Flow 3d教程说明
Flow-3D 10.1.1 安装教程
1、运行安装程序,开始安装
2、Campany Name随便填,点Next
3、选择安装路径,这里选默认的路径
4、这里选默认的第一项Client/Server (FLOW-3D + license server)
5、这里选第二项"Ethenet address"
6、等待安装主程序安装完成,跳出下面界面,点“Skip”跳过就行
7、Finish
8、跳出下面界面点NO
9、根据系统选择32或者64位的破解文件,解压后,把里面的文件夹复制到软件的安装目录中(默认目录为C:\flow3d\v10.1\)替换原来的文件夹和文件
10、复制"flow3d.lic"到C:\flow3d\v10.1\licenses\目录中
11、运行桌面的“LMTOOLS”图标在“Start/Stop/Reread”选项中,找到“FLOW-3D FLEXlm Manager”,先点“Stop Server”按钮,再点“Start Server”按钮,下面出现”Server Start Successful”,即可!
12、运行软件,安装完成!。
FLOW_3D简单实例教程
第零步:准备工作新建文件输入模拟文件名注意:必须有工作文件和模拟文件才能运行输入工作文件名第一步:建模并导出STL文件这是我随便做的一个STL文件第二步:导入STL文件在Model Setup——Mshing_Geometry——STL点Add导入如上图所示,并在Transform转化单位。
在Transform转化单位如下所示:按上图的单位和类型点OK按默认的Standard方式第三步:创建网格常用命令单击自动创建网格这是把窗口调整到完整状态单击自动创建网格时跳出如左图所示,点OK在产品上按住左键拖出一个矩形。
松开左键如下图所示,点OK也可以选择此项,这是捕抓几何然后在软件的左边的状态如左图所示、Z方向到最佳状态单击分割网格块,看要在哪个方向加就选择哪个方向。
注意:在两个网格连接处坐标要一样调整网格大小上表示网格的总大小表示网格的格的大小渲染跳出如左下图所示如左图选择Open,然后单击Render(渲染),跳出如右下图观察看有没有间隙如有可以把网格的格改小或者把网格的总大小改大或者增加点等。
表示取消渲染第四步:一般选项的填写填充时间填充率成百分率一般压铸都是按填充率来计算的第四步:一般选项的填写单位为CGS第五步:物理选项填写注意重力方向与单位,Flow 3D默认单位为cm、g、si第六步:填充材料的选择注意单位,单位为CGS第七步:模具材料的选择加载材料注意单位第八步:边界条件的填写在进料方向上填写边界条件有冲头速度和浇口速度)温度的填写第九步:初始条件的填写输出时间间隔输出按填充率方式第十步:数值控制选项的填写因为此项本人不是很了解,所以目前按默认第十一步:模拟运算第十二步:分析结果谢谢!。
flow3d 使用说明(英文)
Modelling of groundwater flow in three-dimensional groundwater systems using finite element methods GGU-SS FLOW3DV ERSION 2April 2002Copyright and author: Prof. Johann Buß, BraunschweigContents:1Preface (6)2Installation and language selection (6)3Starting the program (7)4Program concept (7)5Short description (8)6Theoretical principles (10)6.1Overview (10)6.2Differential equation (11)7Explanation of the individual menus and items (13)7.1Overview (13)7.2File menu (14)7.2.1“New” menu item (14)7.2.2“Load” menu item (14)7.2.3“Save” and “Save as” menu items (15)7.2.4“Read ASCII file” menu item (15)7.2.5“Save ASCII file” menu item (15)7.2.6“Print output table” menu item (16)7.2.7“Printer preferences” menu item (17)7.2.8“Print and export” menu item (17)7.2.9“Batch print” menu item (19)7.2.10“Quit” menu item (19)7.2.11“1, 2, 3, 4” menu items (19)7.3Mesh(x/y) menu (20)7.3.1“Preferences” and “Mesh” menu items (20)7.3.2“Outline” menu item (20)7.3.3“Define nodes” menu item (20)7.3.4“Change nodes” menu item (21)7.3.5“Move nodes” menu item (22)7.3.6“Edit nodes” menu item (22)7.3.7“Array” menu item (22)7.3.8“Common systems” menu item (24)7.3.9“Mesh “by hand”” menu item (25)7.3.10“Automatic” menu item (25)7.3.11“Round off” menu item (25)7.3.12“Delete” menu item (26)7.3.13“Optimise” menu item (26)7.3.14“Refine mesh” menu item (27)7.4z menu (30)7.4.1“Standard depths” menu item (30)7.4.2“Standard soil columns” menu item (31)7.4.3“Individual depths” menu item (31)7.4.4“Manipulate depths” menu item (31)7.4.5“Depths in section” menu item (32)7.4.7“Contours (layer thickness)” menu item (33)7.4.8“Define section” menu item (33)7.4.9“Save section” menu item (33)7.4.10“Mesh” menu item (33)7.4.11“Outline” menu item (33)7.4.12“Refine” menu item (34)7.4.13“Unrefine” menu item (34)7.5I mesh menu (34)7.5.1“Interpolation mesh” menu item (34)7.5.2“Nodes” menu item (35)7.5.3“Mesh” menu item (35)7.5.4“Manipulate” menu item (35)7.5.5“Contours” menu item (35)7.5.6“Read/save” menu item (35)7.5.7“Assign” menu item (36)7.6Boundary menu (36)7.6.1“Preferences” menu item (36)7.6.2“Individual potentials” menu item (36)7.6.3“In section” menu item (37)7.6.4“Linear” menu item (37)7.6.5“Single source”, “Line source” and “Area source” menu items (37)7.6.6“Individual soils” and “In section” menu items (38)7.7System menu (38)7.7.1“Info” menu item (38)7.7.2“Project identification” menu item (39)7.7.3“Test” menu item (39)7.7.4“Soil properties” menu item (39)7.7.5“Run” menu item (39)7.8Graphics preferences menu (41)7.8.1“Refresh” menu item (41)7.8.2“Zoom” menu item (41)7.8.3“Pens” menu item (41)7.8.4“Font” menu item (41)7.8.5“WINDOWS font” menu item (41)7.8.6“Mini-CAD” and “Header-CAD” menu items (41)7.8.7“Smarticons1” menu item (42)7.8.8“Smarticons2” menu item (42)7.8.9“Layer/Plane legend” menu item (43)7.8.10“General legend” menu item (44)7.8.11“Soil legend” menu item (44)7.8.12“Section legend” menu item (45)7.8.13“kr = f(u) function legend” menu item (45)7.8.14“Move” menu item (45)7.8.15“Save and Load preferences” menu items (45)7.9Page size and margins menu (45)7.9.2“Manual resize (mouse)” menu item (46)7.9.3“By “hand”” menu item (46)7.9.4“Page size and margins” menu item (46)7.9.5“Font size selection” menu item (46)7.10Evaluation menu (47)7.10.1“Normal contours” menu item (47)7.10.2“Coloured” menu item (48)7.10.3“3D” and “3D array” menu items (48)7.10.4“Discharges” menu item (50)7.10.5“Values along line” menu item (51)7.10.6“Values in section” menu item (52)7.10.7“Velocities” menu item (52)7.10.8“Contours + velocities” menu item (53)7.10.9“Individual values” menu item (53)7.10.10“Flow line preferences” menu item (53)7.10.11“With distance increment” menu item (55)7.10.12“With time increment” menu item (56)7.113D menu (56)7.11.1“Wire model” menu item (56)7.11.2“External model” menu item (56)7.11.3“Potential external model” menu item (57)7.11.4“Isosurface” menu item (58)7.11.5“Seepage surface” menu item (58)7.11.6“Discharge in vertical section” menu item (58)7.12? menu (58)7.12.1“Copyright” menu item (58)7.12.2“Maxima” menu item (59)7.12.3“Help” menu item (59)7.12.4“GGU on the web” menu item (59)7.12.5“What’s new ?” menu item (59)7.12.6“Translation” menu item (59)8Tips (59)9 A worked example (60)9.1Step 1: Defining the system (60)9.2Step 2: Preparing the program (61)9.3Step 3: System input (62)9.4Step 4: Assigning z ordinates (63)9.5Step 5: Refining the mesh (64)9.6Step 6: Assigning soil numbers (65)9.7Step 7: Defining boundary conditions (66)9.8Step 8: Refining the mesh in “z” (66)9.9Step 9: Assigning soil properties (67)9.10Step 10: Compute system (67)9.11Step 11: Evaluating the potentials in “horizontal” planes (68)9.12Step 12: Evaluating the potentials in section (69)9.13Step 13: Representing a cut-away system (69)9.14Step 14: Evaluating discharge (70)9.15Step 15: Removing the weak spot (71)10Index (72)Index of figures:Figure 1 Planes and layers (8)Figure 2 k r = f(u) (12)Figure 3 Unsaturated zone (12)Figure 4 Planes and layers (14)Figure 5 Optimisation of diagonals (26)Figure 6 Basic mesh for description of mesh refinement (28)Figure 7 Mesh refinement using method 1 (29)Figure 8 Mesh refinement using method 2 (29)Figure 9 Mesh refinement using method 3 (30)Figure 10 System (60)Figure 11 Section (61)1 PrefaceThe GGU-SS FLOW3D program allows modelling of steady-state groundwater flow in three-dimensional groundwater systems using finite element methods. The program includes a powerful mesh generator and routines (contour lines, 3D graphics, etc.) for comfortable evaluation of the modelling results.Data input is in accordance with conventional WINDOWS operations and can therefore be learned almost entirely without the use of a manual. Graphic output supports the true-type fonts supplied with WINDOWS, so that an excellent layout is guaranteed. Colour output and Bitmap graphics are supported. DXF files can also be imported by means of the integrated Mini-CAD module (see the Mini-CAD manual).It is not the aim of this manual to give an introduction to finite element methods. For details offinite element methods you are referred to O. C. Zienkiewicz, The Finite Element Method, pub-lished by McGraw-Hill. The hydraulic principles upon which the FEM program is based may be taken from, e.g., Buss, “Unterströmung von Deichen” (Percolation Below the Base of Embank-ments) (Mitteilungsheft 92, Leichtweiß-Institut, TU Braunschweig – Announcements of theLeichtweiß Institute, No. 92, Technical University of Braunschweig). The program has been used in a large number of projects and has been thoroughly tested (using analytical solutions and incomparison with other FEM applications). No faults have been found. Nevertheless, liability for completeness and correctness of the program and the manual, and for any damage resulting from incompleteness or incorrectness, cannot be accepted.2 Installation and language selectionFor installation and subsequent registration of GGU software, please refer to the information inthe “Installation notes for GGU Software”, which are supplied the program.GGU-SS FLOW3D (International version) is a bilingual program. You may choose to work inGerman or English. The international version is delivered with English as the default menu and graphics language.If you would like to work with GGU-SS FLOW3D (International version) in German, start theprogram and go to “File / New” in the initial menu bar. An expanded menu bar appears. Go to the “?” menu and there to the menu item “International version” and deactivate the switch for translat-ing the menus and graphics (see also Section 7.12.6).3 Starting the programAfter starting the program you will see two menus at the top of the GGU-SS FLOW3D window: • File• ?After clicking on the “File” menu, a previously analysed system can be loaded by means of the“Load” menu item, or a new one created using “New”. After selecting the system, the menu bar will show eleven menus:• File• Mesh(x/y)• z• I mesh• Boundary• System• Graphic preferences• Page size and margins• Evaluation• 3D• ?After clicking one of these menus, the so-called menu items roll down, allowing you access to all program functions.The program works on the principle of “What you see is what you get”. This means that the screen presentation represents, overall, what you will see on your printer. In the last consequence, thiswould mean that the screen presentation would have to be refreshed after every alteration youmake. For reasons of efficiency, and as this can take several seconds for complex screen contents, the GGU-SS FLOW3D screen is not refreshed after every alteration. If you would like to refresh the screen contents, press either [F2] or [Esc]. [Esc] will additionally set the screen presentation to A3 format.4 Program conceptThe program uses the finite element method. The real solution is a linear approximation for each element. Triangular prisms are used as finite elements. To simplify data input, the mesh is initially generated in plan. The projection of the triangular prisms onto the plan surface results in triangles, so you must first generate a triangular mesh. Depending on the complexity of the system, a num-ber of height ordinates are associated with each node of this basic mesh, which describe the sys-tem in the third dimension. The height ordinates can possess different values at each node. Theonly condition is that every node has the same number of height ordinates. This allows complex systems to be generated.Using this type of mesh generation, successive planes of nodes are located above each other,whereby “plane” can be somewhat misleading because the nodes of a “node plane” are not neces-sarily on one plane. Instead of the term “node plane” we will simply use “plane”.The regions between these planes are called “layers”. They are filled with triangular prisms.Figure 1 Planes and layersYou can assign a boundary condition to each node (source or potential). You can also assign dif-ferent soil properties to each triangular prism.If you have already worked with the GGU program GGU-SS FLOW2D (formerly GW2), you will hardly encounter problems with the GGU-SS FLOW3D mesh generator. The additional effortinvolved consists of having to manage a “battery” of z ordinates for each node.5 Short descriptionSince I know from personal experience that reading user-manuals is quite a chore, there will now follow a short description of the main program functions. After studying this section, you will be in a position to model steady-state groundwater flow. More detailed information about theprogram can be obtained from the subsequent chapters as you require it.• Design the system to be modelled.• Start GGU-SS FLOW3D and go to “File / New”. Enter the number of element layers. This can be increased or decreased later.• If necessary, adjust the sheet coordinates to fit your system. Use “Page size and margins / By hand” to do this.• Then go to “Mesh(x/y) / Define nodes”.• Using the mouse, click the governing nodes (points) in your system. The points will be numbered. Alternatively, you can also enter the nodes in tabular form using “Mesh(x/y) / Change”. Each newly generated node is awarded the values entered in “z / Standarddepths” as z ordinates. During and after mesh generation, you can edit the z ordinates asso-ciated with a node at will (see below).• If the nodes lie outside of the visible sheet coordinates, go to “Page / Auto-resize” or press [F9].• Now go to “Mesh(x/y) / Mesh “by hand”” and unite groups of three nodes to single trian-gular elements. In this manner you generate a rough structure for your system. Alterna-tively, by using “Mesh(x/y) / Automatic”, you can have the program do this work auto-matically for you. During automatic mesh generation the triangular prisms are assigned the standard soil column for all new triangular elements. The standard soil column defines the soil numbers of the individual triangular prisms. The soil numbers can also be subsequently edited at any time.• If you want to edit the positions of mesh nodes, select one of the menu items “Mesh(x/y) / Edit”, “Mesh(x/y) / Change” or “Mesh(x/y) / Move”.• To define the depths of the planes, enter the plane surfaces in the “z / Standard depths”menu item.• If you want to delete a triangular element, select the “Mesh(x/y) / Mesh “by hand”” menu item once again and click the three corner nodes of the corresponding element. After select-ing this menu item, try a double-click in a triangular element.• You can refresh the screen at any time using [ESC] or [F2].• Turn your rough structure into a fine structure by using the menu items “Mesh(x/y) / Indi-vidually refine” or“Mesh(x/y) / Section” or “Mesh(x/y) / All”.• After mesh refinement, you can still edit your system at will using “Mesh(x/y) / Define nodes”, “Mesh(x/y) / Mesh “by hand””, etc.• For demonstration purposes, use the menu item “Mesh(x/y) / Move” to generate one or more acute, and thus numerically unfavourable, triangular elements. Then select the“Mesh(x/y) / Optimise” menu item and follow the effects on the screen.• Previously, each node was assigned the standard depths during mesh generation. If you want to see your mesh in a vertical section, use “z / Define section” to define a section through the system.• Use “Boundary / Individual potentials”, for example, to define the boundary conditions governing your system. A potential can be assigned to the node in the current plane or to all nodes associated with this point.• You can move through the planes using the and tools, which you can find in the toolbar at the lower left of the program window. The plane and layer in which you now find yourself are shown in a separate legend.• If you wish, you can edit the soil number using the “Boundary / Individual soils” or “Boundary / In section” menu items. Every soil number can subsequently be assigned dif-ferent soil properties. The soil numbers defined refer to the current layer.• If necessary, edit the soil properties using the menu item “System / Soil properties”.• Once you have completed mesh generation, go to “System / Run” to commence modelling.Where required, a bandwidth optimisation will be carried out before modelling com-mences, in order to achieve a numerically favourable equation system.• If wished for, you can send the results to a printer as an output table or write them to a file once modelling is finished. However, this method of result presentation is generally less than satisfactory to the client.• So, proceed immediately to the “Evaluation” or “3D” menus. You can almost always leave the subsequent dialogue boxes using the “OK” button, without having to make furtherchanges. The program will usually suggest sensible input. The “Determine extreme val-ues” switch, which appears in a number of dialogue boxes, should be clicked once how-ever, otherwise an error message will appear.• Define a section (menu item “z / Define section”) and then press Return. Now select thetool from the toolbar at the lower left of the program window. You will now see a “cut-away” of the system. You may rotate the system in steps around the z axis using thetool. Try pressing the F9 function key (or use “Page size and margins / Auto-resize”).Change the current plane from the one you are now in.• If you find yourself in a section and wish to return to a representation or evaluation in plan, go to “Mesh(x/y) / Mesh”.• If you have a colour printer correctly installed in WINDOWS, you can create colour output by going to “File / Print and export” and then pressing the “Printer” button in the subse-quent dialogue box. For black and white printers, grey scales will be used.• At the end of this manual, the program is described using a comprehensive example.This short description demonstrates that only a few items need be selected to model a groundwater system. All further menu items deal principally with saving data, layout and further evaluation of the model, where required. The description will ensue in the following chapters.6 Theoretical principles6.1 OverviewAn analytical solution can be given for simple groundwater systems. When modelling complexsystems, we must rely on numerical methods of solution. In principle,• finite difference methods (FDM) and• finite element methods (FEM)are employed. To facilitate this, the whole area is subdivided into numerous small (finite) sub-areas (elements). When employing FEM, triangles are generally used to represent these sub-areas.Within the triangles, simple, generally linear, approximation functions are applied. The real, com-plex total solution is composed, mosaic-like, of the numerous simple partial solutions. This gives rise to equation systems, the number of unknowns of which correspond to the number of system nodes. Using the finite difference method, we normally only have the option of discretising thetotal area by means of rectangular sub-areas. In contrast to FEM therefore, FDM is substantially less flexible with regard to adjustment to complex boundary structures. Mesh refinement is also less simple to perform in certain areas. In addition, the equation systems which result for FEM are numerically more stable. The principle advantage of FDM consists merely of the theoretically less complex underlying mathematical relationships, which will generally be less interesting to theprogram user. GGU-SS FLOW3D makes use of the finite element method.When using this program, please remember that all finite element or finite difference procedures are approximation methods. The quality of the approximation compared to the real solution in-creases with the fineness of the mesh. You should take care that the mesh is tighter in those areas where the principal subsurface hydraulic activity takes place (e.g. wells, seepage elements). The shape of the triangles also exercises a certain influence. The optimum conditions are provided by isosceles triangles. You can get an idea of the quality of the solution by modelling the same sys-tem again, but using a either a finer or a coarser mesh and comparing the results of the two model-s.The following further general remarks are important:• Triangular elements are used.• Darcy’s Law applies.• The piezometric heads are computed linearly for each element.• A constant approximation of velocities for each element results from the linear approxima-tion of the piezometric heads. In order to improve the quality of the velocity approxima-tion, the velocities for computation of flow lines are converted to mean node values in afollow-up computation.The procedure is:The velocities from the neighbouring elements are added for each element node and thendivided by the number of neighbouring elements. This allows an improved representationof velocity. By the nature of things, the results at the boundary nodes are not as exact.Moreover, the approximation quality of velocities in the region of element nodes belongingto elements of varying material types can deteriorate. If the velocities in such “boundarynodes” are of great interest, some assistance can be had by refining the element mesh inthese regions.6.2 Differential equationThe application solves the differential equation:k r ∗ k x∗∂2h/∂x2 + k r ∗ k y∗∂2h/∂y2 + k r ∗ k z∗∂2h/∂z2 + Q = 0 Where• k x, k y, k z= permeability in m/s, for example, for the x, y and z directions• h= piezometric head in m, for example• k r= coefficient for determining the permeability in the unsaturated zone(dimensionless)• Q= discharge in m³/s, for example• x, y, z= coordinates in m, for exampleThe parameter k r takes account of the change in permeability in the unsaturated zone r above the groundwater table and assumes values between 0.0 and 1.0. In the saturated zone, k r is equal to1.0. The parameter k r is a function of the porewater pressure u. The porewater pressure u is calcu-lated from the piezometric head h, the elevation head y and the unit weight of water γw.u = (h - z) ∗γwThe curves corresponding to three typical soils are shown in Figure 2. The inclusion of this pa-rameter in the differential equation offers the significant advantage, among others, that phreatic lines can be very simply computed during the ensuing finite element analysis.Figure 2 k r = f(u)Further explanation is provided by Figure 3. In the case of a horizontal groundwater table, all four parameters h, y, u and k r are given as a function.Figure 3 Unsaturated zoneIf unsaturated zones are present in the system and computation of the phreatic line is needed, this will require an iteration process, as the location of the phreatic line is not known from the outset.In the first iteration step, the program initially assumes that all system regions are saturatedk r = 1.0After the initial computation of the piezometric heads at the system nodes, the porewater pressures u are computed and k r determined. Using the thus modified permeabilities, the system is remod-elled with new piezometric heads and correspondingly new porewater pressures and k r values. The iteration process is continued until the difference in piezometric heads in iteration step (i) and (i -1) fall below the user-defined limit value (iteration deviation).Remark on boundary conditions:The case of an impermeable boundary is considered automatically by the finite element method.All system boundaries that do not posses water level or source boundary conditions are automati-cally impermeable.7 Explanation of the individual menus and items7.1 OverviewA few of the program functions cannot be reached by means of the menu items. These programfunctions can only be activated via the toolbar in the lower left program window.If you click the corresponding tool in the toolbar with the left mouse button and keep it pressed, the program functions “hidden” behind these icons are shown in the bar at the bottom of the pro-gram window. Of particular importance are the iconsand and ,with which you can move from one plane to the next. This is important when defining soil num-bers, z ordinates and when evaluating modelling results for example.In this chapter, the individual menus and their associated menu items will be explained.7.2 File menu7.2.1 “New” menu itemAfter selecting “New”, the number of element layers must be specified in the dialogue box.Element layer numbering begins at the bottom with “1”, the planes bounding an element layer are also numbering continuously from bottom to top. The number of element layers is – because the system ends at the base – one less than that of the planes; see the schematic section below.Figure 4 Planes and layers7.2.2 “Load” menu itemIf you have entered data at a previous “session” at the computer, and saved these as described in the “Save” menu item, you can reload them by selecting this menu item. It is then possible to edit the data according to your wishes.7.2.3 “Save” and “Save as” menu itemsYou can save data entered during program use to a file, in order to have them available at a later date, or to archive them. For reasons of transparency, it makes sense to use “.F3D” as the fileextension, as the file requester box for the “Load” menu item only shows files with this extension.If you do not enter an extension when saving, “.F3D” will be used automatically. If the currentsystem has been modelled, the results can be saved to a dataset. If this file is later reloaded, theresults remain available for evaluation without renewed computation.7.2.4 “Read ASCII file” menu itemIf the coordinates of FEM mesh nodes are available as an ASCII file, this data can be read into the program. The data must consist of rows containing the x value and the y value of each node. Deci-mal fractions must have a point and not a comma. When loading the ASCII file, you only need to specify in which columns the x and y values are located. New x and y coordinates are assigned the standard depths.The current line of the ASCII file is shown at the top. You can move through the file using thearrow buttons on the right. If all the information is correct, the result for the row is shown in the box below each column. Otherwise, “Error” appears. You may need to change the column delim-iter. If the file contains invalid as well as valid rows, these will simply be skipped during reading.Finally, select the “Read data” button. You can then process the coordinates to a new FEM mesh.7.2.5 “Save ASCII file” menu itemIf a FEM mesh has been generated, the node coordinates can be saved in an ASCII file. The x and y coordinates of the underlying mesh (2D) are saved and, in addition, if the system has been mod-elled, the potential of the current plane.7.2.6 “Print output table” menu itemYou can print an output table. The results can be sent to the printer or to a file (e.g. for further editing in a word processor). The output contains all analysis information, including the system data. First decide the extent of output,by activating the corresponding switches.You can then define more output preferences. Using the “Edit” button, the current printer prefer-ences can be changed or a different printer selected. Using the “Save” button, all preferences from this dialogue box can be saved to a file in order to have them available for a later session. If you select “GW3.DRK” as file name and save the file in the program folder (default), the file will be automatically loaded next time you start the program. Using the “Page format” button you candefine, among other things, the size of the left margin and the number of lines per page. The“Head/foot” button allows you to enter a header and footer text for each page. If the “#” symbol appears within the text, the current page number will be entered during printing (e.g. “Page #”). If you do not wish pagination to begin with “1” you can add an “offset” number to the check box.This offset will be added to the current page number. The text size is given in “pts”. Using thebuttons at the bottom of the dialogue box you start output to the “Printer” or to a “File”, the name of which must be subsequently entered. If you select the “Window” button the results are sent to a separate window. Text editing options are available in this window, as well as loading, saving and printing.7.2.7 “Printer preferences” menu itemYou can edit printer preferences (e.g. swap between portrait and landscape) or change the printer in accordance with WINDOWS conventions.7.2.8 “Print and export” menu itemThe following dialogue box appears:• “Printer”allows graphic output of the current screen contents to the WINDOWS standard printer orto any other printer selected using the menu item “Printer preferences”. For direct output(printer), the following dialogue box appears:。
flow3d官方培训教程中的实例中文说明
3D学习——3 算例1新建一个项目, & :\3D\\\,使用缺省选项,因为将引入其它形状作为固体, 1中坐标范围()为:X: 5.0~15.0, Y: 5.0~15.0, Z: 0.0~15.0的单位对3D来说是未知的,可能是英寸、英尺、毫米等,现在假设模型是(国际单位),那么流体或固体的属性都应该是的。
(这里有些糊涂,3D会使用文件中的单位么?)模拟的情况为从圆柱形底部入口向球形水箱内充水,计算域应该和此形状范围相近,略大一点但不能紧贴着形状边界。
底边界的位置和边界条件类型有关,如果入口处流速已知那么模拟多少入口长度没有关系,因为断面形状是固定的,但是如果特定位置的压力是已知的,那么要把边界放在该位置处因为压力会受入口长度的重力和粘性效应影响而变化。
建议计算域要大于最大几何尺寸的5%,底边界除外,可以小于5%,这样计算域底部和入口交叉,不会挡住水流,因此计算域定义为X: 4.95~15.05 Y: 4.95~15.05 Z: 0.05~15.05在的 1中按上面参数修改计算域尺寸,然后在 1上右键选择更新显示。
= 数= = ν= 数= = gΔρL^2/σ= 数= = ^2ρ/σU是特征流速,L是特征长度,g是重力加速度,ρ是密度,σ是表面张力系数。
这个问题中大约用100s充满水,冲水体积540立米,入口直径2m,入口流速为540/(100*π*1^2)=1.7,数为1.7*2/(1.06)=3.4e6由于数远大于1,因此惯性力比粘性力更重要,即不需要很密的网格考虑粘性力,也不需要指定粘性特性。
考虑表面张力影响的系数为= gΔρL2/σ = 9.8^2 * 1000 ^3 * (2m)^2/(0.073^2) = 5.4e5= 2ρ/σ = 2m * (1.7 )^2 * 1000 ^3 / (0.073^2) = 7.9e4可以看出表面张力也不需要考虑。
缺省网格在X、Z方向为10,Y方向为1。
第二章_FLOW-3D
• • • •
2.3、分析條件設定
• FLOW-3D 可以指定分析停止的条件。分别是: – Finish Time(指定时间,时间到达时停止) – Fill Fraction(指定充填率,充填率到达指定值时停 止) – Solidified Fluid Fraction(指定固化率,固化率到达 指定值时停止) • Finish Time 为最高判断原则,一旦到达 Finish Time, 程式会强迫停止。 • 一般执行充填仿真时,会选用 Fill Fraction 作为程式判 断条件(在 Finish Time 填入较大的数值)。
常用指令
Mesh adjustment
以鼠标调整网格大小
步距大小可调整不同的数值
Auto Mesh & Mesh Info
可指定网格总数量,或者是 指定网格尺寸大小
程式会根据指定的条件,在 X,Y,Z 三方向进行网格切割
真实网格数量
以 FAVOR 检视网格建立状况
• 在网格切割完成之後,可以用 FAVOR 检视在现有网 格数量设定下,是否能够完整的描述模型的外型。
Defect Tracking
• 铸件的机械强度与铸造过程中生成的氧化膜、卷气, 以及其他在充填过程中夹杂於固体内之杂质息息相关 。表面追蹤模型(The Surface Defect Tracking model) 會記錄金屬液體與表面空氣接觸的時間以及接觸面, 能夠讓使用者預測金屬氧化膜的生成位置以及集中區 域。
Flow3D培训教程
Flow3D培训教程FLOW-3D V9.3.2 水利教程上海飞熠软件技术有限公司目录1. 为何选择Flow-3D软件, ............................................................ 2 2. Flow-3D软件界面 (2)3. Flow-3D分析流程 (2)3.1 运行FLOW-3D (2)3.2 几何体的设置 (2)3.3 General设置 (2)3.4 Physics设置 (2)3.5 Fluids设置 (3)3.6 Meshing _Geometry设置 (3)3.7 Boundary设置 (3)3.8 Initial设置 (4)3.9 Output设置 (4)3.10 Numerics设置 (4)3.11 计算 ..................................................................... ... 4 案例1 渠道流动状况 ....................................................................4 案例2 波浪运动 ..................................................................... ... 6 案例3 卷气量分析 ......................................................................7 案例4 球从半空中掉下 (7)案例5 强制球在水面移动 ................................................................ 8 案例6 开闸泄流 ..................................................................... ... 9 案例7 搅拌不同密度流体 (11)3.1 为何选择Flow-3D软件,网格可以自由分割,不需要与几何文档建立关联, FAVOR可以描述非常复杂的流场运动模式,TruVOF与自由液面模型描述,多网格区块建立技术能够大幅度地提高计算效率,运动物体GMO碰撞模型设置简单方便。
FLOW-3D客制化操作步骤
FLOW-3D V9.4
客制化操作流程
Flow-3D 客製化概論
注意:若这里没有赋予dum的数值, 那么你就必须在前处理prepin给定
c include '../comdeck/ijk.f' include '../comdeck/mijk.f' c c c Let fhtw = wave height fhtw=flhtr+wvcosc fhtz=max(fhtw-z(k-1),zero)*rdz(k) fhtz=min(fhtz,one) if(fhtz.gt.ztest) then c c f(ijk)=fhtz u(imjk)=dum1*wvcosr*exp(dum2*(zk(k)-flhtr)) u(ijk)=dum1*wvcosr*exp(dum2*(zk(k)-flhtr)) w(ijk)=dum1*wvsinc*exp(dum2*(z(k)-flhtr)) else c f(ijk)=zero u(ijk)=zero w(ijk)=zero c endif
c c
phasc=dum2*xi(imax)-dum1*t wvcosc=dum3*cos(phasc) wvsinc=dum3*sin(phasc) wvcosr=dum3*cos(dum2*x(im1)-dum1*t) i=imax i=imax-1
do 8000 k=kprb,kprt do 8000 j=jprf,jprbk
flow3d官方培训教程中的实例中文说明
Flow3D学习——3 算例1 Aerospace TutorialAerospace Tutorial新建一个项目,Model Setup Tab-Meshing & Geometry Tab-SubcomponentTab-Geometry Files-c:\Flow3D\gui\stl_lib\tank.stl,Type and Potential 使用缺省选项,因为将引入其它形状作为固体,Subcomponent 1中坐标范围(Min/Max)为:X: 5.0~15.0, Y: 5.0~15.0, Z: 0.0~15.0tank.stl的单位对FLOW-3D来说是未知的,可能是英寸、英尺、毫米等,现在假设模型是SI(国际单位),那么流体或固体的属性都应该是SI的。
(这里有些糊涂,FLOW-3D会使用STL文件中的单位么?)模拟的情况为从圆柱形底部入口向球形水箱内充水,计算域应该和此形状范围相近,略大一点但不能紧贴着形状边界。
底边界的位置和边界条件类型有关,如果入口处流速已知那么模拟多少入口长度没有关系,因为断面形状是固定的,但是如果特定位置的压力是已知的,那么要把边界放在该位置处因为压力会受入口长度的重力和粘性效应影响而变化。
建议计算域要大于最大几何尺寸的5%,底边界除外,可以小于5%,这样计算域底部和入口交叉,不会挡住水流,因此计算域定义为X: 4.95~15.05 Y: 4.95~15.05 Z: 0.05~15.05在Mesh-Cartesian的Block 1中按上面参数修改计算域尺寸,然后在Block 1上右键选择Update Mesh更新显示。
Re = Reynold数= Inertial Force/Viscous Force = UL/νBo = Bond数= Gravitational Force/Surface Tension Force = gΔρL^2/σWe = Weber数= Inertial Force/Surface Tension Force = LU^2ρ/σU是特征流速,L是特征长度,g是重力加速度,ρ是密度,σ是表面张力系数。
Flow-3d-Cast-v4
Flow-3d Cast v4.2操作指南冷式压铸铸造模拟中输出资料充型过程:观察填充顺序及流态获得的通过内浇口流量以及不同内浇口混合情况监测在浇道和型腔内的分流情况找出最大的浇口速度以及气蚀预测找出卷气和氧化渣的位置观察温度分布,找出是否存在冷料或浇不足或冷隔问题凝固过程:获得凝固时间监测热节发生的位置评估缩孔及缩松缺陷评估热应力及变形量重要文件输入文件(Navigator & Model Setup菜单)workspace_name.FLOW-3D_Workspace:项目管理PREPIN.sim_name:模拟的前处理文档geometry_name.STL: CAD数据、描述几何输出文件(Analyze菜单)FLSGRF.sim_name:求解结果(覆盖 prpgrf文件)报告和解决问题 (Diagnostics诊断菜单)PRPERR.sim_name & HD3ERR.sim_name:预处理和求解过程中错误和警告文本PRPOUT.sim_name & HD3OUT.sim_name:给出最详细信息HD3MSG.sim_name:求解过程中错误 &警告和运算时间的汇总REPORT.sim_name: PRPOUT & HD3OUT的版本信息软件用户界面介绍仿真管理器模型建立分析显示仿真管理器项目管理界面工作区与仿真的列表队列求解曲线模拟计算时修改运行参数仿真管理器-项目管理界面项目管理列表:工作区仿真分析档仿真分析管理队列列表:分析档排队区分析档完成区仿真管理器-工作区选项右键点击会弹出更多用户选项仿真管理器-仿真选项右键点击会弹出更多用户选项仿真管理器-仿真信息汇总队列汇总工作区文件和仿真文件放置目录位置仿真管理器-诊断(曲线显示)在模拟期间可看时间步长、填充率、金属体积、温度等。
警告按钮被启动,表示在预处理或求解过程产生警告。
仿真器管理-运行参数修改实时修改运行条件模型建立模型画面呈现区模型设定区快捷区鼠标功能左键:旋转中键:缩放右键:平移FLOW-3D Cast v4.2模型建立-金属材质模型建立-时间•之前分析结果当作初始条件进行继续分析•常用于热循环→充型→凝固→热变形常用选择结束条件时 间:热循环分析/充型分析/热变形分析 填充率:充型分析 固相率:凝固分析模型建立-模型-通用模型重力加速度大小和方向,默认为-Z方向热分析选项:金属内热传导计算,金属/模具的界面换热计算多孔介质阻力函数:过滤网模型计算气体模型:是否考虑背压计算模型建立-模型-铸造模型空蚀模型是预测速度过快造成对模具腐蚀问题粘性加热是计算半固态金属摩擦生热表面张力是常用于重力浇注,比如铝合金浇注,和铁合金浇注。
FLOW3D压铸讲义
採用 Eddy Viscosity 模擬時,必須選擇 『Laminar』層流。程式會根據流體的入 口速度及入口尺寸大小計算。 Eddy Viscosity Approach 的分析時間較 RNG Model 來的短,在一般壓鑄模擬時 多半採用此黏度模型。
『非必須設定』選項
固化模擬
1 2
移動物件 柱塞頭移動 模具熱循環
模具:不銹鋼
Air(與外界相通,一大氣壓)
135mm X 117mm X 50mm 圖檔格式:STL(以 mm 繪製)
步驟一、讀入圖檔,建立幾何
切換至 Model Setup / Meshing & Geometry
讀入圖檔
幾何輸入視窗
按照順序將圖檔讀入
1 2 3
Transform 設定(調整圖檔比例)
步驟三、一般條件設定
2
3
4
1
5
保持預設值
Finish Condition 分析條件設定 (1,2)
分析時間達到 1.0 秒時程式結束(即 使模穴填滿,也會繼續充填到時間到 達 1.0 秒)
★ 模穴填滿時程式結束
Interface Tracking 邊界追蹤計算 (3)
★ Free
surface or sharp interface:流體為『液體』
3
Air entrainment
在鑄造過程中,金屬內可能會因為流動而混雜空氣。 FLOW-3D 可針對混雜空氣的流體進行計算。計算 模式分為兩種
Passive:捲入金屬內的空氣量較少,不會影響金屬的
密度,流動時不需計算空氣的捲入量 Active:捲入金屬內的空氣在被加溫後會影響金屬的密 度,進而影響其流動狀況,而且空氣會再從金屬內逃逸。
FLOW-3D另类学习
----------------------- 页面 5-----------------------
当前工作目录当前工作目录
当前工作目录当前工作目录
工作目录存储位置工作目录存储位置
物理选项中操作界面物理选项中操作界面
----------------------- 页面 9-----------------------
流体选项界面流体选项界面
流体选项界面流体选项界面
----------------------- 页面 10-----------------------
产品充填产品充填
过程中热传过程中热传过程中热传过程中热传
过程中热传过程中热传过程中热传过程中热传
导入图标导入图标 分裂块图标分裂块图标
分裂块图标分裂块图标 渲染渲染
渲染渲染
模型设置模块界面模型设置模块界面
----------------------- 页面 7-----------------------
充填完成充填完成
充填完成充填完成
自动划分网格图标自动划分网格图标
自动划分网格图标自动划分网格图标 刷新刷新
刷新刷新
STL导入图标导入图标
网格块网格块
网格块网格块
网格和几何选项界面网格和几何选项界面
网格和几何选项界面网格和几何选项界面
主菜单栏主菜单栏
主菜单栏主菜单栏 后处理显示模块后处理显示模块
模型运算模块模型运算模块 后处理显示模块后处理显示模块
----------------------- 页面 8-----------------------
产品压铸时产品压铸时
flow-3d控制方程_解释说明
flow-3d控制方程解释说明1. 引言1.1 概述本文旨在介绍Flow-3D控制方程的相关知识,包括其基本概念、流体力学基础以及其在流体模拟中的应用。
Flow-3D是一种数值流体力学软件,经过多年的发展和改进,已广泛应用于各个工程领域。
1.2 文章结构文章主要由五个部分组成。
引言部分对文章进行了总体概述,并说明了各部分内容的安排。
接下来是流体力学基础知识部分,介绍了控制方程的概念和Navier-Stokes方程的基本原理,以及流体流动特性相关的背景知识。
然后是Flow-3D简介部分,详细介绍了该软件的概况、功能和应用领域,以及在计算模型和网格划分方法上的特点。
在主要内容中,我们将重点讨论Flow-3D控制方程模型与求解方法,包括其基本模型、数值求解方法和模拟结果验证与误差分析。
最后,在结论与展望部分对全文进行总结,并对未来研究方向进行展望。
1.3 目的本文旨在通过对Flow-3D控制方程的解释和说明,使读者对该软件有更深入的了解。
通过介绍流体力学基础知识和Flow-3D的详细信息,读者将能够更好地理解和应用该软件进行流体模拟,并为相关工程和科研项目提供支持。
此外,本文还旨在促进对Flow-3D控制方程模型与求解方法的研究和探索,以提高流体模拟的准确性和可靠性。
2. 流体力学基础知识:2.1 控制方程概述流体力学是研究流动物质运动的科学。
在流体力学中,控制方程是描述流体运动的基本公式。
它们由基本原理和守恒定律导出,可以用来描述流体中质量、动量和能量随时间和空间的变化规律。
2.2 Navier-Stokes 方程Navier-Stokes 方程是描述不可压缩流体运动的基本方程之一。
它结合了质量守恒方程和动量守恒方程,并考虑了粘性效应。
Navier-Stokes 方程可以表示为:∂ρ/∂t + ∇·(ρv) = 0∂(ρv)/∂t + ∇·(ρvv+P) = μ∇^2v其中,ρ为流体的密度,t为时间,v为速度场,P为压力,μ为黏度。
第一章 FLOW-3D使用简介
12 mm
sand casting
die casting 3 mm
0.003
180 ms
30 s
Solution for one-dimensional heat flow into semi-infinite medium from Casting: An Analytical Approach, Reikher, Barkhudarov, Springer 2007.
1975年,Dr. Hirt & Dr. Nichols发表VOF技术 1.定义流体的液面动作状态 2.追踪流体液面流动时的变化 3.定义流体流动时的边界条件设定 所有的CFD软件,关于自由液面的定义,均Follow此一准则。
利用FAVOR技术,使曲面造型的 Model也能够顺利的以矩形网格加以 描述,使分析模型不会失真。
Heat Penetration Depth: Examples
Tilt pour, filling time 20 seconds (倾斜铸造,充型时间为 20 秒): • total initial cell count: 2.2 million cells • with 40 mm thermal shell: 930k active cells = 740k in Байду номын сангаасold + 185k in metal
New Output Quantities
distance travelled by fluid
fluid residence time
Finite Element Solver For Structural Analysis
FLOW-3D 将提供与结
构分析软件相接之有限元 网格,以预测铸件应力分 析与变形问题。
FLOW 3D 操作简介
t=5.001 y=5.000E-01 (ix=2 to 81 kz=2 to 51)
09:59:08 7-20-1999tpon
hydr3d: version 7.5.n
win32 1999
Flow over step: P-VOF Method
Two-fluid VOF models are best applied to dispersed two-phase flow. Simulations with well separated phases should use one fluid TruVOF®
VOF(Volume of Fluid)
1975 年,Dr. Hirt & Dr. Nichols 发表 VOF 技术 1. 定义流体的液面动作状态 2. 追踪流体液面流动时的变化 3. 定义流体流动时的边界条件设定 目前所有的 CFD软件,几乎都是利用VOF来追踪自由液面的位置
Volume-of-Fluid (VOF) Method
Three components of VOF:
F = Fluid fraction
Special advection handing to accurately track sharp interface
Boundary conditions at free surface (a normal pressure and no shear stress)
如何用矩形网格描述复杂的形体?
FAVOR ®
利用 FAVOR 技术,使曲面造 型的 Model 也能够顺利的以矩 形网格加以描述,使分析模型 不会失真。
STL 图档
FLOW-3D 网格图档
FAVOR 对网格数量的影响
flow3d官方培训教程中的实例中文说明(可编辑修改word版)
Flow3D学习——3 算例1 Aerospace TutorialAerospace Tutorial新建一个项目,Model Setup Tab-Meshing & Geometry Tab-SubcomponentTab-Geometry Files-c:\Flow3D\gui\stl_lib\tank.stl,Type and Potential使用缺省选项,因为将引入其它形状作为固体,Subcomponent 1中坐标范围(Min/Max)为:X: 5.0~15.0, Y: 5.0~15.0, Z: 0.0~15.0tank.stl的单位对FLOW-3D来说是未知的,可能是英寸、英尺、毫米等,现在假设模型是SI(国际单位),那么流体或固体的属性都应该是SI的。
(这里有些糊涂,FLOW-3D会使用STL文件中的单位么?)模拟的情况为从圆柱形底部入口向球形水箱内充水,计算域应该和此形状范围相近,略大一点但不能紧贴着形状边界。
底边界的位置和边界条件类型有关,如果入口处流速已知那么模拟多少入口长度没有关系,因为断面形状是固定的,但是如果特定位置的压力是已知的,那么要把边界放在该位置处因为压力会受入口长度的重力和粘性效应影响而变化。
建议计算域要大于最大几何尺寸的5%,底边界除外,可以小于5%,这样计算域底部和入口交叉,不会挡住水流,因此计算域定义为X: 4.95~15.05 Y: 4.95~15.05 Z: 0.05~15.05在Mesh-Cartesian的Block 1中按上面参数修改计算域尺寸,然后在Block 1上右键选择Update Mesh更新显示。
Re = Reynold数 = Inertial Force/Viscous Force = UL/νBo = Bond数 = Gravitational Force/Surface Tension Force = gΔρL^2/σWe = Weber数 = Inertial Force/Surface Tension Force = LU^2ρ/σU是特征流速,L是特征长度,g是重力加速度,ρ是密度,σ是表面张力系数。
FLOW3D-案例教程
案例3 大坝泄流
上游水深=85m 下游水深=10m
建模-Geometry
① ②
③ ①在Meshing & Geometry菜单下; ②单击STL按钮,弹出对话框; ③单击Add,找到路径下面的 dam.stl; ④单击OK。 ③ ④
网格划分--Mesh
单位系统与时间控制--Geometry
物理模型--Physics
单位系统与时间控制--General
物理模型--Physics
流体材料--Fluids
② ① ①单击Fluid1; ②单击第一排菜单栏的 Materials,单击Fluids Database...,弹出对话框; ③选中66号流体water; ④单击Load fluid 1。 ③ ④
边界条件--Boundary
⑤
显示结果--Display
案例2 波浪运动
新建Simulation--拷贝复制
① ⑥ ② ④ ③ ①选中exercise1,右键弹出对话框; ②选中Add Simulation Copy...,弹出对 话框; ③输入exercise2; ④如果下面还有stl等文件也要勾选上; ⑤单击OK; ⑥exercise1下面显示exercise2。
计算--simulate
① ③ ②
①计算界面; ②Pause表示暂停,Resume表示继续计算, terminate表示中断计算; ④ ③Warning & Errors里面有提醒和出错信息; ④active cell表示有效网格,为flow-3D的计 算网格,决定所需要的物理内存。
查看结果--Analyze
①用户可以选择步长的控制方法,对于初学 者,建议使用Stability and covergence和 Stability,步长会自适应; ②设置Initial time step:0.01; ③设置Minimum time step:1e-7。