解三角形题型总结

合集下载

解三角形解答题十大题型总结(解析版)--2024高考数学常考题型精华版

解三角形解答题十大题型总结(解析版)--2024高考数学常考题型精华版

解三角形解答题十大题型总结【题型目录】题型一:利用正余弦定理面积公式解题题型二:解三角形与三角恒等变换结合题型三:三角形面积最大值,及取值范围问题题型四:三角形周长最大值,及取值范围问题题型五:角平分线相关的定理题型六:有关三角形中线问题题型七:有关内切圆问题(等面积法)题型八:与向量结合问题题型九:几何图形问题题型十:三角函数与解三角形结合【典例例题】题型一:利用正余弦定理面积公式解题【例1】△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2)3+.【详解】:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=.由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +=.故ABC 的周长为3【例2】的内角的对边分别为,,a b c ,已知2sin()8sin 2B AC +=.(1)求cos B ;(2)若6a c +=,ABC ∆面积为2,求b .【答案】(1)1517;(2)2.【详解】:(1)()2sin 8sin 2B A C +=,∴()sin 41cos B B =-,∵22sin cos 1B B +=,∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =;(2)由(1)可知8sin 17B =,∵1sin 22ABC S ac B =⋅=,∴172ac =,∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=,∴2b =.【例3】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =332ABC S ∆=,求ABC ∆的周长.【答案】(1)3C π=(2)5+【详解】:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C +=12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 6222∆=⇒=⋅⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c 2213a b ∴+=,2()255∴+=⇒+=a b a b ABC ∆∴的周长为5+【例4】已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,c ccosA =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆,求b ,c .【答案】(1)3A π=(2)b c ==2【详解】(Ⅰ)由sin cos c C c A =-及正弦定理得sin cos sin sin A C A C C-=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭,又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A ,故bc =4,而2222cos a b c bc A =+-故22c b +=8,解得b c ==2【例5】(2022·陕西·安康市教学研究室高三阶段练习(文))在ABC 中a ,b ,c 分别为内角A ,B ,C 的对边.sin sin 2A C c b C +=.(1)求角B 的大小;(2)若112,2tan tan tan b A C B+==,求ABC 的面积.,【题型专练】1.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,(1)求角A (2)若2a =,ABC ∆的面积为;求,b c .【答案】(1)(2)b=c=2【解析】:(1)由及正弦定理得sin cos sin sin sin 0A C A C B C --=,因为B A C π=--sin cos sin sin 0A C A C C --=.由于sin 0C ≠,所以1sin(62A π-=.又0A π<<,故3A π=.(2)ABC ∆的面积1sin 2S bc A ==4bc =,而2222cos a b c bc A =+-,故228b c +=.解得2b c ==.2.已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积.【答案】(1)14;(2)1【解析】:(1)由题设及正弦定理可得22b ac=又a b =,可得2,2b c a c==由余弦定理可得2221cos 24a cb B ac +-==(2)由(1)知22b ac=因为90B = ,由勾股定理得222a cb +=故222a c ac +=,得c a ==所以的面积为13.(2021新高考2卷)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则37sin 8C ==,因此,11sin 452284ABC S ab C ==⨯⨯⨯=△;(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.4.(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos sin B a B =+.(1)求角A 的大小;(2)若2sin a B C ==,求ABC 的面积.5.(2022·安徽省宿松中学高二开学考试)在ABC 中,角,,A B C 的对边分别为,,,tan sin a b c B A C B ==.(1)求角C 的大小;(2)若ABC 的面积为196,求ABC 外接圆的半径.题型二解三角形与三角恒等变换结合【例1】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin A C =22,求C .【答案】(1;(2)15︒.【分析】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B ==;(2)30A C +=︒ ,sin sin(30)A C C C∴=︒-+1cos sin(30)222C C C =+=+︒=,030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒.【例2】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形.【答案】(1)3A π=;(2)证明见解析【分析】(1)因为25cos cos 24A A π⎛⎫++=⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.【例3】在ABC ∆中,满足222sin cos sin cos A B A B C -+=-.(1)求C ;(2)设()()2cos cos cos cos 5cos 5A B A B ααα++==,,求tan α的值.【详解】(1)∵221cos B sin B =-,221cos C sin C =-,∴222sin A cos B cos C -=-变形为22211sin A sin B sin C --+=--()(),即222sin A sin B sin C ++=,利用正弦定理可得:222a b c ++=,由余弦定理可得cosC=22-,即C=34π.(2)由(1)可得cos (A+B )=2,A+B=4π,又cosAcosB=cos()cos 3225A B A B ++-=(),可得72cos(A B)10-=,同时cos (αA +)cos (αB +)=72cos(2α)cos(2αA B)cos A B 41022π+++++-=(),∴22272272cos(2α)sin2αcos(αA)cos(αB)410210222cos cos cos πααα++-+++===222222722sinαcosα2102cos sin cos sin cos ααααα--++()=222622552cos sin cos ααα+-=2510tan α+- 2tan α=5,∴2tan 5tan 62αα-+=,∴ 1tan α=或4.【题型专练】1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)3A π=;(2)sin 4C +=.【分析】【详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C-=-+=-即:222sin sin sin sin sin B C A B C+-=由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,A π∈ 3A π∴=(2)2b c +=,由正弦定理得:sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C22sin cos 1C C += (()223sin 31sin C C ∴=-解得:62sin 4C =或624因为sin 2sin 2sin 02B C A C ==->所以sin 4C >,故62sin 4C +=.(2)法二:2b c += sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C ,即3sin 6C C C π⎛⎫=- ⎪⎝⎭sin 62C π⎛⎫∴-= ⎪⎝⎭由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+62sin sin()464C ππ=+=.2.(2022·重庆巴蜀中学高三阶段练习)已知在锐角ABC 中,sin tan 1cos B A B =+.(1)证明:2B A =;(2)求tan tan 1tan tan B A A B-的取值范围.,再逆用正切的差角公式,结合第一问的结论得到3.在ABC 中,已知223sin cos sin cos sin 222A CB +=.(1)求证:2a c b +=;(2)求角B 的取值范围.【详解】证明:(1)223sin cossin cos sin 222C A A C B += 1cosC 1cos 3sin sin sin 222A A C B++∴+=()()sin 1cosC sin 1cos 3sin A C A B ∴+++=sin sin sin cosC sin cos 3sin A C A C A B∴+++=()sin sin sin C 3sin A C A B ∴+++=C A B π++= A C B π∴+=-()sin sin A C B∴+=sin sin 2sin A C B∴+=根据正弦定理得:2a c b +=,得证.(2)由(1)知在ABC 中,2a c b+=又222cos 2a c b B ac +-=消去b 化简得:()2231611cos 84842a c ac B ac ac +=-≥-=当且仅当a c =时取等号,又B 为三角形的内角,0,3B π⎛⎤∴∈ ⎥⎝⎦题型三:三角形面积最大值,及取值范围问题【例1】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()tan tan 2AB C +=,且2a =,则ABC 的面积的最大值为A .33B .32CD.【答案】A【解析】:因为()tan tan2AB C +=,且B C A +=π-,所以()22tan2tan tan 1tan 2A B C A A +=-=--tan 02A =>,所以tan 2A =,则2π3A =.由于2a =为定值,由余弦定理得222π42cos 3b c bc =+-,即224b c bc =++.根据基本不等式得22423b c bc bc bc bc =++≥+=,即43bc ≤,当且仅当b c =时,等号成立.所以11433sin 22323ABC S bc A =≤⨯⨯=.故选:A【例2】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.【答案】(1)3B π=;(2)33(,)82.【分析】(1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=.0<B π<,02AC π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)解法一:因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =,由三角形面积公式有:222sin()111sin 33sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ-=⋅=⋅==⋅22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ-=⋅=⋅-=+.又因3,tan 623C C ππ<<>,故3313388tan 82C <+<,故3382ABC S <<.故ABC S 的取值范围是33,82解法二:若ABC ∆为锐角三角形,且1c =,由余弦定理可得b ==,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+,解得122a <<,可得ABC ∆面积1sin 23S a π==∈.【例3】在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,若4a c +=,2sin sin sin B A C =+,则ABC △的面积的最大值为()AB .2C.D .4【答案】A 【解析】因为2sin sin sin B A C =+,所以2b a c =+,因4a c +=,所以2=b ,由余弦定理得()acacac ac ac b ac c a ac b c a B 221224216222cos 22222-=--=--+=-+=所以ac B ac 212cos 2-=,所以acacB -=6cos ,所以()()()()acac ac ac ac B B 22222661cos 1sin --=--=-=因11sin 22ABCa c ac a c Sac B ac ac ∆==⋅==因为ac c a 2≥+,所以()442=+≤c a ac,ABC S ∆=≤=注:此题也可用椭圆轨迹方程做【例4】在ABC △中,a ,b ,c 分别为内角A ,B ,C的对边,若2a =,b =,则ABC △的面积的最大值为()AB .2C .D .4【答案】A 【解析】因为2a =,b =,由余弦定理得()2222222324432432cos c c cc cc bcac b A -=⋅-+=-+=所以()()2244244222223216324121632161232441cos 1sin c c c c c c c cc A A -+-=-+-=--=-=因21sin 2ABCS bc A ∆===设t c =2,则ABCS∆==≤注:此题也可用圆轨迹方程做【题型专练】1.已知分别为三个内角的对边,,且,则面积的最大值为____________.【解析】:由,且,故()()()a b sinA sinB c b sinC +-=-,又根据正弦定理,得()()()a b a b c b c +-=-,化简得,222b c a bc +-=,故222122b c a cosA bc +-==,所以060A =,又224b c bc bc +-=≥,故12BAC S bcsinA ∆=≤2.已知,,分别为△ABC 角,,的对边,cos 2−cos 2−cos 2=cosvos +cos −cos2,且=3,则下列结论中正确的是()A.=3B.=23C.△ABC D.△ABC 【答案】B【解答】解∵cos 2−cos 2−cos 2=cosvos +cos −cos2,∴(1−sin 2p −(1−sin 2p −(1−sin 2p =cosvos −cos(+p −(1−2sin 2p ,∴sinLin +sin 2+sin 2−sin 2=0,由正弦定理可得B +2+2−2=0,∴cos =2+2−22B=−12,又0<<,∴=23,即2=3=2+2−23=2+2+B⩾2B +B =3B ,当且仅当==1时取等号,∴B⩽1,∴=12Bsin 故选:B .3.ABC 的内角,,A B C 的对边分别为,,a b c ,已知B c C b a sin cos +=.(Ⅰ)求B ;(Ⅱ)若2=b ,求ABC 面积的最大值.【详解】(1)∵Bc C b a sin cos +=∴由正弦定理知B C C B A sin sin cos sin sin +=①在三角形ABC 中,()C B A +-=π∴()B C C B C B A sin sin cos sin sin sin +=+=②由①和②得C B C B sin cos sin sin =而()π,0∈C ,∴0sin ≠C ,∴B B cos sin =又()π,0∈B ,∴4π=B (2)ac B ac S ABC 42sin 21==∆,由已知及余弦定理得:4=a 2+c 2﹣2ac cos 4π≥2ac ﹣2ac 22⨯,整理得:ac≤,当且仅当a =c 时,等号成立,则△ABC 面积的最大值为(1212222⨯=+1=+4.△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin A cos B =sin B (2﹣cos A ).(1)若b +c =3a ,求A ;(2)若a =2,求△ABC 的面积的最大值.【解析】(1)∵sin A cos B =sin B (2﹣cos A ),结合正、余弦定理,可得a •2+2−22B=b •(2−2+2−22B),化简得,c =2b ,代入b +c =3a ,得a =3b ,由余弦定理知,cos A =2+2−22B =2+42−322δ2=12,∵A ∈(0,π),∴A =3.(2)由(1)知,c =2b ,由余弦定理知,cos A =2+2−22B =52−442=5412,∴△ABC 的面积S =12bc sin A =b 21−c 22=b 2=16=当b 2=209时,S 取得最大值,为43.5.在ABC ∆中,内角、、A B C 所对的边分别为,,a b c ,D 是AB 的中点,若1CD =且1()sin ()(sin sin )2a b A c b C B -=+-,则ABC ∆面积的最大值是___【答案】5如图,设CDA θ∠=,则CDB πθ∠=-,在CDA ∆和C D B ∆中,分别由余弦定理可得22221144cos ,cos()c c b a c cθπθ+-+-=-=,两式相加,整理得2222()02c a b +-+=,∴2222()4c a b =+-.①由()()1sin sin sin 2a b A c b C B ⎛⎫-=+- ⎪⎝⎭及正弦定理得()()1c b 2a b a c b ⎛⎫-=+- ⎪⎝⎭,整理得2222aba b c +-=,②由余弦定理的推论可得2221cos 24a b c C ab +-==,所以sin 4C =.把①代入②整理得2242aba b ++=,又222a b ab +≥,当且仅当a b =时等号成立,所以54222ab ab ab ≥+=,故得85ab ≤.所以118sin 22545ABCab C S ∆=≤⨯=.即ABC ∆面积的最大值是5.故答案为5.6.(2023·全国·高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c,且cos sin a b C B -=.(1)求B ;(2)若2a =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.题型四:三角形周长最大值,及取值范围问题【例1】在锐角ABC 中,内角A ,B ,C 所对的边分别为a,b ,c ,若ABC 的面积为()2224a b c +-,且4c =,则ABC 的周长的取值范围是________.【答案】4,12]+【解析】因为ABC 的面积为()2224a b c +-,所以()2221sin 42a b c ab C +-=,所以222sin 2a b c C ab +-=.由余弦定理可得222cos 2a b c C ab +-=,sin C C =,即tan C ,所以3Cπ=.由正弦定理可得sin sin sin 3a b c A B C ===,所以83832(sin sin )sin sin 8sin 3336a b A BA A A ππ⎡⎤⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.因为ABC 为锐角三角形,所以62A ππ<<,所以sin 126A π⎛⎫<+ ⎪⎝⎭,则ssin()86A π<+,即8a b <+≤.故ABC 的周长的取值范围是4,12]+.【例2】在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c sin sin cos sin B CC C A++=(1)求A ;(2)若ABC 的外接圆的半径为1,求22b c +的取值范围.c【例3】(2022·重庆八中高三阶段练习)在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sinsin ,2A Ca b A b +==(1)求角B 的大小;(2)求2a c -的取值范围.【例4】(2022·四川省仁寿县文宫中学高三阶段练习(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()sin sin 2B Ca A B c ++=.(1)求角A 的大小;(2)若角B 为钝角,求b的取值范围.【题型专练】1.在ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知222cos sincos sin sin A B C A B =++.(1)求角C 的大小;(2)若c ,求ABC ∆周长的取值范围.【答案】(1)23π;(2)(2+(1)由题意知2221sin sin 1sin sin sin A B C A B -=+-+,即222sin sin sin sin sin A B C A B +-=-,由正弦定理得222a b c ab+-=-由余弦定理得2221cos 222a b c ab C ab ab +--===-,又20,3C C ππ<<∴=.(2)2,2sin ,2sin 2sin sin sin sin3a b c a A b BA B C π====∴==,则ABC ∆的周长()2sin sin 2sin sin 2sin 33L a b c A B A A A ππ⎡⎤⎛⎫⎛⎫=++=++++++ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦230,,sin 1333323A A A πππππ⎛⎫<<∴<+<<+≤ ⎪⎝⎭ ,2sin 23A π⎛⎫∴<++≤ ⎪⎝⎭,ABC ∴∆周长的取值范围是(2+.2.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【分析】【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+,ABC ∴ 周长的最大值为3+.3.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,(cos )a C C b c +=+.(1)求角A ;(2)若5a =,求ABC △的周长的最大值.【详解】(1)由题意知()(cos )sin cos sin sin a C C b c A C C B C =+⇒+=+,所以()()sin cos sin sin A C C A C C +=++,即sin cos sin sin cos cos sin sin A C A C A C A C C+=++sin cos sin sin A C A C C =+,因0sin ≠C cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭又50,,666A A ππππ⎛⎫<<∴-∈- ⎪⎝⎭ ,所以66A ππ-=,所以3π=A (2)由余弦定理得:222222cos 25a b c b c A b c bc =+-⋅=+-=,即()2325b c b c +-⋅=.22b c b c +⎛⎫⋅≤ ⎪⎝⎭ (当且仅当b c =时取等号),()()()22221253324b c b c b c b c b c +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:10b c +≤(当且仅当b c =时取等号),ABC ∴ 周长51015L a b c =++≤+=,ABC ∴ 周长的最大值为15.题型五:角平分线相关的定理【例1】在中ABC △,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,BD BC ⊥交AC 于点D ,且1BD =,则2a c +的最小值为.【详解】由题意知ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222ac B cBD ABD aBD CBD ∴=∠+∠,即1311111122222ac c a ∴⨯=⨯⨯+⨯⨯即2c a =+,所以12a c =+,所以))12422224333a c a c a c a c c a ⎛⎫⎫+++=+++≥+=⎪⎪⎝⎭⎝⎭【例2】△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC .(Ⅰ)求sin sin BC∠∠;(Ⅱ)若60BAC ∠= ,求B ∠.【详解】(Ⅰ)由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(Ⅱ)因为()180,60,C BAC B BAC∠=-∠+∠∠=所以()31sin sin cos sin .22C BAC B B B ∠=∠+∠=∠+∠由(I )知2sin sin B C ∠=∠,所以3tan ,30.3B B ∠=∠= 【例3】(河南省豫北名校普高联考2022-2023学年高三上学期测评(一)文科数学试卷)在ABC 中,内角,,A B C的对边分别为,,a b c ,且______.在①cos cos 2b C B π⎛⎫-= ⎪⎝⎭;②2ABC S BC =⋅△ ;③tan tan tan A C A C +-这三个条件中任选一个,补充在上面的问题中,并进行解答.(1)求角B 的大小;(2)若角B 的内角平分线交AC 于D ,且1BD =,求4a c +的最小值.ABC ABD BCD S S S =+ ,12π1sin 232ac c ∴=⋅即333444ac c a =+,a c ac ∴+=,a ac +∴()11444552a c a c a c ac c a ⎛⎫∴+=++=++≥+ ⎪⎝⎭【题型专练】1.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,23BAC π∠=,BAC ∠的平分线交BC 于点D ,1AD =,则b c +的最小值为.【详解】ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222bc A cAD BAD bAD CAD ∴=∠+∠,即11111222222bc c ∴⨯=⨯⨯+⨯⨯,即bc b c =+,所以111b c ∴=+,所以()111124b cb c b c b c c b ⎛⎫+=++=+++≥+= ⎪⎝⎭2.ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,ABD ∆面积是ADC ∆面积的2倍.(1)求sin sin BC;(2)若AD =1,DC =22,求BD 和AC 的长.【详解】,1sin 2ACD S AC AD CAD ∆=⋅⋅∠,∵2ABD ACD S S ∆∆=,BAD CAD ∠=∠,∴2AB AC =.由正弦定理可知sin 1sin 2B AC C AB ∠==∠.(2)∵::2:1ABD ACD BD DC S S ∆∆==,22DC =,∴BD =.设AC x =,则2AB x =,在△ABD 与△ACD中,由余弦定理可知,2222cos 2AD BD AB ADB AD BD +-∠==⋅222232cos 2x AD CD AC ADC AD CD -+-∠==⋅∵ADB ADC π∠+∠=,∴cos cos ADB ADC ∠=-∠,2232x -=,解得1x =,即1AC =.题型六:有关三角形中线问题遇到角平分线问题一般有两种思路:思路一:中线倍长法思路二:利用平面向量【例1】在ABC ∆中,,,a b c 分别是内角,,A B C 所对的边,且满足cos 0cos 2B bC a c+=+,(1)求角B 的值;(2)若2c =,AC 边上的中线32BD =,求ABC ∆的面积.【详解】(1)cos cos sin 00cos 2cos 2sin sin B b B BC a c C A C+=⇔+=++,()cos 2sin sin sin cos 0B A C B C ⇒++=2sin cos cos sin sin cos 0A B B C B C ⇒++=()2sin cos sin 0A B B C ⇒++=.()1sin 2cos 10,sin 0,cos 2A B A B ⇒+=≠∴=-.所以23B π=,(2)解法一:中线倍长法:延长BD 到E ,使BD=DE ,易知四边形AECD 为平行四边形,在BEC ∆中,EC=2,,因为23ABC π∠=,所以3BCE π∠=,由余弦定理2222cos BE EC BC EC BC BCE =+-⋅⋅∠,即223222cos3a a π=+-⋅⋅,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=解法二:BC BA BD +=,所以()22BC BA BD +=B+=即︒++=⎪⎪⎭⎫ ⎝⎛120cos 223222ac a c ,即⎪⎭⎫⎝⎛-⨯⨯++=21424432a a ,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=【例2】(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2π3A =.(1)若6a =,ABC的面积为D 为边BC 的中点,求AD 的长度;(2)若E 为边BC上一点,且AE =,:2:BE EC c b =,求2b c +的最小值.【题型专练】1.(2022·广东广州·一模)在ABC 中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足cos sin 2B Cb a B +=.(1)求A ;(2)若a =,3BA AC ⋅=,AD 是ABC 的中线,求AD 的长.2.(2022·黑龙江·哈师大附中高三阶段练习)在①()()()()sin sin sin a c A B a b A B -+=-+;②2S BC =⋅;③cos sin b C a c B =;这三个条件中任选一个,补充在下面的问题中,并解答问题.问题:在ABC 中,角、、A B C 的对边分别为,,a b c ,且______.(1)求角B 的大小;(2)AC 边上的中线2BD =,求ABC 的面积的最大值.题型七:有关内切圆问题(等面积法)【例1】在▵B中,sin2=B=1,B=5,则A.B=25B.▵B 的面积为32C.▵BD.▵B【答案】B【解答】解:∵sin2=∴cos=1−2sin22=1−2×2=35,又B=1,B=5,∴由余弦定理,B2=B2+B2−2B⋅B⋅cos=52+12−2×5×1×(35)=20,∴B=25,故A正确;∵cos=35且为三角形内角,∴sin=1−cos2=45,所以△B的面积为=1=12×1×5×45=2,故B错误;根据正弦定理B sin=2o其中表示外接圆的半径)得:2=45=即△B C正确;如图,设△B内切圆圆心为,半径为,连接B,B,B,因为内切圆与边B ,B ,B 相切,故设切点分别为,,,连接B ,B ,B ,可知:B =B =B =,且B ⊥B ,B ⊥B ,,根据题意:△B =12B ⋅B ⋅sin =12×5×1×45=2,利用等面积可得:△B +△B +△B =△B ,即:12B ⋅+12B ⋅+12=2,∴=4B+B+B==D 正确.故选ACD .【例2】(2022·四川·绵阳中学高二开学考试(理))已知在ABC 中,()254cos 4sin A B C ++=.(1)求角C 的大小;(2)若ABC 的内切圆圆心为O ,ABC 的外接圆半径为4,求ABO 面积的最大值.【题型专练】1.三角形有一个角是︒60,夹在这个角的两边长分别为8和5,则()A.三角形另一边长为6B.三角形的周长为20C.三角形内切圆面积为3D.【答案】B【解答】解:因为三角形有一个角是︒60,夹在这个角的两边长分别为8和5,A .由余弦定理得:三角形另一边长为82+52−2×8×5×cos60°=7,故A 错误;B .三角形的周长为8+5+7=20,故B 正确;C .设三角形内切圆的半径为,由面积法得到:12×8×5×sin60°=12×20×,解得=3,所以内切圆的面积为,故C 正确;D .设三角形外接圆的半径为,则由正弦定理得到7sin60°=2,解得=,故D 错误.故选BC .2.(2022·全国·清华附中朝阳学校模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos a cC Cb-=.(1)求角B 的大小;(2)若2b =,记r 为ABC 的内切圆半径,求r 的最大值.题型八:与向量结合问题【例1】锐角ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,向量()m a =与(cos ,sin )n A B = 平行.(1)求角A ;(2)若a =ABC ∆周长的取值范围.【解析】解:(1)因为://m n,所以:sin cos 0a B A =,由正弦定理,得:sin sin cos 0A B B A -=,又因为:sin 0B ≠,从而可得:tan A =,由于:0A π<<,所以:3A π=.(2)因为:由正弦定理知sin sin sin 3b c aB C A====,可得:三角形周长sin )3l a b c B C =++=+,又因为:23C B π=-,所以:2sin sin sin sin()36B C B B B ππ+=+-=+,因为:ABC ∆为锐角三角形,所以:62B ππ<<,2(,)633B πππ+∈,3sin sin (2B C +∈,所以:l ∈.【例2】(2022·河北沧州·高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos ,3b c A a C a -==.(1)求角A ;(2)若点D 满足1233BD BA BC =+,求BCD △面积的最大值.【题型专练】1.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC = ,1cos 3B =,3b =.求:(1)a 和c 的值;(2)cos()B C -的值.【解析】解:(1)2BA BC= ,1cos 3B =,3b =,可得cos 2ca B =,即为6ac =;2222cos b a c ac B =+-,即为2213a c +=,解得2a =,3c =或3a =,2c =,由a c >,可得3a =,2c =;(2)由余弦定理可得2229947cos 22339a b c C ab +-+-===⨯⨯,sin C ==,sin B ==,则17224223cos()cos cos sin sin 393927B C B C B C -=+=⨯+⨯.2.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,若1AB AC BA BC ==.解答下列问题:(1)求证:A B =;(2)求c 的值;(3)若||AB AC +=ABC ∆的面积.【解析】证明:(1)因AB AC BA BC =,故cos cos bc A ac B =,即cos cos b A a B =.由正弦定理,得sin cos sin cos B A A B =,故sin()0A B -=,因为A B ππ-<-<,故0A B -=,故A B =.⋯(4分)(2)因1AB AC = ,故cos 1bc A =,由余弦定理得22212b c a bc bc+-=,即2222b c a +-=;又由(1)得a b =,故22c =,故c =.⋯(10分)(3)由||AB AC += 22||||2||6AB AC AB AC ++=,即2226c b ++=,故224c b +=,因22c =,故b =,故ABC ∆是正三角形,故面积23342ABC S ∆=⨯=.⋯(16分)题型九:几何图形问题【例1】在ABC ∆中,3B π∠=,15AB =,点D 在边BC 上,1CD =,1cos 26ADC ∠=.(1)求sin BAD ∠;(2)求ABC ∆的面积.【解析】解:(1)由1cos 26ADC ∠=,可得153sin 26ADC ∠==,则11sin sin()sin cos cos sin 333226BAD ADC ADC ADC πππ∠=∠-=∠-∠=-⨯.(2)在ABD ∆中,由正弦定理可得sin sin BD AB BAD ADB =∠∠=,解得7BD =,所以718BC =+=,所以ABC ∆的面积11sin 158sin 223S AB BC ABD π=⋅⋅∠=⨯⨯⨯=【例2】如图,在ABC ∆中,6B π∠=,AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(1)求sin BAD ∠;(2)求BD ,AC 的长.【解析】解:(1)在ADC ∆中,因为1cos 7ADC ∠=,所以sin 7ADC ∠=,所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B=∠-∠433117272=-⨯1114=.(2)在ABD ∆中,由正弦定理得11sin 1411sin 437AB BADBD ADB⋅∠===∠,在ABC ∆中,由余弦定理得:222222cos 13213492AC AB BC AB BC B =+-⋅⋅=+-⨯⨯.所以7AC =.【例3】如图,在ABC ∆中,2AB =,1cos 3B =,点D 在线段BC 上.(1)若34ADC π∠=,求AD 的长;(2)若2BD DC =,ACD ∆sin sin BADCAD∠∠的值.【解析】解:(1)ABC ∆ 中,1cos 3B =,22sin 3B ∴=.34ADC π∠= ,4ADB π∴∠=.ABD ∆=,83AD ∴=;(2)设DC a =,则2BD a =,2BD DC = ,ACD ∆,1222323a ∴=⨯⨯⨯,2a ∴=AC ∴==由正弦定理可得42sin sin BAD ADB=∠∠,sin 2sin BAD ADB ∴∠=∠.242sin sin CAD ADC =∠∠,2sin 4CAD ADC ∴∠=∠,sin sin ADB ADC ∠=∠ ,∴sin sin BADCAD∠=∠【例4】如图,在平面四边形ABCD 中,45A ∠=︒,90ADC ∠=︒,2AB =,5BD =.(1)求sin ADB ∠;(2)若DC =,求BC .【解析】解:(1)ABD ∆中,45A ∠=︒,2AB =,5BD =,由正弦定理得sin sin AB BDADB A=∠,即25sin sin 45ADB =∠︒,解得2sin 5ADB ∠=;(2)由90ADC ∠=︒,所以2cos sin 5BDC ADB ∠=∠=,在BCD ∆中,由余弦定理得:222222cos 52525BC BD DC BD DC BDC =+-⋅⋅∠=+-⨯⨯,解得5BC =.【例5】在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【答案】(1)5;(2)5.【分析】(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin45sin ADB =∠o,所以2sin 5ADB ∠=.由题设知,90ADB ∠<o ,所以cos 5ADB ∠==;(2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=.在BCD ∆中,由余弦定理得22222cos 25825255BC BD DC BD DC BDC =+-⋅⋅⋅∠=+-⨯⨯=.所以5BC =.【题型专练】1.如图,在平面四边形ABCD 中,1AD =,2CD =,AC =(1)求cos CAD ∠的值;(2)若cos BAD ∠=21sin 6CBA ∠=,求BC 的长.【解析】解:1AD =,2CD =,AC =(1)在ADC ∆中,由余弦定理,得222cos 2AC AD CD CAD AC AD+-∠= .∴cos CAD ∠=;(2)设BAC α∠=,则BAD CAD α=∠-∠,cos 21sin 7321sin 143sin 2CAD BAD CAD BAD α∠=∠=-∴∠=∠=∴=,在ABC ∆中,由正弦定理,sin sin BC ACCBAα=∠,解得:3BC =.即BC 的长为3.2.在平面四边形ABCD中,,2,2,AB BC AB BD BCD ABD ABD ⊥==∠=∠∆的面积为2.(1)求AD 的长;(2)求CBD ∆的面积.【解析】解:(1)由已知11sin 2sin 222ABD S AB BD ABD ABD ∆=∠=⨯∠= ,所以sin ABD ∠=(0,2ABD π∠∈,所以cos ABD ∠=在ABD ∆中,由余弦定理得:2222cos 5AD AB BD AB BD ABD =+-∠= ,所以AD =.(2)由AB BC⊥,得2ABD CBD π∠+∠=,所以5sin cos 5CBD ABD ∠=∠=,又42,sin 2sin cos 5BCD ABD BCD ABD ABD ∠=∠∠=∠∠=,()222BDC CBD BCD ABD ABD ABD CBD ππππ∠=-∠-∠=--∠-∠=-∠=∠,所以CBD ∆为等腰三角形,即CB CD =,在CBD ∆中,由正弦定理得:sin sin BD CDBCD CBD=∠∠,所以sin 51155455,sin 4sin 42244585CBDBD CBDCD S CB CD BCD BCD∆∠====∠=⨯⨯⨯=∠.3.如图,在平面四边形ABCD 中,2AB =,6BC =,4AD CD ==.(1)当四边形ABCD 内接于圆O 时,求四边形ABCD 的面积S ;(2)当四边形ABCD 的面积最大时,求对角线BD的长.【解析】(本题满分为14分)解:(1)连接BD ,由余弦定理可得:222222cos 24224cos BD AB AD AB AD A A =+-=+-⨯⨯⨯ ,222222cos 46246cos BD BC CD BC CD C C =+-=+-⨯⨯⨯ ,可得:2016cos 5248cos A C -=-,2⋯分又四边形ABCD 内接于圆O ,则又A C π+=,所以:2016cos 5248cos()A A π-=--,化简可得:1cos 2A =-,又(0,)A π∈,所以23A π=,3C π=,4⋯分所以12124sin 46sin 2323ABD BCD S S S ππ∆∆=+=⨯⨯⨯+⨯⨯⨯=,6⋯分(2)设四边形ABCD 的面积为S ,则11sin sin 22ABD BCD S S S AB AD A BC CD C ∆∆=+=+ ,可得:222222cos 2cos BD AB AD AB AD A BC CD BC CD C =+-=+- ,8⋯分可得:22221124sin 46sin 2224224cos 46246cos S A C A C ⎧=⨯⨯+⨯⨯⎪⎨⎪+-⨯⨯=+-⨯⨯⎩,可得:sin 3sin 423cos cos S A CC A⎧=+⎪⎨⎪=-⎩,平方后相加,可得:24106sin sin 6cos cos 16S A C A C +=+-,即:266cos()16S A C =-+,10⋯分又(0,2)A C π+∈,当A C π+=时,216S 有最大值,即S 有最大值.此时,A C π=-,代入23cos cos C A =-,可得:1cos 2C =,又(0,)C π∈,可得:3C π=,12⋯分在BCD ∆中,可得:222222cos 46246cos 283BD BC CD BC CD C π=+-=+-⨯⨯⨯= ,可得BD =.14⋯分4.如图所示,已知圆内接四边形ABCD ,记tan tan tan tan 2222A B C D T =+++.(1)求证:22sin sin T A B=+;(2)若6AB =,3BC =,4CD =,5AD =,求T 的值及四边形ABCD 的面积S.【解析】解:(1)sincos sin cos222222tan tan tan tan tan cot tan cot 22222222sin sin cos sin cos sin 2222A AB BA B A B A A B B T A A B B A Bππ--=+++=+++=+++=+.(2)由于:6AB =,3BC =,4CD =,5AD =,由题知:cos cos 0BAD BCD ∠+∠=,可得:22222222470227AB AD BD BC CD BD BD AB AD BC CD +-+-+=⇒= ,则3cos 7A =,sin A =则1()sin 2S AD AB CD BC A =+= ,则1610()sin sin 219S AB BC AD CD ABC ABC =+∠=∠=,22sin sin T A B =+==5.如图,角A ,B ,C ,D 为平面四边形ABCD 的四个内角,6AB =,3BC =,4CD =.(1)若60B =︒,30DAC ∠=︒,求sin D ;(2)若180BAD BCD ∠+∠=︒,5AD =,求cos BAD ∠.【解析】解:(1)在ABC ∆中,222361cos 2362AC B +-==⨯⨯,222363627AC ∴=+-⨯=,AC ∴=ACD ∆中,由正弦定理sin sin DAC D CD AC∠=,sin sin sin 30AC D DAC CD ∴=⋅∠=︒=.(2)在ABD ∆中,22256cos 256BD BAD +-∠=⨯⨯,在BCD ∆中,22234cos 234BD BCD +-∠=⨯⨯,180BAD BCD ∠+∠=︒ ,cos cos 0BAD BCD ∴∠+∠=,∴22222256340256234BD BD +-+-+=⇒⨯⨯⨯⨯可得:222(2536)5(916)0120BD BD +-++-=,可得:22261252550BD BD ⨯-+⨯-=,可得27247BD =,则BD =22224725365637cos 256607BDBAD +-+-∴∠===⨯⨯.6.某市欲建一个圆形公园,规划设立A ,B ,C ,D 四个出入口(在圆周上),并以直路顺次连通,其中A ,B ,C 的位置已确定,2AB =,6BC =(单位:百米),记ABC θ∠=,且已知圆的内接四边形对角互补,如图,请你为规划部门解决以下问题.(1)如果4DC DA ==,求四边形ABCD 的区域面积;(2)如果圆形公园的面积为283π万平方米,求cos θ的值.【解析】解:(1)连结BD ,可得四边形ABCD 的面积为:11sin sin 22ABD CBD S S S AB AD A BC CD C ∆∆=+=+ , 四边形ABCD 内接于圆,180A C ∴+=︒,可得sin sin A C =.11sin sin 22S AB AD A BC CD C =+ 1()sin 2AB AD BC CD A =+1(2464)sin 2A =⨯+⨯16sin A =.(*)⋯在ABD ∆中,由余弦定理可得:222222cos 24224cos 2016cos BD AB AD AB AD A A A =+-=+-⨯⨯=- ,同理可得:在CDB ∆中,222222cos 64264cos 5248cos BD CB CD CB CD C C C =+-=+-⨯⨯=- ,2016cos 5248cos A C ∴-=-,结合cos cos(180)cos C A A =︒-=-,得64cos 32A =-,解得1cos 2A =-,(0,180)A ∈︒︒ ,120A ∴=︒,代入(*)式,可得四边形ABCD面积16sin120S =︒=.(2) 设圆形公园的半径为R ,则面积为283π万平方米,可得:2283R ππ=,可得:2213R =,∴由正弦定理2sin AC R B ==sin θ==由余弦定理可得:AC ==sin θ∴==214sin 159cos θθ=-,22sin cos 1θθ+= ,∴2159cos cos 114θθ-+=,整理可得:2214cos 9cos 10θθ-+=,∴解得:1cos 7θ=,或12.7.ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.【答案】(1)23π,4;(2)3.【解析】(1)sin 3cos 0,tan 3A A A +=∴=- ,20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =.(2)2222cos c b a ab C =+- ,162842272cos C ∴=+-⨯⨯⨯,22cos ,72cos 77AC C CD C∴=∴===,12CD BC ∴=,1134223222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=,132ABD ABC S S ∆∆∴==.8.四边形的内角与互补,.(1)求和;(2)求四边形的面积.【答案】(1)60C =︒,7BD =;(2)23.【详解】:(1)连接BD .在ABD ∆和CBD ∆中,利用余弦定理列等式2222BD BC CD BC=+-cos CD C ⋅和2222cos BD AB DA AB DA A =+-⋅,且cos cos C A =-,代入数据得54cosC +,求cos C 的值,进而求C 和的值;(2)由(1)知ABD ∆和CBD ∆的面积可求,故四边形等于ABD ∆和CBD ∆的面积.(1)由题设及余弦定理得2222cos BD BC CD BC CD C=+-⋅.①2222cos BD AB DA AB DA A =+-⋅54cosC =+.②。

五类解三角形题型--新高考数学大题秒杀技巧(解析版)

五类解三角形题型--新高考数学大题秒杀技巧(解析版)

五类解三角形题型解三角形问题一般分为五类:类型1:三角形面积最值问题;类型2:三角形周长定值及最值;类型3:三角形涉及中线长问题;类型4:三角形涉及角平分线问题;类型5:三角形涉及长度最值问题。

类型1:面积最值问题技巧:正规方法:面积公式+基本不等式①S=12ab sin Ca2+b2−c2=2ab cos C⇒a2+b2=2ab cos C+c2≥2ab⇒ab≤c221−cos C②S=12ac sin Ba2+c2−b2=2ac cos B⇒a2+c2=2ac cos B+b2≥2ac⇒ac≤b221−cos B③S=12bc sin Ab2+c2−a2=2bc cos A⇒b2+c2=2bc cos A+a2≥2bc⇒bc≤a221−cos A秒杀方法:在ΔABC中,已知B=θ,AC=x则:SΔABC max=AB+BC2max8⋅sin B其中AB+BCmax=2R⋅m2+n2+2mn cosθm,n分别是BA、BC的系数2R=x sinθ面积最值问题专项练习1△ABC的内角A,B,C的对边分别为a,b,c,c=2a cos C-b,c2+a2=b2+3ac,b=2.(1)求A;(2)若M,N在线段BC上且和B,C都不重合,∠MAN=π3,求△AMN面积的取值范围.【答案】(1)2π3(2)33,3 2【详解】(1)由c=2a cos C-b得2a cos C=c+2b,由正弦定理得2sin A cos C=sin C+2sin B=sin C+2sin A+C=sin C+2sin A cos C+2cos A sin C,所以2cos A sin C+sin C=0,又因为C∈0,π,所以sin C≠0,所以cos A=-12,又A∈0,π,所以A=2π3,(2)由c2+a2=b2+3ac,得c2+a2-b2=3ac,由余弦定理知cos B=c2+a2-b22ac =32,又因为B∈0,π,所以B =π6,所以C =π-A -B =π6,所以b =c =2,如图,设∠BAM =α,则∠CAN =π3-α,∠BMA =5π6-α,∠CNA =π2+α,在△ABM 中,由正弦定理可知AM =c sin B sin ∠BMA =2sin π6sin 5π6-α =1sin π6+α ,在△ANC 中,由正弦定理可知AN =b sin C sin ∠CNA =2sin π6sin π2+α =1cos α,故S △AMN =12AM ⋅AN ⋅sin ∠MAN =12⋅1sin α+π6 ⋅1cos α⋅sin π3=34sin α+π6cos α=323sin α+cos α cos α=323sin αcos α+2cos 2α=33sin2α+cos2α+1=32sin 2α+π6 +1,因为α∈0,π3 ,所以π6<2α+π6<5π6,所以12<sin 2α+π6 ≤1,所以2<2sin 2α+π6 +1≤3,所以33≤32sin 2α+π6 +1<32,即S △AMN ∈33,32.2已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若3c sin B =a -b cos C .(1)求B ;(2)若DC =AD ,BD =2,求△ABC 的面积的最大值.【答案】(1)π6(2)8-43【详解】(1)由题意,在△ABC 中,3c sin B =a -b cos C ,∵a sin A=b sin B =csin C ,A +B +C =π∴3sin C sin B =sin A -sin B cos C ,即3sin C sin B =sin B +C -sin B cos C ,∴3sin B -cos B sin C =0,∵sin C ≠0,0<B <π∴3sin B -cos B =0,可得tan B =33,解得:B =π6.(2)由题意及(1)得在△ABC 中,B =π6,DC =AD ,BD =2,∴D 为边AC 的中点,4BD2=4×22=16∴2BD =BA +BC ,∴4BD 2=BA +BC 2=BA 2+2BA ⋅BC +BC 2,即4BD 2=BA 2+2BA BC cos B +BC 2=16,设BA =c ,BC =a ,则a 2+c 2+2ac cos π6=a 2+c 2+3ac =16≥2+3 ac ,所以ac ≤162+3=32-163,当且仅当a =c 时,等号成立.∴S △ABC =12ac sin B =14ac ≤8-43,当且仅当a =c 时,等号成立,∴△ABC 的面积的最大值为8-4 3.3在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =2b -c sin B +c 2sin C -sin B .(1)求A ;(2)点D 在边BC 上,且BD =3DC ,AD =4,求△ABC 面积的最大值.【答案】(1)A =π3(2)6439【详解】(1)∵2a sin A =2b -c sin B +c 2sin C -sin B ,∴2a 2=2b -c b +2c -b c ,即a 2=b 2+c 2-bc ,∴cos A =b 2+c 2-a 22bc =12,∵A ∈0,π ∴A =π3.(2)根据题意可得AD =AB +BD =AB +34BC =14AB +34AC,所以平方可得16=116c 2+916b 2+38bc cos π3.又256=c 2+9b 2+3bc ≥9bc ,所以bc ≤2569,当且仅当b =1639,c =1633时,等号成立,所以S =12bc sin π3≤12×2569×32=6439,即△ABC 面积的最大值为6439.4△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知c =2a cos C -b ,c 2+a 2=b 2+3ac ,b =2.(1)求A ;(2)若M 是直线BC 外一点,∠BMC =π3,求△BMC 面积的最大值.【答案】(1)2π3(2)33【详解】(1)由c =2a cos C -b 得2a cos C =c +2b ,由正弦定理得2sin A cos C=sin C+2sin B,因为sin B=sin(π-A-C)=sin(A+C)=sin A cos C+cos A sin C,所以2cos A sin C+sin C=0.又因为C∈(0,π),所以sin C≠0,所以cos A=-1 2 .因为A∈(0,π),所以A=2π3.(2)由c2+a2=b2+3ac得c2+a2-b2=3ac,故cos B=c2+a2-b22ac=32.因为B∈(0,π),所以B=π6,所以C=π-A-B=π6,可得b=c=2.根据正弦定理asin A=bsin B可得,a=b sin Asin B=2×3212=2 3.设BM=m,CM=n,在△BMC中,∠BMC=π3,由余弦定理可得a2=m2+n2-2mn cos π3=m2+n2-mn=12.所以12=m2+n2-mn≥2mn-mn=mn,当且仅当m=n=23时取等号,所以mn≤12.所以S△MBC=12mn sinπ3=34mn≤34×12=33.故△BMC面积的最大值为33.5在△ABC中,角A,B,C对边分别为a,b,c,(sin A+sin B)(a-b)=c(sin C-sin B),D为BC边上一点,AD平分∠BAC,AD=2.(1)求角A;(2)求△ABC面积的最小值.【答案】(1)A=π3;(2)433【详解】(1)由(sin A+sin B)(a-b)=c(sin C-sin B),可得(a+b)(a-b)=c(c-b),整理得b2+c2-a2=bc,则cos A=b2+c2-a22bc=bc2bc=12,又0<A<π,则A=π3 .(2)过点D 作DE ⊥AC 于E ,作DF ⊥AB 于F ,又∠DAC =∠DAB =π6,AD =2,则DF =DE =1,则S △ABC =12bc sin A =12b +c ⋅1,则3bc =2b +c ,又b +c ≥2bc (当且仅当b =c 时等号成立),则3bc ≥4bc ,则bc ≥163,则S △ABC =12bc sin A ≥433(当且仅当b =c 时等号成立),则△ABC 面积的最小值为433.6在①m =2a -c ,b ,n =cos C ,cos B ,m ⎳n ;②b sin A =a cos B -π6 ;③a +b a -b =a -c c 三个条件中任选一个,补充在下面的问题中,并解决该问题.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足.注:如果选择多个条件分别解答,按第一个解答计分.(1)求角B ;(2)若b =2,求△ABC 面积的最大值.【答案】(1)π3(2)3【详解】(1)解:选①:因为m =2a -c ,b ,n=cos C ,cos B 由m ⎳n ,可得(2a -c )cos B -b cos C =0,由正弦定理得:(2sin A -sin C )cos B -sin B cos C=2sin A cos B -sin C cos B +sin B cos C =2sin A cos B -sin (B +C )=0,因为B +C =π-A ,可得sin B +C =sin A ,所以2sin A cos B -sin A =0,又因为A ∈(0,π),可得sin A >0,所以cos B =12,因为B ∈(0,π),所以B =π3.选②:因为b sin A =a cos B -π6,由正弦定理得sin B sin A =sin A ⋅32cos B +12sin B,又因为A ∈(0,π),可得sin A >0,则sin B =32cos B +12sin B ,即12sin B =32cos B ,可得tan B =3,因为B ∈(0,π),所以B =π3.选③:因为a +b a -b =a -c c ,可得a 2+c 2-b 2=ac ,由余弦定理得cos B =a 2+c 2-b 22ac =ac 2ac =12,又因为B ∈(0,π),所以B =π3.(2)解:因为B =π3,且b =2,由余弦定理知b 2=a 2+c 2-2ac cos B ,即4=a 2+c 2-2ac cos π3,可得a 2+c 2-ac =4,又由a 2+c 2-ac ≥2ac -ac =ac ,当且仅当a =c 时,等号成立,所以ac ≤4,所以△ABC 的面积S △ABC =12ac sin B ≤12×4×sin π3=3,即△ABC 的面积的最大值为 3.类型2:三角形周长定值及最值类型一:已知一角与两边乘积模型第一步:求两边乘积第二步:利用余弦定理求出两边之和类型二:已知一角与三角等量模型第一步:求三角各自的大小第二步:利用正弦定理求出三边的长度最值步骤如下:第一步:先表示出周长l =a +b +c第二步:利用正弦定理a =2R sin A ,b =2R sin B ,c =2R sin C 将边化为角第三步:多角化一角+辅助角公式,转化为三角函数求最值周长定值及最值问题专项练习7在锐角三角形△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,CD 为CA 在CB方向上的投影向量,且满足2c sin B =5CD.(1)求cos C 的值;(2)若b =3,a =3c cos B ,求△ABC 的周长.【答案】(1)23(2)2+23【详解】(1)由CD 为CA 在CB 方向上的投影向量,则CD=b cos C ,即2c sin B =5b cos C ,根据正弦定理,2sin C sin B =5sin B cos C ,在锐角△ABC 中,B ∈0,π2,则sin B >0,即2sin C =5cos C ,由C ∈0,π2 ,则cos 2C +sin 2C =1,整理可得cos 2C +54cos 2C =1,解得cos C =23.(2)由a =3c cos B ,根据正弦定理,可得sin A =3sin C cos B ,在△ABC 中,A +B +C =π,则sin B +C =3sin C cos B ,sin B cos C +cos B sin C =3sin C cos B ,sin B cos C =2sin C cos B ,由(1)可知cos C =23,sin C =1-cos 2C =53,则sin B =5cos B ,由sin 2B +cos 2B =1,则5cos 2B +cos 2B =1,解得cos B =66,sin B =306,根据正弦定理,可得b sin B =c sin C,则c =sin C sin B b =2,a =62c =3,故△ABC 的周长C △ABC =a +b +c =23+ 2.8如图,在梯形ABCD 中,AB ⎳CD ,∠D =60°.(1)若AC =3,求△ACD 周长的最大值;(2)若CD =2AB ,∠BCD =75°,求tan ∠DAC 的值.【答案】(1)9(2)3+3.【详解】(1)在△ACD 中,AC 2=AD 2+DC 2-2AD ⋅DC cos D =AD 2+DC 2-AD ⋅DC =(AD +DC )2-3AD ⋅DC ≥(AD +DC )2-3AD +DC22=(AD +CD )24,即9≥(AD +CD )24,解得:AD +DC ≤6,当且仅当AD =DC =3时取等号.故△ACD 周长的最大值是9.(2)设∠DAC =α,则∠DCA =120°-α,∠BCA =α-45°.在△ACD 中,CD sin α=AC sin60°,在△ACB 中,AB sin α-45° =AC sin105°,两式相除得,2sin α-45° sin α=sin105°sin60°,因为sin105°=sin 45°+60° =sin45°cos60°+cos45°sin60°=6+24,∴(6-2)sin α=26cos α,故tan ∠DAC =tan α=266-2=3+3.9已知△ABC 的面积为S ,角A ,B ,C 所对的边为a ,b ,c .点O 为△ABC 的内心,b =23且S =34(a 2+c 2-b 2).(1)求B 的大小;(2)求△AOC 的周长的取值范围.【答案】(1)B=π3(2)43,4+23【详解】(1)因为S=34(a2+c2-b2)=12ac sin B,所以34×2ac cos B=12ac sin B,即3cos B=sin B,可得tan B=3,因为B∈(0,π),所以B=π3.(2)设△AOC周长为l,∠OAC=α,如图所示,由(1)知B=π3,所以0<∠BAC<2π3,可得0<α<π3,因为点O为ΔABC的内心,OA,OC分别是∠A,∠C的平分线,且B=π3,所以∠AOC=2π3,在△AOC中,由正弦定理可得OAsinπ3-α=OCsinα=23sin2π3,所以l=OA+OC+AC=4sinα+4sinπ3-α+23=4sinα+432cosα-12sinα+23=2sinα+23cosα+23=4sinα+π3+23,因为α∈0,π3,所以α+π3∈π3,2π3,可得sinα+π3∈32,1,可得△AOC周长l=4sinα+π3+23∈43,4+23.10在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,已知sin A-sin B3a-c=sin Ca+b.(1)求角B的值;(2)若a=2,求△ABC的周长的取值范围.【答案】(1)π6(2)3+3,2+23【详解】(1)sin A-sin B3a-c=sin Ca+b,由正弦定理得:a-b3a-c=ca+b,即a2+c2-b2=3ac,由余弦定理得:cos B=a2+c2-b22ac=3ac2ac=32,因为B∈0,π,所以B=π6;(2)锐角△ABC中,a=2,B=π6,由正弦定理得:2sin A =bsinπ6=csin C,故b=1sin A,c=2sin Csin A=2sin A+π6sin A=3sin A+cos Asin A,则b+c=3sin A+cos A+1sin A=3+1+1cos Atan A=3+1+1+tan2Atan A=3+1tan A +1tan2A+1,因为锐角△ABC中,B=π6,则A∈0,π2,C=π-π6-A∈0,π2,解得:A∈π3,π2 ,故tan A∈3,+∞,1tan A ∈0,33,则1tan2A+1∈1,233,3+1tan A+1tan2A+1∈1+3,23,故b+c∈1+3,23,a+b+c∈3+3,2+23所以三角形周长的取值范围是3+3,2+23.11在△ABC中,角A,B,C的对边分别是a,b,c,a-ca+c+b b-a=0.(1)求C;(2)若c=3,△ABC的面积是32,求△ABC的周长.【答案】(1)π3.(2)3+3.【详解】(1)由题意在△ABC中,a-ca+c+b b-a=0,即a2+b2-c2=ab,故cos C=a2+b2-c22ab=12,由于C∈(0,π),所以C=π3 .(2)由题意△ABC的面积是32,C=π3,即S△ABC=12ab sin C=34ab=32,∴ab=2,由c=3,c2=a2+b2-2ab cos C得3=a2+b2-ab=(a+b)2-6,∴a+b=3,故△ABC的周长为a+b+c=3+ 3.类型3:三角形涉及中线长问题①中线长定理:(两次余弦定理推导可得)+(一次大三角形一次中线所在三角形+同余弦值)如:在ΔABC与ΔABD同用cos B求ADAB2+AC22=AD2+CD2②中线长常用方法cos∠ADB+cos∠ADC=0③已知AB+AC,求AD的范围∵AB+AC为定值,故满足椭圆的第一定义∴半短轴≤AD<半长轴三角形涉及中线长问题专项练习12在△ABC中,角A,B,C的对边分别为a,b,c,且b=7,c=5.(1)若sin B=78,求cos C的值;(2)若BC边上的中线长为21,求a的值.【答案】(1)39 8(2)8(1)由正弦定理bsin B =csin C,∴sin C=c sin Bb=5×787=58又b>c,若C为钝角,则B也为钝角,与三角形内角和矛盾,故C∈0,π2∴cos C>0,即cos C=1-sin2C=1-58 2=1-2564=3964=398 (2)取BC边上的中点D,则AD=21,设BD=x在△ABD中,利用余弦定理知:cos∠ADB=AD2+BD2-AB22AD⋅BD =21+x2-52221x=-4+x2221x在△ACD 中,利用余弦定理知:cos ∠ADC =AD 2+CD 2-AC 22AD ⋅CD =21+x 2-72221x =-28+x 2221x又∠ADB +∠ADC =π,则cos ∠ADB +cos ∠ADC =0即-4+x 2221x +-28+x 2221x =0,即2x 2-32=0,解得x =4又a =2x =8故a 的值为8.13在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =2,b =5,c =1.(1)求sin A ,sin B ,sin C 中的最大值;(2)求AC 边上的中线长.【答案】(1)最大值为sin B =22(2)12【详解】(1)∵5>2>1,故有b >a >c ⇒sin B >sin A >sin C ,由余弦定理可得cos B =(2)2+12-(5)22×2×1=-22,又B ∈(0,π),∴B =3π4,故sin B =22.(2)设AC 边上的中线为BD ,则BD =12(BA +BC ),∴(2BD )2=(BA +BC )2=c 2+a 2+2ca cos B =12+(2)2+2×1×2×cos 3π4=1,∴|BD |=12,即AC 边上的中线长为12.14在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足3b sin A =a cos B +a .(1)求角B 的值;(2)若c =8,△ABC 的面积为203,求BC 边上中线AD 的长.【答案】(1)π3(2)7【详解】(1)解:由正弦定理得3sin B sin A =sin A cos B +sin A ,A ∈0,π ,sin A ≠0∴3sin B =cos B +1,则sin B -π6 =12,B ∈0,π ,∴B =π3;(2)∵S =12ac sin B =203,c =8,∴a =10,由余弦定理AD2=c2+a22-2×12ac cos B=64+25-40=49,得AD2=49,∴AD=7,15如图,在△ABC中,内角A、B、C的对边分别为a、b、c.已知b=3,c=6,sin2C=sin B,且AD 为BC边上的中线,AE为∠BAC的角平分线.(1)求cos C及线段BC的长;(2)求△ADE的面积.【答案】(1)cos C=14,BC=6(2)3158【详解】(1)∵sin2C=sin B,∴2sin C cos C=sin B,∴2c cos C=b,∴cos C=1 4由余弦定理得cos C=a2+9-366a=14⇒a=6(负值舍去),即BC=6.(2)∵cos C=14>0,C∈0,π2,∴sin C=154,∴S△ABC=12CA⋅CB⋅sin C=9154,∵AE平分∠BAC,sin∠BAE=sin∠CAE,由正弦定理得:BEsin∠BAE =ABsin∠AEB,CEsin∠CAE=ACsin∠AEC,其中sin∠AEB=sin∠AEC,∴AB AC =BECE=2⇒S△AEC=13S△ABC,∵AD为BC边的中线,∴S△ADC=12S△ABC,∴S△ADE=S△ADC-S△AEC=16S△ABC=3158.16在△ABC中,∠A=2π3,AC=23,点D在AB上,CD=32.(1)若CD为中线,求△ABC的面积;(2)若CD平分∠ACB,求BC的长.【答案】(1)9-33(2)6(1)解:由余弦定理得CD2=AC2+AD2-2⋅AC⋅AD⋅cos A,∴322=232+AD2-2×23×AD×-12,解得AD=-3±3(负值舍).所以,AB=2AD=6-23,故S△ABC=12AB⋅AC⋅sin A=12×6-23×23×32=9-33.(2)解:由正弦定理得CDsin A=ACsin∠ADC,即3232=23sin∠ADC,解得sin∠ADC=22.又∠A=2π3,则∠ADC∈0,π3,∴∠ADC=π4,∴∠ACD=π-2π3-π4=π12.又CD平分∠ACB,则∠ACB=2∠ACD=π6 .所以,∠B=π-2π3-π6=π6,则∠B=∠ACB,故AB=AC=2 3.由余弦定理得BC2=AB2+AC2-2AB⋅AC⋅cos A=232+232-2×23×23×-1 2=36.因此,BC=6.17在①3b=a sin C+3cos C;②a sin C=c sin B+C2;③a cos C+12c=b,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求角A;(2)若b=1,c=3,求BC边上的中线AD的长.注:若选择多个条件分别进行解答,则按第一个解答进行计分.【答案】(1)任选一个,答案均为π3(2)132.(2)在△ABD和△ACD中分别应用余弦定理后相加可得AD.【详解】(1)选①3b=a sin C+3cos C,由正弦定理得3sin B=sin A(sin C+3cos C),3sin(A+C)=sin A sin c+3sin A cos C,3(sin A cos C+cos A sin C)=sin A sin C+3sin A cos C,3cos A sin C=sin A sin C,三角形中sin C≠0,所以tan A=3,又A∈(0,π),所以A=π3;选②a sin C=c sin B+C 2由正弦定理得sin A sin C=sin C sin B+C2=sin C cos A2,三角形中sin C≠0,所以2sin A2cos A2=cos A2,又三角形中cosA2≠0,所以sin A2=12,A∈(0,π),所以A2=π6,即A=π3;选③a cos C+12c=b,由余弦定理得a2+b2-c22b+12c=b,整理得b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,而A∈(0,π),A=π3;(2)由(1)a2=b2+c2-2bc cos A=1+9-2×1×3cosπ3=7,a=7,由余弦定理得:b2=AD2+CD2-2AD⋅CD cos∠CDAc2=AD2+BD2-2AD⋅BD cos∠BDA,又BD=CD,cos∠CDA=-cos∠BDA,所以b2+c2=2AD2+BD2+CD2=2AD2+12a2,所以AD2=121+9-12×7=134,AD=132.类型4:三角形涉及角平分线问题张角定理如图,在ΔABC中,D为BC边上一点,连接AD,设AD=l,∠BAD=α,∠CAD=β则一定有sinα+βl=sinαb+sinβc三角形涉及角平分线问题专项练习18设a,b,c分别是△ABC的内角A,B,C的对边,sin B-sin Cb=a-csin A+sin C.(1)求角A的大小;(2)从下面两个问题中任选一个作答,两个都作答则按第一个记分.①设角A的角平分线交BC边于点D,且AD=1,求△ABC面积的最小值.②设点D为BC边上的中点,且AD=1,求△ABC面积的最大值.【答案】(1)A=π3;(2)①33;②3 3.【详解】(1)∵asin A=bsin B=csin C且sin B-sin Cb=a-csin A+sin C,∴b-cb=a-ca+c,即b2+c2-a2=bc,∴cos A=b2+c2-a22bc =bc2bc=12,又A∈0,π,∴A=π3;(2)选①∵AD 平分∠BAC ,∴∠BAD =∠CAD =12∠BAC =π6,∵S △ABD +S △ACD =S △ABC ,∴12AB ⋅AD ⋅sin ∠BAD +12AC ⋅AD ⋅sin ∠CAD =12b ⋅c ⋅sin A ,即c sin π6+b sin π6=bc sin π3,∴c +b =3bc由基本不等式可得:3bc =b +c ≥2bc ,∴bc ≥43,当且仅当b =c =233时取“=”,∴S △ABC =12bc sin A =34bc ≥33,即△ABC 的面积的最小值为33;②因为AD 是BC 边上的中线,在△ADB 中由余弦定理得cos ∠ADB =a 2 2+12-c 22×a 2×1,在△ADC 中由余弦定理得cos ∠ADC =a 2 2+12-b 22×a 2×1,∵cos ∠ADB +cos ∠ADC =0,∴a 22+2=b 2+c 2,在△ABC 中,A =π3,由余弦定理得a 2=b 2+c 2-bc ,∴4-bc =b 2+c 2∴4-bc =b 2+c 2≥2bc ,解得bc ≤43,当且仅当b =c =233时取“=”,所以S △ABC =12bc sin A =34bc ≤33,即△ABC 的面积的最大值为33.19在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c sin B +33b cos A +B =33b .(1)求角C 的大小;(2)若c =3,角A 与角B 的内角平分线相交于点D ,求△ABD 面积的取值范围.【答案】(1)π3(2)3-34,34【详解】(1)解:∵c sin B +33b cos A +B =33b ,由正弦定理可得:sin C sin B +33sin B cos A +B =33sin B ,∴sin C sin B -33sin B cos C =33sin B ,∵sin B ≠0,∴sin C -33cos C =33,∴sin C -π6 =12,∵C 为锐角,∴C -π6∈-π6,π3 ,∴C -π6=π6,∴C =π3;(2)解:由题意可知∠ADB =2π3,设∠DAB =α,∴∠ABD =π3-α,∵0<2α<π2,又∵B =π-π3-2α0,π2 ,∴α∈π12,π4,在△ABD 中,由正弦定理可得:AB sin ∠ADB =AD sin ∠ABD ,即:3sin 2π3=AD sin π3-α ,∴AD =2sin π3-α ,∴S △ABD =12AB ⋅AD ⋅sin α=12×3×2sin π3-α sin α=32sin αcos α-32sin 2α=32sin 2α+π6 -34,∵α∈π12,π4 ,∴2α+π6∈π3,2π3,∴sin 2α+π6 ∈32,1 ,∴32sin 2α+π6 -34∈3-34,34,∴三角形面积的取值范围为3-34,34.20已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 满足b cos C +c cos B sin B +3b cos A =0.(1)求A ;(2)若c =2,a =23,角B 的角平分线交边AC 于点D ,求BD 的长.【答案】(1)2π3;(2)6.【详解】(1)由正弦定理化边为角可得:sin B cos C +sin C cos B sin B +3sin B cos A =0,即sin B +C sin B +3sin B cos A =0所以sin A sin B +3sin B cos A =0,因为sin B ≠0,所以sin A +3cos A =0即tan A =- 3.因为0<A <π,所以A =2π3.(2)在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,代入数据可得:12=b 2+4-2b ×2×-12 即12=b 2+4+2b .解得:b =2或b =-4(舍).所以b =c =2,所以B =C =π6,在△ABD 中,由BD 是∠ABC 的角平分线,得∠ABD =π12,则∠ADB =π-2π3-π12=π4,在△ABD 中,由正弦定理得:AB sin ∠ADB =BD sin ∠BAD 即2sin π4=BD sin 2π3,可得:BD =2×sin 2π3sin π4=2×3222= 6.21已知△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且有3cos A c cos B +b cos C +a sin A =0.(1)求A ;(2)设AD 是△ABC 的内角平分线,边b ,c 的长度是方程x 2-6x +4=0的两根,求线段AD 的长度.【答案】(1)A =2π3;(2)AD =23.【详解】(1)由正弦定理得:3cos A sin C cos B +sin B cos C +sin 2A =0,即3cos A sin B +C +sin 2A =0,又sin B +C =sin π-A =sin A ,∴-3sin A cos A =sin 2A ,又A ∈0,π ,∴sin A ≠0,∴sin A =-3cos A ,∴tan A =-3,又A ∈0,π ,∴A =2π3;(2)∵b ,c 为方程x 2-6x +4=0的两根,∴b +c =6,bc =4,由(1)知:A =2π3,∴∠BAD =∠CAD =π3,∵S △ABC =S △ABD +S △ADC ,∴12bc sin 2π3=c 2⋅AD sin π3+b 2⋅AD sin π3=b +c 2⋅AD sin π3,即332AD =3,解得:AD =23.22在①b sin B +c sin C =233b sin C +a sin A ;②cos 2C +sin B sin C =sin 2B +cos 2A ;③2b =2a cos C +c 这三个条件中任选一个,补充在下面的问题中并作答.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 外接圆的半径为1,且.(1)求角A ;(2)若AC =2,AD 是△ABC 的内角平分线,求AD 的长度.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)A =π3;(2)AD =2.【详解】(1)选择①:b sin B +c sin C =233b sin C +asin A ,由正弦定理得:b 2+c 2=233b sin C +a a ,即b 2+c 2-a 2=233ab sin C ,由余弦定理得:2bc cos A =233ab sin C ,所以sin C cos A =33sin A sin C .因为C ∈0,π ,所以sin C >0,所以tan A >3因为A ∈0,π ,所以A =π3.选择②:cos 2C +sin B sin C =sin 2B +cos 2A 得:1-sin 2C +sin B sin C =sin 2B +1-sin 2A ,即sin 2B +sin 2C -sin 2A =sin B sin C ,由正弦定理得:b 2+c 2-a 2=bc .由余弦定理得:cos A =b 2+c 2-a 22bc=12,因为A ∈0,π ,所以A =π3.选择③:由2b =2a cos C +c ,结合正弦定理得:2sin B =2sin A cos C +sin C .因为A +B +C =π,所以sin B =sin A +C ,即2sin A +C =2sin A cos C +sin C ,所以2cos A sin C =sin C .因为C ∈0,π ,所以sin C >0,所以cos A =12因为A ∈0,π ,所以A =π3.(2)在△ABC 中,由正弦定理得:AC sin B=2R =2,所以sin B =22,所以B =π4(因为A =π3,由内角和定理,B 不可能为3π4).在△ABD 中,由正、余弦定理建立方程组得:AD sin B =BD sin A 2cos B =BD 2+AB 2-AD 22×AB ×BD AB sin C =2R ,即AD 22=BD 1222=BD 2+AB 2-AD 22×AB ×BD AB 6+24=2 ,解得:AD =2BD =1AB =6+22,即AD = 2.类型5:三角形涉及长度最值问题秒杀:解三角形中最值或范围问题,通常涉及与边长常用处理思路:①余弦定理结合基本不等式构造不等关系求出答案;②采用正弦定理边化角,利用三角函数的范围求出最值或范围,如果三角形为锐角三角形,或其他的限制,通常采用这种方法;③巧妙利用三角换元,实现边化角,进而转化为正弦或余弦函数求出最值三角形涉及长度最值问题专项练习23设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为34c 2-a 2-b 2 .(1)求C ;(2)延长BC 至D ,使BD =3BC ,若b =2,求AD AB 的最小值.【答案】(1)2π3(2)3-1.【详解】(1)解:由余弦定理可得c 2-a 2-b 2=-2ab cos C ,因为△ABC 的面积为34c 2-a 2-b 2 ,可得S △ABC =34c 2-a 2-b 2 =-32ab cos C ,又因为S △ABC =12ab sin C ,所以12ab sin C =-32ab cos C ,即tan C =-3,因为0<C <π,所以C =2π3.(2)解:如图所示,因为BD =3BC ,设BC =t ,则CD =2t ,由余弦定理可得AD 2AB 2=4t 2+4-2×2×2t cos π3t 2+4-2×2t cos 2π3=4-12t +1 +3t +1≥4-23当且仅当t =3-1时,等号成立,所以AD AB的最小值为3-1.24在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2-b 2=ac cos B -12bc (1)求A ;(2)若a =6,2BD =DC ,求线段AD 长的最大值.【答案】(1)π3(2)23+2【详解】(1)因为a 2-b 2=ac cos B -12bc ,所以根据余弦定理,可得a 2-b 2=ac ⋅a 2+c 2-b 22ac -12bc ,所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈0,π ,所以A =π3.(2)解法一:因为2BD =DC ,所以2AD -AB =AC -AD ,所以AD =23AB +13AC,所以AD 2=194AB 2+AC 2+4AB ⋅AC=19b 2+4c 2+2bc .因为b 2+c 2-a 2=bc ,a =6,所以b 2+c 2-bc =36,则AD 2=4×136b 2+4c 2+2bc =4×b 2+4c 2+2bcb 2+c 2-bc=4×b c 2+4+2×b cb c 2+1-b c.令t =b c ,t >0,则AD 2=4×t 2+4+2t t 2+1-t =4×t 2-t +1 +3t +3t 2-t +1=4+12t +1t 2-t +1.令u =t +1,则u >1,所以AD 2=4+12u u 2-3u +3=4+12u +3u -3≤4+1223-3=16+83,当且仅当u =3u ,即u =3时取等号.所以,AD ≤16+83=23+2,所以,线段AD 长的最大值为23+2.解法二:设△ABC 外接圆的半径为R ,根据正弦定理,可得2R =632,所以R =2 3.当AD 过圆心O 时,AD 的长取得最大值.作OE ⊥BC ,则E 为BC 的中点,因为∠BAC =π3,所以∠BOE =12×2∠BAC =π3,所以OE =OB cos π3= 3.因为BE =3,BD =13BC =2,所以DE =1,所以OD =OE 2+ED 2=2,所以AD =23+2,所以,线段AD 长的最大值为23+2.25锐角△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos A sin B +π3 .(1)求A ;(2)若b +c =6,求BC 边上的高AD 长的最大值.【答案】(1)A =π3(2)332【详解】(1)因为C =π-(A +B ),所以sin C =sin (A +B )=sin A cos B +cos A sin B ,又sin C =2cos A sin B +π3 =2cos A 12sin B +32cos B=cos A sin B +3cos A cos B ,所以sin A cos B =3cos A cos B ,所以cos B (sin A -3cos A )=0,所以cos B =0或sin A -3cos A =0,若cos B =0,则B =π2,与△ABC 为锐角三角形矛盾,舍去,从而sin A -3cos A =0,则tan A =3,又0<A <π2,所以A =π3;(2)由(1)知cos A =12=b 2+c 2-a 22bc =(b +c )2-2bc -a 22bc =36-2bc -a 22bc ,化简得a2=36-3bc,因为S△ABC=12a⋅AD=12bc sin A,所以AD=3bc2a,所以AD2=3(bc)24a2=3(bc)24(36-3bc),又b+c≥2bc,所以bc≤9,当且仅当b=c=3时取等号,所以AD2=3(bc)24(36-3bc)=3436(bc)2-3bc≤343692-39=274,所以AD≤332,故AD长的最大值为332.26在△ABC中,角A,B,C的对边分别是a,b,c,a sin B+C=b-csin B+c sin C.(1)求A;(2)若D在BC上,a=2,且AD⊥BC,求AD的最大值.【答案】(1)π3(2)3【详解】(1)由a sin B+C=b-csin B+c sin C,得a sin A=b-csin B+c sin C,由正弦定理,得a2=b-cb+c2=b2+c2-bc.由余弦定理,得cos A=b2+c2-a22bc=bc2bc=12.又A∈0,π,所以A=π3 .(2)因为a2=b2+c2-2bc cos A=b2+c2-bc≥2bc-bc=bc,所以bc≤4,当且仅当b=c=2时取等号,又12bc sin A=12AD⋅a,a=2,所以AD=12bc sin A1=34bc≤3,故AD的最大值为 3.27记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为312b2.(1)若A=π6,求sin B sin C;(2)求a2+c2ac的最大值.【答案】(1)3(2)4【详解】(1)由于S△ABC=12bc sin A=14bc=312b2,所以b=3c,由正弦定理可得sin Bsin C=bc=3.(2)由于S△ABC=12ac sin B=312b2,所以b2=23ac sin B;由余弦定理可得a2+c2=2ac cos B+b2,所以c2+a2ac=23sin B+2cos Bacac=23sin B+2cos B=4sin B+π6,则当B=π3时,c2+a2ac取得最大值4.。

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。

解三角形知识点及题型总结

解三角形知识点及题型总结

解三角形知识点及题型总结基础强化(8)——解三角形1、①三角形三角关系:A+B+C=180°;C=180°-(A+B);②. 三角形三边关系:a+b>c; a-b<c③.锐角三角形性质:若A>B>C 则6090,060A C ︒≤<︒︒<≤︒2、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++===3、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B .4、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b c C C++===A +B +A B =2R 5、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)) 6、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=Rabc 4=2)(c b a r ++7、余弦定理:在C ∆AB 中,有2222cos ab c bc =+-A,2222cos b a c ac =+-B , 2222cos c a b ab C=+-.8、余弦定理的推论:222cos 2b c a bc+-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab+-=.9、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

解三角形图形类问题(十大题型)(原卷版)

解三角形图形类问题(十大题型)(原卷版)

重难点突破02解三角形图形类问题目录01方法技巧与总结 (2)02题型归纳与总结 (2)题型一:妙用两次正弦定理(两式相除消元法) (2)题型二:两角使用余弦定理建立等量关系 (4)题型三:张角定理与等面积法 (5)题型四:角平分线问题 (6)题型五:中线问题 (7)题型六:高问题 (9)题型七:重心性质及其应用 (10)题型八:外心及外接圆问题 (11)题型九:两边夹问题 (13)题型十:内心及内切圆问题 (14)03过关测试 (15)解决三角形图形类问题的方法:方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.题型一:妙用两次正弦定理(两式相除消元法)【典例1-1】(2024·河南·三模)已知P 是ABC 内一点,π3π,,,44PB PC BAC BPC ABP ∠∠∠θ====.(1)若π,224BC θ=,求AC ;(2)若π3θ=,求tan BAP ∠.【典例1-2】ABC 的内角,,A B C 的对边分别为,,,a b c AD 为BAC ∠平分线,::32:3c AD b =(1)求A ∠;(2)AD 上有点,90M BMC ∠= ,求tan ABM ∠.【变式1-1】如图,在平面四边形ABCD 中,90ACB ADC ∠=∠=︒,AC =30BAC ∠=︒.(1)若CD =BD ;(2)若30CBD ∠=︒,求tan BDC ∠.【变式1-2】(2024·广东广州·二模)记ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos cos b A a B b c -=-.(1)求A ;(2)若点D 在BC 边上,且2CD BD =,cos 3B =,求tan BAD ∠.【变式1-3】在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2cos (cos cos )A c B b C a +=.(1)求角A ;(2)若O 是ABC 内一点,120AOB ∠=︒,150AOC ∠=︒,1b =,3c =,求tan ABO ∠.题型二:两角使用余弦定理建立等量关系【典例2-1】如图,四边形ABCD 中,1cos 3BAD ∠=,3AC AB AD ==.(1)求sin ABD ∠;(2)若90BCD ∠=︒,求tan CBD ∠.【典例2-2】如图,在梯形ABCD 中,AB CD ∥,AD ==(1)求证:sin C A =;(2)若2C A =,2AB CD =,求梯形ABCD 的面积.【变式2-1】(2024·全国·模拟预测)在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2232cos 235cos22C C π⎛⎫=-- ⎪⎝⎭.(1)求角C ;(2)若点D 在AB 上,2BD AD =,BD CD =,求AC BC的值.【变式2-2】平面四边形ABCD 中,1AB =,2AD =,πABC ADC ∠+∠=,π3BCD ∠=.(1)求BD ;(2)求四边形ABCD 周长的取值范围;(3)若E 为边BD 上一点,且满足CE BE =,2BCE CDE S S =△△,求BCD △的面积.题型三:张角定理与等面积法【典例3-1】(2024·吉林·模拟预测)ABC 的内角,,A B C 的对边分别是,,a b c ,且sin sin sin A B a c C a b --=+,(1)求角B 的大小;(2)若3b =,D 为AC 边上一点,2BD =,且BD 为B ∠的平分线,求ABC 的面积.【典例3-2】(2024·黑龙江哈尔滨·二模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知4b =,2cos sin cos tan b B A A c C=+.(1)求角B 的大小;(2)已知直线BD 为ABC ∠的平分线,且与AC 交于点D ,若3BD =,求ABC 的周长.【变式3-1】(2024·吉林通化·梅河口市第五中学校考模拟预测)已知锐角ABC 的内角,,A B C 的对边分别为,,a b c ,且sin sin sin sin a B C b c A C-=+-.(1)求B ;(2)若bB 的平分线交AC 于点D ,1BD =,求ABC 的面积.【变式3-2】(2024·江西抚州·江西省临川第二中学校考二模)如图,在ABC 中,4AB =,1cos 3B =,点D 在线段BC 上.(1)若3π4ADC ∠=,求AD 的长;(2)若2BD DC =,ACD sin sin BAD CAD ∠∠的值.题型四:角平分线问题【典例4-1】(2024·全国·模拟预测)已知在△ABC 中,内角,,A B C 的对边分别为,,a b c ,且6,60a A =∠=︒.(1)若AD 为BC 边上的高线,求AD 的最大值;(2)已知AM 为BC 上的中线,BAC ∠的平分线AN 交BC 于点N ,且sin tan 2cos A B A=-,求△AMN 的面积.【典例4-2】如图所示,在ABC 中,3AB AC =,AD 平分BAC ∠,且AD kAC =.(1)若2DC =,求BC 的长度;(2)求k 的取值范围;(3)若1ABC S =△,求k 为何值时,BC 最短.【变式4-1】在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2π3A =,22cos c b ac C -=.(1)求tan C ;(2)作角A 的平分线,交边BC 于点D ,若AD =AC 的长度;(3)在(2)的条件下,求ABC 的面积.【变式4-2】已知ABC 的内角,,A B C 的对边分别为,,a b c ,其面积为S ,且()()sin sin sin 6a b c a A B C S+-++=(1)求角A 的大小;(2)若3,a BA AC A ∠=⋅=-的平分线交边BC 于点T ,求AT 的长.题型五:中线问题【典例5-1】如图,在ABC 中,已知2AB =,AC =,45BAC ∠=︒,BC 边上的中点为M ,点N 是边AC 上的动点(不含端点),AM ,BN 相交于点P .(1)求BAM ∠的正弦值;(2)当点N 为AC 中点时,求MPN ∠的余弦值.(3)当NA NB ⋅ 取得最小值时,设BP BN λ= ,求λ的值.【典例5-2】(2024·辽宁沈阳·东北育才双语学校校考一模)如图,设ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知1c =且12sin cos sin sin sin 4c A B a A b B b C =-+,cos BAD ∠=(1)求b 边的长度;(2)求ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点(含端点),线段EF 交AD 于G ,且AEF △的面积为ABC 面积的16,求AG EF 的取值范围.【变式5-1】阿波罗尼奥斯(Apollonius )是古希腊著名的数学家,他提出的阿波罗尼奥斯定理是一个关于三角形边长与中线长度关系的定理,内容为:三角形两边平方的和,等于所夹中线及第三边之半的平方和的两倍,即如果AD 是ABC 中BC 边上的中线,则222222BC AB AC AD ⎡⎤⎛⎫+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(1)若在ABC 中,5AB =,3AC =,π3BAC ∠=,求此三角形BC 边上的中线长;(2)请证明题干中的定理;(3)如图ABC 中,若AB AC >,D 为BC 中点,3BD DC ==,()sin 3sin 3sin a A b B b A C +=-,2ABC S =△,求cos DAC ∠的值.【变式5-2】在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,30B ︒=.(1)已知b =cos cos 2b A a B +=(i )求C ;(ii )若a b <,D 为AB 边上的中点,求CD 的长.(2)若ABC 为锐角三角形,求证:3a c <【变式5-3】(2024·江苏南通·模拟预测)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,2c BA BC =⋅- ,其中S 为ABC 的面积.(1)求角A 的大小;(2)设D 是边BC 的中点,若AB AD ⊥,求AD 的长.题型六:高问题【典例6-1】(2024·河北秦皇岛·三模)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,π3C =且7a b +=,ABC (1)求ABC 的面积;(2)求ABC 边AB 上的高h .【典例6-2】(2024·四川·模拟预测)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin cos B b A B b ++=.(1)求角C 的大小;(2)若8a =,ABC 的面积为AB 边上的高.【变式6-1】在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知7,8a c ==.(1)若4sin 7C =,求角A 的大小;(2)若5b =,求AC 边上的高.【变式6-2】(2024·山东枣庄·一模)在ABC 中,角,,A B C 的对边分别为,,a b c ,且sin tan 22a C A c =.(1)求C ;(2)若8,5,ab CH ==是边AB 上的高,且CH mCA nCB =+ ,求m n .题型七:重心性质及其应用【典例7-1】(2024·四川内江·一模)ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,6a =,sin sin 2B C b a B +=.(1)求角A 的大小;(2)M 为ABC 的重心,AM 的延长线交BC 于点D ,且AM =ABC 的面积.【典例7-2】(2024·江西景德镇·一模)如图,已知△ABD 的重心为C ,△ABC 三内角A 、B 、C 的对边分别为a ,b ,c .且2cos 22A b c c+=(1)求∠ACB 的大小;(2)若π6CAB ∠=,求sin CDA ∠的大小.【变式7-1】(2024·高三·福建福州·期中)已知ABC 内角A ,B ,C 的对边分别为a ,b ,c ,点G 是ABC的重心,且0AG BG ⋅= .(1)若π6GAB ∠=,①直接写出AG CG=______;②设CAG α∠=,求tan α的值(2)求cos ACB ∠的取值范围.【变式7-2】(2024·浙江温州·模拟预测)ABC 的角,,A B C 对应边是a ,b ,c ,三角形的重心是O .已知3,4,5OA OB OC ===.(1)求a 的长.(2)求ABC 的面积.题型八:外心及外接圆问题【典例8-1】(2024·广东深圳·二模)已知在ABC 中,角,,A B C 的对边分别为,,,6,2,1a b c a b c ===.(1)求角A 的余弦值;(2)设点O 为ABC 的外心(外接圆的圆心),求,AO AB AO AC ⋅⋅ 的值.【典例8-2】已知ABC 的内角,,A B C 所对的边分别为,,,3,22cos a b c a c b a B =-=.(1)求A ;(2)M 为ABC 外心,AM 的延长线交BC 于点D ,且MD =ABC 的面积.【变式8-1】ABC 的内角,,A B C 的对边分别为,,,,20,a b c c b AB AC ABC >⋅= 的面积为(1)求A ∠;(2)设O 点为ABC 外心,且满足496OB OC ⋅=- ,求a .【变式8-2】(2024·河南·模拟预测)已知ABC 的外心为O ,点,M N 分别在线段,AB AC 上,且O 恰为MN 的中点.(1)若1BC OA ==,求ABC 面积的最大值;(2)证明:AM MB AN NC ⋅=⋅.【变式8-3】(2024·安徽黄山·三模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知c =(1cos )sin b C B +=.(1)求角C 的大小和边b 的取值范围;(2)如图,若O 是ABC 的外心,求OC AB CA CB ⋅+⋅ 的最大值.题型九:两边夹问题【典例9-1】在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2cos sin 0sin cos A A B B +-=+,则a b c +的值是()A .2B 3C 2D .1【典例9-2】在ABC ∆中,a 、b 、c 分别是A ∠、B ∠、C ∠所对边的边长.若2cos sin 0cos sin A A B B +-=+,则a b c+的值是().A .1B 2C 3D .2【变式9-1】在ABC ∆中,已知边,,a b c 所对的角分别为,,A B C ,若2223sin 2sin sin si 2si n sin n C A B C B A ++=,则tan A =_________________【变式9-2】(2024·江苏苏州·吴江中学模拟预测)在ABC ∆中,已知边,,a b c 所对的角分别为,,A B C ,若22252cos 3cos 2sin sin sin sin --=+B C A B C A ,则tan A =_____.【变式9-3】在ABC ∆中,已知边a 、b 、c 所对的角分别为A 、B 、C ,若5a =,2223sin 2sin sin si 2si n sin n C A B C B A ++=,则ABC ∆的面积S =______.【变式9-4】在ABC 中,若(cos sin )(cos sin )2A A B B ++=,则角C =__.题型十:内心及内切圆问题【典例10-1】(2024·全国·模拟预测)设ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足2cos 2a B b c +=,5a =.(1)求ABC 的周长的取值范围;(2)若ABC 的内切圆半径r =ABC 的面积S .【典例10-2】(2024·湖南永州·一模)在ABC 中,设,,A B C 所对的边分别为,,a b c ,且满足cos cos c A a C a b -=+.(1)求角C ;(2)若5,c ABC = 的内切圆半径4r =,求ABC 的面积.【变式10-1】(2024·全国·模拟预测)已知ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,sin cos c A C -=.(1)求角A 的大小;(2)若7a =,ABC 外接圆的半径为R ,内切圆半径为r ,求R r的最小值.【变式10-2】(2024·全国·模拟预测)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且22sin 2sin 2sin sin 4A B A B ⋅⋅=.(1)求C ;(2)若2c =,求ABC 内切圆半径取值范围.【变式10-3】(2024·广西南宁·一模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2a =,且sin sin sin A B b c C b a+-=-.(1)求ABC 的外接圆半径R ;(2)求ABC 内切圆半径r 的取值范围.【变式10-4】(2024·吉林·二模)已知ABC 的三个内角,,A B C 的对边分别为,,,a b c ABC 的外接圆半径为222sin sin sin sin sin B C B C A +-=.(1)求a ;(2)求ABC 的内切圆半径r 的取值范围1.如图所示,在ABC 中,设,,a b c 分别为内角,,A B C 的对边,已知3b c a +=,()4b c a =-.(1)求角C ;(2)若7c =,过B 作AC 的垂线并延长到点D ,使,,,A B C D 四点共圆,AC 与BD 交于点E ,求四边形ABCD 的面积.2.如图,在梯形ABCD 中,//AB CD ,60D ∠= .(1)若3AC =,求ACD 周长的最大值;(2)若2CD AB =,45BCD ∠= ,求tan DAC ∠的值.3.(2024·全国·模拟预测)在ABC 中,已知sin()sin sin BAC B B C ∠-∠=+.(1)求BAC ∠.(2)若2AC AB =,BAC ∠的平分线交BC 于点D ,求cos ADB ∠.4.(2024·四川成都·模拟预测)在ABC 中,角,,A B C 所对的边分别为,,a b c 3sin sin 2B C b a B +=,边BC 上有一动点D .(1)当D 为边BC 中点时,若3,2AD b ==,求c 的长度;(2)当AD 为BAC ∠的平分线时,若4a =,求AD 的最大值.5.(2024·安徽合肥·模拟预测)已知函数()π2π1sin sin 332f x x x ⎛⎫⎛⎫=+⋅+- ⎪ ⎪⎝⎭⎝⎭,角A 为△ABC 的内角,且()0f A =.(1)求角A 的大小;(2)如图,若角A 为锐角,3AB =,且△ABC 的面积S E 、F 为边AB 上的三等分点,点D 为边AC 的中点,连接DF 和EC 交于点M ,求线段AM 的长.6.(2024·全国·模拟预测)在ABC 中,角,,A B C ,的对边分别为,,a b c ,ABC 的面积为S ,()2sin 213sin A B S b B ⎡⎤+=+⎢⎥⎣⎦.(1)求角A .(2)若ABC 的面积为a =,D 为边BC 的中点,求AD 的长.7.(2024·四川成都·三模)在ABC 中,15,6,cos 8BC AC B ===.(1)求AB 的长;(2)求AC 边上的高.8.(2024·江苏南通·三模)在ABC 中,角,,A B C 的对边分别为(),,,2cos cos a b c b c A a C -=.(1)求A ;(2)若ABCBC 边上的高为1,求ABC 的周长.9.(2024·高三·河南·开学考试)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且满足()()()10sin sin sin sin 2sin 2sin 3a b c A B C a B c A b c C ++++=+++.(1)求cos C ;(2)若AB 边上的高为2,c =,a b .10.(2024·高三·山东济南·开学考试)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知()cos 2cos b A a B =-.(1)求c a;(2)若2π3B =,且AC ABC 的周长.11.在ABC 中,设a ,b ,c 分别表示角A ,B ,C 对边.设BC 边上的高为h ,且2a h =.(1)把b cc b +表示为sin cos x A y A +(x ,R y ∈)的形式,并判断b c c b+能否等于(2)已知B ,C 均不是直角,设G 是ABC 的重心,BG CG ⊥,c b >,求tan B 的值.12.(2024·江苏苏州·二模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin sin sin a b C B c A B+-=-.(1)求角A ;(2)若6a =,点M 为ABC 的重心,且AM =ABC 的面积.13.(2024·河南开封·模拟预测)记ABC 的内角,,A B C 的对边分别为,,a b c,已知sin cos cos ,B a C c A b G -==为ABC 的重心.(1)若2a =,求c 的长;(2)若AG =ABC 的面积.14.(2024·辽宁抚顺·一模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知()()()sin sin sin sin a b A B c C B +-=-.(1)求角A ;(2)若6a =,点M 为ABC的重心,且AM =ABC 的面积.15.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 是公差为2的等差数列.(1)若2sin 3sin C A =,求ABC 的面积.(2)是否存在正整数b ,使得ABC 的外心在ABC 的外部?若存在,求b 的取值集合;若不存在,请说明理由.16.(2024·湖北·模拟预测)已知ABC 的外心为O ,,M N 为线段,AB AC 上的两点,且O 恰为MN 中点.(1)证明:||||||||AM MB AN NC ⋅=⋅(2)若||AO ||1OM =,求AMN ABCS S V V 的最大值.17.在ABC 中,角,,A B C 所对的边分别为,,a b c ,满足3cos 5c a B b =+.(1)求cos A 的值;(2)当BC 与BC 边上的中线长均为2时,求ABC 的周长;(3)当ABC 内切圆半径为1时,求ABC 面积的最小值.18.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()cos b c a C C +=+.(1)求A ;(2)若2a =,求ABC 内切圆周长的最大值.19.(2024·浙江杭州·模拟预测)已知ABC 的周长为20,角A ,B ,C 所对的边分别为a ,b ,c (1)若π4C =,7c =,求ABC 的面积;(2)若ABC 7a =,求tan A 的值.20.(2024·高三·江苏扬州·开学考试)已知ABC 的内角,,A B C 的对边分别为,,a b c ,23A π=,10b =,6c =,ABC 的内切圆I 的面积为S .(1)求S 的值;(2)若点D 在AC 上,且,,B I D 三点共线,求BD BC ⋅ 的值.21.(2024·贵州·模拟预测)在ABC 中,AB =2AC =,π6C ∠=,N 为AB 的中点,A ∠的角平分线AM 交CN 于点O .(1)求CN 的长;(2)求AOC 的面积.22.(2024·广东梅州·二模)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,ccos sin B b A -=,2c =,(1)求A 的大小:(2)点D 在BC 上,(Ⅰ)当AD AB ⊥,且1AD =时,求AC 的长;(Ⅱ)当2BD DC =,且1AD =时,求ABC 的面积ABC S .23.(2024·甘肃陇南·一模)在ABC 中,内角A ,B ,C 的对边分别为,,a b c .已知cos cos 3c A a C +=.(1)求b ;(2)D 为边AC 上一点,π26AD DC,DBC ,AB BD =∠=⊥,求BD 的长度和ADB ∠的大小.24.(2024·全国·模拟预测)如图,四边形ABCD 为梯形,//AB CD ,2AB CD ==tan2A =,1cos 3ADB ∠=.的值;(1)求cos BDC(2)求BC的长.。

解三角形常用知识点归纳与题型总结-解三角形题型归纳总结

解三角形常用知识点归纳与题型总结-解三角形题型归纳总结

解三角形常用知识点归纳与题型总结1、①三角形三角关系:A+B+C=180°;C=180°—(A+B);②.角平分线性质定理:角平分线分对边所得两段线段的比等于角两边之比. ③.锐角三角形性质:若A>B>C 则6090,060A C ︒≤<︒︒<≤︒. 2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== (1)和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.(2) 二倍角公式 sin2α = 2cosαsinα.2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+. 221cos 21cos 2sin ,cos 22αααα-+==(3)辅助角公式(化一公式))sin(cos sin 22ϕ±+=±=x b a x b x a y 其中ab =ϕtan 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B =2R 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)) 7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---(海伦公式)8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。

(完整版)解三角形题型总结(最新整理)

(完整版)解三角形题型总结(最新整理)

解三角形题型分类解析1、正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径)12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)2sin ,sin ,sin 222a b c A B C R R R===()(角化边公式)3::sin :sin :sin a b c A B C=()sin sin sin (4),,sin sin sin a A a A b B b B c C c C===做题大法:1)边化角:遇到分式或等式如(切记必须为齐次式,高B A b a BA b sin sin ,sin sin a =→=→考常考点)思考:若是否可行C B A bc sin sin sin a 22=−−−→−=是否可化为2)角化边形如这样的分式或等式b a B A bB A =→=→sin sin ,a sin sin 思路总结: 此为以上转换依据sin sin a b A B =2sin c R C ==⇒2、正弦定理适用情况:(1)已知两角及任一边;(2)已知两边和一边的对角(需要判断三角形解的情况);已知a ,b 和A ,不解三角形,求B 时的解的情况:AR sin 2a =B R sin 2b =B Rsin 2c =如果sin A ≥sin B ,则B 有唯一解;如果sin A <sin B <1,则B 有两解;如果sin B =1,则B 有唯一解;如果sin B >1,则B 无解.3、余弦定理及其推论2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C=+-=+-=+-222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab +-=+-=+-=4、余弦定理适用情况:(1)已知两边及夹角; (2)已知三边。

解三角形高分必会八种题型归纳梳理

解三角形高分必会八种题型归纳梳理

解三角形高分必会题型梳理目录第一讲、正、余弦定理 第二讲、面积第三讲、判断三角形形状 第四讲、解的个数问题 第五讲、证明恒等式 第六讲、实际应用 第七讲、最值问题 第八讲、综合应用知识点归纳【正弦定理】2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 【正弦定理的变形】①2sin ,2sin ,2sin a R A b R B c R C === ②2sin sin sin sin sin sin a b c a b cR A B C A B C ++====++【三角形常用结论 】(1)B A B A B A b a cos cos sin sin <⇔>⇔>⇔> (2)在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+.(3)面积公式:①111222a b c S ah bh ch ===,②111sin sin sin 222S ab C bc A ca B ===. 【三角恒等变换公式】()()()()1.sin sinC,cos =-cos tan =-tan A B A B C A B C+=++,()()2.sin sin cos cos sin αβαβαβ+=+ ()()3.sin -sin cos -cos sin αβαβαβ=()()4.sinx cosx ,tan by a b x a ϕϕ=+=+=其中第1讲 正余弦定理1.(2020•吉林二模)ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 3b =,2c =,则(A ∠= )A .30︒B .45︒C .60︒D .90︒【解析】解:7a =,3b =,2c =,∴由余弦定理得,2229471cos 22322b c a A bc +-+-===⨯⨯,又由(0,180)A ∈︒︒,得60A =︒,故选:C .2.(2020秋•靖远县期末)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,6A π=,4B π=,a (b = )A.BC.D.【解析】解:利用正弦定理:因为sin sin a bA B=,所以sin 21sin 2a Bb A ===.选:A .3.(2021•玉溪一模)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,其中6A π=,3b =,c =sin (C = )A .14BCD .1【解析】解:根据题意,ABC ∆中,6A π=,3b =,c =则2222cos 3a b c bc A =+-=,则a =sin sin a cA C=,则12sin sin 1c A C a ===,故选:D .4.(2021•辽源模拟)在ABC ∆中,角A ,B,C 所对的边分别为a ,b ,c ,3a =,c =,(6bsinA acos B b π⎛⎫=+= ⎪⎝⎭则 )A .1BC D【解析】解:在ABC ∆中,由正弦定理得:sin sin a bA B=,得sin sin b A a B =, 又sin cos()6b A a B π=+. sin cos()6aB a B π∴=+,即1sin cos()cos cos sin sin sin 6662B B B B B B πππ=+=-=-,tan B ∴=(0,)B π∈,6B π∴=.在ABC ∆中,3a =,c =由余弦定理得b ===.故选:C . 5.(2020秋•城关区校级月考)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知1b =,4B π=,1cos 3A =,则(a = )A .43B C .34D【解析】解:根据题意,在ABC ∆中,1cos 3A =,则sin A ,又由1b =,4B π=,则有sin sin a b A B =,即sin 4sin 3b A a B ⨯==;故选:A .6.(2020秋•宿州期末)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若sin 3sin A B =,c 5cos 6C =,则(a = )A .B .3C .D .4【解析】解:ABC ∆中,若sin 3sin A B =,则3a b =,13b a ∴=;又c =,且5cos 6C =,2222cos c a b ab C ∴=+-,2211552936a a a a ∴=+-, 化简得29a =,解得3a =.故选:B .7.(2020秋•闵行区校级月考)三角形ABC 中,BC 边上的中垂线分别交BC ,AC 于D ,M ,若6AM BC =,2AB =,则(AC = )A .3B .4C .5D .6【解析】解:DM BC ⊥,∴0DM BC =,且12AM AB BC DM =++,6AM BC =,∴22111()6222AB BC DM BC AB BC BC BA BC BC ++=+=-+=,∴2212BA BC BC =-,且2AB =,在ABC ∆中,根据余弦定理得,2222224(12)16AC AB BC BA BC BC BC =+-=+--=,4AC ∴=.故选:B .8.(2020秋•虹口区期末)在ABC ∆中,A ∠,B ∠,C ∠所对的边分别是a ,b ,c ,如果::2:3:4a b c =,那么cos C = 14- .【解析】解:因为::2:3:4a b c =,所以设2a =,3b =,4c =,则根据余弦定理得:222222249161cos 2124a b c C ab+-+-===-.故答案为:14-9.(2020•丰台区二模)在ABC ∆中,角A ,B ,C 对应的边长分别是a ,b ,c ,且sin cos Bb A =,则角A 的大小为6π.【解析】解:sin cos B b A =.∴cos sin ab A B =,又由正弦定理知:sin sin a bAB = ∴可得sin A =,从而可解得tan A 0A π<<,6A π∴=.故答案为:6π. 10.(2020春•重庆期末)已知ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,12,,cos 43a B A π===,则b = 32.【解析】解:12,,cos 43a BA π===,sin B ∴=,sin A =,∴由正弦定理sin sin a b A B =,可得:2sin 3sin 22a B b A ===.故答案为:32. 11.(2021•江西一模)已知a ,b ,c 分别是ABC ∆内角A ,B ,C 的对边,4a =,5b =,6c =,则sin()sin 2A B A+= 1 .【解析】解:ABC ∆中,4a =,5b =,6c =, 1625361cos 2458C +-∴==⨯⨯,2536163cos 2564A +-==⨯⨯,sin C ∴=sin A =, ∴sin()sin 1sin 22sin cos A B C A A A +===.故答案为:1. 12.(2020•驻马店一模)在ABC 中,BC 边上的中垂线分别交BC ,AC 于点D ,E .若6AE BC =,||2AB =,则AC = 4 .【解析】解:ABC ∆中,6AE BC =,()6AB BD DE BC ∴++=,∴6AB BC BD BC DE BC AB BC BD BC ++=+=,∴2162AB BC BC +=,∴22222122()412162AC AB AB BC BC AB AB BC BC =++=++=+=,4AC ∴=.13.(2020•蚌埠三模)在ABC ∆中,点D 在边AB 上,CD BC ⊥,AC =5CD =,2BD AD =,则AD 的长为 5 .【解析】解:如图所示:延长BC ,过A 做AE BC ⊥,垂足为E , CD BC ⊥,//CD AE ∴,5CD =,2BD AD =,∴23CD AE =,解得152AE =,在RT ACE ∆,CE ===,由2BCCE=得2BC CE ==在RT BCD ∆中,10BD ==,则5AD =,故答案为:5.第2讲 面积1.(2020•太原校级二模)在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =2a =,ABC S ∆=b 的值为( )A B C .D .【解析】解:在锐角ABC ∆中,sin A =ABC S ∆=,∴11sin 22bc A =3bc ∴=①,又2a =,A 是锐角,1cos 3A ∴,∴由余弦定理得:2222cos a b c bc A =+-,即221()2(1cos )46(1)123b c a bc A +=++=++=,b c ∴+=由①②得:3b c bc ⎧+=⎪⎨=⎪⎩,解得b c ==A .2.(2020秋•益阳期末)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若34b c C π==,则ABC ∆的面积为( )A .2B .C .3D .。

《解三角形》常见题型总结

《解三角形》常见题型总结

《解三角形》常见题型总结1。

1正弦定理和余弦定理1。

1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1 在ABC 中,已知A :B:C=1:2:3,求a :b :c 。

【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。

解:::1:2:3,A .,,,6321::sin :sin :sin sin:sin:sin::1 2.63222A B C B C A B C a b A B C πππππππ=++=∴===∴====而【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。

例2在ABC 中,已知C=30°,求a+b 的取值范围。

【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。

解:∵C=30°sin sin sin a b c A B C === ∴sinA ,b=2°-A ).∴a+b=2[sinA+sin(150°—·2sin75°·cos(75°-A )=2cos (75°—A )① 当75°-A=0°,即A=75°时,a+b取得最大值2② ∵A=180°—(C+B)=150°—B ,∴A <150°,∴0°<A <150°,∴—75°<75°-A <75°,∴cos75°<cos(75°-A)≤1,∴>2cos75°=2×4. 综合①②可得a+b考察点2:利用正弦定理判断三角形形状例3在△ABC 中,2a ·tanB=2b ·tanA ,判断三角形ABC 的形状。

【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

(完整版)解三角形题型总结(可编辑修改word版)

(完整版)解三角形题型总结(可编辑修改word版)

解三角形题型分类解析1、正弦定理及其变形a sin A= b sin B = c sin C = 2R(R 为三角形外接圆半径)(1)a = 2R sin A , b = 2R sin B , c = 2R sin C (边化角公式)(2)sin A =a , s in B =2Rb, sin C = c2R 2R(角化边公式) (3)a : b : c = sin A : sin B : sin C (4) a = sin A , a = sin A , b =sin Bb sin Bc sin C c sin C做题大法:a1) 边化角:遇到分式或等式如b考常考点)→sin Asin B, a = b → sin A = sin B (切记必须为齐次式,高思考:若a 2 = bc −是−否−可化−为→sin 2 A = sin B sin C 是否可行2) 角化边形如这样的分式或等式sin A sin B → a, sin A = sin B → a = b b思路总结:a = b=c= 2R ⇒ a = 2R sin Ab = 2R s in B sin A sin B sin Cc = 2R sin B此为以上转换依据2、正弦定理适用情况:(1) 已知两角及任一边;(2) 已知两边和一边的对角(需要判断三角形解的情况);已知 a ,b 和 A ,不解三角形,求 B 时的解的情况:如果sin A≥sin B,则 B 有唯一解;如果sin A<sin B<1,则 B 有两解;如果sin B=1,则 B 有唯一解;如果sin B>1,则B 无解.3、余弦定理及其推论a2=b2+c2- 2bc cos A 2 2 2 cos A =b2+c2-a22bca2+c2-b2b =a +c - 2ac cos B c2=a2+b2- 2ab cos Ccos B =cos C =2aca2+b2-c22ab4、余弦定理适用情况:(1)已知两边及夹角;(2)已知三边。

解三角形十类题型汇总(学生版)

解三角形十类题型汇总(学生版)

解三角形十类题型汇总近4年考情(2021-2024)考题统计考点分析考点要求2024年I卷第15题,13分高考对本节的考查不会有大的变化,仍将以考查正余弦定理的基本使用、面积公式的应用为主.从近五年的全国卷的考查情况来看,本节是高考的热点,主要以考查正余弦定理的应用和面积公式为主.(1)正弦定理、余弦定理及其变形(2)三角形的面积公式并能应用(3)实际应用(4)三角恒等变换2024年II卷第15题,13分2024年甲卷第11题,5分2023年I卷II卷第17题,10分2023年甲卷第16题,5分2023年乙卷第18题,12分2022年I卷II卷第18题,12分2021年I卷II卷第20题,12分热点题型解读【题型1】拆角与凑角类型一出现了3个角(拆角)类型二凑角类型三拆角后再用辅助角公式合并求角类型四通过诱导公式统一函数名【题型2】利用余弦定理化简等式类型一出现了角或边的平方类型二出现角的余弦(正弦走不通)【题型3】周长与面积相关计算类型一面积相关计算类型二周长的相关计算【题型4】倍角关系类型一倍角关系的证明和应用类型二扩角降幂类型三图形中二倍角的处理【题型5】角平分线相关计算【题型6】中线相关计算【题型7】高线线相关计算【题型8】其它中间线【题型9】三角形解的个数问题【题型10】解三角形的实际应用类型一距离问题类型二高度问题题型分类解析【题型1】拆角与凑角(1)正弦定理的应用①边化角,角化边⇔a:b:c=sin A:sin B:sin C②大边对大角大角对大边a>b⇔A>B⇔sin A>sin B⇔cos A<cos B③合分比:a+b+csin A+sin B+sin C =a+bsin A+sin B=b+csin B+sin C=a+csin A+sin C=asin A=bsin B=csin C=2R(2)△ABC内角和定理(结合诱导公式):A+B+C=π①sin C=sin(A+B)=sin A cos B+cos A sin B⇔c=a cos B+b cos A 同理有:a=b cos C+c cos B,b=c cos A+a cos C.②-cos C=cos(A+B)=cos A cos B-sin A sin B;③斜三角形中,-tan C=tan(A+B)=tan A+tan B1-tan A⋅tan B⇔tan A+tan B+tan C=tan A⋅tan B⋅tan C④sinA+B2=cos C2;cos A+B2=sin C2类型一出现了3个角(拆角)1.在△ABC中,2b-3c3a =cos Ccos A,求A的值2.△ABC的内角A,B,C的对边分别为a,b,c,且b=2c sin A+π6,求C.3.(湛江一模)在△ABC中,内角A,B,C的对边分别为a,b,c,已知ba =2cosπ3-C,求A.类型二凑角4.在△ABC中,角A,B,C的对边分别为a,b,c,已知2a cos A⋅cos B+b cos2A=3c-b,求角A5.(2024届·广州·阶段练习)已知△ABC中角A,B,C的对边分别为a,b,c,满足ca cos B+bacos C=3cos C,求sin C的值6.在△ABC中,角A,B,C所对的边分别为a,b,c,且bcos B +ccos C=acos A+3acos B cos C,求tan B tan C.7.3a sin A+B2=c sin A,求角C的大小.8.已知△ABC的内角A,B,C的对边分别为a,b,c,且3b cos A+B2=c sin B,求C9.在△ABC中,内角A,B,C所对边的长分别为a,b,c,且满足b cos B+C2=a sin B,求A.类型三拆角后再用辅助角公式合并求角,求A.10.(深圳一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知b+c=2a sin C+π611.在△ABC中,3sin C+cos C=sin B+sin Csin A,求A.12.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知a cos C+3c sin A=b+c,求A.13.已知a,b,c分别为△ABC三个内角A,B,C的对边,且a cos C+3a sin C=b+c,求角A的大小;类型四通过诱导公式统一函数名,求A的值14.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin B=b cos A-π615.已知△ABC中,角A,B,C所对边分别为a,b,c,若满足a(sin2A-cos B cos C)+b sin A sin C=0,求角A的大小.,b cos C=c cos B,求A的16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin B=b cos A-π6值.【题型2】利用余弦定理化简等式余弦定理公式a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .常见变形cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab.类型一出现了角或边的平方17.已知△ABC 内角A ,B ,C 所对的边长分别为a ,b ,c ,22a 2cos B +b 2=2ab cos C +a 2+c 2,求B .18.(2024年高考全国甲卷数学(理)真题)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若B =π3,b 2=94ac ,则sin A +sin C =()A.23913B.3913C.72D.3131319.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a 2=3b 2+c 2,则tan Atan C=.20.(2023年北京高考数学真题)在△ABC 中,(a +c )(sin A -sin C )=b (sin A -sin B ),则∠C =()A.π6B.π3C.2π3D.5π621.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c =252a sin C cos B =a sin A -b sin B +52b sin C ,求b ;22.(2024届·湖南四大名校团队模拟冲刺卷(一))在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为S,且2S sin Csin B +sin A sin C=(a2+b2)sin A,求C的值23.(2024·广东省六校高三第四次联考)已知△ABC的角A,B,C的对边分别为a,b,c,且sin A c cos B+b cos C-c sin B=c sin C+b sin B,求角A24.记ΔABC的内角A,B,C的对边分别为a,b,c.已知b2-a2=2c2,求tan Btan A的值类型二出现角的余弦(正弦走不通)25.记△ABC的内角A、B、C的对边分别为a、b、c,已知b cos A-a cos B=b-c,求A.26.已知a,b,c分别为△ABC三个内角A,B,C的对边,且sin A-B=2sin C,证明:a2=b2+2c2.27.在△ABC中,内角A,B,C的对边分别为a,b,c,c=2b,2sin A=3sin2C,求sin C.28.记△ABC的内角A,B,C的对边分别为a,b,c,B=2π3,且sin A+sin Bsin C+cos2C=1,求证5a=3c29.已知△ABC的内角A、B、C的对边分别为a、b、c,sin(A-B)tan C=sin A sin B,求a2+c2.b230.△ABC的内角A,B,C的对边分别为a,b,c.已知b-c,求角A.sin B=b sin A-C【题型3】周长与面积相关计算设计周长和面积的相关计算一般会用到余弦定理还有可能需要用到完全平方公式对于完全平方公式:a+b2=a2+b2+2ab,其中两边之和a+b对应周长,两边平方和a2+b2在余弦定理中,两边之积ab在面积公式和余弦定理中都会出现类型一面积相关计算31.已知△ABC中角A,B,C的对边分别为a,b,c,sin C=223,a=b+2,c=32,求△ABC的面积.32.(2024新高考一卷·真题)记△ABC的内角A、B、C的对边分别为a,b,c,已知sin C=2cos B,a2+b2-c2=2ab(1)求B;(2)若△ABC的面积为3+3,求c.33.记△ABC的内角A,B,C的对边分别为a,b,c,B=2π3,且5a=3c,若△ABC的面积为153,求c34.在△ABC中,内角A,B,C的对边分别为a,b,c,已知A=π6,△ABC的面积为332,b=2,求a.35.记△ABC的内角A,B,C的对边分别为a,b,c,已知B=2A,当a=4,b=6时,求△ABC的面积S.36.(2024届·广东省六校第二次联考)已知△ABC中角A,B,C的对边分别为a,b,c,sin C=223,a=b +2,c=32,求△ABC的面积.37.记△ABC的内角A,B,C的对边分别为a,b,c,已知B=2A,当a=4,b=6时,求△ABC的面积S.类型二周长的相关计算38.已知在△ABC中,角A,B,C的对边分别是a,b,c,且A=C,若B=π6,△ABC的面积为4,求△ABC的周长.39.在△ABC中,内角A,B,C所对的边分别为a,b,c,且(b+c)(sin B+sin C)=a sin A+3b sin C.(1)求角A的大小;(2)若a=6,且△ABC的面积为3,求△ABC的周长.40.(2024·新高考二卷·真题)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =2.(1)求A .(2)若a =2,2b sin C =c sin2B ,求△ABC 的周长.41.△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,AB ⋅AC=-1,△ABC 的面积为2,若a =22,求△ABC 的周长.42.在△ABC 中,已知AC ⋅AB =4,a =5,∠BAC =60°,则△ABC 周长为.43.在△ABC 中,A ,B ,C 所对的边为a ,b ,c ,A =π3,a =2,B =π4,求△ABC 的周长.44.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且(b +c )(sin B +sin C )=a sin A +3b sin C .(1)求角A 的大小;(2)若a =6,且△ABC 的面积为3,求△ABC 的周长.【题型4】倍角关系1、二倍角公式:sin2A =2sin A cos A ,cos2A =2cos 2A -1=1-2sin 2A =cos 2A -sin 2A 2、扩角降幂:cos2C 2=1+cos C 2.,sin 2C 2=1-cos C2忘记了可以用二倍角公式推导:记C2=t,则cos C=cos2t=2cos2t-1=1-2sin2t故cos2t=2cos2t-1⇒cos2t=1+cos2t2,cos2t=1-2sin2t⇒sin2t=1-cos2t23、倍角关系证明的方法技巧解三角形中的关系,主要涉及到正弦、余弦等三角函数的倍角公式。

专题4-5 解三角形大题归类-(解析版)

专题4-5 解三角形大题归类-(解析版)

专题4-4 解三角形大题归类目录一、热点题型归纳【题型一】巧用“拆”面积法解决角平分线题型 ................................................................................... 1 【题型二】角平分线的扩展结论 .............................................................................................................. 4 【题型三】中线的处理方法 ...................................................................................................................... 6 【题型四】三角形高的类型 .................................................................................................................... 10 【题型五】三角形内心 ............................................................................................................................ 11 【题型六】外接圆 .................................................................................................................................... 14 【题型七】双三角形 ................................................................................................................................ 16 【题型八】四边形 .................................................................................................................................... 18 【题型九】四边形图形最值 .................................................................................................................... 20 二、真题再现 ............................................................................................................................................ 22 三、模拟检测 .. (29)【题型一】巧用“拆”面积法解决角平分线题型【典例分析】(2022·湖北·高三开学考试)在ABC 中,2AB AC =,点D 在BC 边上,AD 平分BAC ∠.(1)若cos ACB ∠=,求cos BAC ∠;(2)若AD AC =,且ABC BC 的长.【答案】【分析】(1)在ABC 中,利用正弦定理可得sin ABC ∠=,从而可得cos ABC ∠=,再由()cos cos CAB ABC ACB ∠∠∠=-+,展开即可求解;(2)利用三角形的面积公式可得111sin sin sin 2222AC AD AB AD AB AC θθθ⋅⋅+⋅⋅=⋅⋅,从而解得3cos 4θ=,根据三角形的面积求出24b =,再由余弦定理即可求解.(1)由cos ACB ∠=,得sin ACB ∠=,在ABC 中,由正弦定理可得sin AB ACABC =∠,又2AB AC =,所以sin ABC ∠=AB AC >,故cos ABC ∠=所以()()cos cos cos CAB ABC ACB ABC ACB ∠π∠∠∠∠=--=-+,即cos sin sin cos cos CAB ABC ACB ABC ACB ∠∠∠∠∠=-,所以cos CAB ∠==(2)由已知,设22AB AC t ==,所以AD AC t ==,另设CAD θ∠=.由ABC ACD ABD S S S =+△△△,可得1112sin2sin 2sin 222t t t t t t θθθ⋅⋅⋅=⋅⋅+⋅⋅⋅,所以12sin cos sin sin 2θθθθ⋅=+,因为sin 0θ≠,所以3cos 4θ=,所以21cos22cos 18θθ=-=,又02,sin2θπθ<<==,又212sin22ABC S t t θ==⋅⋅⋅=,所以24t =,所以222299422cos241822BC t t t t t θ=+-⋅⋅⋅==⨯=,所以BC =【提分秘籍】基本规律角平分线“拆”面积法:ABC ACD ABDS S S =+△△△1.(2022·湖北·高三开学考试)已知ABC 的角,,A B C 的对边分别为 ,,a b c ,且sin (cos cos )sin sin sin A c B b C c B c C b B +-=+, (1)求角A ;(2)若AD 平分BAC ∠交线段BC 于点D ,且2,2AD BD CD ==,求ABC 的周长.【答案】(1)23A π=(2)9+【分析】(1)先利用余弦定理化简cos cos c B b C +,然后代入已知式子中利用正弦定理统一成边的形式,再利用余弦定理可求出角A ,(2)由ABCBADCAD SSS=+结合AD 平分BAC ∠,23A π=可得22bc b c =+,作AE BC ⊥于E ,则由ABD ACDS S 结合已知条件可得2cb=,解方程组可求得,b c ,再利用余弦定理可求出a ,从而可求出三角形的周长.(1)由余弦定理得222222cos cos 22a c b a b c c B b C c b a ac ab+-+-+=⨯+⨯= 所以sin (cos cos )sin sin sin A c B b C c B c C b B +-=+可化为sin sin sin sin a A c B c C b B -=+ 再由正弦定理,得222a cb c b -=+,得222c b a bc +-=-,所以2221cos 22b c a A bc +-==-.因为(0,)A π∈, 所以23A π= (2)因为AD 平分BAC ∠,所以3BAD CAD π∠=∠=.由1211sin sin sin 232323ABCBADCADSSSb c c AD b AD πππ=+⇒⋅=⋅+⋅, 得22bc b c =+.作AE BC ⊥于E ,则11sin 232211sin 232ABD ACD c AD BD AES c BD S b DCb AD CD AE ππ⋅⋅==⇒==⋅⋅. 由222bc b cc b =+⎧⎨=⎩,解得6,3,c b =⎧⎨=⎩由余弦定理,得2222cos 63a b c bc A ,所以37a故ABC 的周长为937+2.(2022·江苏·盐城中学高三开学考试)在①()()()sin sin sin sin A C a b c B C -=-+,①()2222cos 2a b c a c B a+--=,①()sin cos 6a B C B b π⎛⎫+=- ⎪⎝⎭这三个条件中选一个,补充在下面问题中,并解答.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且__________. (1)求B(2)若b =ABC ∠的平分线交AC 于点D ,且BD =,求ABC 的面积. 【答案】(1)=3B π【分析】(1)若选条件①,先用正弦定理将角转化为边的关系,再利用余弦定理即可;若选条件①,先用余弦定理将边转化为角的关系,再利用正弦定理即可;若选条件①,先用三角形的内角之和为π,再利用正弦定理即可;(2)利用角平分线的性质得到ABC ABD BCD S S S =+△△△,结合余弦定理和三角形的面积公式即可 (1)选择条件①:根据正弦定理,可得:()()()a c a b c b c -=-+可得:222a c b ac +-=根据余弦定理,可得:2221cos 22a cb B ac +-==()0,,=3B B ππ∈∴ 选择条件①:根据余弦定理,可得:2cos (2)cos =cos 2ab Ca c Bb C a-=根据正弦定理,可得:(2sin sin )cos sin cos A C B B C -=整理可得:2sin cos sin()sin A B B C A =+= 。

解三角形常见题型及技巧

解三角形常见题型及技巧

解三角形常见题型及技巧1.正弦定理 a sin A =b sin B =c sin C=2R 其中2R 为△ABC 外接圆直径。

变式1:a =2R sin A ,b =2R sin B ,c =2R sin C 。

变式2:sin 2a A R =,sin 2b B R =,sin 2c C R= 变式3:a ∶b ∶c =sin A ∶sin B ∶sin C 。

变式4:R CB A cb a C Ac a C B c b B A b a A a 2sin sin sin sin sin sin sin sin sin sin =++++=++=++=++= 2.余弦定理a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C 。

(边换角后)sin 2A =sin 2B +sin 2C -2sin B sin C cos A 。

变式1:cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab。

变式2:a 2=(b +c )2-2b c (1+cos A )(题目已知b +c ,bc 或可求时常用) 3.解三角形(知道三个元素,且含有边)(1)已知三边a ,b ,c 或两边a ,b 及夹角C 都用余弦定理(2)已知两边a ,b 及一边对角A,一般先用正弦定理,求sin B ,sin B =b sin Aa 。

(3)已知一边a 及两角A ,B (或B ,C )用正弦定理(已知两角,第三角就可以求)。

4.三角形常用面积公式(1)S =12a ·h (2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R (3)S =12r (a +b +c )(r 为内切圆半径)5.在△ABC 中,常有以下结论: 1.∠A +∠B +∠C =π。

必修五解三角形重难点题型归纳梳理非常完美

必修五解三角形重难点题型归纳梳理非常完美

专题02 解三角形【重难点知识点网络】:【正弦定理】 2sin sin sin a b c R A B C===(R 为ABC ∆外接圆的半径). 【正弦定理的变形】①2sin ,2sin ,2sin a R A b R B c R C ===②2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++【三角形常用结论 】(1)B A B A B A b a cos cos sin sin <⇔>⇔>⇔>(2)在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. (3)面积公式: ①111222a b c S ah bh ch ===,②111sin sin sin 222S ab C bc A ca B ===. 【三角恒等变换公式】()()()()1.sin sinC,cos =-cos tan =-tan A B A B C A B C +=++,(其中,,A B C 是三角形的三个内角) ()()2.sin sin cos cos sin αβαβαβ+=+()()3.sin -sin cos -cos sin αβαβαβ=()()4.sinx cosx ,tan b y a b x aϕϕ=+=+=其中 【内角和定理】三角形三角和为π,这是三角形中三角函数问题的特殊性,解题可不能忘记!任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.A>B a>b sinA>sinB ⇔⇔,60⇔A,B,C 成等差数列B=题型一:正余弦定理选择例1.(1)中,角所对的边分别为.若,则边【解析】,即,解得或(舍去).(2).在中,,,则的外接圆面积为【解析】因为在中,,,所以,又,设三角形外接圆半径为,则,因此的外接圆面积为. (3).(2020·四川省都江堰中学高一期中)在ABC中,已知60,B b==sin sina bA B+=+().A.2 B.12C D.3【详解】由题意知60,B b==2sin sin60bB==根据正弦定理,可得2sin sina bA B===,所以2sin sin sina b aA B A+==+.故选:A.【变式训练】.(1)(2020·四川成都市·高一期末(理))在ABC中,若角π4B=,AC=AB=C=()A.π6B.π3C.π6或5π6D.π3或2π3【详解】由正弦定理可得:sin sinAC ABB C=,则sinsin22AB BCAC===,ABC∆,,A B C,,a b c3,60a b A===︒c= 2222cosa cb cb A=+-213923cos60c c⇒=+-⨯⨯︒2340c c--=4c= 1c=-ABC c=75A=︒45B=︒ABCABC75A=︒45B=︒60C=︒2c=r21sincrC===ABC214S rππ==因为AC AB <,所以B C <, 故3C π=或23π.故选:D . (2)已知分别为三个内角的对边且,则=____【解析】因为,所以,所以,,.故答案为. (3)在中,角,,的对边分别为,,,若,,,则此三角形的外接圆的面积为______.【解析】在中,由余弦定理可得:解得:;再由正弦定理可得:,解得, 由圆面积公式解得外接圆面积为:.故答案为:. 题型二:边角互换 例2.(1)(2020·全国高二课时练习)在ABC 中,若cos sin c A a C =,则角A 的值为( )A .6πB .4πC .3πD .2π 【详解】cos sin sin cos sin sin c A a C C A A C =⇒=,0C π<<,sin 0C ∴≠,cos sin A A ∴=,0A π<<,且2A π≠,tan 1A ∴= ,4A π∴=,故选:B (2)(2021·四川成都市·高三月考(文))在ABC 中,a ,b ,c 分别为A ∠,B ∠,C ∠的对边,如果sin sin sin A b c B C b a+=--,那么cos C 的值为( ) A .12 B .2 C .23 D .2【详解】∵sin sin sin A b c B C b a +=--,由正弦定理可得a b c b c b a+=--,即:()()()a b a b c b c -=+- ,,a b c ABC ,,A B C 222b c a +=A ∠222b c a +-=222b c a +-=cos A =6A π∴=6πABC ∆A B C a b c 8b =3c =60A =︒ABC ∆222249a b c bccosA =+-=7a =2a R sinA =R =2493S R ππ==493π整理得:222c a b ab =+-,对照余弦定理可得1cos 2C =故选:A . (3)中,分别是角对边,若,且,则的值为__ 【解析】在中,因为,且,由正弦定理得,因为,则,所以,即,解得, 由余弦定理得,即,解得. 【变式训练】.(1)(2020·四川成都市·树德怀远中学高一期中)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若2cos 2b C c a +=,且3b c ==,则a =( )A .1 BC. D .4【详解】2cos 2,b C c a += 由正弦定理可得()2sin cos sin 2sin 2sin 2sin cos 2cos sin ,B C C A B C B C B C +==+=+sin 2cos sin ,sin 0,0,.3C B C C B B ππ∴=≠<<∴=由余弦定理可得2222cos ,13,3b a c ac B b c =+-== ,解得 4.a = 故选D(2)(2019·四川成都市·双流中学高二期中(文))在ABC ∆中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若cos cos 2cos a C c A b B +=,且cos22sin sin 1B A C +=,则a cb +的值为() A .1B C D .2 【详解】cos cos 2cos a C c A b B +=,由正弦定理可得sin cos sin cos 2sin cos A C C A B B +=,()sin 2sin cos sin A C B B B ∴+==,sin 0B ≠,1cos 2B ∴=, ABC ∆,,a b c ,,A B C sin cos 0b A B =2b ac =a c b +ABC ∆sin cos0b A B =2b ac =sin sin cos 0B A A B-=(0,)A π∈sin 0A>sin 0B B =tan B =3B π=222222222cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-()224b a c =+2a c b+=0B π<<,3B π∴=,cos22sin sin 1B A C +=,32sin sin 2A C ∴=, 232sin sin 34A A π⎛⎫∴-= ⎪⎝⎭23cos sin 2A A A +=,11sin 2cos 2222A A -=,sin 216A π⎛⎫∴-= ⎪⎝⎭,3ABC π∴===, ∴ABC ∆为正三角形,则2a c b +=.故选:D(3)(2020·全国高一课时练习)在ABC ∆2sin b A =,则B 等于( )A .30B .60C .30或150D .60或120【详解】32sin a b A =2sin sin A A B =,0180A <<,sin 0A ∴>,可得sin B =,0180B <<,60B ∴=或120.故选:D. 题型三:三角形面积例3.(1)(2019·四川成都市·双流中学高三月考(文))在ABC ∆中,,,A B C 的对边分别是,,a b c ,且2,60,b B ABC ==︒∆a c +=( )A B .4 C .2 D .4+【详解】因为ABC ∆中,2,60b B ==︒,所以ABC ∆的面积为11sin 222S ac B ac ==⋅=,则4ac =又2222cos b a c ac B =+-,即()()22224312a c ac a c ac a c =+-=+-=+-即()216a c +=,解得4a c +=,故选:B(2)(2020·四川宜宾市·高三二模(文))在ABC 中,角A 的平分线交边BC 于D ,4AB =,8AC =,2BD =,则ABD △的面积是( )A B . C .1 D .3【详解】()sin sin sin ADC ADB ADB π∠=-∠=∠,在ABD △中,由正弦定理得sin sin BD AB BAD ADB=∠∠,同理可得sin sin CD AC CAD ADC =∠∠, 因为ABC 中,角A 的平分线交边BC 于D ,上述两个等式相除得BD AB CD AC =, 4AB =,8AC =,2BD =,8244AC BD CD AB ⋅⨯∴===,6BC ∴=.2222224681cos 22464AB BC AC B AB BC +-+-∴===-⋅⨯⨯,sin 4B ==. 1sin 2ABDS AB BD B ∴=⋅⋅=A . (3)(2020·四川省成都市第十七中学高一期中)在ABC ∆中,a 、b 、c 分别为角A 、B 、C 的对边,它的面积为2224a b c --,则角A 等于( ) A .30 B .45︒ C .60︒ D .135︒ 【详解】因为2224a b c --12bcsinA =,且2222a b c bccosA =+-, 故可得sinA cosA =-,即1tanA =-,又因为()0,A π∈,故可得34A π=.故选:D. 【变式训练】.(1)(2021·全国高三专题练习(理))已知ABC 中,内角,,ABC 的对边分别为,,a b c ,若2,23A b π==,且ABC a 的值为( )A .B .8C .2D .12【详解】11sin 2222ABC S bc A c ==⨯⨯=,解得2c =,由余弦定理:22212cos 44222122a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,a ∴=故选:A.(2)中,,,,,则__________. 【解析】由题意,在中,, 所以的面积为,解得, 由余弦定理得,又由,所以. (3)在中,、、分别是角、、的对边,若,,则的面积为【解析】由余弦定理可得, 即,解得,因此,题型四:三角形形状判断例4.(1)(2020·成都市实验外国语学校(西区)高一期中)ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=, 所以22a b =,所以a b =,所以三角形是等腰三角形,故选:B.(2)(2020·四川省泸县第四中学高一期中)在ABC 中,cos cos a b A B c ++=,则ABC 是( )A .等腰直角三角形B .等腰或直角三角形C .等腰三角形D .直角三角形ABC ∆AB =1AC =30B =ABC ∆C =ABC ∆01,30AB AC B ===ABC ∆111sin 222S AB BC B BC =⋅⋅=⨯=2BC =2221431cos 22142AC BC AB C AC BC +-+-===⋅⨯⨯0(0,180)C ∈60C =︒ABC ∆a b c A B C 2b c =a =3A π=ABC ∆2222212cos 4222a b c bc A c c c c =+-=+-⨯⨯⨯236c =c =2b c ==11sin 22ABC S bc A ∆==⨯=【详解】因为cos cos a b A B c ++=,sin sin sin a b A B c C++= 所以sin sin cos cos sin A B A B C++=,所以sin cos sin cos sin sin C A C B A B +=+ 因为A B C π++=,所以()()sin sin sin sin A B B C A C +=+++即()()sin cos sin cos sin sin C A C B B C A C +=+++所以sin cos sin cos sin cos cos sin sin cos cos sin C A C B B C B C A C A C +=+++所以sin cos sin cos 0B C A C +=,因为sin sin 0B A +≠,所以cos 0C =因为()0,C π∈,所以2C π=,即ABC 是直角三角形,故选:D(3)(2020·四川成都市·成都外国语学校高一期中(文))△ABC 中,如果tan a A =tan b B =tan c C ,那么△ABC 是( )A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形 【详解】因为tan a A =tan b B =tan c C ,所以由正弦定理可得sin sin sin tan tan tan A B C A B C ==, 所以cos cos cos A B C ==,又函数cos y x =在(0,)π上为递减函数,且(0,),(0,),(0,)A B C πππ∈∈∈,所以A B C ==,所以△ABC 为等边三角形,故选:B【变式训练】.(1)(2020·四川成都市·双流中学高一开学考试)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且cos b c A =,则ABC 的形状为( ).A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形【详解】因为cos b c A =且222cos 2b c a A bc+-=,所以222222cos 22b c a b c a b c A c bc b +-+-==⨯=, 即有222c a b =+,所以可判断ABC 为直角三角形,故选:B(2)(2020·绵阳市·四川省绵阳江油中学高一月考)在ABC ∆中,若cos cos a A b B =,则ABC 的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形 【详解】已知:cos cos a A b B =,利用正弦定理:2sin sin sin a b c R A B C===, 解得:sin cos sin cos A A B B =,即sin 2sin 2A B =,所以:22A B =或21802A B =︒-, 解得:A B =或90A B +=︒,所以:ABC 的形状一定是等腰或直角三角形,故选:D .(3)(2020·四川省宜宾市第四中学校高一期中)已知ABC 中,()()sin sin sin 2B A B A A ++-=,则ABC 的形状为( )A .等腰三角形B .等腰直角三角形C .等腰三角形或直角三角形D .无法确定.【详解】因为()()sin sin sin 2B A B A A ++-=,由两角和差的正弦公式可得2sin cos sin 2B A A =,所以sin cos sin cos B A A A =,若cos =0A ,即2=A π时,此时ABC 是直角三角形;若cos 0A ≠,即sin sin B A =,所以A B =,所以ABC 是等腰三角形;综上,ABC 是等腰三角形或直角三角形;故选:C.题型五:三角形个数例5.(1)(2020·四川成都市·成都外国语学校高一期末(理))满足60ABC ∠=︒,12AC =,BC k =的ABC 恰有一个,那么k 的取值范围是( )A.k = B .012k <≤ C .12k ≥ D .012k <≤或k =【详解】由题意得,sin6012k ︒=或012k <≤时,满足的三角形恰有一个,解得12sin 60k ===︒012k <≤,故选:D (2)(2020·遂宁市·高一期末)已知ABC中,4a b B π===,那么满足条件的ABC( )A .有一个解B .有两个解C .不能确定D .无解【详解】由题可知:4a b B π===,sin 2==a B <=<b a 所以可知ABC 有两个解,故选:B(3).8.(2020·四川成都市·成都外国语学校高一期末(理))满足60ABC ∠=︒,12AC =,BC k =的ABC 恰有一个,那么k 的取值范围是( )A .k =B .012k <≤C .12k ≥D .012k <≤或k =【详解】如图,由题意得,sin6012k ︒=或012k <≤时,满足的三角形恰故选:D【变式训练】.(1)(2020·四川成都市·高一期中(理))在ABC ∆中,角A ,B ,C 所对的边分别为a ,b,c ,已知60A =︒,b =a 满足的条件是( )A .0a <<B .0<<3aC .3a <<D .a ≥3a =【详解】C 到AB 的距离d=bsinA=3,∴当3<a <2时,符合条件的三角形有两个,故选C .(2)(2019·四川成都市·成都外国语学校高一期中(文))在ABC ∆中,已知,45,1,2 ===B c b 则此三角形有几个解 ( )A .0B .1C .2D .不确定【解析】因为sin 12c B b ⋅=<<=,所以三角形只有一个解,故选B. (3)(2020·重庆市黔江新华中学校高一期中)已知满足30C =,4AB =,AC b =的ABC ∆恰有一个,那么b 的取值范围是_________. 【详解】根据正弦定理,sin sin 8b C bB c ==,若三角形有一解,即B 仅有一个解,所以0sin sin B C <≤ 或sin 1B =,即0b c <≤或18b=,解得(]{}0,48b ∈⋃.因此,b 的取值范围是(]{}0,48⋃.题型六:取值范围例6.(1)(2020·全国高三专题练习)在锐角..ABC 中, 2,2a B A ==,则b 的取值范围是( )A .(2, B .C .4) D .【详解】由题得3C B A A ππ=--=-,因为三角形是锐角三角形,所以0202,,cos 26422032A B A A A C A ππππππ⎧<<⎪⎪⎪<=<∴<<<<⎨⎪⎪<=-<⎪⎩. 由正弦定理得22,,4cos sin sin sin 22sin cos sin b b b b A B A A A A A=∴==∴=.所以b ∈.选:B. (2).(2020·四川省绵阳南山中学高二开学考试)设锐角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2a =,2B A =,则b 的取值范围为( )A .(0,4)B.(2,C.D.4)【详解】在锐角三角形中, 022A π<<,即04A π<<,且3B A A +=,则32A ππ<<,即63A ππ<<,综上64A ππ<<,则cos 22A <<,因为2a =,2B A =, 所以由正弦定理得sin sin 2sin cos a b b A B A A ==,得4cos b A =,因为cos 22A <<,所以4cos A <<b <<b的取值范围为.故选:C.【变式训练】.(1)在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且a 2ab +b 2=1,c =1,a ﹣b 的取值范围为_____.【解析】因为,,所以.. 因为,所以.又因为,所以,,.因为,所以.,所以(3)在中,,,则角的取值范围是( )A .B.C .D .【解析】,∴,∴,因,必为锐角,故题型七:射影定理221a b +=1c =222a b c +-=222cos 2a b c C ab +-===02C <<π6C π=12sin sin sin 6a b A B π===2sin a A =2sin bB =56B A π=-2sin b A B -=-52sin()6A A π=--552(sin cos cos sin )66A A A ππ=--cos 2sin()6A A A π=-=-025062A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩32A ππ<<663A πππ<-<1sin()262A π<-<b -∈ABC ∆1AB =2BC =C 0,6π⎛⎤⎥⎝⎦,42ππ⎛⎫ ⎪⎝⎭,62ππ⎡⎫⎪⎢⎣⎭,62ππ⎛⎫ ⎪⎝⎭sin sin AB BC C A =1sin sin 2C A =10sin 2C <≤AB BC <C 0,6C π⎛⎤∈ ⎥⎝⎦例7.(2020·四川省广元市八二一中学高一期中)在ABC ∆中,角A B C ,,所对应的边分别为a b c ,,.已知cos cos 2b C c B b +=,则ba=______ . 【详解】将cos cos 2b C c B b +=,利用正弦定理可得:sin cos sin cos 2sin B C C B B +=, 即()sin 2sin B C B +=,∵()sin sin B C A +=,∴sin 2sin A B =,可得:2a b =,则12b a =,故答案为12. 【变式训练】.(2020·四川眉山市·仁寿一中高二开学考试)在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c,且cos 3C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________. 【详解】由正弦定理知:cos cos 2sin cos 2sin cos 2b A a B R B A R A B +=⋅⋅+⋅=,即()1sin sin A B C R +==,cos 3C =,1sin 3C =,即3R =.故29S R ππ==.故答案为9π 题型八:解析几何中运用例8.(1)如图,在,已知点在边上,,,,则的长为【解析】由题意, ∴,.(2)的两边长分别为1,第三边上的中线长为1,则其外接圆的直径为【解析】,设,在中,,即,①ABC ∆D BC AD AC ⊥sin 3BAC ∠=AB =3AD =BD sin()cos 23BAD BAD π∠+==∠2222cos BD AB AD AB AD BAD =+-⋅∠2232333=+-⨯⨯=BD =ABC ∆1,1AB AC AD ===BD CD x ==ABD ∆2222cos AB AD BD AD BD ADB =+-⋅∠2112cos x x ADB =+-∠在中,同理可得,②,①+②得,为等边三角形,,的外接圆直径为 .(3)(2020·全国高三专题练习)在ABC ∆中,5AB =,BAC ∠的平分线交边BC 于D .若45ADC ∠=.BD sin C =___________.【详解】ABD ∆中,由正弦定理可得,5sin sin135BAD =∠,所以sin 10BAD ∠=AD 为BAC ∠的平分线即sin sin BAD CAD ∠=∠=,()10sin sin45C DAC ∴=∠+∠==.【变式训练】.(1)如图,,,,为平面四边形的四个内角,若,,,,,则四边形面积是______.【解析】连接BD ,在中,, 在中,,所以=ACD ∆2312cos x x ADC =+-∠,cos cos 0ADB ADC ADB ADC π∠+∠=∠+∠=2422,1,x x ABD =+=∆3Bπ=ABC ∆2sin BCB==A B C D ABCD 180A C +=︒6AB =4BC =5CD =5AD =ABCD ABD ∆2222cos 6060cos BD AB AD AB AD A A =+-⋅=-BCD ∆2222cos 4141cos BD BC CD BC CD C C =+-⋅=-6060cos A -,因为,所以,所以,则, 所以四边形面积(2)四边形中,,,,,,则的长为______【解析】连接AC ,设,则,故在中,,, 又在中由余弦定理有,解得即.(3)在中,已知,是边上一点,如图,,则__________.【解析】,根据余弦定理,,,,根据正弦定理,则4141cos C -180A C +=︒cos cos A C =-1cos 5A =sin 5A =ABCD 11sin sin 22ABD BCD S S S AB AD A BC CD C ∆∆=+=⨯⨯+⨯⨯1165452525=⨯⨯⨯+⨯⨯⨯=ABCD 4AB =5BC =3CD =90ABC ∠=︒120BCD ∠=︒AD ACB θ∠=120ACD θ∠=-Rt ABC ∆sin θθ==()11cos 120cos sin 2222θθθ-=-+=-+=ACD ∆()2223cos 120AD θ+--==265AD =-AD =ABC ∆45B =︒D BC 75,1,BAD DC AC ∠=︒==AB =0120ADC ∠=22202cos120AC AD DC AD DC =+-⋅⋅260AD AD +-=2AD =060ADC ∠=00sin 60sin 45AB AD=. 考点八:综合运用例8.(1)在中,,向量 在上的投影的数量为,则 【解析】∵向量 在上的投影的数量为,∴.①∵,∴,∴.② 由①②得,∵为的内角,∴,∴. 在中,由余弦定理得,∴(2)(2020·四川省成都市盐道街中学高一期中)已知A 、B 、C 为ABC 的三内角,且其对边分别为a 、b 、c ,若cos (2)cos 0a C c b A ++=.(1)求A .(2)若a =4b c +=,求ABC 的面积.【详解】(1)cos (2)cos 0a C c b A ++=,由正弦定理可得:sin cos (sin 2sin )cos 0A C C B A ++=,sin cos sin cos 2sin cos 0A C C A B A ++=,sin()2sin cos 0A C B A ++=,sin 2sin cos 0B B A +=,sin 0B ≠,1cos 2A ∴=-,(0,)A π∈,23A π∴=. (2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-,2212()22cos3b c bc bc π∴=+--,即有1216bc =-,4bc ∴=, 故ABC 的面积为112sin 4sin 223S bc A π==⨯⨯= 02sin 60sin 45AD AB ===ABC ∆3AC =AB AC 2,3ABC S ∆-=BC =AB AC 2-||cos 2AB A =-3ABC S ∆=13||||sin ||sin 322AB AC A AB A ==||sin 2AB A =tan 1A =-A ABC ∆34A π=2||3sin 4AB π==ABC ∆2222232cos323(294BC AB AC AB AC π=+-⋅⋅⋅=+-⨯⨯=BC =(3)(2020·四川成都市·树德中学高一月考)已知向量(sin ,1)m x =,1(3cos ,)2n x =,函数()()f x m n m =+⋅.(1)求函数()f x 单调递增区间;(2)已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,a =3c =,且5()2f A =,求角C. 【详解】(1)231cos23()()sin cos 222x f x m n m x x x -=+⋅=+⋅+=++cos 22sin(2)226x x π=-+=-+ 由222()26263k x k k x k k Z πππππππππ-≤-≤+⇒-≤≤+∈,所以单调递增区间是[,]()63k k k Z ππππ-+∈(2)由(1)知,51()sin(2)2sin(2)6262f A A A ππ=-+=⇒-=, a c <,(0,)2A π∴∈52(,)666A πππ∴-∈-,266A ππ∴-=,6A π∴=,于是,由正弦定理,3sin sin sin sin 2a c C A C C =⇒=⇒=,3sin 2c A a c ⨯=<<,∴两个解均成立,3C π∴=或23π 【变式训练】.(1)(2020·四川成都市·(理))在ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,且满足tan 2sin a C c A =. (1)求C∠的大小;(2)若2c a b ==,求ABC 的面积.【详解】(1)由tan 2sin a C c A =得sin 2sin cos a CA c C⋅=, 由正弦定理得sin sin 2sin sin cos A CA C C⋅=,又(0,),sin 0A A π∈≠, ∴1cos 2C =,∵0C π<<, ∴3C π=(2)∵2222cos c a b ab C =+-,且2a b =.∴2222142232b b b b b =+-⋅⋅⋅=,∴2b =,∴4a =,∴1sin 2ABCSab C ==(2)(2020·沙坪坝区·重庆南开中学高三月考(理))已知函数()()()cos sin f x x x x x =∈R .(1)求()f x 的最小正周期和单调增区间;(2)ABC 中,角,,A B C 的对边分别为,,a b c .若22B f ⎛⎫=- ⎪⎝⎭,6b =,求ABC 的面积的取值范围.【详解】(1)()211cos2cos sin sin 222xf x x x x x +==1sin 22sin 223x x x π⎛⎫==- ⎪⎝⎭,∴()f x 的周期T π=, 由222,232k x k k Z πππππ-+≤-≤+∈,得5,1212k x k k Z ππππ-+≤≤+∈ 所以()f x 的单调递增区间是5,1212k k ππππ⎛⎫-+⎪⎝⎭,k Z ∈.(2)∵sin 2322B f B π⎛⎫⎛⎫=--=-⎪ ⎪⎝⎭⎝⎭,即sin 03B π⎛⎫-= ⎪⎝⎭,又(0,)B π∈,∴3B π=,由正弦定理有6sin sin sin sin 3a cb A C B π====∴11sin sin sin 22ABC S ac B A C B A C ==⋅⋅=△221sin (sin )18sin cos 322A A A A A A A Aπ⎛⎫=-=+=+ ⎪⎝⎭1cos29sin 2226A A A π-⎛⎫=+=-+ ⎪⎝⎭∵203A π<<,∴72666A πππ-<-<,∴(ABC S ∈△ (3)(2020·四川成都市·高一期末(理))在ABC 中,三角A ,B ,C 的对边分别为a ,b ,c,且cos 5A =,sin B C =. (1)求tan C 的值;(2)若a =ABC 的面积.【详解】在ABC 中,A B C π++=,0A π<<,sin 0A >,因为cos A =,得sin 5A ===①.(1()()sin sin sin sin cos cos sin C B A C A C A C A C π==-+=+=+⎡⎤⎣⎦,C C C =+.所以sin 3cos C C =②. 如果cos 0C =,则sin 0C =与22sin cos 1C C +=③矛盾,所以cos 0C ≠.所以sin tan 3cos CC C==. (2)因为0C π<<,由tan 30C =>,得02C <<π,则sin 0C >,cos 0C >.将(1)中②代入(1)中③解得:sin10C=,cos10C=.于是sin102B C===.将a=1)①代入正弦定理sin sina cA C==3c=.所以ABC的面积11sin33222S ac B==⨯⨯=.课后训练1.(2020·宜宾市叙州区第二中学校高二开学考试(理))在ABC∆中,若sin cosA Ba b=,则角B为()A.6πB.4πC.3πD.2π【解析】因为sin cosA Ba b=,所以cos sin,tan1,4B BB Bb bπ=∴=∴=.2.(2020·四川成都市·成都七中高三开学考试(理))设ABC∆的内角A,B,C的对边分别为a,b,c,且22cosb cBa+=,则A∠的大小为()A.30B.60︒C.120︒D.150︒【详解】根据题意,由正弦定理可得:sin2sin2cossinB CBA+=,即sin2sin2cos sinB C B A+=,因为()C A Bπ=-+,∴sin2sin()sin2sin cos2cos sin2cos sinB A B B A B A B B A++=++=,sin2cos sin0B A B∴+=,sin0B ≠,12cos0A∴+=,解得1cos2A=-,(0,180)A∈︒︒,120A∴=︒.故选:C3.(2020·四川省成都市盐道街中学高一期中)在ABC中,60B=︒,1a=,ABCABC 外接圆面积为( )A .4πB .2πC .πD .3π【详解】在ABC 中,11sin 1sin 60222S ac B c ==⨯⨯⨯︒=,则2c =, 根据余弦定理:2222cos b a c ac B =+-2212212cos603=+-⨯⨯⨯︒=,则b =2sin sin 60b R B ==︒,则1R =, ∴外接圆面积221S R πππ==⨯=.故选:C4.(2020·四川眉山市·高一期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos 2cos a B b Ac C ,2CB =CB 在CA 方向上的投影为( )A .1B .2C .3D .4【详解】因为cos cos 2cos a B b A c C ,所以sin cos sin cos sin cos A B B A C C += ,即()sin cos A B C C +=, 即sin sin cos C C C =, 因为()0,C π∈,所以sin 0C ≠,所以cos C =,所以CB 在CA 方向上的投影为:cos 451BC C ⋅=︒=. 故选:A . 5.(2020·四川成都市·双流中学高三月考(理))ABC 的内角,,A B C 的对边分别为,,a b c ,若(2)cos cos a b C c B -=,则内角C =( )A .6πB .4π C .3π D .2π 【详解】∵(2)cos cos a b C c B -=,由正弦定理可得(2sin sin )cos sin cos A B C C B -=,∴2sin cos sin cos sin cos sin()sin A C B C C B B C A =+=+=,三角形中sin 0A ≠,∴1cos 2C =,∴3C π=.故选:C . 6.(2019·四川成都市·树德中学高二开学考试)如果满足条件:3ABC π∠=,12AC =,BC k =的ABC ∆恰有两个,那么实数k 的取值范围是( )A .012k <≤B .12k ≥C .12k <<D .012k <≤或k = 【详解】要使满足条件的ABC ∆恰有两个,只需满足sin 12k ABC k ∠<<,即12k k <<,所以12k <<C 7.(2020·四川绵阳市·三台中学实验学校高一开学考试)在ABC 中,内角、、A B C 的对边分别为a b c 、、,若cos cos B Ab a=,则ABC 的形状一定是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形【详解】因为cos cos B A b a=,由正弦定理得cos cos sin sin B AB A =, 所以sin cos cos sin A B A B =,即sin cos cos sin 0A B A B -=,所以in 0()s A B -=,又,(0,)A B π∈,所以0A B -=,即A B =,所以ABC 为等腰三角形,故选:A8.(2020·四川省成都市第十七中学高一期中)在△ABC 中,角,,A B C 的对边分别是,,a b c ,若2a =,2A B =,则cos B =( )A .3B C D .6【解析】∵在ABC 中a =,∴由正弦定理可得sin A B =①,又∵2A B =,∴sin sin22sin cos A B B B ==②,由①②可得2sin cos B B B =,可得cos B =,故选B.9.(2020·四川成都市·高一期末)我国南宋著名数学家秦九韶发现了由三角形三边求三角形面积的“三斜公式”,设ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为ABCS =△7a =,8b =,9c =,则ABC 的内切圆半径为( )A BCD【详解】由已知条件可知:ABCS =△7a =,8b =,9c =,所以ABCS ==△()12ABC S a b c r =++⨯△,则()17892r ++⨯=r =故选:D. 10.(2020·四川成都市·棠湖中学高一月考)如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km ,速度为1000km/h ,飞行员先看到山顶的俯角为30︒,经过1 min 后又看到山顶的俯角为75︒,则山顶的海拔高度为(精确到0.1 km 1.732≈)A .11.4 kmB .6.6 kmC .6.5 kmD .5.6 km【详解】在ABC ∆中,15030,753045.1000603o o o oBAC ACB AB ∠=∠=-==⨯=根据正弦定理,503sin 45sin 30o o BC BC =∴=,sin 75sin(4530)11.5oo o BC ∴=+≈ 所以:山顶的海拔高度为18-11.5=6.5 km .故选:C11.(2020·四川成都市·成都外国语学校高一期末(理))如图,在ABC 中,D 是边AC 上的点,且AB AD =,2AB =,2BC DB =,则sin C 的值为( )AB.6CD.6【详解】设AB x =,则,,AD x BD x BC x ===, 在ABD △中,由余弦定理可得,2222224213cos 223x x AB AD BD A AB AD x -+-===⋅, 所以sin =A ,在ABD △中,由正弦定理得,sin sin AB BD ADB A=∠,则sin sin 233AB x ADB A x BD ∠==⨯=,所以sin BDC ∠=在BDC 中,由正弦定理得sin sin BD BC C BDC =∠,则sin sin x BD BDC C BC ⋅∠===D11.(2020·广西南宁市·南宁三中高三其他模拟(理))已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若1cos 3A =,23b c =,且ABC ∆,a =___________.【详解】1cos 3A =,sin 3A ∴==,23b c =,且ABC ∆1sin 2ABC S bc A ∆∴=,12233c c =⨯⨯,2c ∴=,b =由余弦定理得2229192cos 222322a b c bc A =+-=+-=,2a ∴=.故答案为2. 12.(2019·四川省成都市第八中学校高二期中(理))已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1c =,π3C =,若()sin sin C A B +-=sin 2B ,则ABC 的面积为______. 【详解】∵在ABC 中,()sin sin sin 2C A B B +-=,则()()sin sin 2sin cos B A A B A B ++-=,∴2sin cos 2sin cos A B B B =,故有sin sin A B =或cos 0B =.①sin sin A B =,则有a b =,又1c =,π3C =. 在ABC 中,由余弦定理可得2222cos c a b ab C =+-,代入整理可得,21a =即1a b ==,此时,1sin 24ABC S ab C ==△.②cos 0B =即π2B =,ABC 为直角三角形,又1c =,π3C =,∴3a =,3b =,此时11236ABC S =⨯⨯=△.故答案为:413.(2020·四川成都市·高一期中(理))已知函数()2cos(2)2cos 213f x x x π=+-+,若ABC 为锐角三角形且()0f A =,则b c的取值范围为_____.【详解】()2cos 2cos2sin 2sin2cos 2133f x x x x ππ=⋅-⋅-+2cos 212sin 216x x x π⎛⎫=-+=-++ ⎪⎝⎭()2sin 2106f A A π⎛⎫=-++= ⎪⎝⎭,即1sin 262A π⎛⎫+= ⎪⎝⎭,02A π<<,72666A πππ∴<+<则5266A ππ+=,3A π=,1sin sin sin 1322sin sin sin 2tan 2C C C b B c C C C C π⎛⎫++ ⎪⎝⎭====+ 62C ππ<<,tan C ⎫∴∈+∞⎪⎪⎝⎭,则302<<,11,222⎛⎫+∈ ⎪⎝⎭ 即bc 的取值范围为1,22⎛⎫ ⎪⎝⎭故答案为:1,22⎛⎫ ⎪⎝⎭14.(2020·成都市·四川电子科大实验中学高一期中)如图,海上某货轮在A 处看灯塔B 在货轮的北偏东75︒,距离为A 处看灯塔C 在货轮的北偏西30,距离为A 处行驶到D 处时,若灯塔B 在方位角120︒的方向上,则灯塔C 与D 处之间的距离为_______海里.【详解】在ABD∆中,75,60,45AB DAB ADB ABD =∠=∠=∠=由正弦定理可得sin sin AB AD ADB ABD =∠∠,代入可得sin 60sin 45AD=解得sin 4524sin 60AD ==在ACD ∆中AC =,由余弦定理可得2222cos CD AC AD AC AD CAD =+-⋅∠代入可得21925762242CD =+-⨯⨯2192CD = 所以CD=:15.(2020·四川省泸县第一中学高一月考)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2cos cos cos a C b C c B =+.(1)求角C ;(2)若8b =,4c a =+,求ABC 的面积. 【详解】(1)在ABC 中,根据正弦定理sin sin sin a b cA B C==, 由2cos cos cos a C b C c B =+,可得2sin cos sin cos sin cos A C B C C B =+, 所以()2sin cos sin sin A C B C A =+=,因为A 为ABC 内角,所以sin 0A >,所以1cos 2C =因为C 为ABC 内角,所以3C π=, (2)在ABC 中,8b =,4c a =+,由余弦定理得2222cos c a b ab C =+-()2224828cos3a a a π+=+-⨯⨯,解得3a =,所以11sin 38sin 223ABCSab C π==⨯⨯⨯=. 16.(2020·四川成都市·高一期末)在ABC 中,角,,A B C 的对边分别是,,a b c ,且角C 是锐角,若ABC的外接圆半径为R ,c =.(1)求角C ;(2)若4ABC S =△,求ABC 的周长.【详解】(1)由题知:2sin c R C =,所以sin =C解得1sin 2C =,又角C 是锐角,所以6C π=.(2)因为1sin 26△π==ABC S ab ,所以ab =.又因为2222cos 6c a b ab π=+-,所以()22232=+=+-a b a b ab ,即()(22123+=+=a b ,3+=+a b所以ABC 的周长为3a b c ++=+17.在中,,,分别为角,,所对边,若. (1)求角的大小.(2)若,求周长的取值范围.【解析】(1)由正弦定理知:,即由余弦定理知:,因此(2)由正弦定理知:,则,故,则,故,因此18.(2020·宜宾市叙州区第一中学校高一月考)在ABC∆中,角A,B,C所对的边分别为a,b,c,已知满足(2)cos cosa c Bb C-=.(Ⅰ)求角B的大小;(Ⅱ)若2b=,求ABC∆的面积的取值范围.【详解】(Ⅰ)()2cos cosa c Bb C-=,由正弦定理得:()2sin sin cos sin cosA CB B C-=()2sin cos sin cos sincos sin sinA B C B B C B C A∴=+=+=()0,Aπ∈,sin0A∴≠,1cos2B∴=,()0,Bπ∈,3Bπ∴=(Ⅱ)由正弦定理得:sinsinb AaB=,a A∴==,同理:c C=ABC∆a b c A B C(sin sin)sin sina A B c Cb B+=-C c=ABC∆22()a abc b+=-222a b c ab+-=-2221cos22a b cCab+-==-23Cπ=4sin sin sina b cA B C====4sina A=4sinb B=4sin4sinABCC a b c A B∆=++=++24sin4sin()4sin4sin3A A C A Aπ⎛⎫=+++=+++⎪⎝⎭2sin4sin3A A Aπ⎛⎫=++=++⎪⎝⎭0,3Aπ⎛⎫∈ ⎪⎝⎭2,333Aπππ⎛⎫+∈ ⎪⎝⎭sin3Aπ⎫⎛⎫+∈⎪⎪⎝⎭⎝⎭ABCC∆∈+1sin 1s in sin 233in 223ABC A C A ac C S B ∆=⨯⨯=∴=⨯21sin sin sin 32C C C C C π⎫⎛⎫=-=+⎪ ⎪⎪⎝⎭⎝⎭1112cos 2sin 24462C C C π⎫⎫⎛⎫=-+=-+⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭203C π<<,72666C πππ∴-<-<,1sin 2126C π⎛⎫∴-<-≤ ⎪⎝⎭10sin 2362C π⎫⎛⎫∴<-+≤ ⎪⎪⎝⎭⎝⎭ABC ∆∴的面积的取值范围为:(19.(2020·四川成都市·棠湖中学高一月考)如图,在平面四边形ABCD 中,已知A =2π,B =23π,AB =6.在AB 边上取点E ,使得BE =1,连接EC ,ED .若∠CED =23π,EC .(1)求sin ∠BCE 的值;(2)求CD 的长.【详解】(1)在△BEC 中,由正弦定理,知sin BE BCE ∠=sin CE B,因为B =23π,BE =1,CE ,所以sin ∠BCE =sin BE B CE ⋅=14.(2)因为∠CED =B =23π,所以∠DEA =∠BCE ,所以cos ∠DEA =14.因为2A π=,所以△AED 为直角三角形,又AE =5,所以ED =cos AEDEA∠.在△CED 中,CD 2=CE 2+DE 2-2CE ·DE ·cos ∠CED =7+28-2××12⎛⎫-⎪⎝⎭=49.所以CD =7.20.(2020·四川成都市·高一期末(文))如图,在ABC ∆中,30B ∠=,AC =D 是边AB 上一点.(1)求ABC ∆的面积的最大值;(2)若2,CD ACD =∆的面积为4,ACD ∠为锐角,求BC 的长.【详解】(1)因为在ABC ∆中,30,B AC D ∠==是边AB 上一点, 所以由余弦定理得:(22222202cos 2AC AB BC AB BC ABC AB BC BC AB BC ==+-⋅∠=+-⋅≥⋅所以(202AB BC ⋅≤=+,所以(1sinB 522ABCS AB BC =⋅≤+所以ABC ∆的面积的最大值为5(2+ (2)设ACD θ∠=,在ACD ∆中,因为2,CD ACD =∆的面积为4,ACD ∠为锐角,所以11sin 2sin 422ABC S AC CD θθ=⋅=⨯=,所以255sin ,cos θθ,由余弦定理,得,2222cos 204816AD AC CD AC CD θ=+-⋅=+-=所以4=AD ,由正弦定理,得sin sin AD CD A θ=,所以42sin sin A θ=,所以sin A =, 此时sin sin BC AC A B=,所以sin 4sin AC A BC B ==.所以BC 的长为4 21.(2020·四川成都市·双流中学高一开学考试)如图,在平面四边形ABCD 中,23D π∠=,CD =ACD ∆的面积为2.⑴求AC 的长;⑵若AB AD ⊥,4B π∠=,求BC 的长.【详解】⑴∵23D π∠=,CD =ACD ∆∴11sin 22ACD S AD CD D AD ∆=⋅⋅=⨯=,∴AD =∴由余弦定理得22212cos 6626()182AC AD CD AD CD D =+-⋅⋅=+-⨯⨯-=,∴AC =⑵由(1)知ACD ∆中AD =CD =23D π∠=∴6DAC ,∵AB AD ⊥,∴3BAC π∠=,又∵4B π∠= ,AC =∴在ABC ∆中,由正弦定理得sin sin BC AC BAC B =∠,2=,∴BC =。

解三角形题型总结(原创)

解三角形题型总结(原创)

2
0,
21 3
又因为 0 0 B 180 0 ,所以 B 90 0 ,
再根据内角和定理,得
A 1800 (B C) 180 0 150 0 300。
综上, A 300,B 900,c
3。
练习:
1 在 ABC 中,已知 a 4,b 2,C 60 0解三角形。
题型四、利用余弦定理解决 “已知三边 ”的类型
解三角形题型总结
ABC 中的常见结论和定理:
一、 内角和定理及诱导公式:
1.因为 A B C , 所以 sin( A B) sin C, cos(A B)
cosC, tan(A B)
sin( A C) sin B, cos(A C) cosB, tan(A C)
sin(B C) sin A, cos(B C) cos A, tan(B C)
2cos 2 A 3cos A 2 0,
解得 cosA 1 ,角 A 60 2
(II) S 1 bcsinA 5 3 2
c 4,
3cos B C 1.
由余弦定理得 : a2
2
21, 2R
a2 sin2 A 28
sinBsinC
bc 5 4R 2 7
练习 2. 已知 △ABC 的周长为 2 1,且 sin A sinB
2
6
3
由余弦定理, 得 cosC
AC 2 BC 2 AB 2 (AC BC) 2 2AC BC AB 2 1 ,
2AC BC
2AC BC
2
所以 C 60 .
练习 3.在 △ABC 中,内角 A,B,C 对边的边长分别是 a,b,c ,已知 c 2 ,C

3
(Ⅰ)若 △ABC 的面积等于 3,求 a,b ;

解三角形题型总结(原创)

解三角形题型总结(原创)

解三角形题型总结ABC 中的常见结论和定理:一、内角和定理及诱导公式:1.因为A B C ,所以sin( A B) sin C, cos( A B) cosC , tan( A B) tan C ;sin( A C) sin B, cos( A C) cos B, tan( A C) tan B ;sin( B C) sin A, cos(B C) cos A, tan( B C) tan AA B C因为,2 2A B C 所以sin cos2 2 2.大边对大角A B C,cos sin2 2,⋯⋯⋯⋯3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA ta·n B ·t anC;(2)A 、B、C 成等差数列的充要条件是B=60°;(3)△ABC 是正三角形的充要条件是A、B、C 成等差数列且a、b、c 成等比数列.二、正弦定理:文字:在ABC 中,各边与其所对角的正弦的比值都相等。

a b c符号:R2 sin A sin B sin C公式变形:①a2R s in A b 2R sin B c 2R s in C (边转化成角)②a b csin A sin B sin C (角转化成边)2R 2R 2R③a : b :c sin A :sin B : sin Ca b c a b c④2Rsin A sin B sin C sin A sin B sin C三、余弦定理:文字:在ABC 中,任意一边的平方,等于另外两边的平方和,减去这两边与它们夹角的余弦值的乘积的两倍。

符号:a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C变形:cos A2b2c2bc2 2a acos B2c2ac2b cos C2a2b2ab2c四、面积公式:(1)S 1 ah (2) 1 ( )S r a b c (其中r 为三角形内切圆半径) a2 2(3) 1 sin 1 sin 1 sinS ab C bc A ac B2 2 2五、常见三角形的基本类型及解法:(1)已知两角和一边(如已知A, B, 边c)解法:根据内角和求出角 C ( A B) ;a b c根据正弦定理R2sin A sin B sin C求出其余两边a,b(2)已知两边和夹角(如已知a,b,C )2 2 2 2 cos 解法:根据余弦定理c a b ab C 求出边c;2 2 2b c a根据余弦定理的变形cos A 求A ;2bc 根据内角和定理求角 B ( AC) .(3)已知三边(如:a, b, c )b 2 2c2 acos A 求A ;解法:根据余弦定理的变形2bc根据余弦定理的变形cos B2a2c2ac2b 求角B ;根据内角和定理求角 C (A B)(4)已知两边和其中一边对角(如:a,b, A)(注意讨论解的情况)解法1:若只求第三边,用余弦定理: 2 2 2 2 cosc a b ab C ;a b c解法2:若不是只求第三边,先用正弦定理R2sin A sin B sin C解,两解或无解的情况,见题型一);求B (可能出现一再根据内角和定理求角 C (A B) ;.先看一道例题:例:在ABC 中,已知b 2 ,求角C。

解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角.第2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 4、(2016 年上海)已知 ABC 的三边长分别为 3,5,7,则该三角形的外接圆半径等于
______
类型二:余弦定理
1、 判断三角形形状:锐角、直角、钝角
在△ABC 中, 若 a2 b2 c2 ,则角 C 是直角; 若 a2 b2 c2 ,则角 C 是钝角; 若 a2 b2 c2 ,则角 C 是锐角. 例 1、在△ABC 中,若 a9,b10,c12,则△ABC 的形状是_________。
b cos B
2)若 a cos B ,试确定 ABC 形状。 b cos A
4)在 ABC 中,已知 a 2 tan B b 2 tan A ,试判断三角形的形状。 5)已知在 ABC 中, b sin B c sin C ,且 sin 2 A sin 2 B sin 2 C ,试判断三角形的形状。
例 4、在△ABC 中,已知 a=7,b=3,c=5,求最大的角和 sinC?
3、余弦公式直接应用 例 5、:在 ABC 中,若 a2 b2 c2 bc ,求角 A.
例 6、:(2013 重庆理 20)在△ABC 中,内角 A,B,C 的对边分别是 a,b,c, 且 a2+b2+ 2 ab=c2. (1)求 C;
hing at a time and All things in their being are good for somethin
解三角形题型分类解析
类型一:正弦定理 1、计算问题: 例 1、(2013•北京)在△ABC 中,a=3,b=5,sinA= ,则 sinB=_________
例 2、已知 ABC 中, A 60 , a 3 ,则
例 6:(2016 年全国 I 高考)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 2 cos C(a cos B +b cos A) c.
(I)求 C;
(II)若 c 7,△ABC 的面积为 3 3 ,求△ABC 的周长. 2
题型八:图形问题 例 1:如图所示,货轮在海上以 40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标
第6页共7页
hing at a time and All things in their being are good for somethin
6.△ABC 中,a、b、c 分别是角 A、B、C 所对的边,已知 a= 3,b=3,C=30°,则 A= 7.(2010·山东高考)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.若 a= 2,b=2,sin B+cos B= 2,则角 A 的大小为________. 8.已知△ABC 的三个内角 A,B,C 成等差数列,且 AB=1,BC=4,则边 BC 上的中线 AD 的长为________. 三、解答题 9.△ABC 中,内角 A、B、C 的对边长分别为 a、b、c.若 a2-c2=2b,且 sin B=4cos Asin C,求 b.
例 2:在 ABC 中,角 A , B , C 对应的边分别是 a , b , c .已知 cos 2 A 3cos B C 1.
(I)求角 A 的大小; (II)若 ABC 的面积 S 5 3 , b 5 ,求 sin B sin C 的值.
1 例 3:△ABC 的内角 A,B,C 的对边分别为 a,b,c.已知 3acos C=2ccos A,tan A=3,求 B.
abc
=.
sin A sin B sin C
例 3、在锐角△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且 2asinB= b. 求角 A 的大小;
2、三角形形状问题
例 3、在 ABC 中,已知 a, b, c 分别为角 A,B,C 的对边, 1) a cos A 试确定 ABC 形状。
A.一解B.两解 C.无解 D.不确定
例 2:在 ABC 中,分别根据下列条件解三角形,其中有两解的是【 】
A、 a 7 , b 14 , A 30 ;
B、 b 25 , c 30 , C 150 ;
C、 b 4 , c 5 , B 30 ;
D、 a 6 , b 3 , B 60 。
例4:在△ABC中,a,
b,
c分别为内角A,
B,
C的对边,且
第3页共7页
hing at a time and All things in their being are good for somethin
2asinA (2b c)sinB (2c b)sinC (Ⅰ)求 A 的大小;(Ⅱ)求 sin B sin C 的最大值.
2sin2B-sin2A
例 2 在△ABC 中,内角 A,B,C 所对的边分别是 a,b,c.若 3a=2b,则 sin2A 的 值为
例 3.△ABC 中,sin2A=sin2B+sin2C,则△ABC 为
A.直角三角形 B.等腰直角三角形 C.等边三角形 D.等腰三角形
例 4:(2011·全国)△ABC 的内角 A、B、C 的对边分别为 a、b、c,asin A+csin C- 2asin C=bsin B.
例 2.【2015 高考湖北,理 13】如图,一辆汽车在一条水平的公路上向正西行驶,到 A 处 时测得公路北侧一山顶 D 在西偏北 30 的方向上,行驶 600m 后到达 B 处,测得此山顶在 西偏北 75 的方向上,仰角为 30 ,则此山的高度 CD m.
正弦定理、余弦定理水平测试题
一、选择题 1.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2+c2-b2= 3ac,则角 B 的值为
第2页共7页
hing at a time and All things in their being are good for somethin
(A)一定是锐角三角形.
(B)一定是直角三角形.
(C)一定是钝角三角形.
(D)可能是锐角三角形,也可能是钝角三角形.
变:在 ABC 中,若 sin A : sin B : sin C 3 : 5 : 7 ,则角 C 的度数为
(II)若 a,b,c 成等比数列,求 cos B 的最小值.
第4页共7页
hing at a time and All things in their being are good for somethin
类型七:面积问题 面积公式: 例 1:设 A ABC 的内角 A, B,C 所对边的长分别是 a, b, c ,且 b=3,c=1, △ABC 的面积为 2 求 cosA 与 a 的值;
例 7、设△ ABC 的内角 A , B , C 所对的边分别为 a , b , c . 若 (a b c)(a b c) ab , 则角 C
例 8、(2016 年北京高考) 在 ABC 中, a2 c2 b2 2ac . (1)求 B 的大小; (2)求 2 cos A cos C 的最大值.
4
1
例 4.在△ABC 中,sin(C-A)=1 , sinB= ,求 sinA=。
3
例 5.【2015 高考北京,理 12】在 △ABC 中, a 4 , b 5 , c 6 ,则 sin 2A

sin C
例 6.若△ ABC 的三个内角满足 sin A : sin B : sin C 5 :11:13 ,则△ ABC
π π π 5π π 2π A.6B.3C.6或 6 D.3或 3 2.已知锐角△ABC 的面积为 3 3,BC=4,CA=3,则角 C 的大小为 A.75° B.60° C.45°D.30° 3.(2010·上海高考)若△ABC 的三个内角满足 sin A∶sin B∶sin C=5∶11∶13,则△ABC A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 4.如果等腰三角形的周长是底边长的 5 倍,那么它的顶角的余弦值为 5 3 37 A.18B.4C. 2 D.8 5.(2010·湖南高考)在△ABC 中,角 A,B,C 所对的边长分别为 a,b,c,若∠C=120°, c= 2a,则( ) A.a>bB.a<bC.a=bD.a 与 b 大小不能确定 二、填空题
例 7.△ ABC 的三个内角满则 A:B:C=1:2:3 则 a:b:c=.
例 8.设 ABC 的内角 A, B,C 的对边分别为 a,b, c ,且 cos A 3 , cos B 5 , b 3 则
5
13
c
类型四:与正弦有关的解的个数 思路二:利用大边对大角进行筛选 例 1:在△ABC 中,bsinA<a<b,则此三角形有
第5页共7页
hing at a time and All things in their being are good for somethin
方向线的水平转角)为 140°的方向航行,为了确定船位,船在 B 点观测灯塔 A 的方位角为 110°,航行半小时后船到达 C 点,观测灯塔 A 的方位角是 65°,则货轮到达 C 点时,与灯 塔 A 的距离是多少?
例 4.在 ABC 中,角 A,B,C 所对的边分别为 a,b,c 且满足
(1)求△ABC 的面积;(2)若 c=1,求 a 的值.
例 5:(2013•浙江)在锐角△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且 2asinB= b.
(Ⅰ)求角 A 的大小; (Ⅱ)若 a=6,b+c=8,求△ABC 的面积.
例 6:(2016 年浙江高考)在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c. b+c=2acosB. (I)证明:A=2B;
a2 (I)若△ABC 的面积 S = ,求角 A 的大小.
4
已知
例 7: ABC 的内角 A,B,C 所对的边分别为 a,b,c .
(I)若 a,b,c 成等差数列,证明: sin A sin C 2sinA C ;
相关文档
最新文档