小学奥数之数的整除性(题目+答案)

合集下载

高思奥数导引小学五年级含详解答案第02讲:整除

高思奥数导引小学五年级含详解答案第02讲:整除

第2讲:数的整除内容概述:掌握整除的概念和基本性质,掌握能被某些特殊数整除的数的特征。

通过分析整除特征解决数的补填问题,以及多位数的构成问题等。

典型问题:兴趣篇1.下面有9个自然数:14,35,80,152,650,434,4375,9064,24125。

在这些自然数中,请问:(1)有哪些数能被2整除?哪些能被4整除?哪些能被8整除?(2)有哪些数能被5整除?哪些能被25整除?哪些能被125整除?2.有如下9个三位数:452,387,228,975,525,882,715,775,837。

这些数中哪些能被3整除?哪些能被9整除?哪些能同时被2和3整除?3.一个三位数64的十位数字未知。

请分别根据下列要求找出“”中合适的取值:(1)如果要求这个三位数能被3整除,“”可能等于多少?(2)如果要求这个三位数能被4整除,“”可能等于多少?(3)这个三位数有没有可能同时被3和4整除,如果有可能,“”可能等于多少?4.新学年开学了,同学们要改穿新的校服。

雯雯收了9位同学的校服费(每人交的钱一样多)交给老师。

老师给了雯雯一张纸条,上面写着“交来校服费238元”其中有一滴墨水,把方格处的数字污染得看不清了。

牛牛看了看,很快就算出了方格处的数字。

聪明的读者们,你们能算出这个数字是多少吗?5.四位数29能同时被3和5整除,求出所有满足要求的四位数。

6.四位偶数64能被11整除,求出所有满足要求的四位数。

7.多位数323232321n 个能被11整除,满足条件的n 最小是多少?8.一天,王经理去电信营业厅为公司安装一部电话。

服务人员告诉他,目前只有形如“123468”的号码可以申请。

也就是说,在申请号码时,方框内的两个数字可以随意选择,而其余数字不得改动。

王经理打算申请一个能同时被8和11整除的号码。

请问:他申请的号码可能是多少?9.一个各位数字互不相同的四位数能被9整除,把它的个位数字去掉后剩下一个三位数,这个三位数能被4整除。

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

拓展、一位采购员买了72个微波炉,在记账本上记下这笔账。

由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。

账本是这样写的:72个微波炉,共用去□679□元(□为被烧掉的数字),请你帮忙把这笔账补上。

应是__________元。

(注:微波炉单价为整数元)。

36792
例4、五位数能被12整除,这个五位数是____________。

42972
拓展、六位数7E36F5 是1375的倍数,求这个六位数。

713625
拓展、一个五位数98
3ab能被11和9整除,这个五位数是。

39798
例5、五位数
能同时被2,3,5整除,则A=______,B=______。

48
A1
B
5/2/8 0
拓展、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?0 1 5
拓展、已知7位自然数427
62xy是99的倍数,则x= ,y=
2 4
2、若9位数2008□2008能够被3整除,则□里的数是
3、173□是个四位数。

数学老师说:“我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除。

”问:数学老师先后填入的3个数字之和是多少?
4、判断306371能否被7整除?能否被13整除?
5、判断能否被3,7,11,13整除.
6、试说明形式的6位数一定能被11整除.。

五年级上册数学试题-奥数:数论之数的整除性(解析版)全国通用

五年级上册数学试题-奥数:数论之数的整除性(解析版)全国通用

第三讲 数论之数的整除性卷Ⅰ 1. 熟练掌握整除性质及特殊数的整除特征; 2. 巧妙运用整除性质及特殊数的整除特征解决数的整除问题;答案:因为432165a a a a a a 能被5整除,所以4a 是5;由于165432a a a a a a 、321654a a a a a a 和543216a a a a a a 分别能被2、4、6整除,因此1a 、3a 、5a 是偶数,取值为2、4、6,进而知道2a 、6a 是1和3;上述能被4整除的那个六位数的末两位32a a 应是4的倍数,而2a 是奇数,所以3a 只能为2和6.根据上面的分析,为使原六位数最大,1a 可取最大的数字6,2a 取1、3中的大数3,这样其余各数分别是3a =2,4a =5,5a =4,6a =1,所以最大值为632541.教学目标专题精讲 想 挑 战 吗?用数字1、2、3、4、5、6排列成一个六位数654321a a a a a a ,将1a 移到最后,所得的六位数165432a a a a a a 能被2整除;再将2a 移到最后,所得的六位数216543a a a a a a 能被3整除;……;最后把5a 移到最后,所得的六位数543216a a a a a a 能被6整除,那么654321a a a a a a 的最大可能值是多少? 数的整除性质: [性质1] 如果a 能被b 整除,b 能被c 整除,那么a 一定能被c 整除. 例如,48能被16整除,16能被8整除,那么48一定能被8整除. [性质2] 如果a 、b 都能被c 整除,那么(a ±b ) 也一定能被c 整除. 例如,21与15都能被3整除,那么21+15及21-15都能被3整除. [性质3] 如果c 能分别被两个互质的自然数a 、b 整除,那么c 一定能被ab 整除. 例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除.①一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……②一个数各位数数字和能被3整除,这个数就能被9整除;一个数各位数数字和能被9整除,这个数就能被9整除;③如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.④如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.⑤部分特殊数的分解:111=3×37;1001=7×11×13;11111=41×271;10001=73×137;10101=3×7×13×37;1995=3×5×7×19;1998=2×3×3×3×37;2007=3×3×223;2008=2×2×2×251;2007+2008=4015=5×11×73.(一)整除的性质【例1】某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是多少?分析:可以表示成连续9个自然数的和说明该数能被9整除,可以表示成连续10个自然数的和说明该数能被5整除,可表示成连续11个自然数的和说明该数能被11整除,因此该数是[9,5,11]=495,因此符合条件的最小自然数是495.注意:本题易错答案为990,提醒同学们注意.(拓展)一个各位数字均不为零的三位数能被8整除,将其百位数字、十位数字、个位数字分别划去后可以得到3个两位数(例如,按此方法由247将得到47、27、24).已知这些两位数中一个能被5整除,另一个能被6整除,还有一个能被7整除.那么原来的三位数是多少?分析:那个能被5整除的两位数的个位数字是0或5,且应是原三位数的十位数字或个位数字.注意到各位数字均不为零且本身是偶数,故必须有原三位数的是十位数字是5.三位数能被8整除意味着末两位数应能被4整除.在51~59之间只有52、56是4的倍数,但52不是5、6、7中任何一个数的倍数,故题设中的三位数个位数字一定是6.由上述分析可知,百位数字和6组成的两位数是6的倍数,可能为36、66、96,则得到三个三位数:356、656、956,经检验只有656是8的倍数.【例2】1)从1~3998这3998个自然数中,有多少个能被4整除?(2)从1~3998这3998个自然数中,有多少个数的各位数字之和能被4整除?分析:(1)第一问比较简单,3998÷4=999…6所以1~3998中有996个能被4整除的(2)考虑数字和,如果一个一个找规律我们会发现规律是不存在的,因此我们考虑分组的方法,我们补充2个数,0000和3999,此外所有的一位两位三位数都在前面加上0补足4位,然后对这4000个数做如下分组:(0000,1000,2000,3000),(0001,1001,2001,3001),(0002,1002,2002,3002),…(0999,1999,2999,3999),共1000组,容易发现每一组恰好有个数字和是4的倍数,因此共有1000个数字和是4的倍数,但注意到我们补充了一个0000进去.所以原来的3998个数里,有999个数字和是4的倍数.【例3】在1、2、3、4……2007这2007个数中有多少个自然数a能使2008+a能被2007-a整除?分析:如果2008+a 能被2007-a 整除,那么2008+a 2007-a 为自然数,2008+a 2008200712007-a 2007a++=-也是自然数, 4015能被(2007-a )整除,所以4015=5×11×73,4015的约数中小于2007的数有1、5、11、73、55、365、803, 所以当a 取2006、2002、1996、1934、1952、1642、1204能使2008+a 能被2007-a 整除.【例4】 已知两个三位数abc 与def 的和abc def +能被37整除,证明:六位数abcdef 也能被37整除. 分析:abcdef =abc ×1000+def =abc ×999+(abc +def ),因为999能被37整除,所以abc ×999能被37整除,而(abc +def )也能被37整除,所以其和叶能被37整除.(前铺)已知□△×△□×□〇×☆△=□△□△□△,其中□、△、〇、☆分别表示不同的数字,那么四位数〇△□☆是多少?分析:因为□△□△□△=□△10101⨯,所以在题述等式的两边同时约去□△即得△□×□〇×☆△=10101.作质因数分解得37137310101⨯⨯⨯=,由此可知该数分解为3个两位数乘积的方法仅有371321⨯⨯.注意到两位△□的十位数字和个位数字分别和另外的两位数□〇和☆△中出现,所以△□=13,□〇=37,☆△=21.即〇=7,△=1,□=3,☆=2,所求的四位数是7132.(前铺)证明:形如abcabc 的六位数一定能被7,11,13整除. 分析:1001,100171113abcabc abc =⨯=⨯⨯,所以得证.(拓展)若4b+2c+d=32.试问abcd 能否被8整除?请说明理由.分析:由能被8整除的特征知,只要后三位数能被8整除即可.10010bcd b c d =++,有(42)9688(12)bcd b c d b c b c -++=+=+,所以abcd 能被8整除.(拓展)已知a ,b 是整数,求证a+b,ab 、a-b 这三个数之中,至少有一个是3的倍数.分析:若a,b 之一是3的倍数,则ab 是3的倍数;若a,b 都不是3的倍数:1)a=b=3k+1或3k-1 (都余1或都余2),则a-b 是3的倍数;2)a,b 一个是3k+1 一个是3k-1 (一个余1,一个余2),则a+b 是3的倍数;所以a+b,ab,a-b 这三个数之中,至少有一个是3的倍数.(拓展)五位数abcde 是9的倍数,其中abcd 是4的倍数,那么abcde 的最小值是_______.分析:1)若a、b、c、d、e不同的字母代表相同的数值时,abcde=abcd×10+e=(abcd+e)+ abcd ×9,因为abcde是9的倍数,所以(abcd+e)是9的倍数,要abcde最小,我们希望abcd和e都能取最小,这样和也就最小.abcd是4的倍数,所以最小是1000,要让(abcd+e)是9的倍数,e最小是8,所以abcde最小值是10008.2)若a、b、c、d、e不同的字母代表不同的数值时,abcd是4的倍数,所以最小是1024,但e为2,矛盾,所以abcd最小是1028,即abcde最小值是10287.(二)整除的特征【例5】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?分析:乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.5,15=5×3,20=5×4,25=5×5,30=5×6,35=5×7,40=5×8,45=5×9,50=5×5×2,55=5×11,发现只有25、50、75、100、……这样的数中才会出现多个5,写到55时共出现11+1+1=13个因数5,所以至少应当写到55,最多可以写到59.[前铺] 从50到100的这51个自然数的乘积的末尾有多少个连续的0?分析:首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的数字5乘以偶数又可以产生1个0,所以一共有++147=+个0.124[巩固] 11个连续两位数的乘积能被343整除,且乘积的末4位都是0,那么这11个数的平均数是多少?343=,则可知,在11个连续的两位数种,至多只能有2个数是7的倍数,所以其中有一分析:因为37个必须是49的倍数,那就只能是49或98.又因为乘积的末4位都是0,就是说这连续的11个自然数应该“含有”4个5.连续的11个自然数中至多只能有3个是5的倍数,至多只能有1个是25的倍数,所以其中有一个必须是25的倍数,那么就只能是25、50或75.所以这11个数是40,41,42,43,44,45,46,47,48,49,50,它们的平均数即为它们的中间项45.[拓展] 975×935×972×□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?分析:积的最后4个数字都是0,说明乘数里至少4个2和4个5.975=5×5×39,935=5×187,972=2×2×243,共有3个5,2个2,方框内至少是2×2×5=20 答:在方框内最小应填20.卷Ⅱ【例6】 已知四十一位数55…55□99…99(其中5和9各20个)能被7整除,那么中间方格内的数字是多少?分析:因为555555和999999都是7的倍数,如果原数是能被7整除,那么由5个205555□ 9个209999=5个205555□99999910999969个14+⨯知 5个205555□ 9个149999也能被7整除;又 5个205555□ 9个149999可以表示成 5555552910⨯+ 5个145555□ 9个149999,说明 5个145555□9个149999也能被7整除, 相当于将原数的前后分别去掉555555和999999后整除性不变,依次下去,得到55□99.因此□44是7的倍数,□3是7的倍数,所以得□=6.[前铺1] 已知10□8971能被13整除,求□中的数.分析:10□8-971=1008-971+□0=37+□0.上式的个位数是7,若是13的倍数,则必是13的9倍,由13×9-37=80,推知□中的数是8.[前铺2] 在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?分析:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除.[巩固1] 在六位数11□□11中的两个方框内各填入一个数字,使得这个六位数能够被17和19整除,那么方框中的两位数是多少?分析:(法1)这个六位数能够被17和19整除,那么也应当能被17×19=323整除,因为119911减去某个数□□00就可能是323的倍数.119911=323×371+78,说明119911应当减去的四(三)位数满足□□00除以323也余78,也就是满足□□22除以323应当能够除尽.说明□□22是4522,那么□□00是4600,因此所求的六位数是119911-4600=115300.[巩固2] 应当在如下的问号“?”的位置上填上哪一个数码,才能使得所得的整数可被7整除?(其中数码6和5各重复了50次)666...66?555 (55)分析:可在“?”的位置上填上2或9.事实上,111111(6个1)可被7整除,因此如果将我们的数的头和尾各去掉48个数码,并不改变其对7的整除性,于是还剩下66?55.从中减去63035,并除以10,即得3?2.此时不难验证,具有此种形式的三位数中,只有322和392可被7整除.所以?上填2或9.[拓展] 应当在如下的“□□”的位置上填上哪两个数码,才能使得所得的整数可被63整除?(其中数码2和7都重复了25次.222...22□□77 (777)分析:63=7×9,所以中间□□两个数的和能被9整除,又111111(6个1)可被7整除,所以去掉首尾24个数字后,剩下的2□□7,也能被7整除,2007=7×286+5,所以□□5也能被7整除,□□5-35能被7整除,所以两位数□□被7除余3,在两位数中被7除余3,且能被9整除的只有45. □□中所填的数是45.【例7】 (★★全国小学数学奥林匹克)200820082008200808n 个能被99整除,那么,n 的最小值为多少?分析:由于99=9×11,所以200820082008200808n 个能被11和9整除,200820082008200808n 个中奇位数减偶位数的差为(8-2)n+8=6n+8,当n=6、17、28……时,(3n+1)是11的倍数,所以n 的最小值是6. 200820082008200808n 个各位数字之和为(2+8)×n+8=10n+8,所以当n=1、10、19、28……等数时,能被9整除,所以n 的最小值为28.[前铺] 如果200520052005200501n 个能被11整除,那么n 的最小值是 .分析:200520052005200501n 个中奇数位减偶数位的差为(5-2)n +1=3n +1,当n=7时,(3n +1)是11的倍数,所以n 的最小值是7.【例8】 已知多位数55…5599…99□□(其中5和9各n 个)能被7整除,那么当n 取值为什么时,方格内的数字的不同的情况数为定值,并求出这个定值?分析:由例题1知当n=6k (k 为自然数),100÷7=14…2,所以共有15种不同的情况;当n ≠6k (k 为自然数),情况不定.[前铺1] 如果六位数1992□□能被105整除,那么它的最后两位数是多少?分析:199300÷105余10,199300-10=199290,即它的最后两位数是90.[前铺2] 已知200520052005□□是72的倍数,求末两位数是多少?分析:72=8×9,因为被9整除,所以末两位数字和是被9除余6的,因为被8整除,注意到百位是奇数,所以末两位被8除余4,满足这2个条件的2位数就只有60.[拓展] 已知多位数□□55…5599…99(其中5和9各n 个)能被77整除,那么方格内的数字是多少?分析:由例题知当n=6k (k 为自然数),100÷77=1…23,方格内的数字是77;当n ≠6k (k 为自然数),情况不定.【例9】 已知四十一位数55…55□7□99…99(其中5和9各19个)能被77整除,那么方格内的数字分别是多少?分析:由上题知可化为5□7□9能被7整除,50709÷77=658…43,所以□0□0+43=7 k (k 为自然数),即□0□0+1=7 k (k 为自然数),又21+□+□=11 k (k 为自然数),所以□+□=10,设第一个□为x ,则第二个□为(10-x ),有1000x+10(10-x )+1=7 k (k 为自然数),,所以x=6,即第一个□为6,所以第二个□为4,即所求的数为56749.[前铺1] 五位数329A B 能被72整除,问:A 与B 各代表什么数字?分析:已知329A B 能被72整除.因为72=8×9,8和9是互质数,所以329A B 既能被8整除,又能被9整除.根据能被8整除的数的特征,要求29B 能被8整除,由此可确定B =6.再根据能被9整除的数的特征,329A B 的各位数字之和为A +3+2+9+B =A +3-f -2+9+6=A +20,因为l ≤A ≤9,所以21≤A +20≤29.在这个范围内只有27能被9整除,所以A =7.[前铺2] 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除.分析:分别由能被9,25和8整除的数的特征,很难推断出这个七位数.因为9,25,8两两互质,由整除的性质知,七位数能被 9×25×8=1800整除,所以七位数的个位,十位都是0;再由能被9整除的数的特征,推知首位数应填4.这个七位数是4735800.[拓展1] 买28支价格相同的钢笔共付人民币9□.2□元.已知□处数字相同,请问每支钢笔多少元?分析:∵9□.2□元=9□2□分,28=4×7,∴根据整除“性质2”可知4和7均能整除9□2□.4|2□可知□处能填0或4或8.因为79020,79424,所以□处不能填0和4;因为7|9828,所叫□处应该填8.又∵9828分=98.28元,98.28÷28=3.51(元),即每支钢笔3.51元.[拓展2] 仓库有两个箱子,其中一个装了74个大杯子,另一个装了75个小杯子.地上有两个价格牌,一个写着总价“132.××元”,另一个写着“总价123.××元”.已知这两个价格牌原来贴在箱子上,但现在已经弄不清楚哪个价格牌贴在哪个箱子上了,唯一知道的是大杯子的单价比小杯子的贵,那么小杯子的单价是多少元?分析:设大杯子和小杯子的价格分别为S和s.如果s×75=132.××,S×74=123.××,因为S>s,所以s>132.××-123.×× > 8元.可是如此小杯子的总价格大于8×75=300元,不符合题目要求.所以123.××是小杯子的总价钱.由此可得出123××是75=3×25的倍数,则××可以为00、25、50、75,经实验12300和12375是75的倍数.相应的s分别为:12300÷75=1.64元、12375÷75=1.65元.【例10】求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除.分析:所求的数写成100a+56的形式.由于100a+56能被56整除,所以a能被14整除,所以a应是14的倍数.而且a的数字和等于56-5-6=45.具有数字和45的最小偶数是199998,但这个数不能被7整除.接下来数字和为45的偶数是289998和298998,但前者不能被7除尽,后者能被7整除,所以本题的答数就是29899856.[前铺] 求最小的偶数,它的各位数数字之和为40.分析:各位数数字之和为40的数,至少有5位,万位上的数至少为4,否则,各位数数字之和最多为3+9+9+9+9=39,当万位数上的数为4是,这个数只能是49999,不是偶数,所以最小的偶数只能是59998.[拓展]在五位数中,能被11整除且各位数字和等于43,这样的数有多少?分析:因为5×8=40,5个数字的和等于43时,其中至少有3个9,并且只有以下两种情况.(1)数字中4个9、1个7,则奇数位数字和减去偶数位数字和只能是3×9-(9+7)=11,这样的书有99979和97999,(2)数字中3个9,一个7,则奇数位数字和减去偶数位数字的和只可能是3×9-2×8=11,这样的数有98989.专题展望数的整除性是数论中最基本的内容,在数论问题中经常被用到,而奇偶性质是数的整除性中的特殊情形,有关奇偶数性质的运用将在下一讲中详细教授.练习三1. (例1)有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和;还能表示成5个连续自然数的和,例如:30满足上述要求,因为30=9+10+11;30=6+7+8+9;30=4+5+6+7+8.请你找出700至1000之间,所有满足上述要求的数,并简述理由.分析:3个连续自然数的和,一定能够被3整除;4个连续自然数的和,一定能够被2整除,且除以2所得的商是奇数,也就是说它不能被4整除,也即除以4所得余数为2;5个连续自然数的和,一定能够被5整除.3、4、5的最小公倍数是60.60以内满足上述三个条件的数是30,所以60的整数倍加上30就可以满足条件.700=60×11+40,所以第一个符合题意的数是750=60×12+30,最大的一个数是990=60×16+30,共计16-12+1=5个数,分别为750、810、870、930、960.关键是让学生把该问题转化到整除问题,也可简单复习连续自然数求和与项数的关系.2. (例3)在1,2,3,……,1995,这1995个数中找出所有满足下面条件的数a 来:(1995+a )能整除1995×a.分析:1995a 1995+a ⨯是自然数,所以1995a 199519951995-=1995+a 1995+a⨯⨯也是自然数,即1995+a 是1995×1995的约数.因为:1995×1995=32×52×72×192,,它在1995与2×1995之间的约数有32×192=3249,7×192=2527,3×72×19=2793,52×7×19=3325,32×5×72=2205,3×52×72=3675,于是a 的值有6个,即3249-1995=1254,2527-1995=532,2793-1995=798,3325-1995=1330,2205-1995=210,3675-1995=1680.3. (例4)已知p 、q 都是大于1的整数,并且qp 12-和p q 12-都是整数,那么p +q 的值是多少? 分析:根据对称性,不妨设p q ≥,于是21q p-为大于0、小于2的整数,只能等于1.由于21q p -=,可将21p q -化为34q-,这样3q =,5p =,所以8p q +=.4. (例5)把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末53位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?分析:1到10的乘积里会出现2×5和10两次末尾添零的情况,估算从200开始,是49个0,还要扩大至220时加4个0,所以最小的数应该是220,而最大应该是224.5. (例6)二百零一位数11…1□22…2(其中1和2各有100个)能被13整除,那么中间方格内应填什么数?分析:由111111被13整除,而100=6×16+4,故原来被13整除的算式即变为13|1111□2222;还可变为13|333-1□2,即可知方格应填1.6. (例7)已知数022983298329832983个 n 能被18整除,那么n 的最小值是多少?分析:13n+2=9k ,所以k=6 时,n=4位最小值.人生要学会遗忘人生在世,忧虑与烦恼有时也会伴随着欢笑与快乐的.正如失败伴随着成功,如果一个人的脑子里整天胡思乱想,把没有价值的东西也记存在头脑中,那他或她总会感到前途渺茫,人生有很多的不如意.所以,我们很有必要对头脑中储存的东西,给予及时清理,把该保留的保留下来,把不该保留的予以抛弃.那些给人带来诸方面不 利的因素,实在没有必要过了若干年还值得回味或耿耿于怀.这样,人才能过得快乐洒脱一点.众所周知,在社会这个大家庭里,你要想赢得别人的尊重,你首先必须尊重别人,多记住别人的优点,而学会遗忘别人的过失.其次,一个人要学会遗忘自己的成绩,有些人稍微做了一点成绩就骄傲起来,沾沾自喜,这显然是造成失败的一个原因.成绩只是过去,要一切从零开始,那样才能跨越人生新的境界.同时,一个人自己对他人的帮助,应该看作是一件微不足道小事,以至于遗忘.这样,你的处事之道方能获得他人的赞许.人生需要反思,需要不断总结教训,发扬优点,克服缺点.要学会遗忘,用理智过滤去自己思想上的杂质,保留真诚的情感,它会教你陶冶情操.只有善于遗忘,才能更好地保留人生最美好的回忆.成长故事。

五年级奥数.数论.整除性(A级).教师版

五年级奥数.数论.整除性(A级).教师版

九 进 制乔治·兰伯特是美国加利福尼亚州一所中学的数学教师,他对数学特别敏感而且有极大的研究兴趣。

他常年与数字、公式打交道,深感数学的神秘与魅力。

他开始注意一些巧合的事件,力图用数学的方式来破解巧合。

他发现:法国皇帝拿破仑与纳粹元首希特勒相隔一个多世纪,但是他们之间有很多数字巧合。

拿破仑1804年执政,希特勒1933年上台,相隔129年。

拿破仑1816年战败,希特勒1945年战败,相隔129年。

拿破仑1809年占领维也纳,希特勒在1938年攻人维也纳,也是相隔129年。

拿破仑1812年进攻俄国,希特勒在相隔129年后进攻苏联。

美国第16届总统林肯于1861年任总统,美国第35届总统肯尼迪于1961年任总统,时隔100年。

两人同在星期五并在女人的参与下被刺遇害。

接任肯尼迪和林肯的总统的名字都叫约翰逊。

更巧的是,杀害林肯的凶手出生于1829年,杀害肯尼迪的凶手出生于1929年,相隔又是100年。

兰伯特被这些数字迷住了,他经常将这些数字翻来覆去地分解组合。

他惊奇地发现,拿破仑和希特勒的巧合数129与林肯和肯尼迪的巧合数100,把它们颠倒过去分别是921和001,用921减去129,用100减去001,得数都能被9除尽:921-129=792,100-001=99;792+9=88,99÷9=11,结果都有一个十位和个位都相同的两位数的商。

兰伯特非常吃惊,他对9着了迷。

他发现将l 、2、3、4、5、6、7、8、9加在一起是45,而4+5=9。

他还发现,用9乘以任何一个数,将所得到的积的各位数字相加,所得到的和总是9。

取任何一个数,比如说2004,将每位数加起来是2+0+0+4=6,用2004减去6结果得到1998,而1998÷9=222,能被9除尽。

他还总结出这样一个规律:把一个大数的各位数字相加得到一个和,再把这个和的各位数字相加又得到一个和。

这样继续下去,直到最后的数字之和是一个一位数为止。

六年下册奥数试题:数的整除特征(一)全国通用(含答案)

六年下册奥数试题:数的整除特征(一)全国通用(含答案)

第1讲数的整除特征(一)知识网络数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。

(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。

(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(7)个位上是0、2、4、6、8的数都能被2整除。

(8)个位上是0或者5的数都能被5整除。

(9)若一个整数各位数字之和能被3整除,则这个整数能被3整除。

(10)若一个整数末尾两位数能被4整除,则这个数能被4整除。

(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。

(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除。

重点·难点数的整除概念、性质及整除特征为解决一些整除问题带来了很大方便,在实际问题中应用广泛。

要学好数的整除问题,就必须找到规律,牢记上面的整除性质,不可似是而非。

学法指导能被2和5,4和25,8和125整除的数的特征是分别看这个数的末一位、末两位、末三位。

三位。

我们可以综合推广成一条:我们可以综合推广成一条:我们可以综合推广成一条:末末n 位数能被(或)整除的数,整除的数,本身必能被本身必能被(或)整除;反过来,末n 位数不能被(或)整除的数,本身必不能被(或)整除。

例如,判断253200、371601能否被16整除,因为,所以只要看各数的末四位数能否被16整除。

学习这一讲知识要学会举一反三。

经典例题[例1]在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。

思路剖析这个六位数分别被3、4、5整除,故它应满足如下三个条件:(1)各位数字和是3的奇数;(2)末两位数组成的两位数是4的倍数;的倍数;(3)末位数为0或5。

六年下册奥数试题-数的整除特征(二)全国通用(含答案)

六年下册奥数试题-数的整除特征(二)全国通用(含答案)

第2讲数的整除特征(二)知识网络上一章我们已经学习了被2、3、5、8、9、25、125等整除的数的特征和一些整除的基本性质,但作为奥林匹克竞赛仅仅掌握以上知识还不够,这一讲继续学习有关数的整除知识。

(1)能被7、11和13整除的数的特征:如果一个数的末三位数字所表示的数与末三以前的数字所表示的差(一定要大数减小数)能被7、11或13整除,那么这个数就能被7、11或13整除。

(2)能被11整除的数的特征还有:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

重点·难点同学们在牢记上面整除的数的特征的同时,重点应弄清楚能被7、11、13整除的数为什么有上面的特征。

学法指导上面数的整除特征可以结合例子理解。

例如:443716,判断它能否被7、11、13整除的方法是:716-443=273。

因为273能被7整除,所以443716能被7整除;因为273不能被11整除,所以443716不能被11整除;因为273能被13整除,所以443716能被13整除。

记忆要理论联系实际。

经典例题[例1]用1、9、8、8这四个数字能排成几个被11除余8的四位数?思路剖析能被11整除的数的特征是这个数的奇位数字之和与偶位数字之和的差能被11整除。

一个数要能被11除余8,那么这样的数加上3后,就能被11整除了,于是得到被11除余8的数的特征是:将偶位数字相加得到一个和数,再将奇位数字相加再加上3,得到另一个和数,如果这两个和数之差能被11整除,那么这个数就是被11除余8的数。

解答要把1、9、8、8排成被11除余8的四位数,可以把这四个数字分成两组,每组两个数字,其中一组作为千位和十位数,它们的和记作p,另外一组作为百位和个位数,它们之和加上3记作q,且p和q的差能被11整除,满足要求的分组只可能是p=1+8=9,q=(9+8)+3=20,q-p=20-9=11,所以1988是被11除余8的四位数。

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。

小学五年级奥数第6课能被30以下质数整除的数的特征试题附答案-精品

小学五年级奥数第6课能被30以下质数整除的数的特征试题附答案-精品

小学五年级上册数学奥数知识点讲解第6课《能被30以下质数整除的数的特征》试题附答案第六讲能被30以下质数整除的数的特征大家知道,一个整数能被2整除,那么它的个位数能被2整除;反过来也对,也就是一个数的个位数能被2整除,那么这个数本身能被2整除.因此,我们说“一个数的个位数能被2整除”是“这个数能被2整除”的特征.在这一讲中,我们通过寻求对于某些质数成立的等式来导出能被这些质数整除的数的特征。

为了叙述方便起见,我们把所讨论的数N记为:N=,•*a3a2a1a0=…+a3X103+a2X102+ajX10+a0,有时也表示为N=-DCBAo我们已学过同余,用mod2表示除以2取余数一有公式:①N三a0(mod2)②N三alaO(mod4)③Nwa2ala0(mod8)④N=a3a2ala0(modi6)这几个公式表明一个数被2(4,8,16)整除的特性,而且表明了不能整除时,如何求余数。

此外,被3(9)整除的数的特征为:它的各位数字之和可以被3(9)整除. 我们借用同余记号及一些运算性质来重新推证一下.如(mod9),如果,N=a,a.a1a c=a q X1000-Ha-X100+a,X10+冬a Z1V。

,人J=a,X(999+1)+a,X(99+1)+aX(9+1)+49 4 1 U=(/+a:+ai+/)+(a:,X999+a:X99+a1X9),那么,等式右边第二个括号中的数是9的倍数,从而有N=a,+%+%+%(mod9)对于mod3,理由相仿,从而有公式:(5)N=(…+药+/+a[+,)(mod9),N=(…+%+\+4+1)(mod3)。

对于被11整除的数,它的特征为:它的奇位数字之和与偶位数字之和的差(大减小)能被11整除。

先看一例.N=31428576,改写N为如下形式:N=6+7(11-1)+5(99+1)+8(1001-1)+2(9999+1)+4(100001-1)+1(999999+1)+3(10000001-1)=6・7+5・8+2・4+l・3+7X11+5X99+8X1001+2X9999+4X100001+1X 999999+3XlOOOOOOlo由于下面这两行里,11、99、100k9999、10000k999999、10000001都是11的倍数,所以N=6-7+5-8+2-4+l-3(modll)。

五年级下册数学试题- 奥数第02讲:整除 人教版(含答案)

五年级下册数学试题- 奥数第02讲:整除    人教版(含答案)

第2讲:数的整除内容概述:掌握整除的概念和基本性质,掌握能被某些特殊数整除的数的特征。

通过分析整除特征解决数的补填问题,以及多位数的构成问题等。

典型问题:兴趣篇1.下面有9个自然数:14,35,80,152,650,434,4375,9064,24125。

在这些自然数中,请问:(1)有哪些数能被2整除?哪些能被4整除?哪些能被8整除?(2)有哪些数能被5整除?哪些能被25整除?哪些能被125整除?【分析】(1)能被2整除的数末位应是2的倍数,有:14,80,152,650,434,9064,;能被4整除的末两位应为4的倍数,有:80,152,9064;能被8整除的末三位应为8的倍数,有:80,152,9064;(2)能被5整除的末位应为5的倍数,有35,80,650,4375,24125;能被25整除的末两位应为25的倍数,有:650,4375,24125;能被125整除的末三位应为125的倍数,有:4375,24125;2.有如下9个三位数:452,387,228,975,525,882,715,775,837。

这些数中哪些能被3整除?哪些能被9整除?哪些能同时被2和3整除?【分析】能被3整除的应为数字和为3的倍数,有:387,228,975,525,882,837;能被9整除的数字和应为9的倍数,有:387,882,837;能同时被2和3整除的数有:228、882。

3.一个三位数64的十位数字未知。

请分别根据下列要求找出“”中合适的取值:(1)如果要求这个三位数能被3整除,“”可能等于多少?(2)如果要求这个三位数能被4整除,“”可能等于多少?(3)这个三位数有没有可能同时被3和4整除,如果有可能,“”可能等于多少?【分析】 (1)数字和保证是3的倍数,则可填写2,5,8;(2)能被4整除,则末两位能被4整除,则可填写0、2、4、6、8;(3)既能被3又能被4整除,则两者均需符合,应填2或者84.新学年开学了,同学们要改穿新的校服。

小学奥数:数的整除之四大判断法综合运用(一).专项练习及答案解析

小学奥数:数的整除之四大判断法综合运用(一).专项练习及答案解析

5-2-1.数的整除之四大判断法综合运用(一)教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲5-2-1.数的整除之四大判断法综合运用(一).题库教师版模块一、2、5系列【例 1】975935972⨯⨯⨯□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?【考点】整除之2、5系列【难度】2星【题型】填空【解析】积的最后4个数字都是0,说明乘数里至少有4个因数2和4个因数5.9755539=⨯⨯,共有3个5,2个2,所以方=⨯⨯,9355187=⨯,97222243框内至少是22520⨯⨯=.【答案】22520⨯⨯=【例 2】从50到100的这51个自然数的乘积的末尾有多少个连续的0?【考点】整除之2、5系列【难度】4星【题型】解答【解析】首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的因数5乘以偶数又可以产生1个0,所以一共有742114+++=个0.【答案】14个连续的0【例 3】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?【考点】整除之2、5系列【难度】4星【题型】解答【解析】乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一个是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.551=⨯,=⨯,1052=⨯,3056=⨯,……,发现只有25、50、75、100、……=⨯,20541553=⨯,2555这样的数中才会出现多个因数5,乘到55时共出现11213+=个因数5,所以至少应当写到55。

小学奥数之数的整除性(题目+答案)

小学奥数之数的整除性(题目+答案)

数的整除性一、填空题1. 四位数“3AA1”是9的倍数,那么A=_____.2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3. 能同时被2、3、5整除的最大三位数是_____.4. 能同时被2、5、7整除的最大五位数是_____.5. 1至100以内所有不能被3整除的数的和是_____.6. 所有能被3整除的两位数的和是______.7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8. 如果六位数1992□□能被105整除,那么它的最后两位数是_____.9. 42□28□是99的倍数,这个数除以99所得的商是_____.10. 从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题11. 173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.—答案——————————————————————1. 7已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,37719=419.2. 1这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+□+9应等于12,□内应填12-2-9=1.3. 990要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.4. 99960解法一: 能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999□0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.解法二: 或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.5. 3367先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+...+100)-(3+6+9+12+ (99)=(1+100)2100-(3+99)233=5050-1683=33676. 1665能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:12,15,18,21,…,96,99这一列数共30个数,其和为12+15+18+…+96+99=(12+99)302=16657. 96910或46915五位数能被55整除,即此五位数既能被5整除,又能被11整除.所以B=0或5.当B=0时,能被11整除,所以(A+9+0)-(6+1)=A+2能被11整除,因此A=9;当B=5时,同样可求出A=4.所以,所求的五位数是96910或46915.8. 90因为105=357,根据数的整除性质,可知这个六位数能同时被3、5和7整除。

小学奥数模块教程数的整除性质和特征(一)

小学奥数模块教程数的整除性质和特征(一)

数的整除性质和特征(一)------数的整除性(一)(2012.12.23.五)数论是数学中一门古老的应用广泛的学科,整除是数论的重要组成部分,不少有趣的数学问题都可以用书的整除加以解决,因而在数学竞赛中,有关整除的问题屡见不鲜。

整数a除以不为零的自然数b,若能得到整数商而没有余数,则称b能整除a或a能被b整除,记作b|a。

若b不a能整除记作b a例如:12÷4=3,则称4能整除12或12能被4整除,记作4| 12.又如12÷5=2.4,则称5不能整除12或12不能被5整除,记作5 12。

整除部分性质如下(1)如果b|a,那么b|am;例如:∵4 |12,∴4 |12×3(2)如果c |b,b |a,那么c |a;例如3 |9,9 |27,∴3 |27(3)如果c |a,c |b,那么c |(a±b);例如∵4 |28,4|16,∴4|(28±16);(4)如果(b、c)=1,且c|a,b|a,那么bc|a。

例如∵(3,4)=1,3|24,4|24,∴3×4|24。

在小学数学学习中,我们学习了能被2、3、5整除的数的特征,但还不够用,现把它们扩充如下:(一)能被2或5整除的数的特征是:这个数的末一位数能被2或5整除;例如:∵2|8,∴2|158。

又如:∵5|5,∴5|3715。

再如:∵2|10,5|0,∴2|1720,5|1720。

而(2,5)=1, ∴2×5|1720,即10|1720。

(二)能被3和9整除的数的特征是:这个数的个位数上的数的和能被3或9整除;例如:∵9|(9+3+4+7+4),∴9|93474。

又如:∵9 (3+6+5+7),∴9 3657。

例1.判断30168能否被18整除。

答案:能例2.填出下列各数中记有□的所有可能的数字,使适合所提出的条件。

(1)877□既能被9整除,又能被5整除;(2)7274□既能被3整除,又能被2整除。

数的整除答案

数的整除答案

数的整除答案【篇一:奥数数的整除讲义及答案】=txt>教室:姓名:学号:【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a必能被数c整除。

(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。

(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。

反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。

整除特征:(1)若一个数的末两位数能被4(或25)整除,则这个数能被4(或25)整除。

(2)若一个数的末三位数能被8(或125)整除,则这个数能被8(或125)整除。

(3)若一个数的各位数字之和能被3(或9)整除,则这个数能被3(或9)整除。

(4)若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11整除,则这个数能被11整除。

(5)若一个数的末三位数字所表示的数与末三位以前的数字所表示的数之差(大数减小数)能被7(或13)整除,则这个数能被7(或13)整除。

【典型例题】例1:一个三位数能被3整除,去掉它的末尾数后,所得的两位数是17的倍数,这样的三位数中,最大是几?例2:1~200这200个自然数中,能被6或8整除的数共有多少个?例3:任意取出1998个连续自然数,它们的总和是奇数还是偶数?解:任意取出的1998个连续自然数,其中奇数、偶数各占一半,即999个奇数和999个偶数。

999个奇数的和是奇数,999个偶数的和是偶数,奇数加上偶数和为奇数,所以它们的和是奇数。

解:根据能被7整除的数的特征,555555与999999都能被7因为上式中等号左边的数与等号右边第一个数都能被7整除,所以等号右边第二个数也能被7整除,推知55□99能被7整除。

根据能被7整除的数的特征,□99-55=□44也应能被7整除。

小学奥数19数的整除性

小学奥数19数的整除性

2.2数的整除性2.2.1相关概念在整数范围内,整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,也可以说b能整除a。

记作b∣a。

2.2.2整除的性质①如果两个数都能被同一个自然数整除,那么它们的和(或差)也能被这个自然数整除。

即如果a|b,a|c,且b>c,那么a|(b+c),或者a|(b-c)。

②如果若干个数都能被同一个自然数整除,那么它们的和也能被这个自然数整除。

也就是如果m|a,m|b,m|c,……,m|d,那么,m|(a+b+c+……+d)③如果整数a能被整数b整除,且整数c能被整数d整除,那么bd也能被ac整除。

也就是如果b∣a,d∣c,则ac∣bd。

④如果两个数的和及其中的一个加数能被同一个自然数整除,那么另一个加数也能被这个自然数整除。

也就是如果m∣(a+b),m∣a,则m∣b。

⑤如果第一个数能被第二个数整除,第二个数能被第三个数整除,那么第一个数也能被第三个数整除。

这也就是如果b∣a,c∣b,那么c∣a。

⑤一个数如果能被某一自然数整除,则这个数的整数倍数,也能被这个自然数整除。

这也就是如果b∣a,m为整数,那么b∣am。

⑥在若干个数的积中,如果有一个因数能被某一个自然数整除,那么,它们的积也能被这个自然数整除。

也就是在abc中,若m∣a,则m∣abc。

⑦如果整数a能被整数a、c的积整除,那么a能被b或c整除。

也就是如果bc∣a,则b∣a,c∣a。

⑧如果整数a能被整数b整除,也能被整数c整除,且b和c互质,那么a一定能被b 与c的乘积整除。

也就是如果b∣a,c∣a,且(a,b)=1,则bc∣a。

⑨在有余数的除法里,如果被除数和除数都能被同一个自然数整除,那么余数也能被这个自然数整除。

也就是如果a÷b=q……r,且m∣a,m∣b,那么m∣r。

例如,在84÷49=1……35中,7∣84,7∣49,则7∣35。

⑩在有余数的除法里,如果除数和余数都能被同一个自然数整除,则被除数也能被这个自然数整除。

高斯小学奥数五年级上册含答案_整除问题初步

高斯小学奥数五年级上册含答案_整除问题初步

第一讲整除问题初步从这一讲开始,我们将会进入一个神奇而美妙的世界:数论. 什么是数论呢?人类从学会数数开始,就一直和整数打交道.人们在对整数的应用和研究中, 探索出很 多奇妙的数学规律,正是这些富有魅力的规律, 吸引了古往今来的许多数学家, 于是就出现 了数论这门学科.确切的说,数论就是一门研究整数性质的学科.我们就从最基本的性质一一整除开始,一起在数论的海洋中遨游吧.X:: 数论在数学中的地位是独特的,伟大的数学家高斯曾经说过: “数学是科学的皇后,数;论是数学的皇冠” •整除的定义「丁 M 丄[EfiAI邑九牛城帀,琴百捨 吧円样的方式冉境 OOOKH3C01B.以G 、乩出卞城布 可胯号毀離00001 'oooowjja 序谏 次脫锂A- B- C, 懵快.軒iHflt 反应境 闻瞭面丈旳埠茶逾稲 伸只记聲车壇忙¥2. 鼻、4. $、隔一亍・ 貝侔的推列浚记件yrmir =Flf 面丈谥氓功了毡 豪酊r.舌方境 出了颯珂停!* w<«帀的T /整除的一些基本性质:1. 尾数判断法3.奇偶位求差法|能被ii 整除的数的特征:“奇位和”与“偶位和”的差能被ii 整除HI 我们把一个数从右往左数的第1、3、5位,……,统称为奇数位,把一个数从右往左数的第2、4、6位, ,统称为偶数位.我们把“奇数位上的数字之和”简称为“奇位和” 把“偶数位上的数字之和”简称为“偶位和”.F 面我们来看一下如何运用这些性质.例题1.判断下面11个数的整除性:23487, 3568, 8875, 6765, 5880, 7538, 198954, 6512, 93625, 864, 407 (1) 这些数中,有哪些数能被 4整除?哪些数能被 8整除? (2) 哪些数能被25整除?哪些数能被125整除? (3) 哪些数能被3整除?哪些数能被 9整除? (4) 哪些数能被11整除?【分析】关于4、8、25、125以及3、9、11的整除特征刚才都已经介绍过了,大家不 妨根据整除特性判断一下.练习 1.在数列 3124、312、3823、45235、5289、5588、661、7314 中哪些数能被 4 整除,哪些数能被3整除,哪些数能被11整除?如果将例题1中能被3整除的数相加或相减,会发现得到的结果还能被 3整除;同样的, 如果将其中能被11整除的数相加或相减, 会发现得到的结果同样能被 11整除.从中我们可以总结出如下规律:(1) (2) (3)2.例题2. 17石是一个四位数•文老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除问:文老师在方框中先后填入的3个数字之和是多少?【分析】本题包括三个小问题,我们逐个分析.需要分别用到9、11和8的整除特性.练习2.在2S 的方框内先后填上3个数字,分别组成3个三位数,使它们依次被3、4、5整除.上面我们已经学习了如何利用“整除特征”,解决单个数的整除问题•下面我们再来看一看,涉及多个数的整除问题应该如何解决.例题3.牛叔叔给45名工人发完工资后,将总钱数记在一张纸上•但是记账的那张纸破了两个洞,上面只剩下“ 6dd ”,其中方框表示破了的洞. 牛叔叔记得每名工人的工资都一样,并且都是整数元.请问:这45名工人的总工资有可能是多少元呢?【分析】这45名员工的工资都一样,所以总工资就能被45整除•我们没有学过被45整除的数的特征.但注意到45 5 9,于是6dd应该能同时被5和9整除,那么先考虑哪一个数的整除特征比较好呢?练习3.四位数CC 能被36整除,那么这个四位数可能是多少?在例3中,我们并不知道45的整除特征,但是45 5 9,能被45整除的数,也能被5和9整除,那么只需考虑5和9的整除特征即可.请同学们注意,虽然45 3 15,但是在考虑能否被45整除时,不能只考虑被3和15 整除•你能想明白为什么吗?例题4. 一天,王经理去电信营业厅为公司安装一部电话. 服务人员告诉他,目前只有形如“ 1234 口6口8 ”的号码可以申请•也就是说,在申请号码时,方框内的两个数字可以随意选择,而其余数字不得改动. 王经理打算申请一个能同时被8和11整除的号码.请问:他申请的号码可能是多少?【分析】要被8整除,说明号码的后三位Q8是8的倍数•想一下,这样的三位数是唯一的吗?练习4.七位数22 333 能被44整除,那么这个七位数是多少?有时候满足题目条件的答案会非常多. 如果只要求找出最大的或最小的,我们只需要从极端情况考虑即可.例题5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?最大是多少?【分析】要想让五位数最大且数字不重复,每个数位上的数字应该依次是9、&….如果想让五位数尽量小,是不是应该依次是1、2、…呢?例题6.由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】要想能被11整除,奇位和与偶位和的差应该是11的倍数.那么奇位和与偶位和的和又是什么呢?天才未必事事都聪明牛顿小时候的一个故事告诉我们,天才有时也傻乎乎的.一次,粮仓里闹鼠灾了,大人让牛顿在粮仓的门底开一个洞让猫进出.结果他开了两个洞一一大的给老猫,小的给小猫.其实在整除性的问题当中也有类似情况. 比如要在200 □匚的方框中填入两个数字使得这个五位数同时能被4、5、8整除,实际根本不用考虑4,只要考虑5和8即可,因为能被8整除的也必然能被4整除.如果你还要再考虑4的整除性,那就多此一举了.作业1. 下面有9 个自然数:48, 75, 90, 122, 650, 594, 4305, 7836, 4100 .其中能被4 整除的有哪些?能被25整除的有哪些?2. 有如下5个自然数:12345, 189, 72457821, 333666, 54289•其中能被9整除的有哪些?3. 有如下5个自然数:3124, 3823, 45235, 5289, 5588 •其中能被11整除的有哪些?4. 是一个四位数•王老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除• ”问:王老师在方框中先后填入的3个数字之和是多少?5. 阿呆买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:匚111.C 元(表示不明数字).请问总价应该是多少?第一讲整除问题初步例题1. 答案:(1)能被4整除的有3568、5880、6512、864;能被8整除的有3568、5880、6512、864 .(2)能被25 整除的有8875、93625 ;能被125 整除的有8875、93625 . ( 3) 能被 3 整除的有23487、6765、5880、198954、864;能被9 整除的有198954、864. (4) 能被11整除的有407、6765、6512.例题2.答案:21详解:要想让四位数能被9整除,数字和得是9的倍数,空格中要填7 •要想让四位数能被11整除,奇位和与偶位和的差得是11的倍数,空格中要填8•要想让四位数能被8整除,需要后三位即7C 是8的倍数,空格中要填6 .三个数字之和是21 .例题3. 答案:67680或67185详解:根据题意,这个数能被45整除,即能同时被5和9整除,个位只能是0或5,对应的百位是6或1 .例题 4. 答案:12345608、12341648、12348688详解:末三位被8整除,十位数字只能是0、4、8 .要满足号码能被11整除对应的千位数字只能是5、1、&例题 5. 答案:10395; 98730详解:要被45整除,五位数既得是5的倍数,也得是9的倍数.那么五位数的末尾只能是0或5 •先来看最小的数•要让前面数位上的数字尽量小,可以是1CD5 •要满足它是9的倍数且最小,应该是10395 •再来看最大,要让前面数位上的数字尽量大,可以是98口口5或9CD0 •要满足它是9的倍数且最大,应该是98730.例题6. 答案:875413详解:要想是11的倍数,奇位和与偶位和的差得是11的倍数.这六个数字的和是28 , 而最大的三个数的和是20,也就是说无论是奇位还是偶位之和都不会超过20,所以只能把28分成两个14,偶位为& 5、1,奇位为7、4、3.练习1. 答案:能被4整除的数有3124、312、5588;能被3整除的数有312、5289、7314 ; 能被11整除的数有3124、5588.练习2. 答案:本题的答案不止一种,要想被3整除,空格中可以填1、4、7.要想被 4 整除,空格中可填 2 或6.要想被 5 整除,空格中可填0或5.练习 3. 答案:3132 或3636简答:要想被36整除,这个四位数要既是4的倍数, 也是9的倍数. 要想是 4 的倍数, 个位上的空格中可填 2 或6.要想满足四位数是9的倍数,百位上的空格对应要填1或6.练习 4. 答案:2213332 或2283336简答:这个七位数既是4的倍数,也是11的倍数.要想是 4 的倍数,个位上的空格中可填2或6,剩下的空格中对应可填1或8.作业 1. 答案:48, 7836, 4100;75, 650, 4100简答: 4 和25 看末两位.作业 2. 答案:189, 72457821, 333666简答:被9 整除看数字和.作业 3. 答案:3124, 5588简答:被11 整除看奇位和与偶位和的差.作业4. 答案:11简答:填入的三个数字分别为1, 4, 6,数字和为11.作业 5. 答案:811.44 元简答:72 8 9 ,分别考虑8和9的整除特性.。

小学五年级奥数-整除问题

小学五年级奥数-整除问题

五年级思维第二讲基础知识:1. 整除的定义、性质.定义:如果a 、b 、c 是整数并且b 0≠ ,b=c a ÷则称a 能被b 整除或者b 能整除a ,记做b a |,否则称为a 不能被b 整除或者b 不能整除a ,记做a b |. 性质1:如果a 、b 都能被c 整除,那么他们的和与差也能被c 整除.性质2:如果b 与c 的乘积能够整除a ,那么b 、c 都能整除a .性质3:如果b 、c 都能整除a ,并且b 、c 互质,那么b 、c 的乘积也能够整除a. 性质4:如果c 能整除b ,b 能整除a ,那么c 能整除a .性质5:如果b 和c 的乘积能够被a 整除,并且a ,b 互质,那么c 能够被a 整除.2. 被2(5)整除特征:以2,4,6,8,0(5,0)结尾.3. 被3,9整除特征:数字和被3,9整除.4. 被4(25)整除的特征:后2位能被4(25)整除;被8(125)整除的特征:后3位能被8(125)整除.5. 被11整除特征:奇数位数字和与偶数位数字和之差能被11整除. (“奇偶位差法”).6. 被7、11、13整除特征:末三位与末三位之前的数之差能被7、11、13整除.7. 整除性质、特征的综合应用,末尾0的个数问题的处理,运用设未知量求解整除问题. 例题:例1、如果六位数2012□□能够被105整除,那么后两位数是多少?解:设六位数为2012ab ,105=3×5×7,依次考虑被3,5,7整除得到3∣a+b -1,b=0或5, 7∣(10a+b-1),得到唯一解a=8,b =5.故后两位为85.例2、求所有的x ,y 满足32x5y 使得72∣32x5y .解:72=8×9,根据整除9性质易得x +y =8或17,根据整除4 的性质y =2或6,分别可以得到5位数32652、32256,检验可知只有32256满足题意.例3、一本陈年旧账上写的:购入143只羽毛球共花费□67.9□元,其中□处字迹已经模糊不清,请你补上□中的数字并且算出每只羽毛球的单价.解:设两个□处的数字分别是a 、b ,则有143∣a679b ,根据11∣a679b ,有a+b =8,再根据13∣a679b ,所以13∣(100a +67-90-b ),再根据a+b =8得到13∣(10a -5)解得a =7 b =1所以方框处的数字是7和1,单价5.37元.例4、把若干个自然数1,2,3….乘到一起,如果已知这个乘积的最后14位都是0,那么最后的自然数至少是多少?解:最后14位都是0说明这个乘积整除1014,由于1×2×3×…中因数2比因数5多得多,只需考虑其整除514,5的倍数但是不是25的倍数可以提供一个因数5,25的倍数但是不是125的倍数可以提供2个因数5…可得出至少需要60个数,即这个自然数至少是60.例5、请用数字6、7、8各两次组成一个六位数使得这个六位数能够被168整除.解:168=3⨯7⨯8,用6,7,8各两次,数字和42,是3的倍数.而用6、7、8组成的3位数是8的倍数的只有768,776.当后三位是768,776时,前三位只有12种取法,经实验只有数768768符合题目要求. 因此唯一符合题目要求的数是768768.例6、 要使六位数10abc6能够被63整除,那么商最小是多少?解:63=7⨯9. 考虑10abc6能被7整除,于是有7∣(100b+10c+6-100-a ),整理得 7∣(2b+3c-a +4),再考虑该数能被9整除,有a+b+c =2或11或20. 由于要求最小的商也就是最小的被除数,先希望a =0. 此时,易验证b =0, b =1无解,而在b =2时,有解c =9,所以最小的被除数是100296,最小的商是1592.例7、 所有五位数中,能够同时被7,8,9,10整除的有多少?解:7,8,9,10的最小公倍数是2520,五位数最小是10000,最大99999,共有90000个数,180035252090000 =÷,24403252010000 =÷,所以共有36个.例8、用1、2、3组成的四位数(可重复)中能够被11整除的数有多少个?解:这样的四位数被11整除,一定有奇数位数字之和等于偶数位数字之和. 在1,2,3,4中1+1=1+1,1+2=1+2,1+3=1+3, 1+3=2+2 ,2+2=2+2,2+3=2+3,3+3=3+3七种情况,其中1+1=1+1、2+2=2+2、3+3=3+3分别只能得到1个4位数,1+2=1+2,1+3=1+3,2+3=2+3情况相同可以得到4个4位数,1+3=2+2也能得到4个4位数,所以一共有19个.例9、已知4ab4ab …4ab (重复99次)能够被91整除,求ab .解:根据7和13的整除判断方法7(13)∣4ab4ab …4ab (重复99次)有7(13)∣4ab4ab …4ab000(重复98次),因为(91,1000)=1,所以7(13)∣4ab4ab …4ab (重复98次),以此类推,就有7(13)∣4ab ,得到4ab =455,所以ab =55.例10、已知11个连续两位数的乘积的末四位都是0,而且是343的倍数,那么这11个数中最小的是多少?解:因为连续11个数是343的倍数,而33437=,但是11个数中之多有两个是7的倍数,所以这11个数中有49或者98,而11个数之多有3个是5的倍数,但却是10000的倍数,所以这11个数中又有25或者50或者75,并且以5的倍数开头和结尾,又要保证有2个7的倍数,所以只能是40到50这11个数.所以最小的数是40.数学万花筒——趣题欣赏: 1. 鬼谷子问题:传说在春秋战国时期,鬼谷子随意从2-99中选取了两个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级奥数:数的整除性(一)
年级班姓名得分
一、填空题
1. 四位数“3AA1”是9的倍数,那么A=_____.
2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.
3. 能同时被2、3、5整除的最大三位数是_____.
4. 能同时被2、5、7整除的最大五位数是_____.
5. 1至100以内所有不能被3整除的数的和是_____.
6. 所有能被3整除的两位数的和是______.
7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.
8. 如果六位数1992□□能被105整除,那么它的最后两位数是_____.
9. 42□28□是99的倍数,这个数除以99所得的商是_____.
10. 从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.
二、解答题
11. 173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字, 所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?
12.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?
13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?
14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.
———————————————答案——————————————————————
1. 7
已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.
设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,3771÷9=419.
2. 1
这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+□+9应等于12,□内应填12-2-9=1.
3. 990
要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.
4. 99960
解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999□0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.
解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.
5. 3367
先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.
(1+2+3+...+100)-(3+6+9+12+ (99)
=(1+100)÷2⨯100-(3+99)÷2⨯33
=5050-1683
=3367
6. 1665
能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:
12,15,18,21,…,96,99
这一列数共30个数,其和为
12+15+18+…+96+99
=(12+99)⨯30÷2
=1665
7. 96910或46915
A691能被55整除,即此五位数既能被5整除,又能被11整除.所以五位数B
A能被11整除,所以(A+9+0)-(6+1)=A+2能被11整除, B=0或5.当B=0时,6910
因此A=9;当B=5时,同样可求出A=4.所以,所求的五位数是96910或46915.
8. 90
因为105=3⨯5⨯7,根据数的整除性质,可知这个六位数能同时被3、5和7整除。

根据能被5整除的数的特征,可知这个六位数的个位数只能是0或5两种,再根据能被3整除的数的特征,可知这个六位数有如下七个可能:199200,199230,199260,199290,199215,199245,199275.
最后用7去试除知,199290能被7整除.
所以,199290能被105整除,它的最后两位数是90.
[注]此题也可以这样思考:先把后面两个方框中填上0后的199200除以105,根据余数
的大小来决定最后两个方框内应填什么.
199200÷105=1897 (15)
105-15=90
如果199200再加上90,199290便可被105整除,故最后两位数是90.
9. 4316
因为99=9⨯11,所以42□28□既是9的倍数,又是11的倍数.根据是9的倍
数的特点,这个数各位上数字的和是9的倍数.42□28□这个六位数中已知的四
个数的和是4+2+2+8=16,因此空格中两个数字的和是2或11.我们把右起第一、三、五位看做奇位,那么奇位上已知两个数字的和是2+2=4,而偶位上已知两个数字的和是4+8=12,再根据是11的倍数的特点,奇位上数字的和与偶位上数的和之差是0或11的倍数,所以填入空格的两个数应该相差3或相差8.从以上分析可知填入的两个数字的和不可能是2,应该是11.显然它们的差不可能是8,应
该是3,符合这两个条件的数字只有7和4.填入空格时要注意7填在偶位上,4填
在奇位上,即原六位数是又427284÷99=4316,所以所得的商是4316.
10. 1331
第一次报数后留下的同学最初编号都是11倍数;
第二次报数后留下的同学最初编号都是121 的倍数;
第三次报数后留下的同学最初编号都是1331的倍数.
所以最后留下的只有一位同学,他的最初编号是1331.
11. ∵能被9整除的四位数的各位数字之和能被9整除,
1+7+3+□=11+□
∴□内只能填7.
∵能被11整除的四位数的个位与百位的数字和减去十位与千位的数字和所得的差能被11整除.
∴ (7+□)-(1+3)=3+□能被11整除, ∴□内只能填8.
∵能被6整除的自然数是偶数,并且数字和能被3整除,
而1+7+3+□=11+□, ∴□内只能填4.
所以,所填三个数字之和是7+8+4=19.
12.
设补上的三个数字组成三位数abc,由这个七位数能被2,5整除,说明c=0;
由这个七位数能被3整除知1+9+9+2+a+b+c=21+a+b+c能被11整除,从而
a+b能被3整除;
由这个七位数又能被11整除,可知(1+9+a+c)-(9+2+b)=a-b-1能被11整除;
由所组成的七位数应该最小,因而取a+b=3,a-b=1,从而a=2,b=1.
所以这个最小七位数是1992210.
[注]小朋友通常的解法是:根据这个七位数分别能被2,3,5,11整除的条件,这个七位数
必定是2,3,5,11的公倍数,而2,3,5,11的最小公倍数是2⨯3⨯5⨯11=330.
这样,1992000÷330=6036…120,因此符合题意的七位数应是(6036+1)倍的数,即 1992000+(330-120)=1992210.
13. 不可能.由于瓦夏原有100张票,最后还有100张票,所以他作了多少次“两换三”,那么也就作了多少次“三换两”,因此他一共出手了2k +3k =5k 张票,而1991不是5的倍数.
14. 显然,这样的自然数不可能为两位数,因为如果是两位数的话,则必然具有形式xx ,但x x x 2=+为偶数,与它的各位数字之和等于13矛盾.现设求之数为三位数xyz .于是由题意13=++z y x ,且由被11整除的判别法则知z y x +-是11的倍数.又由于所求之数为最小,故有z y x +-=11.两式相减得1=y .于是=+z x 12,由于3,9≥≤x z 从而.当9,3==z x 时.
所以,所求的最小自然数是319.
[相关优质课视频请访问:教学视频网 /]
[文章来源:教师之家 / 转载请保留出处]。

相关文档
最新文档