、性质及整除特征为解决一些整除问题带来了很大方便,在实际问题中应用广泛。

要学好数的整除问题,就必须找到规律,牢记上面的整除性质,不可似是而非。

学法指导能被2和5,4和25,8和125整除的数的特征是分别看这个数的末一位、末两位、末三位。

我们可以综合推广成一条:末n位数能被(或)整除的数,本身必能被(或)整除;反过来,末n位数不能被(或)整除的数,本身必不能被(或)整除。

例如,判断253200、371601能否被16整除,因为,所以只要看各数的末四位数能否被16整除。

学习这一讲知识要学会举一反三。

经典例题[例1]在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。

思路剖析这个六位数分别被3、4、5整除,故它应满足如下三个条件:(1)各位数字和是3的奇数;(2)末两位数组成的两位数是4的倍数;(3)末位数为0或5。

小学五年级奥数第1课数的整除问题试题附答案-精品

小学五年级奥数第1课数的整除问题试题附答案-精品

小学五年级上册数学奥数知识点讲解第1课《数的整除问题》试题附答案例1己知45|函函方.求所有满足条件的六位数酒药。

例2李老师为学校一共买了28支价格相同的钢笔,共付人民币9口.2口元.已知口处数字相同,请问每支钢笔多少元?己知整数应为有就被11整除.求所有满足这〈/PGN0004.TXT/PGN>个条件的整数。

例4把三位数遍接连重复地写下去,共写1993个冰,所得的数%b3ab・・・3a?恰是91的倍数,试求正二?‘7 '1993个3ab例5在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除, 且使这个数值尽可能的小。

答案例1己知45|好呵求所有满足条件的六位数酒季解::45=5X9,・•・根据整除“性质2”可知5|xl993y,9区1993%二.y可取。

或5。

当y=0时,根据9|近痢及数的整除特征③可知x=5,当y=5时,根据9|酒药及数的整除特征③可知x=9.・.・满足条件的六位数是519930或919935。

例2李老师为学校一共买了28支价格相同的钢笔,共付人民币9口.2□元.已知口处数字相同,请问每支钢笔多少元?解,・・・9口.2□元二9口2口分28=4X7,・•・根据整除“性质2”可知4和7均能整除9口2口。

4I2口可知口处能填。

或4或8。

因为7卜9020,7*9424,所以口处不能填0和4;因为7I9828,所叫口处应该填8。

又・・・9828分=98.28元98.28-28=3.51(元)答:每支钢笔3.51元。

例3已知整数1a2a3a4a5翕E被11整除.求所有满足这</PGN0004.TXT/PGN> 个条件的整数。

解:・.T1la2a3a4a5a,・・・根据能被11整除的数的特征可知:1+2+3+4+5的和与5眈差应是11的倍数,即11I(15—5a),或11I(5a-15)。

但是15—5a=5(3—a),5a—15=5(a—3),又(5,11)=1,因此111 (3—a)或11I(a—3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数的整除(1)性质、特征、奇偶性【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a必能被数c整除。

(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。

(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。

反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。

整除特征:(1)若一个数的末两位数能被4(或25)整除,则这个数能被4(或25)整除。

(2)若一个数的末三位数能被8(或125)整除,则这个数能被8(或125)整除。

(3)若一个数的各位数字之和能被3(或9)整除,则这个数能被3(或9)整除。

(4)若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11整除,则这个数能被11整除。

(5)若一个数的末三位数字所表示的数与末三位以前的数字所表示的数之差(大数减小数)能被7(或13)整除,则这个数能被7(或13)整除。

奇偶性:(1)奇数±奇数=偶数(2)偶数±偶数=偶数(3)奇数±偶数=奇数(4)奇数×奇数=奇数(5)偶数×偶数=偶数(6)奇数×偶数=偶数(7)奇数÷奇数=奇数(8)…【典型例题】例1:一个三位数能被3整除,去掉它的末尾数后,所得的两位数是17的倍数,这样的三位数中,最大是几?例2:1~200这200个自然数中,能被6或8整除的数共有多少个?例3:任意取出1998个连续自然数,它们的总和是奇数还是偶数?例4:有“1”,“2”,“3”,“4”四张卡片,每次取出三张组成三位数,其中偶数有多少个?【精英班】【竞赛班】例6:某市举办小学生数学竞赛,共20道题,评分标准是:答对一题给5分,不答一题给1分,答错一题倒扣1分,如果1999人参赛,问参赛同学的总分是奇数还是偶数?【课后分层练习】A组:入门级1、判断306371能否被7整除?能否被13整除?2、abcabc能否被7、11和13整除?3、六位数7E36F5 是1375的倍数,求这个六位数。

4、已知10□8971能被13整除,求□中的数。

5、有8个学生都面向南站成一排,每次只有7个学生向后转,最少要做多少次才能使8个学生都面向北?B组:进阶级1、有一个四位数3AA1,它能被9整除,那么数A代表多少?2、一个一百位数由1个1,2个2,3个3,4个4,5个5,6个6,7个7,及72个0组成,问这个百位自然数有可能是完全平方数吗?3、某市举办小学生数学竞赛,共30道题,评分标准是:基础分15分,答对一题给5分,不答一题给1分,答错一题倒扣1分,如果199人参赛,问参赛同学的总分是奇数还是偶数?4、已知10□8971能被13整除,求□中的数。

C组:挑战级1、能不能将从1到10的各数排成一行,使得任意相邻的两个数之和都能被3整除?2、对于左下表,每次使其中的任意两个数减去或加上同一个数,能否经过若干次后(各次减去或加上的数可以不同),变为右下表?为什么?3、左下图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何一个邻室的门。

有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?【典型例题】例1:一个三位数能被3整除,去掉它的末尾数后,所得的两位数是17的倍数,这样的三位数中,最大是几?解:在两位数中,是17的倍数的数中最大的为17×5=85(17×6=102).于是所求数的前两位数字为85.因为8+5=13,故所求数的个位数字为2、5、8时,该数能被3整除,为使该数最大,其个位数字应为8.最大三位数是858.例2:1~200这200个自然数中,能被6或8整除的数共有多少个?解:1~200中,能被6整除的数共有33个(200÷6=33…),能被8整除的数共有25个(200÷8=25).但[6,8]=24,200÷24=8……8,即1~200中,有8个数既被6整除,又被8整除。

故总共有:33+25-8=50。

例3:任意取出1998个连续自然数,它们的总和是奇数还是偶数?解:任意取出的1998个连续自然数,其中奇数、偶数各占一半,即999个奇数和999个偶数。

999个奇数的和是奇数,999个偶数的和是偶数,奇数加上偶数和为奇数,所以它们的和是奇数。

例4:有“1”,“2”,“3”,“4”四张卡片,每次取出三张组成三位数,其中偶数有多少个?解:组成的三位数个位数字只能是2或4两种情况,若个位数字是2,百位、十位数字可从余下的数字中取,这样可组成3×2=6(个)三位偶数;若个位数字是4,同样也可以组成6个三位偶数。

这样总共12个。

【精英班】解:根据能被7整除的数的特征,555555与999999都能被7因为上式中等号左边的数与等号右边第一个数都能被7整除,所以等号右边第二个数也能被7整除,推知55□99能被7整除。

根据能被7整除的数的特征,□99-55=□44也应能被7整除。

由□44能被7整除,易知□内应是6。

【竞赛班】例6:某市举办小学生数学竞赛,共20道题,评分标准是:答对一题给5分,不答一题给1分,答错一题倒扣1分,如果1999人参赛,问参赛同学的总分是奇数还是偶数?解:对于每个学生来说,20道题都答对,共得5×20=100分(偶数)。

若该学生答错一题,应从100分中扣(5+1=6)分,无论他答错多少道题,扣分的总数应是6的倍数,即扣分的总数也是偶数,100分中扣除偶数分仍得偶数分;同样若他不答一题,应从100分中扣除(5-1=4)分,无论他不答多少道题,扣分的总数应是4的倍数,即扣分的总数也是偶数,所以100分中减去偶数仍得偶数,每个学生得分数是偶数,那么无论有多少人参加数学竞赛,学生得分的总数和一定是偶数。

【课后分层练习】A组:入门级1、判断306371能否被7整除?能否被13整除?解:因为371-306=65,65是13的倍数,不是7的倍数,所以306371能被13整除,不能被7整除。

2、abcabc能否被7、11和13整除?3、六位数7E36F5 是1375的倍数,求这个六位数。

解:因为1375=5×5×5×11=125×11,根据能被125整除数的特征,这个数的末三位能被125整除,可知道F=2,又因为这个数是11的倍数,所以7+3+2-(E+6+5)=1-E是11的倍数,那么E=1.所以这个六位数是713625.4、已知10□8971能被13整除,求□中的数。

解:10□8-971=1008-971+□0=37+□0。

上式的个位数是7,若是13的倍数,则必是13的9倍,由13×9-37=80,推知□中的数是8。

5、有8个学生都面向南站成一排,每次只有7个学生向后转,最少要做多少次才能使8个学生都面向北?解:对于每个人只要向后转奇数次,就能面向北。

由于每一轮恰有7个学生向后转,8个学生向后转的次数总和为7×8=56(次)。

因此最少要做56÷7=8(次)才能使8个学生都面向北。

B组:进阶级1、有一个四位数3AA1,它能被9整除,那么数A代表多少?解:3+A+A+1=4+2A,根据能被9整除数的特征,4+2A是9的倍数。

因为4+2A是偶数,所以4+2A=18,A=7.2、一个一百位数由1个1,2个2,3个3,4个4,5个5,6个6,7个7,及72个0组成,问这个百位自然数有可能是完全平方数吗?解:任何一个自然数的平方除以3都余1或0.而这个一百位数的数字和是140,140除以3余2,所以这个一百位数不可能是完全平方数。

3、某市举办小学生数学竞赛,共30道题,评分标准是:基础分15分,答对一题给5分,不答一题给1分,答错一题倒扣1分,如果199人参赛,问参赛同学的总分是奇数还是偶数?解:仿照例6:这199位同学的得分总分是奇数。

4、已知10□8971能被13整除,求□中的数。

解:10□8-971=1008-971+□0=37+□0。

上式的个位数是7,若是13的倍数,则必是13的9倍,由13×9-37=80,推知□中的数是8。

C组:挑战级1、能不能将从1到10的各数排成一行,使得任意相邻的两个数之和都能被3整除?解:10个数排成一行的方法很多,逐一试验显然行不通。

我们采用反证法。

假设题目的要求能实现。

那么由题意,从前到后每两个数一组共有5组,每组的两数之和都能被3整除,推知1~10的和也应能被3整除。

实际上,1~10的和等于55,不能被3整除。

这个矛盾说明假设不成立,所以题目的要求不能实现。

2、对于左下表,每次使其中的任意两个数减去或加上同一个数,能否经过若干次后(各次减去或加上的数可以不同),变为右下表?为什么?解:因为每次有两个数同时被加上或减去同一个数,所以表中九个数码的总和经过变化后,等于原来的总和加上或减去那个数的2倍,因此总和的奇偶性没有改变。

原来九个数的总和为1+2+…+9=45,是奇数,经过若干次变化后,总和仍应是奇数,与右上表九个数的总和是4矛盾。

所以不可能变成右上表。

3、左下图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何一个邻室的门。

有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?解:如右上图所示,将相邻的房间黑、白相间染色。

无论从哪个房间开始走,因为总是黑白相间地走过各房间,所以走过的黑、白房间数最多相差1。

而右上图有7黑5白,所以不可能不重复地走遍每一个房间。

相关文档
最新文档