职高高一数学不等式测试题
高一数学不等式试题答案及解析
高一数学不等式试题答案及解析1.已知a>b, c>d,则()A.ac>bd B.C.D.【答案】D【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。
在第二小问中,将条件乘入到所求结果中去,再将式子进行展开,利用万能公式,解不等式即可求出最小值。
试题解析:(1)x<,∴4x-5<0.∴y=4x-5++3=-[(5-4x)+]+3=1.≤-2+3=1,ymax(2)∵x>0,y>0且=1,∴x+y=(x+y)=10+≥10+2=16,即x+y的最小值为16【考点】函数万能关系不等式4.(12分)已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【答案】(1);(2)【解析】(1)定义域为,指被开方数恒大于等于0,讨论两种情况当或是两种情况;(2)函数的最小值,指被开方数为抛物线时的顶点函数值是,所以先根据顶点坐标求参数,然后将参数代入二次不等式,解不等式.试题解析:(1)∵函数y=的定义域为R,∴a=0时,满足题意;a>0时,△=4a2﹣4a≤0,解得0<a≤1;∴a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥, a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.【考点】1.二次函数;2.二次函数的性质;3.解二次不等式.5.已知实数满足约束条件则的最大值是.【答案】9【解析】作出可行域及目标函数线如图,平移目标函数线使之经过可行域,当目标函数线过点时目标函数线的纵截距最大此时也最大.,所以.【考点】线性规划.6.下列结论正确的是A.若,则B.若,则C.若则D.若,则【答案】D【解析】对于A若c<0则错,对于B,若A,B都是负数则错,对于C,只有两个同向且全正的不等式才恒成立,故只有D正确.【考点】不等式的基本性质.7.(本小题满分8分)已知函数.(Ⅰ)当时,解关于的不等式;(Ⅱ)当时,解关于的不等式.【答案】(Ⅰ)(Ⅱ)当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或【解析】第一问考查了一元二次不等式的解法,第二问首先对二次三项式因式分解得到,再分类讨论两根的大小得到不等式的解集.试题解析:(Ⅰ)当时,不等式可化为,即,解得,所以不等式的解集为.(Ⅱ)当时,不等式可化为,即,则,当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或.【考点】一元二次不等式的解法,分类讨论的思想.8.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划9.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式10.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.11.若关于的不等式在区间上有解,则实数的取值范围为()A.B.C.(1,+∞)D.【答案】A【解析】因为,则不等式可化为:,设,由题意得只需,因为函数为区间上的减函数,所以,所以选A【考点】1.分离参数;2.存在性问题;12.若,且,则的最小值是()A.B.C.2D.3【答案】B【解析】由已知条件可得(b=c时等号成立),所以,故选B【考点】不等式和最值计算综合问题13.若,则()A.B.C.D.【答案】C【解析】不等式的两边同时乘以负数,不等号方向改变,故A错,B错,C错,只有B对,故选B.【考点】不等式的基本性质.14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.已知,则的最大值是.【答案】3【解析】求解该不等式组在第一象限及与坐标轴的交点坐标是(0,2),(1,4),(5,0),(0,0),分别代入目标函数z=-x+y,得2,3,-5,0比较得最大值是3,当且仅当x=1,y=4时取得最大.【考点】线性规划的应用.16.(12分)已知函数,(1)当时,解不等式;(2)比较的大小;(3)解关于x的不等式.【答案】(1);(2)详见解析;(3)详见解析【解析】(1)当时,将不等式分解因式,得到解集;(2)比较大小,可以做差,然后通分,分解因式,然后讨论的范围,比较两数的大小;(3)第一步,先分解因式,第二步,根据上一问的结果得到与的大小关系,得到解集.试题解析:解:(1)当时,有不等式,∴,∴不等式的解集为:;(2)∵且∴当时,有当时,有当时,;(3)∵不等式当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【考点】1.解二次不等式;2.比较大小.17.(本题满分12分)已知函数,的解集为(1)求,的值;(2)为何值时,的解集为R.【答案】(1);(2)【解析】(1)不等式的解集的端点就是其对应方程的实根,所以代入,解,然后根据韦达定理求;(2)代入上一问的结果,问题转化为解集为,所以讨论两种情况,和.试题解析:解(1)由已知得是方程的两根,的解集为(2)由(1)得解集为,当时,不等式解集为成立,当时,由(1)(2)可得.【考点】1.二次不等式的解法;2.二次不等式恒成立;3.韦达定理.18.不等式的解集是.【答案】【解析】根据解一元二次不等式得口诀“大于取两边,小于取中间”可得不等式的解集是【考点】解一元二次不等式19.关于不等式的解集为,则等于()A.B.11C.D.【答案】C【解析】二次不等式的解集的端点值就是二次方程的实根,所以根据韦达定理,,解得,,所以【考点】1.一元二次不等式的解法;2.韦达定理.20.(共10分)(1)解不等式:;(2)解关于的不等式:【答案】(1);(2)详见解析.【解析】(1)将此分式不等式转化为相乘形式,即,即,然后按二次不等式求解;(2)解此类型的含参二次不等式,第一步,先分解因式,第二步,讨论两根的大小关系,根据根的大小关系,写出不等式的解集.试题解析:解:(1)原不等式等价于故原不等式的解集为(2)原不等式可化为综上:不等式的解集为:【考点】1.解分式不等式;2.解含参二次不等式.21.已知,则的最小值是()A.10B.C.12D.20【答案】C【解析】,,当且仅当时取得等号.【考点】基本不等式.22.若,则下列正确的是()A.B.C.D.【答案】D【解析】A.若,则不成立,所以错误;B.若,则不成立,所以错误;C.若,则不成立,所以错误;D因为,不等式两边同时减去同一个数,不等号方向不变,所以正确,故选择D【考点】不等式性质23.不等式的解集是____________________.【答案】【解析】不等式变形为:,分解因式可得:,所以解集为【考点】解一元二次不等式24.函数f(x)=,若f(x0)=3,则x的值是()A.1B.C.D.【答案】D【解析】f(x)=3,所以,舍去,或,其中舍去,或,舍去,综上,故选D【考点】分段函数求值25.三个数,,的大小关系为()A.B.C.D.【答案】C【解析】,所以有,故选C.【考点】指数的大小比较.26.若,,且恒成立,则的最小值是()A.B.C.D.【答案】B【解析】分离参数得恒成立,两边平方得,而,当且仅当时等号成立,所以,故选B.【考点】1、不等式性质;2、均值不等式;3、不等式的恒成立.【方法点晴】本题主要考查的是含参不等式的恒成立问题,属于中档题题.首先利用不等式的性质将不等式变形分离出常数,转化为求的最大值问题,再平方后运用基本不等式求其最大值,注意分析等号能否取得.27.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.28.设,则的大小关系A.B.C.D.【答案】B【解析】在同一直角坐标系中画出函数:的图像(略),由图像可知.故选B.【考点】指数函数和对数函数的图像和性质.29.若关于x的不等式(2x-1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是__________.【答案】【解析】关于x的不等式(2x-1)2<ax2等价于,其中且有,故有,不等式的解集为,所以解集中一定含有1,2,3,可得,所以,解得.【考点】含参数的一元二次方程的解法.30.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集31.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集32.已知实数满足,设,则的取值范围是()A.B.C.D.【答案】D【解析】设且,则,令,所以,当时上述不等式中的等号成立,所以.【考点】基本不等式的应用.【方法点晴】本题主要考查了基本不等式的应用,其中正确构造基本不等式的应用条件是使用基本不等式的基础和关键,试题思维量大,运算繁琐,属于难题,着重考查了构造思想和转化与化归思想的应用,本题的解答中,设且,得,即可利用基本不等式,可求得的值,即可求解取值范围.33.下列关于的不等式解集是实数集R的为()A.B.C.D.【答案】C【解析】A中的解集是,B中的解集是,C中的解集是R,D中的解集是,故答案为C.【考点】不等式的解法.34.已知,那么下列不等式中正确的是()A.B.C.D.【答案】D【解析】由题根据不等式的性质,A,B,C选项,数的正负不明,错误;而选项D,无论取任何数都成立。
职高高一不等式(2)测试卷+答案
职高高一不等式(2)测试卷一、选择题:1.已知不等式ax 2+bx +c <0(a ≠0)的解集为∅,则( ) A .a <0,Δ>0 B .a <0,Δ≤0 C .a >0,Δ≤0D .a >0,Δ>02.不等式4x 2+4x +1≤0的解集为( ) A .{x |x ≠-12} B .{-12} C .∅D .R3.不等式3x 2-7x +2<0的解集为( ) A .{x |13<x <2} B .{x |x <13或x >2} C .{x |-12<x <-13}D .{x |x >2}4.不等式3x 2-2x +1>0的解集为( ) A.⎩⎨⎧⎭⎬⎫x |-1<x <13 B.⎩⎨⎧⎭⎬⎫x |13<x <1 C .∅D .R5.函数y =x 2+x -12的定义域是( ) A .{x |x <-4或x >3} B .{x |-4<x <3} C .{x |x ≤-4或x ≥3}D .{x |-4≤x ≤3}6.已知{x |ax 2+bx +c >0}=⎝ ⎛⎭⎪⎫-13,2,则关于x 的不等式cx 2+bx+a <0的解集是( )A.⎝⎛⎭⎪⎫-2,13B.⎝⎛⎭⎪⎫-3,12C .(-∞,-3)∪⎝ ⎛⎭⎪⎫12,+∞D .(-∞,-2)∪⎝ ⎛⎭⎪⎫13,+∞7.不等式x -2y +6<0表示的区域在直线x -2y +6=0的( ) A .右上方B .右下方C .左上方 D .左下方 8.不在3x +2y <6表示的平面区域内的点是( ) A .(0,0) B .(1,1)C .(0,2)D .(2,0)9.不等式组⎩⎪⎨⎪⎧x +3y -6≤0,x -y +2<0表示的平面区域是( )10.已知点(-3,-1)和(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞) 11.下列二元一次不等式组可用来表示图中阴影部分是( )A.⎩⎪⎨⎪⎧x +y -1>0,2x +3y -6<0,x -y -1≥0,x -2y +2≤0B.⎩⎪⎨⎪⎧x +y -1<0,2x +3y -6≥0,x -y -1≥0,x -2y +2<0C.⎩⎪⎨⎪⎧x +y -1>0,2x +3y -6≤0,x -y -1≤0,x -2y +2>0D.⎩⎪⎨⎪⎧x +y -1≥0,2x +3y -6<0,x -y -1<0,x -2y +2≥012.下面给出的四个点中,到直线x -y +1=0的距离为22,且位于⎩⎪⎨⎪⎧x +y -1<0,x -y +1>0表示的平面区域内的点是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)二、填空题:1.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如下表:2.不等式-4<x 2-5x +2<26的整数解为________.3.不等式|x |+|y |≤1所表示的平面区域的面积是______________. 4.已知点P (1,-2)及其关于原点的对称点中有且只有一个在不等式2x - by +1>0表示的平面区域内,则b 的取值范围是________.三、解答题:1.已知M ={x |-9x 2+6x -1<0},N ={x |x 2-3x -4<0}.求:M ∩N .2.解关于x 的不等式ax 2+(1-a )x -1>0(a >-1).3.画出不等式(x -y )(x -y -1)≤0表示的平面区域.3.画出不等式组⎩⎪⎨⎪⎧y <x ,x +2y <4,y >-2表示的平面区域.5.若不等式ax 2+bx -1>0的解集是{x |1<x <2}. (1)求a ,b 的值;(2)求不等式ax +1bx -1≥0的解集.6.在△ABC中,A(3,-1),B(-1,1),C(1,3),写出△ABC区域所表示的二元一次不等式组(包括边界).7.假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?职高高一不等式(2)测试卷答案一、选择题: 1答案 C2解析 4x 2+4x +1≤0⇒(2x +1)2≤0,∴x =-12.答案 B3解析 3x 2-7x +2<0⇒(3x -1)(x -2)<0⇒13<x <2.答案 A4解析 ∵Δ=(-2)2-4×3×1=-8<0,∴抛物线y =3x 2-2x +1开口向上,与x 轴无交点,故3x 2-2x +1>0恒成立,即不等式3x 2-2x +1>0的解集为R . 答案 D5解析 由x 2+x -12≥0,即(x +4)(x -3)≥0,∴x ≥3,或x ≤-4. 答案 C6解析 由题意,知a <0,且-13,2为方程ax 2+bx +c =0的两个根.∴⎩⎪⎨⎪⎧-13+2=-b a ,-13×2=c a ⇒⎩⎪⎨⎪⎧b =-53a ,c =-23a .∴cx 2+bx +a <0,即-23ax 2-53ax +a <0,即2x 2+5x -3<0,解得-3<x <12.答案 B7解析 取点(0,0)验证,知原点不在x -2y +6<0的区域内,∴x -2y +6<0表示的区域在直线x -2y +6=0的左上方. 答案 C8解析 把各点的坐标代入不等式3x +2y <6验证,知(2,0)不成立. 答案 D9解析 代入两个特殊点(0,0),(-3,0)试之,即可. 答案 B10解析 依题意,可得(-7-a )(24-a )<0.即(a +7)(a -24)<0.∴-7<a <24. 答案 B 11答案 C12解析 将点(-1,-1)代入验证,知满足题意.故选C. 答案 C 二、填空题:1解析 观察对应值表,可知解集为{x |-2<x <3}. 答案 {x |-2<x <3} 2解析⎩⎪⎨⎪⎧ x 2-5x +6>0,x 2-5x -24<0⇒⎩⎪⎨⎪⎧ (x -2)(x -3)>0,(x -8)(x +3)<0⇒⎩⎪⎨⎪⎧x >3,或x <2,-3<x <8.∴-3<x <2,或3<x <8. 答案 -2,-1,0,1,4,5,6,73解析 画出|x |+|y |≤1所表示的平面区域如图,其面积为2.答案 24解析 ∵点P (1,-2)关于原点的对称点(-1,2)有且仅有一个适合不等式2x -by +1>0,∴⎩⎪⎨⎪⎧ 2+2b +1>0,-2-2b +1≤0,或⎩⎪⎨⎪⎧-2-2b +1>0,2+2b +1≤0,解得b ≥-12或b ≤-32. 答案 ⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫-12,+∞三、解答题:1、解 由-9x 2+6x -1<0,得9x 2-6x +1>0.即(3x -1)2>0.解得x ≠13.∴M ={x |x ∈R ,且x ≠13}. 由x 2-3x -4<0,得(x -4)(x +1)<0. 解得-1<x <4. ∴N ={x |-1<x <4}.∴M ∩N ={x |-1<x <4,且x ≠13}.2解 二次项系数含有参数,因此对a 在0点处分开讨论.若a ≠0,则原不等式ax 2+(1-a )x -1>0等价于(x -1)(ax +1)>0.其对应方程的根为-1a 与1.又因为a >-1,则:①当a =0时,原不等式为x -1>0, 所以原不等式的解集为{x |x >1}; ②当a >0时,-1a <1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1,或x <-1a ; ③当-1<a <0时,-1a >1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <-1a . 3解 (x -y )(x -y -1)≤0⇔⎩⎪⎨⎪⎧x -y ≤0,x -y -1≥0,或⎩⎪⎨⎪⎧x -y ≥0,x -y -1≤0,而不等式组⎩⎪⎨⎪⎧x -y ≤0,x -y -1≥0无解,故不等式(x -y )(x -y -1)≤0表示的平面区域如图所示(阴影部分).4解 原不等式组等价于⎩⎪⎨⎪⎧ x -y >0,x +2y -4<0,y +2>0,①②③将(1,0)代入①②③的左边.根据“异号下”的规则,不等式①表示的平面区域在直线x -y =0的右下方,不等式②表示的区域在直线x +2y -4=0的左下方.根据“同号上”的规则,不等式③表示的平面区域在直线y +2=0上方.故不等式组表示的平面区域如图中的三角形阴影(不包括边界).5解 (1)∵不等式ax 2+bx -1>0的解集是{x |1<x <2},∴a <0,且1和2是方程ax 2+bx -1=0的两个根,∴⎩⎨⎧a +b -1=0,4a +2b -1=0.解得⎩⎪⎨⎪⎧a =-12,b =32.(2)由(1)知不等式ax +1bx -1≥0即为-12x +132x -1≥0⇔x -23x -2≤0.⇔⎩⎨⎧3x -2≠0,(x -2)(3x -2)≤0⇔23<x ≤2. 即原不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x ≤2. 6解 由两点式,得AB ,BC ,CA 的直线方程并化简为:AB :x +2y -1=0,BC :x -y +2=0,CA :2x +y -5=0,如图所示.原点(0,0)不在各直线上,将原点坐标代入到各直线方程左端,结合式子的符号,可得不等式组为⎩⎨⎧x +2y -1≥0,x -y +2≥0,2x +y -5≤0.7解(1)设中低价房面积形成数列{a n },由题意,知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n ,令25n2+225n≥4750,即n2+9n-190≥0,而n是正整数,所以n≥10,所以到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米.(2)设新建住房面积形成数列{b n},由题意,可知{b n}是等比数列,其中b1=400,q=1.08,则b n=400×(1.08)n-1.由题意,可知a n>0.85b n,即250+(n-1)·50>400×(1.08)n-1×0.85.满足上述不等式的最小正整数为n=6,所以到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.11。
职高高一数学不等式练习1
高一数学不等式练习姓名 得分一.选择题(本大题有15小题,每小题3分,共45分) 1、若b a >且0≠c ,则下列不等式一定成立的是( ) (A )c b c a ->- (B )bc ac > (C )22b a > (D )||||b a > 2、 已知a ,b ,c ,d ∈R ,若a >b ,c >d ,则 ( ) (A) a -c >b -d (B) a +c >b +d (C) ac >bd (D)db c a > 3.不等式01312>+-))((x x 的解集是( )A .}2131|{>-<x x x 或B .}2131|{<<-x x C .}21|{>x x D .}31|{->x x 4、若a >b >0,给出下列不等式,其中正确的是( )(A)ac >bc (B)a1>b1 (C)ab b a 2>+ (D)ac bc >5、若)R b ,a (a 0b ∈<<,则下列不等式中正确的是( ) (A)b 2<a 2 (B)b1>a1 (C)b <a (D)a b >a +b6、若0<<b a ,则A .22b a <B .ab a <2C .1>baD .ab b >2 7、已知不等式⎩⎨⎧>≤--a x 02x x 2的解集是∅,则实数a 的取值范围是( )(A) a >2 (B)a < 1 (C)a ≥2 (D)a ≤18.若0>x ,0>y ,21=+y x ,则xy 4有( ) (A )最小值1(B )最大值1 (C )最小值81(D )最大值819、 已知a>1 ,-1<b<0,那么( )A 、ab>bB 、ab<-aC 、ab 2<abD 、ab 2>b 210、若191=+ba(*∈z b a ,)则ab 的最小值为( ) A 、20 B .16 C .14 D .1211、设b a ,()10,∈且b a ≠,则下列各数中最大的是( ) A 、b a + B 、2ab C 、2ab D 、22b a + 12、已知0>x ,那么xx 4+有 ( ) A .最大值4 B .最小值4 C .最大值2 D .最小值2 13.若扇形的周长为C ,则扇形的面积有( )(A )最小值182c (B )最大值 182c (C )最小值92c (D )最大值92c14、函数xx x y 12+-=(0>x )有( )A .最大值1B .最小值1C .最大值2D .最小值2 15、如果关于x 的不等式5x 2-a ≤0的正整数解是1,2,3,那么实数a 的取值范围是( ) A 、45≤a ≤80B 、45<a < 80C 、a < 80D 、45<a二、选择题(本大题有8小题,每小题3分,共24分)16、 不等式01452≤-+x x 的解集是 . 17.不等式)(log 121-x >0的解集是__________________.18、若x +2y = 4(x >0 ,y >0),则xy 的最大值为____________19、已知关于x 的不等式x 2+ax -3≤0,它的解集是[-1,3],则实数a = 20、要制作如图所示的铝合金窗架,当窗户采光为一常数S 时CD(中间横梁面积忽略不计),要使所用的铝合金材料最省,窗户的宽 AB 与高AD 的比应为_________________ 。
高一数学不等式部分经典习题及答案
ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
高一数学不等式试题
高一数学不等式试题1.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划4.设满足约束条件,则的最大值为()A.-8B.3C.5D.7【答案】D【解析】不等式表示的可行域为直线围成的三角形及其内部,三个顶点为,当过点时取得最大值7【考点】线性规划5.已知实数x、y满足(0<a<1),则下列关系式恒成立的是()A.B.>C.D.【答案】D【解析】,是减函数,所以当时,,所以当时,只有成立,而当时,不能确定与的大小,以及与的大小.【考点】不等式的性质6.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题7.若实数,满足,则的取值范围是(用区间表示)【答案】【解析】且,设,,则,所以且,所以且.所以的取值范围是.【考点】1.基本不等式;2.三角换元求取值范围.8.设的最小值为_________.【答案】【解析】正数满足,,当且仅当时取等号,所以所求的最小值为。
【考点】基本不等式9.下列选项中,使不等式成立的x的取值范围是A.(1,+∞)B.(0,1)C.(-1,0)D.(-∞,-1)【答案】D【解析】当时,不等式为显然无解,当时,不等式为,即,所以不等式解集为(-∞,-1),故选择D【考点】解不等式10.解关于的不等式:【答案】详见解析【解析】解含参的一元二次不等式,第一步先讨论二次项前的系数,此题为,所以先不讨论,第一步,先将式子分解因式,整理为,第二步,,,讨论两根的大小关系,从而写出解集的形式.试题解析:原不等式可化为:,(1)当-1<a<0时,,所以x>-或x<1。
高中数学不等式经典题型专题训练试题(含答案)
高中数学不等式经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共10小题,每题2分,共20分)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值63.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<28.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.二.填空题(共10小题,每题2分,共20分)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.12.已知a,b∈R+,且2a+b=1则的最大值是______.13.已知向量,若⊥,则16x+4y的最小值为______.14.若x>0,y>0,且+=1,则x+y的最小值是______.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.17.若实数a+b=2,a>0,b>0,则的最小值为______.18.若x,y满足约束条件,则z=3x-y的最小值是______.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.20.已知f(x)=,不等式f(x)≥-1的解集是______.三.简答题(共10小题,共60分)21.(6分)已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.22.(6分)设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.23.(6分)已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥24.(6分)设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.25.(6分)已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•.(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.26.(6分)27.(4分)已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.28.(4分)若a,b,c∈R+,且++=1,求a+2b+3c的最小值.29.(10分)某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)30.(6分)已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.参考答案一.单选题(共__小题)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b答案:D解析:解:由题意知,a=sin14°+cos14°==,同理可得,b=sin16°+cos16°=,=,∵y=sinx在(0,90°)是增函数,∴sin59°<sin60°<sin61°,∴a<c<b,故选D.2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值6答案:D解析:解:画出不等式组表示的平面区域如图中阴影部分所示.当目标函数z=2x-y过直线x=3与直线y=0的交点(3,0),目标函数取得最大值6;当目标函数z=2x-y过直线x=0与直线x-y+2=0的交点(0,2)时,目标函数取得最小值-2.故选D.3.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.答案:D解析:解:y=sinx+cosx+sinxcosx=sinx(1+cosx)+1+cosx-1=(1+sinx)(1+cosx)-1≤[(1+sinx)2+((1+cosx)2]-1(当且仅当1+sinx=1+cosx时成立,此时sinx=cosx=)即y(max)=+故选D4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}答案:A解析:解:原不等式化为|x|2-|x|-2<0因式分解得(|x|-2)(|x|+1)<0因为|x|+1>0,所以|x|-2<0即|x|<2解得:-2<x<2.故选A5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.答案:B解析:解:∵不等式f(x)=ax2-x-c>0的解集为(-2,1),∴a<0,且-2,1是对应方程ax2-x-c=0的两个根,∴(-2,0),(1,0)是对应函数f(x)=ax2-x-c与x轴的两个交点,∴对应函数y=f(x)的图象为B.故选B.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a答案:A解析:解:∵函数y=0.2x是减函数,0.3>0.2,故有a=0.20.3<0.20.2=1,又a=0.20.3>0,可得b>a >0.由于函数y=log2x在(0,+∞)上是增函数,故c=log20.4<log21=0,即c<0.综上可得,b>a>c,故选A.7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<2答案:D解析:解:采用特殊值法,取a=,b=.则a2=,b2=,ab=,故知A,C错;对于B,由于函数y=是定义域上的减函数,∴,故B错;对于D,由于函数y=2x是定义域上的增函数,∴2b<2a<2,故D对.故选D.8.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ答案:D解析:解:对于AB中的α,β可以分别令为30°,60°则知道A,B均不成立对于C中的α,β可以令他们都等于15°,则知道C不成立cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ故选D9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n 答案:C解析:解:观察B,D两个选项,由于底数2>1,故相关的函数是增函数,由0<m<n,∴2m<2n,log2m<log2n,所以B,D不对.又观察A,C两个选项,两式底数满足0<<1,故相关的函数是一个减函数,由0<m<n,∴,所以A不对,C对.故答案为C.10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.答案:D解析:解:∵a<b<0,∴,A正确,-a>-b>0,,B正确,|a|>|b|=-b,C正确;,故D不正确.故选D.二.填空题(共__小题)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.12.已知a,b∈R+,且2a+b=1则的最大值是______.答案:解析:解:∵2a+b=1,∴4a2+b2=1-4ab,∴S==4ab+2-1,令=t>0,则S=4-,∵2a+b=1,∴1≥2⇒0<t≤故当t=时,S有最大值为:故答案为:.13.已知向量,若⊥,则16x+4y的最小值为______.答案:8解析:解:∵∴4(x-1)+2y=0即4x+2y=4∵=当且仅当24x=22y即4x=2y=2取等号故答案为814.若x>0,y>0,且+=1,则x+y的最小值是______.答案:25解析:解:∵x>0,y>0,且+=1,∴x+y=(x+y)(+)=17++≥17+2=25当且仅当=,即x=5,y=20时取等号,∴x+y的最小值是25,故答案为:25.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).答案:20解析:解:设矩形高为y,由三角形相似得:=,且x>0,y>0,x<40,y<40,⇒40=x+y≥2,仅当x=y=20m时,矩形的面积s=xy取最大值400m2.故答案为:20.16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.17.若实数a+b=2,a>0,b>0,则的最小值为______.答案:解析:解:∵实数a+b=2,a>0,b>0,则=+=++≥+2=+,当且仅当b=a=4-2时取等号.故答案为:.18.若x,y满足约束条件,则z=3x-y的最小值是______.答案:-4解析:解:由约束条件作出可行域如图,化目标函数z=3x-y为y=3x-z,由图可知,当直线y=3x-z过点C(0,4)时直线在y轴上的截距最大,z有最小值为-4.故答案为:-4.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.答案:[2,]解析:解:∵a,b∈R,且4≤a2+b2≤9;∴设a=rcosθ,b=rsinθ,且2≤r≤3,∴s=a2-ab+b2=r2cos2θ-r2sinθcosθ+r2sin2θ=r2(1-sinθcosθ)=r2(1-sin2θ),由三角函数的图象与性质,得;当sin2θ取最大值1且r取最小值2时,s取得最小值2,当sin2θ取最小值-1且r取最大值3时,s取得最大值;综上,a2-ab+b2的范围是[2,].故答案为:.20.已知f(x)=,不等式f(x)≥-1的解集是______.答案:{x|-4≤x≤2}解析:解:∵已知f(x)=,故由不等式f(x)≥-1可得①,或②.解①可得-4<x≤0,解②可得0<x≤2.综上可得,不等式的解集为{x|-4≤x≤2},故答案为{x|-4≤x≤2}.三.简答题(共__小题)21.已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.答案:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.解析:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.22.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.答案:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.解析:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.23.已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥.答案:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.解析:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.24.设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.答案:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)解析:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)25.已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.答案:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.解析:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.26、解:由柯西不等式:(1+3+5)²≤(a+b+c)()因为:a+b+c=12所以(1+3+5)²≤12*()81≤12*()≤当且仅当==时取等号即:最小值为27.已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.答案:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.解析:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.28.若a,b,c∈R+,且,求a+2b+3c的最小值.答案:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.解析:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.29.某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)答案:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.解析:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.30.已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.答案:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.解析:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.。
高一数学具体的不等式试题答案及解析
高一数学具体的不等式试题答案及解析1.已知关于的不等式的解集是,则 .【答案】2【解析】化分式不等式为整式不等式,根据解集是得,,方程的两实根分别为,,所以=,a=2【考点】解分式不等式,二次方程与二次不等式之间的关系.2.不等式的解集是A.B.C.D.【答案】D【解析】:因为方程的两个根为,所以不等式的解集是。
故选D。
【考点】一元二次不等式的解法.点评:熟练掌握一元二次不等式的解法和实数的性质是解题的关键.3.不等式的解集是 .【答案】【解析】根据题意,由于不等式,故可知不等式的解集为【考点】一元二次不等式点评:主要是考查了一元二次不等式的求解,属于基础题。
4.不等式的解集为【答案】【解析】根据题意,由于不等式等价于(x+2)(x-1)<0,解得-2<x<1,因此可知不等式的解集为。
【考点】一元二次不等式的解集点评:主要是考查了一元二次不等式的求解,属于基础题。
5. a∈R,且a2+a<0,那么-a,-a3,a2的大小关系是()A.a2>-a3>-a B.-a>a2>-a3C.-a3>a2>-a D.a2>-a>-a3【答案】B【解析】由已知中a2+a<0,解不等式可能求出参数a的范围,进而根据实数的性质确定出a3,a2,-a,-的大小关系.解:因为a2+a<0,即a(a+1)<0,所以-1<a<0,根据不等式的性质可知-a>a2>-a3,故选B.【考点】不等式比较大小点评:本题考查的知识点是不等式比较大小,其中解不等式求出参数a的范围是解答的关键6.不等式ax2+bx+2>0的解集是,则a+b的值是()A.10B.-10C.-14D.14【答案】C【解析】根据题意,由于不等式ax2+bx+2>0的解集是,那么说明了是ax2+bx+2=0的两个根,然后利用韦达定理可知则a+b的值是-14,故选C.【考点】一元二次不等式的解集点评:主要是考查了二次不等式的解集的运用,属于基础题。
高一数学不等式的性质试题
高一数学不等式的性质试题1.若则下列不等式成立的是()A.B.C.D.【答案】D【解析】由题意可得又有基本不等式可得,且,对不四个选项可得.【考点】基本不等式;不等关系与不等式.2.已知且,则下列不等式恒成立的是()A.B.C.D.【答案】C【解析】由题知,值不确定,,由于所以对,其它三项不一定对.【考点】判断不等式的大小关系.3.若,则下列不等式成立的是()A.B.C.D.【答案】D.【解析】由条件可知:A:∵,∴A错误;B:,∴B错误;C:,∴C错误;D:,∴D正确.【考点】作差法证明不等式.4.下列不等式正确的是A.若,则B.若,则C.若,则D.若,则【答案】B【解析】A.若c<0,则不等号改变,若c=0,两式相等,故A错误;B. 若,则,故,故B正确;C.若b=0,则表达是不成立故C错误;D.c=0时错误.【考点】不等式的性质.5.已知a,b为非零实数,且a<b,则下列命题一定成立的是()A.B.C.D.【解析】A.中,例如当时不成立;B.中,例如时不成立;D.中,例如时不成立;C.中,不等式两边同乘以非零正实数,不等号方向不变,得到,所以C正确【考点】不等式的简单性质6.如果a<b<0,那么( ).A.a-b>0B.ac<bc C.>D.a2<b2【答案】C【解析】根据题意,由于a<b<0,则a-b<0 故错误,对于c=0时则不等式ac<bc不成立,对于>符合倒数性质可知,成立,对于a2<b2,a=-3,b=-2不成立,故答案为C.【考点】不等式的性质点评:主要是考查了不等式的性质的运用,属于基础题。
7.设x > 0, y > 0,, , a 与b的大小关系()A.a >b B.a <b C.a b D.a b【答案】B【解析】由x>0,y>0,结合不等式的性质可得,解:∵x>0,y>0,∴x+y+1>1+x>0,1+x+y>1+y>0,则可知,,那么可知,故可知得到a <b,选B.【考点】不等式的性质点评:本题主要考查了不等式的性质的简单应用,解题的关键是熟练应用基本性质8.已知实数满足,,则的取值范围是.【答案】【解析】将代入,并化简,构造关于的一元二次方程:,该方程有解,则,解得【考点】不等式的运用点评:主要是考查了构造方程的思想,借助于判别式得到范围,属于中档题。
高一数学含绝对值不等式的解法练习题
含绝对值的不等式解法一、选择题1.已知a <-6,化简26a -得( ) A. 6-a B. -a -6C. a +6D. a -62.不等式|8-3x |≤0的解集是( ) A. ∅B. RC. {(1,-1)}D. ⎭⎬⎫⎩⎨⎧38 3.绝对值大于2且不大于5的最小整数是( ) A. 3B. 2C. -2D. -54.设A ={x | |x -2|<3},B ={x | |x -1|≥1},则A ∩B 等于( )A. {x |-1<x <5}B. {x |x ≤0或x ≥2}C. {x |-1<x ≤0}D. {x |-1<x ≤0或2≤x <5}5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A 中的元素个数是( ) A. 11 B. 10 C. 16 D. 156.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N ( ) A. {4-≥y y } B. {51≤≤-y y } C. {14-≤≤-y y } D. ∅7.语句3≤x 或5>x 的否定是( )A. 53<≥x x 或B. 53≤>x x 或C. 53<≥x x 且D. 53≤>x x 且 二、填空题1.不等式|x +2|<3的解集是 ,不等式|2x -1|≥3的解集是 .2.不等式1211<-x 的解集是_________________. 3.根据数轴表示a ,b ,c 三数的点的位置,化简|a +b |+|a +c |-|b -c |= ___ .三、解答题1.解不等式 1.02122<--x x 2.解不等式 x 2 - 2|x |-3>03.已知全集U = R , A ={x |x 2- 2 x - 8>0}, B ={x ||x +3|<2},求:(1) A ∪B , C u (A ∪B ) (2) C u A , C u B , (C u A )∩(C u B )4.解不等式3≤|x -2|<9 7.解不等式|3x -4|>1+2x .5.画出函数|21|x-||x y ++=的图象,并解不等式| x +1|+| x -2|<4.6.解下列关于x 的不等式:1<| x - 2 |≤77.解不等式2≤|5-3x |<9 11.解不等式|x -a |>b8.解关于x 的不等式:|4x -3|>2x +19.解下列关于x 的不等式:021522≤---x x x含绝对值的不等式解法答案一、选择题(共7题,合计35分) 1.1760答案:B 2.1743答案:D 3.1744答案:D 4.1773答案:D 5.2075答案:C 6.4109答案:B 7.1672答案:D二、填空题(共5题,合计21分)1.1539答案:{-5<x <1},{x |x ≥2或x ≤-1}2.1725答案:{x |0<x <4}3.1602答案:⎭⎬⎫⎩⎨⎧≤≤-3434x x4.1728答案:a <35.1788答案:0三、解答题(共19题,合计136分) 1.1510答案:{x |x >10或x <-10}2.1502答案:{}33-<>x x x 或3.1509答案:(1) A ∪B = {x |x <-1或x >4=, C U (A ∪B )= {x |-1≤x ≤4}(2) C U A = {x |-2≤x ≤4}, C U B = {x |x ≤-5或x ≥-1}, (C U A )∩(C U B ) = {x |-1≤x ≤4}4.1535答案:⎭⎬⎫⎩⎨⎧>-<317x x x 或5.1597答案:⎭⎬⎫⎩⎨⎧≥-≤2721x x x 或6.1598答案:{x |-7<x ≤-1或5≤x <11}7.1599答案:⎭⎬⎫⎩⎨⎧><553x x x 或8.1600答案:2523<<-x9.1538答案:⎭⎬⎫⎩⎨⎧>-<032x x x 或 10.1554答案:⎭⎬⎫⎩⎨⎧<≤≤<-31437134x x x 或 11.1536答案:当b <0时,解集为R ;当b =0时,解集为{x |x ∈R 且x ≠a };当b >0时,解集为{x |x <a -b 或x >a +b }.12.1601答案:a 的取值范围为a >5 13.1721答案:-5≤x <1或3<x ≤9.14.1722答案:x >2或x <1/3.15.1723答案:|x -1|+|x -2|<3⇔0<x <1或1≤x <2或2≤x <3⇔0<x <3.16.1724答案:当m >0时,原不等式的解集是{x |-3m <x <2m };当m =0时,原不等式的解集是∅;当m <0时,原不等式的解集是{x |2m <x <-3m }. 17.1726答案:x <-1/2或0<x <4.18.1727答案:x ≤-3或2<x ≤519.4121答案:21<a <32。
高一数学不等式测试题
高一数学不等式测试题----49c5aa38-7166-11ec-87a3-7cb59b590d7d一、选择题(本大题共10小题,每小题5分,共50分)1.如果a<B<0,则()ac.ab>b2a11<12.如果| a+C |<B,那么()a.| a |<B |-C | B.|>C|-|b|c.|a|>|b|-|c|d.|a|<|c|-|b|3.假设a=,B=-3和C=-2,那么a,B和C的大小顺序是()a.a>b>cb.a>c>bc.c>a>bd.b>c>a()a.ac>BDB。
4.设B<0<A,d<C<0,则必须在下列不等式中建立AB>CDc.a+c>b+dd.a-c>b-d5.下列命题中正确的一个是()a.b+a≥2成立当且仅当a,b均为正数abA2+B2A+B≥ B.当且仅当a和B是正数22时成立c.logab+logab≥2成立当且仅当a,b∈(1,+∞)d、| a+1|≥ 2当且仅当a≠ 0A6.函数y=logx2-4x+3⋅3的领域⎛ 1.⎛ ⎛ is()x2+X-2⎛a.x≤1或x≥3b.x<-2或x>1c.x<-2或x≥3d.x7.给定x,y∈ R、命题a:|X-1 | 5,命题B:|X-1 | 5,然后()a.甲是乙的充分条件,但不是乙的必要条件b、 A是b的必要条件,但不是b的充分必要条件c.甲是乙的充要条件d、 A既不是B的充分条件,也不是B的必要条件8.已知实数x,y满足x2+y2=1,则代数式(1-xy)(1+xy)有()a、最小C.最小1,最大1213,最大24B。
最少3天,最多14天。
最小19.关于x的方程ax2+2x-1=0至少有一个正的实根的充要条件是()a、a≥0b.-1≤a<0c.a>0或-1<a<0d.a≥-13+x+x210.函数y=(x>0)的最小值是()1+xa、 2b.-1+23c.1+23d.-2+23二、填空题(本大题共4小题,每小题6分,共24分)11.关于X的不等式AX2+BX+2>0的解集是{X |-1,此时x=_________,y=_________。
高一年级数学同步测试(2)—不等式的解法
高一数学同步测试(2)—不等式的解法一、选择题:1.不等式1≤|x -3|≤6的解集是( )A .{x |-3≤x ≤2或4≤x ≤9}B .{x |-3≤x ≤9}C .{x |-1≤x ≤2}D .{x |4≤x ≤9}2.已知集合A ={x ||x -1|<2};B ={x ||x -1|>1};则A ∩B 等于( )A .{x |-1<x <3}B .{x |x <0或x >3}C .{x |-1<x <0}D .{x |-1<x <0或2<x <3} 3.不等式|2x -1|<2-3x 的解集为( )A .{x |x <53或x >1} B .{x |x <53}C .{x |x <21 或 21<x < 53}D .{x |-3<x <31} 4.已知集合A={x ||x +2|≥5};B={x |-x 2+6x -5>0};则A ∪B 等于 ( )A .RB .{x |x ≤-7或x ≥3}C .{x |x ≤-7或x >1}D .{x |3≤x <5} 5.不等式3129x -≤的整数解的个数是( )A .7B .6C .5D .4 6.不等式3112x x-≥-的解集是( )A .324x x ⎧⎫≤≤⎨⎬⎩⎭B .324x x ⎧⎫≤<⎨⎬⎩⎭C .324x x x ⎧⎫≤>⎨⎬⎩⎭或D .{}2x x <7.已知集合A ={x ||x -1|<2};B ={x ||x -1|>1};则A ∩B 等于( )A .{x |-1<x <3}B .{x |x <0或x >3}8.己知关于x 的方程(m +3)x 2-4m x +2m -1=0的两根异号;且负根的绝对值比正根大;那么实数m 的取值范围是( )A .-3<m <0B .m <-3或m >0C .0<m <3D .m <0 或 m >39.设集合{}{}2450,0P x x x Q x x a =--<=-≥;则能使P ∩Q=φ成立的a 的值是( ) A .{}5a a > B .{}5a a ≥C .{}15a a -<<D .{}1a a >10.已知0a >;若不等式43x x a -+-<在实数集R 上的解集不是空集;则a 的取值范围是( )A .0a >B .1a >C . 1a ≥D .2a >11.已知集合A ={x |x 2-x -6≤0};B ={x |x 2+x -6>0};S =R ;则C S (A ∩B )等于( )A .{x |-2≤x ≤3}B .{x |2<x ≤3}C .{x |x ≥3或x <2}D .{x |x >3或x ≤2}12.设集合{}212,12x A x x a B x x ⎧-⎫=-<=<⎨⎬+⎩⎭;若A B ⊆;则a 的取值范围是( )A .{}01a a ≤≤B .{}01a a <≤C .{}01a a <<D .{}01a a ≤<二、填空题:13.已知集合A={x ||x +2|≥5};B={x |-x 2+6x -5>0};则A ∪B= ; 14.若不等式2x -1>m(x 2-1)对满足-2≤x ≤2 的所有实数m 都成立;则实数x 的取值范围是 .15.不等式0≤x 2+m x +5≤3恰好有一个实数解;则实数m的取值范围是 . 16.己知关于x 的方程(m +3)x 2-4mx +2m -1=0 的两根异号;且负根的绝对值比正根大;那么实数m 的取值范围是 .三、解答题: 17.解下列不等式:⑴|x +2|>x +2; ⑵3≤|x -2|<9.18.解关于x 的不等式:(1) x 2-(a +1)x +a <0;(2) 0222>++mx x .19.设集合A={x |x 2+3k 2≥2k (2x -1)};B={x |x 2-(2x -1)k +k 2≥0};且A ⊆B ;试求k 的取值范围.20.不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ;求实数m 的取值范围.21.已知二次函数y =x 2+px +q ;当y <0时;有-21<x <31;解关于x 的不等式 qx 2+px +1>0.22.若不等式012>++p qx x p的解集为{}42|<<x x ;求实数p 与q 的值.参考答案一、选择题: ADBCA BDABB DA 二、填空题:13.{x |x ≤-7或x >1};14. 231271+<<+-x ;15.m=±2;16.-3< m <017、解析:⑴ ∵当x +2≥0时;|x +2|=x +2;x +2>x +2无解.当x +2<0时;|x +2|=-(x +2)>0>x +2 ∴当x <-2时;|x +2|>x +2 ∴不等式的解集为{x |x <-2} ⑵原不等式等价于不等式组⎩⎨⎧<-≥-9|2|3|2|x x由①得x ≤-1或x ≥5;由②得-7<x <11;把①、②的解表示在数轴上(如图); ∴原不等式的解集为{x |-7<x ≤-1或5≤x <11}.18、解析:(1)原不等式可化为:,0)1)((<--x a x 若a >1时;解为1<x <a ;若a >1时; 解为a <x <1;若a =1时;解为φ (2)△=162-m .①当时或即440162>-<>-m m m ;△>0.方程0222=++mx x 有二实数根:.416,4162221-+-=---=m m x m m x∴原不等式的解集为.416416|22⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+->---<m m x m m x x 或 ①当m =±4 时;△=0;两根为.421mx x -== 若,4=m 则其根为-1;∴原不等式的解集为{}1,|-≠∈x R x x 且. 若,4-=m 则其根为1;∴原不等式的解集为{}1,|≠∈x R x x 且. ②当-4<4<m 时;方程无实数根.∴原不等式的解集为R .19.解析:}0)]1()][13([|{≥+---=k x k x x A ;比较,1,13的大小+-k k因为),1(2)1()13(-=+--k k k(1)当k >1时;3k -1>k +1;A={x |x ≥3k -1或x 1+≤k }. (2)当k =1时;x R ∈.(3)当k <1时;3k -1<k +1;A={}131|+≤+≥k x k x x 或.22① ②(1)当k =0时;R x ∈<∆,0. (2)当k >0时;△<0;x R ∈.(3)当k <0时;k k x k k x -+≥--≤>∆或,0. 故:当0≥k 时;由B=R ;显然有A B ⊆; 当k <0时;为使A B ⊆;需要⇒⎪⎩⎪⎨⎧-+≥+--≤-kk k kk k 113k 1-≥;于是k 1-≥时;B A ⊆.综上所述;k 的取值范围是:.010<≤-≥k k 或20.解析: (1)当m 2-2m -3=0;即m =3或m =-1时;①若m =3;原不等式解集为R②若m =-1;原不等式化为4x -1<0∴原不等式解集为{x |x <41=;不合题设条件. (2)若m 2-2m -3≠0;依题意有⎪⎩⎪⎨⎧<--+-=∆<--0)32(4)3(032222m m m m m 即⎪⎩⎪⎨⎧<<-<<-35131m m ∴-51<m <3 综上;当-51<m ≤3时;不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R .21.解析: 由已知得x 1=-21;x 2=31是方程x 2+px +q =0的根;∴-p =-21+31q =-21×31∴p =61;q =-61;∴不等式qx 2+px +1>0即-61x 2+61x +1>0∴x 2-x -6<0;∴-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}.22.解析:由不等式012>++p qx x p的解集为{}42|<<x x ;得2和4是方程012=++p qx x p的两个实数根;且01<p .(如图)∴ .04242012<⇒⎪⎪⎩⎪⎪⎨⎧=⋅-=+<p p pq P解得.223,22=-=q P 注:也可从)4)(2(112--=++x x pq px x p 展开;比较系数可得.yxo 24。
高一数学必修5_基本不等式练习题
高一数学(必修5)不等式测试题一、选择题:1、若R c b a ∈,,,且b a >,则下列不等式一定成立的是( )A .c b c a -≥+B .bc ac >C .02>-ba c D .0)(2≥-cb a 2、函数)12lg(21)(-+-=x xx f 的定义域为( )A .),21(+∞ B .)2,21( C .)1,21(D .)2,(-∞3、已知01<<-a ,则( )A .a aa 2212.0>⎪⎭⎫ ⎝⎛> B .aa a ⎪⎭⎫⎝⎛>>212.02C .a a a22.021>>⎪⎭⎫ ⎝⎛ D .a aa 2.0212>⎪⎭⎫⎝⎛>4、不等式21≥-xx 的解集为( )A .)0,1[-B .),1[∞+-C .]1,(--∞D .),0(]1,(∞+--∞5、已知正数y x 、满足811x y+=,则2x y +的最小值是( ) A .18 B .16 C .8 D .10 6、下列命题中正确的是( )A .当2lg 1lg ,10≥+≠>x x x x 时且B .当0>x ,21≥+x xC .当20πθ≤<,θθsin 2sin +的最小值为22 D .当xx x 1,20-≤<时无最大值 7、在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当53≤≤s 时,目标函数32z x y =+的最大值的变化范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]二、填空题8、设y x ,满足,404=+y x 且,,+∈R y x 则y x lg lg +的最大值是 .9、已知变量y x ,满足约束条件22,41≤-≤-≤+≤y x y x .若目标函数(0)z ax y a =+>仅在点)1,3(处取得最大值,则a 的取值范围为___________.10、设0>a ,且1≠a ,函数)12lg()(2+-=a x a x f 有最小值,则不等式0)75(log 2>+-x x a 的解集为___________.11、某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =_____________班级 姓名 座号 成绩 一、选择题二、填空题8、 9、10、 11、三、解答题12、已知b a ,都是正数,并且b a ≠,求证:233255b a b a b a +>+.17.已知函数3222)(a b x a ax x f -++=,当)6()2(∞+--∞∈,, x 时,0)(<x f ;当)62(,-∈x 时,0)(>x f .①求b a 、的值;②设)16(2)1(4)(4)(-+++-=k x k x f kx F , 则当k 取何值时, 函数)(x F 的值恒为负数?。
(完整版)职高班数学不等式试题
高职班数学 《不等式》测试题班级 座号 姓名 分数 一.填空题: (32%) 1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表示为___ ______ ;3. | x 3|>1解集的区间表示为________________; 4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩ B = ,A ∪B = .5.不等式x 2>2 x 的解集为_______ _____;不等式2x 2 -3x -2<0的解集为________________.6. 当X 时,代数式 错误!未找到引用源。
有意义.错误!未找到引用源。
二.选择题:(20%)7.设、、均为实数,且<,下列结论正确的是( )。
(A)< (B)< (C)-<- (D)<8.设a >>0且>>0,则下列结论不正确的是( )。
(A)+>+ (B)->- (C)->- (D)>9.下列不等式中,解集是空集的是( )。
(A)x 2 - 3 x –4 >0 (B) x 2 - 3 x + 4≥ 0 (C) x 2 - 3 x + 4<0 (D) x 2- 4x + 4≥010.一元二次方程x 2 – mx + 4 = 0 有实数解的条件是m ∈( )(A )(-4,4) (B )[-4,4](C )(-∞,-4)∪(4, +∞) (D )(-∞,-4]∪[4, +∞)三.解答题(48%)11.比较大小:2x2 -7x + 2与x2-5x (8%) 12 .解不等式组(8%) 2 x - 1 ≥3x - 4≤ 712.解下列不等式,并将结果用集合和区间两种形式表示:(20%)(1) | 2 x – 3 |≥5 (2) - x 2 + 2 x – 3 >013.某商品商品售价为10元时,销售量为1000件,每件价格每提高0.2元,会少卖出10件,如果要使销售收入不低于10000元,求这种图书的最高定价.(12%)。
高一上数学不等式与函数综合测试题
高一上数学不等式与函数综合测试题一、单项选择题1.已知a>b,c<d,下列式子正确的是()A.a+c>b+dB.a-c>b-dC.ad>bcD.ad>b c2.若x+1x-1<0,则x的取值范围是()A.{x|-1<x<1}B.{x|x<-1}C.{x|x<-1或x>1}D.{x|x>1}3.已知x>0,则3x+4x有()A.最大值2 3B.最小值2 3C.最大值4 3D.最小值4 34.若a ,b ,c ,d ∈R ,且a>b ,c<d ,则下列式子正确的是( ) A.a -c>b -d B.a +c>b +d C.a c =b d D.a -d>b -c5.已知log2x =-1,则x -2等于( ) A.4 B.2 C.14 D.126.若x ∈R ,下列不等式一定成立的是( ) A.x 5<x 2 B.5-x >2-x C.x2>0D.(x +1)2>x2+x +17.已知x>0,则x+x-1的()A.最小值为2B.最大值为2C.最小值为1D.最大值为18.已知m>0,则m+16m取得最小值时,当且仅当m=()A.2B.4C.8D.169.若a,b,c∈R,且a>b,则下列不等式成立的是()A.c a< c bB.ac>bcC.c-a<c-bD.ac2>bc210.不等式|2x-1|>-1的解集为()A.RB.∅C.(0,1)D.(0,+∞)11.若根式3x2-5x +2没有意义,则x 的取值范围是( )A.2,13⎡⎤⎢⎥⎣⎦B.(-∞,0)C.2,13⎛⎫ ⎪⎝⎭D.2,3⎛⎫-∞ ⎪⎝⎭∪(1,+∞) 12.与不等式x -21-x ≥0同解的不等式是( )A.(x -2)(1-x )≥0B.1≤x ≤2C.1-x x -2≥0D.x -2x -1≤0 13.已知a -b<0,a>0,那么a ,b ,-a ,-b 的大小关系是( ) A.a>b>-b>-aB.b>a>-a>-bC.a>-b>-a>bD.a>-b>b>-a14.不等式|2x+5|<1的解集是()A.(-3,-2)B.(2,3)C.(-2,3)D.(-∞,-3)∪(2,+∞)15.若a∈[-2,4],则-a的取值区间为()A.[-2,4]B.[2,4]C.[-4,-2]D.[-4,2]16.不等式1-2x<3的解集为()A.{x|x>-1}B.{x|x>1}C.{x|x<-1}D.{x|x<1}17.下列大小关系中,恒成立的是()A.x+3>x+4B.4-x>3-xC.x2≥2x-1D.0<x218.方程x2-4x=0的根是()A.0B.4C.4或0D.-419.已知m>2,下列不等式中正确的是()A.m+2>2B.m-2<0C.m-1>2D.m-4<-220.集合A={x|x<2或x≥5}用区间表示为()A.(-∞,2)∪[5,+∞)B.(2,5]C.(-∞,2]∪[5,+α)D.(2,5) 二、填空题21.不等式组⎩⎪⎨⎪⎧x +3<0,x -1>0的解集是.22.不等式x +22x -1≤0的解集是 .23.不等式|x|>8的解集是 .24.如果x +y =-4,x -y =8,那么代数式x2-y2= . 25.若关于x 的不等式组23335x x x a >-⎧⎨->⎩有实数解,则a 的取值范围是 .26.函数f (x )=x +4x (x>0)的最小值为 . 27.方程3(x -2)2=27的根是 .28.已知-1<x<3,2<y<5,则3x -2y 的取值范围是 . 29.若a >b >1,则a -b a +b -2.(填“>”或“<”) 30.已知xy=2,则x2+4y2的最小值是 . 三、解答题31.解不等式组⎩⎪⎨⎪⎧4x -5≤3x +2,2x +8≥2-x.32.解不等式:(1)|2x-3|≤4; (2)|4-3x|>2.33.已知3a+b∈(-5,5),且a-3b∈(-5,-1),试确定a,b 的取值范围.34.解下列一元二次方程.(1)3x2+2 6 x-2=0;(2)(x-3)(x+1)=5.35.比较x(x-4)与(x-2)2的大小.答案一、单项选择题1.B2.A3.D4.A5.A6.B7.A【提示】利用均值定理变形公式a+b≥2ab.8.B【分析】∵当m=16m 时m+16m取得最小值,即m2=16又m>0,∴m=4,故选B.9.C 【提示】用特殊值c =0,即可排除A 、B 、D. 10.A 【提示】因为|2x -1|≥0恒成立,故选A.11.C 【提示】由题意得3x2-5x +2<0,即(3x -2)(x -1)<0,得23<x <1.12.D 【提示】由不等式x -21-x ≥0可知x ≠1,故可排除A 、B 、C ;将不等式两边同时乘以-1,得选项D 中的不等式. 13.B14.A 【提示】|2x +5|<1-1<2x +5<1-3<x<-2.故选A15.D 【提示】不等式两边同乘-1,不等号要变号. 16.A 【提示】1-2x<3⇒-2x<3-1⇒-2x<2⇒x>-1. 17.C 【提示】由作差法得(x -1)2≥0.故选C.18.C 【提示】原方程化为x(x -4)=0,解得x =0或x =4. 19.A 【提示】由不等式的基本性质可得. 20.A 二、填空题 21.∅22.122x x ⎧⎫≤<⎨⎬⎩⎭23.(-∞,-8)∪(8,+∞) 24.-3225.(-∞,4)【提示】解不等式组32335353x x x a x a x <⎧>-⎧⎪+⎨⎨->>⎩⎪⎩得又因为不等式组有实数解,所以53a +<3,解得a <4.26.427.x1=5,x2=-128.(-13,5)【提示】∵-1<x<3,2<y<5,∴-3<3x<9,-10<-2y<-4,∴-3-10<3x -2y<9-4,即-13<x +y<5. 29.<【提示】b>1⇒2b>2⇒-2b<-2. 30.8 三、解答题 31.{x|-2≤x≤7}32.解:(1)原不等式等价于-4≤2x -3≤4, ∴-1≤2x≤7,解得-12≤x≤72,∴原不等式的解集是1722x x ⎧⎫≤≤⎨⎬⎩⎭.(2)原不等式等价于4-3x>2或4-3x<-2,解得x<23或x>2, ∴原不等式的解集是223x x x ⎧⎫<>⎨⎬⎩⎭或. 33.解:∵-5<3a +b<5,∴-15<9a +3b<15.又∵-5<a -3b<-1,∴-20<10a<14,即-2<a<75.∵-5<a -3b<-1,∴3<9b -3a<15.又∵-5<3a +b<5,∴-2<10b<20,即-15<b<2.综上所述,a ∈(-2,75),b ∈(-15,2).34.解:(1)∵a =3,b =2 6 ,c =-2,∴b2-4ac =(2 6 )2-4×3×(-2)=48.∴x=2b a -± =-26±482×3=-6±233,∴x1=-6+233,x2=-6-233.(2)原方程可化为x2-2x=8,两边同时加上1,得x2-2x+1=8+1,即(x-1)2=9,∴x-1=3或x-1=-3,∴原方程的解为x1=4,x2=-235.解∶2(4)(2)x x x---()22444x x x x=---+=4因为4>0,所以2(4)(2).x x x->-。
高一数学不等式试题答案及解析
高一数学不等式试题答案及解析1.下列函数中,最小值为2的是----------------------------------------()A.B.C.D.【答案】B【解析】略2.(本题满分10分)已知正数满足,求的最小值有如下解法:解:∵且.∴∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法【答案】不正确【解析】∵且.∴∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法解:以上解法错误------1分理由:∵,当且仅当x=y时取到等号,3.已知则的最小值为()A.2B.C.4D.5【答案】C【解析】【考点】均值不等式求最值4.设常数,若对一切正实数成立,则的取值范围为 .【答案】【解析】【考点】1.不等式与函数的转化;2.均值不等式求最值5.已知点满足约束条件,为坐标原点,则的最小值为_______________.【答案】【解析】将约束条件中任意俩条件进行联立,若想满足三个不等式,则解出y=,将y值带入不等式,解出,所以的最小值为。
【考点】函数不等式6.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式7.如果,那么下列不等式成立的是()A.B.C.D.【答案】A【解析】因为,则,所以,A正确;因为,则,B错;因为,则,所以,C错;因为,则,D错;【考点】不等式的基本性质;8.关于x的不等式的解集是,则关于x的不等式的解集是()A.B.C.D.【答案】D【解析】关于x的不等式的解集是,所以,所以不等式可化为,从而确定解集;【考点】1.一元二次不等式的解法;2.一元一次不等式的解集与系数的关系;9.若,且,则的最小值等于_______.【答案】【解析】约束条件对应的平面区域如上图所示,当直线过点时取得最小值3.【考点】线性规划10.(本小题16分)已知函数(1)时,解关于的不等式;(2)当时,若对任意的,不等式恒成立,求实数的取值范围;(3)若,求的取值范围.【答案】(1)(2)(3)【解析】(1)将不等式系数整理可得到二次不等式,结合二次函数图像即可求解;(2)将不等式恒成立问题采用分离参数的方法转化为求函数最值问题,本题中首先将不等式变形为进而利用均值不等式求解的最小值;(3)将不等式化简得到关于的不等式,进而求得范围,将所求式子的绝对值去掉,结合值及线性规划求式子的范围试题解析:(1)化为因此解集为;(2)原不等式化为:,因为所以原不等式化为恒成立,,当且仅当时等号成立,所以(3)题目条件化为,作图可知,去绝一个绝对值z=,对讨论再去掉一个绝对值.当时,由线性规划得;当时,,综上可得【考点】1.不等式解法;2.函数最值;3.线性规划问题11.不等式组所表示的平面区域的面积是 ____________.【答案】25【解析】由已知条件可计算出,不等式表示的平面区域为,易得【考点】线性规划不等式组表示的平面区域及三角形的面积计算12.二次不等式的解集是全体实数的条件是()A.B.C.D.【答案】B【解析】当时,原不等式换位对任意的都成立,要使二次不等式的解集是全体实数,只需,综上,故选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学不等式测试题
姓名 得分
一.选择题(本大题有15小题,每小题3分,共36分)
1、若b a >且0≠c ,则下列不等式一定成立的是( ) (A )c b c a ->- (B )bc ac > (C )22b a > (D )||||b a >
2、 已知a ,b ,c ,d ∈R ,若a >b ,c >d ,则 ( ) (A) a -c >b -d (B) a +c >b +d (C) ac >bd (D)d
b
c a > 3.不等式(21)(31)0x x -+>的解集是
( )
A .}2131|{>-<x x x 或
B .}2131|{<<-x x
C .}21|{>x x
D .}3
1
|{->x x
4、若213x -<,则下列正确的是( )
(A)-1<x<2 (B)x<2 (C)x<-1或x>2 (D)x<-1 5、若323x x
-<的解集是( )
(A) (,9]-∞ (B) (,18)-∞ (C) (18,)+∞ (D) (9,)+∞ 6、若0<<b a ,则
A .22b a <
B .ab a <2
C .1>b
a
D .ab b >2
7、已知不等式⎩
⎨⎧>≤--a x 0
2x x 2的解集是∅,则实数a 的取值范围是( )
(A) a >2 (B)a <-1 (C)a ≥2 (D)a ≤-1 8
有意义,则x 的取值范围是( ) (A )[-1,3] (B )(2,3) (C )[2,3] (D )(-1,3) 9、 已知12x ->-,那么( )
A 、x>1
B 、x<1
C 、x 取任意实数
D 、x φ∈
10、若211x +≤的最小值为( )
A 、-1
B .-1/2
C .-3/2
D .-3
11、设231
12x x ->⎧⎨-<⎩
,的解集是( )
A 、x>-1
B 、x>2
C 、x<-1
D 、x<2
12、(1-x )(x+3)<0,的解集是( )
A 、1<x<-3
B 、x<-3 或x>1
C 、x<1
D 、x>3
二、填空题(本大题有8小题,每小题3分,共15分)
13、 不等式01452≤-+x x 的解集是 . 14.不等式0x ≥的解集是__________________.
15、已知关于x 的不等式x 2+ax -3≤0,它的解集是[-1,3],则实数a =_________ 16、设1>x ,则1______22+-x x x (填“<”或“>”)
17、不等式a 2x 4x -x 2+> 对一切实数x 都成立,则实数a 的取值范围是__________
三、解下列各题
18、解下列不等式:(20分) 1)220x x -+≥
2)03252<--x x
3)2215x ≤+≤
4)21220x x x x +>⎧⎨--<⎩
19、已知集合U=R , A =[-2,8 ), B = (-∞,3) , 求 C u A ∩B (6分)
20、已知{}021≥-+=))((|x x x A {}432≥+=x x x B | (1)化简A ,B
(2)求B A ⋂ (8分)
21、关于x 的一元二次222-+--m x m x )(=0有两个不相等的实数根,试求m 的范围?(8分)
22、比较x 2-1与3x-4的大小 (7分)。