离散数学第四章 二元关系和函数
4-6 二元关系与函数 离散数学 教学课件
单机调度----拓扑排序
拓扑排序
构造一个包含某个给定部分序的全序的过程 。
拓扑排序算法----
1
对有限集T上给定的部分序R,产生一个全序S
Step1: (初始化)
2
3
令 k=1, T‘=T
Step2: (取下一个元素)
While T’ ≠
机器j的停止时间 Dj=max {sj(tk) | tk ∈Tj} + L(tk)
所有任务的截止时间
D=max{ Dj | j=1,2,…,m}
R={<ti,tj>|t1, tj∈T,i=j 或ti完成后tj才可开始加工} 一个可行调度是T的划分{T1,T2,…Tm},
Ti≠,由安排在机器cj上加工的所有任务组成,
多机调度
对任务集Tj,j=1,2,…,m,存在调度函数 sj: TjN,且满足下 述条件 (1)i, 0≤i<D, |{tk |tk∈T, sj(tk) ≤ i < sj(tk)+L(tk)}| ≤ 1 j=1,2,…,m 表示D之前的每个时刻 i,每台机器cj上至多只有一个任 务正在加工 (2) tk∈Ti, tj∈Tj, <tj, tj>∈R si(tk)+L(tk)≤sj(tL) i, j=1,2,…,m, i ≠ j 表示若任务tk与tj有偏序约束,则tk完成后tj才能开始加工
第4章 二元关系与函数
4.1 集合的笛卡儿积与二元关系 4.2 关系的运算 4.3 关系的性质 4.4 关系的闭包 4.5 等价关系和偏序关系 4.6 函数的定义和性质 4.7 函数的复合和反函数
集合论在计算机科学中的应用
二元关系的复合运算和函数的区别
二元关系和函数是离散数学中的基本概念,它们在数学领域中有着重要的地位。
在本篇文章中,我们将深入探讨二元关系的复合运算和函数的区别,希望能够让读者对这两个概念有更清晰的认识。
一、二元关系的复合运算1. 二元关系的定义在介绍二元关系的复合运算之前,我们需要先了解二元关系的基本概念。
二元关系是集合论中的一个概念,它描述了两个元素之间的某种关系。
如果集合A和B之间的关系R满足aRb,其中a∈A,b∈B,那么我们称R是从A到B的二元关系。
2. 二元关系的复合运算当我们考虑两个二元关系R和S的复合运算时,我们是在寻找一种新的关系,这个新的关系描述了R中的元素与S中的元素之间的某种关系。
具体而言,对于R中的元素a和S中的元素b,如果存在一个元素c,使得aRc且cSb成立,那么我们就称这个元素c满足R和S的复合运算,记作R∘S。
3. 复合运算的性质在二元关系的复合运算中,我们可以总结出一些性质,比如结合律、分配律等。
这些性质有助于我们更好地理解复合运算的运算规律,并在实际问题中进行应用。
二、函数的定义和特点1. 函数的定义函数是高中数学中最基本的概念之一,它描述了两个集合之间的一种特殊关系。
具体而言,如果集合A和集合B之间的关系f满足对于A中的每一个元素a,都存在一个元素b使得f(a)=b成立,那么我们就称f是从A到B的函数。
2. 函数的特点函数具有一些明显的特点,比如每一个自变量都有且只有一个对应的因变量,这是函数与普通关系的本质区别之一。
函数还有定义域、值域、单调性、奇偶性等特点,这些特点在实际问题中有着重要的作用。
三、二元关系的复合运算和函数的区别1. 从定义上来看二元关系和函数在定义上有着明显的不同。
二元关系描述了两个集合之间的某种关系,没有对应的自变量和因变量的概念;而函数则是描述了两个集合之间的特殊关系,其中包含了自变量和因变量的概念。
2. 从表示形式来看二元关系和函数的表示形式也有所不同。
在二元关系中,我们通常用有序对的形式来表示两个元素之间的关系;而在函数中,我们则使用映射的形式来表示自变量和因变量之间的对应关系。
《离散数学》课件-第四章 二元关系
R2= R • R={<1,1>,<2,2>,<1,3>,<2,4>, <3,5>}
R3=R2 • R={<1,2>,<2,1>,<1,4>,<2,3>, <2,5>}
R4= R3 • R={<1,1>,<2,2>,<1,5>,<2,4>,
从关系图来看关系的n次幂
R:
1
2
3
4
5
R2:
1
2
3
4
5
R2就是从R的关系图中的任何一个结点x出发,长 为2的路径,如果路径的终点是y,则在R2 的关系 图中有一条从x到y的有向边。其他以次类推:
R3:
1
2
3
4
5
R4:
1
2
3
4
5
定理 设|A|=n,R A×A,则必有i,j∈N, 0≤i<j≤2n2,使得Ri=Rj。
=R5,R7=R6•R=R5,…,Rn=R5 (n>5) 故Rn{R0,R1,R2,R3,R4,R5}。
S0=IA,S1=S,
S2=S•S={<a,c>,<b,d>,<c,e>,<d,f>}, S3=S•S•S=S2•S={<a,d>,<b,e>,<c,f>}, S4=S3•S={<a,e>,<b,f>}, S5=S4•S={<a,f>}, S6=S5•S=Φ, S7=Φ, …, 故,Sn{S0,S1,S2,S3,S4,S5,S6}
离散数学第四章-二元关系和函数
(2) 笛卡儿积是集合,有关集合的运算都适合。
(3) 一般,A B B A 。
5
3、笛卡儿积运算对 或 满足分配律
(1) A(B C) (A B) (AC) (2) (B C) A (B A) (C A) (3) A(B C) (A B) (AC) (4) (B C) A (B A) (C A)
解: (A) ,{a},{b}, A ,
R , , ,{a} , ,{b} ,
, A , {a},{a} , {a}, A ,
{b},{b} , {b}, A , A, A
14
4、A 上二元关系的表示法。
集合表示法 有三种 矩阵表示法
图形表示法
15
一般:设 A {x1, x2, , xn}
1、定义:
(1) 若集合R为空集或它的元素都是有序对, 则称 R 为二元关系。 若 x, y R ,则记作 xRy ,
否则,记作 xRy 。 (2) A B的任何一个子集都称作从A到B的一个二元关系。
特别地,当 A B 时,称作 A上的二元关系。
例、 A {a,b} ,B {0,1, 2}
设 R1 a, 0 , b, 0 , b, 2 R2 R3 A B
传递的。
26
例6、判断下图中的关系分别具有哪些性质。
解:R5 既不是自反也不是反自反的,
反对称的,传递的。
27
例6、判断下图中的关系分别具有哪些性质。
解:R6 是反自反的,既不是对称
又不是反对称,不是传递的。
28
例7:设 R1, R2 为 A上的对称关系, 证明R1 R2 也是 A上的对称关系。 证明:对任意 x, y
离散数学 第四章 关系
若ai Rbj 若ai Rbj
矩阵MR 称为R的关系矩阵。
17
第四章 关系
4.1 二元关系
例:设A={1,2,3,4},A上的关系R={<x,y>|y是x 的整数倍},故R={<1,1>,<1,2>,<1,3>,<1,4>,<2,2>,<2, 4>,<3,3>,<4,4>}.
1 2 3 4
1 1 2 0 MR 3 0 4 0
2
第四章 关系
4.1 二元关系
4.1.1 基本概念
4.1.2 关系的表示
3
第四章 关系
4.1 二元关系
4.1.1 基本概念 1)定义: A×B的子集叫做A到B上的一个二元关系。 A1×A2×A3的子集叫做A1×A2×A3上的一个三元 关系。 A1×A2×…xAn的子集叫做A1×A2×… × An上的 一个n元关系。 A×A×A ×… × A的子集叫做A上的n元关系。
1 1 0 0
1 0 1 0
1 1 0 1
18
第四章 关系
4.1 二元关系
3.关系图表示法
关系图由结点和边组成
若A= {x1, x2, …, xm},R是A上的关系,R的关系图是 GR=<A, R>,其中A为结点集,R为边集。如果<xi,xj> R,在图中就有一条从 xi 到 xj 的有向边;如果<xi,xi> R,在图中就有一条从 xi 到 xi 的有向边。
12
第四章 关系
4.1 二元关系 4)关系的个数: 2,A×A的子集有 2 n 个。 假设|A|=n,|A×A|=n 2n 所以 A上有 个不同的二元关系。
离散数学-第四章 关系-内容提要
{}
传递。
(5)如 果 VJ
:IT{∶ ∶ ∶ ∶ 蚕 ⒈11∶⒈ ∶ Ll ;, 翕 罐 ∶ ∶ ∶ 置 R在 A上
:I∶
:: 1∷
Vj V石
(Π
、 、 y,z)∈ R→ 〈 R∧ 〈 J,z〉 ∈ R),则 称 Π ,y,z∈ A∧ 〈 ,j〉 ∈
1亠
判别法
:
利用关系表达式判别 (1)R在 A上 白反 ㈡rA∈ R。
,
系:简 称全胛 蜮 线序 曳
柙
\宀
:'艹
° Γ ˉ叽
抖 ¨ ‰ 艹 渺 冖妒 ”
^讷
p¨ ¨
¨
i
∶
^¨
Ⅱ… ¨
=艹
)。
`呻
/
‘ :° f耷
一
^A’
工 < ′
工 < ′
Ι ⒕
,
、
\′
I纟
:
轱
/廴
跃
:
h,如 果 J≤ y∨ y※ J,贝 刂 ∈ 称
J与 j可 比。
称 y覆 盖 J。
偏序集中的特殊元素
得 ⒎ 则
:
y,z〉 ∈ S))。 ∈ R∧ 〈
有关基本运算的定理 ・ 定理 4.1 设 F是 任意的关系 ,则
(1)(Fˉ l)ˉ ^l=F。
・
(2)domFˉ ˉ ∴ =ranF,ranF~l=domF。
定理 4.2 设 F,G,Ⅳ 是任意的关系 ,则 (1)(F° G)° H=Fo(G° H), (2)(FoG)ˉ l=G^loF_ˉ
:
(2)R在 (3)R在 (4)R在 (5)R在 (1)R在 (2)R在 (3)R在 (4)R在
A上 反 自反 ⑶R∩ rA=¤ 。 A上 对称 山R=Rl。 ; A上 反对称 ㈡R∩ R~l∈ A上 传递 ㈡R。 R∈ R。
离散数学第四章课件
无对称的偶对。
表示关系矩阵的主对角线两侧各有一个1且 对称,即有一个对称的偶对。
C1
n(n+1) 2
n(n+1) C 2 n(n+1) 2
表示关系矩阵的主对角线两侧全为1,
C1 + n(n+ +…+ 2
n(n+1) C 2 n(n+1) 2
于是
C0 n(n+1) 2 =
2
n(n+1) 2
四、反对称性 ⒈ 定义: 若xy(x∈A∧y∈A∧xRy∧yRx→x=y), 称R是反对称的。 例:设A={ a , b , c , d } R={ < a , b > , < a , c > , < b , b > , <b,d>,<c,c>,<c,d>, < d , d >}
⒉自反关系的关系矩阵的特征
R的关系矩阵的主对角线上的元素均为
1 ,则该关系就不具有自反性;
主对角线上有一个元素不为1,则该关
系就不具有自反性。
⒊ 自反关系的图的特征 自反关系的关系图中,每个顶点都有 自回路,则该关系具有自反性。
二、反自反性 ⒈ 定义:若x(x∈A xRx)则该关系是 反自反的。 ⒉ 具有反自反性的关系的关系矩阵的主对角
2 t1× t2 × … ×tn
五、关系的表示法-----通常有三种表示方法
⒈ 集合表示法: 因为关系也是集合,所以也可以用集合 的表示方法
例:A={ 2, 3,4,6 ,9,12 }上的整除关系
用特征描述法表示为
R={ < x , y > | x∈A ∧ y∈A ∧ x|y }
用穷举法表示为
R={ < 2 , 2 > , < 2 , 4 > , < 2 , 6 > ,
离散数学(第二版)第4章二元关系和函数
第四章 二元关系和函数
定义4.2.3 设R是A到B的二元关系。 (1) 用xRy表示 <x,y>∈R,意为x,y有R关系(为使可读 性好,我们将分场合使用这两种表达方式中的某一种)。 xy 表示<x,y> R。 (2) 由<x,y>∈R的所有x组成的集合称为关系R的定义域 (domain),记作Dom R,即
显然A×B与 B×A所含元素的个数相同(A,B是有限集 合),但A×B≠B×A。
定理4.1.1 若A,B是有穷集合,则有 |A×B|=|A|·|B|(·为数乘运算)
该定理由排列组合的知识不难证明。 定理4.1.2 对任意有限集合A1,A2,…,An,有 |A1×A2×…×An|=|A1|·|A2|·… ·|An|(·为数乘运算)
第四章 二元关系和函数
本节主要介绍关系的基本概念以及关系的表示方法。 定义4.2.1 任何序偶的集合,确定了一个二元关系,并 称该集合为一个二元关系,记作R 。 二元关系也简称关系。 对于二元关系R,如果<x,y>∈R,也可记作xRy。 定义并不要求R中的元素<x,y> 中的x,y取自哪个个体 域。 因此,R={<2,a>,<u,狗>,<钱币,思想>}也是一 个二元关系。
若R={<x,y>|x∈A∧y∈B∧ x|y },则称R为整除关系, 常记为|,其中x|y表示x整除y。
若A是任意集合,R是A上的二元关系,下面的关系也常 见:
若R={<x,y>|x∈P(A)∧y∈P(A)∧x y},则称R为包含
若R={<x,y>|x∈P(A)∧y∈P(A)∧x y},则称R为真包
第四章 二元关系和函数
离散数学第4章-二元关系
4.6 等价关系与划分
• 三 性质 • 定理4.13 设R是A上的等价关系,则 (1)对任一a∈A,有a∈[a]; (2)对a, b∈A,如果aRb,则[a]=[b]; (3)对a, b∈A,如果(a, b)∉R,则[a]∩[b]=∅; (4)∪a∈A[a]=A。
4.6 等价关系与划分
• 定理4.14 集合A上的任一划分可以确定A上 的一个等价关系R。 • 定理4.15 设R1和R2是A上的等价关系, R1=R2⇔ A/R1=A/R2 。 • 定理4.16 设R1和R2是A上的等价关系,则 R1∩R2是A上的等价关系。
4 .3 关系的运算
• 一 逆运算 • 定义4.7(逆关系) 设R是从A到B的二元关系, 则从B到A的二元关系记为R-1,定义为R-1 ={(b,a)|(a,b)∈R},称为R的逆关系。 • 定理2.1 (1)(R-1)-1=R; (2)(R1∪R2)-1= R1-1∪ R2-1; (3)(R1∩R2)-1= R1-1 ∩R2-1; (4) (A×B)-1= B×A;
4 .5 关系的闭包
•
• (1) (2) (3) • (1) (2) (3)
二 基本性质
定理4.5 设R是A上的二元关系,则 R是自反的 ⇔ r( R )=R; R是对称的 ⇔ s( R )=R; R是传递的 ⇔ t( R )=R; 定理4.6 设R1和R2是A上的二元关系,若R1⊆R2则 r(R1)⊆ r(R2); s(R1)⊆ s(R2); t(R1)⊆ t(R2)。
第四章 关系
4.1 二元关系 4.2 关系的性质 4 .3 关系的运算 4 .5 关系的闭包 4.6 等价关系与划分
4.1 二元关系
• 一 定义4.1(二元关系)
设A和B是任意两个集合,A×B的子集R称为从A到 B的二元关系。当A=B时,称R为A上的二元关系。若 (a, b)∈R,则称a与b有关系R,记为aRb。 (a, b)∉R:a与b没有关系R R=∅:空关系 R=A×B:全关系
离散数学4-关系与函数
A={}, P(A)A= {<,>, <{},>}
7
笛卡儿积的性质
不适合交换律 ABBA (AB, A, B) 不适合结合律 (AB)CA(BC) (A, B) 对于并或交运算满足分配律
<x,y>∈A×(B∪C) x∈A∧y∈B∪C x∈A∧(y∈B∨y∈C)
(x∈A∧y∈B)∨(x∈A∧y∈C) <x,y>∈A×B∨<x,y>∈A×C <x,y>∈(A×B)∪(A×C)
所以有A×(B∪C) = (A×B)∪(A×C).
10
二元关系的定义
定义 如果一个集合满足以下条件之一: (1)集合非空, 且它的元素都是有序对 (2)集合是空集
❖关系R1 :{m, n}到 {w, x, y, z} ,且R1 ={<m, x>,<m, z>,<n, w>}。
❖ 计算R1∘R2
a R2 m
R1
w
b
n
x
o
y
c
p
z
23
第二种方法:关系矩阵乘法
利用图示(不是关系图)方法求合成
❖关系R2:{a, b, c}到 {m, n, o, p} ,且R2={<a, p>,<a, o>,<b, m>}。
12
从A到B的关系与A上的关系
定义 设A,B为集合, A×B的任何子集所定义的二元系叫 做从A到B的二元关系, 当A=B时则叫做 A上的二元关系.
离散数学第五版第四章(耿素云、屈婉玲、张立昂编著)
4.1迪卡尔乘积与二元关系
5) 迪卡尔乘积运算对并和交运算满足分配律,即: (3)A×(BC)= (A×B)(A×C) 证明: 对于任意的<x,y> <x,y>A×(BC) xA yBC xA (yB y C) (xAyB) (xAyC) <x,y>A×B <x,y>A×C <x,y>(A×B)(A×C)
A1×A2×……×An ={<x1,x2,……,xn>|x1A1 x2A2 …… xnAn}
4.1迪卡尔乘积与二元关系
例2:设A={1,2},求P(A)×A 解:P(A)={,{1},{2},{1,2}} P(A)×A={<,1>,<,2>, <{1},1>,<{1},2>, <{2},1>,<{2},2>, <{1,2},1>,<{1,2},2>}
4.1迪卡尔乘积与二元关系
(2)(AB)×(CD)=(A×C)(B×D) 证明:设A=、B={1}、C={2}、D={3} (AB)×(CD)={<1,2>、<1,3>} (A×C)(B×D)={<2,1>、<2,3>} 所以:等式不成立
(3)(A-B)×(C-D)=(A×C)-(B×D) 证明:设A={1}、B={1}、C={2}、D={3} (A-B)×(C-D)= (A×C)-(B×D)={<1,2>}
4.1迪卡尔乘积与二元关系
三、二元关系 2. 集合上元素的关系(定义4.6)
设A,B为集合,A×B的任何子集所定义的二元关系叫做 从A到B的二元关系,特别当A=B是则叫做A上的二元关系。 例:A={0,1}、B={1,2,3},
离散数学第四章 关系
2010-11-3
定理4.3.1 若R⊆A×B,S⊆B×C,T⊆C×D, 则 (R*S)*T=R*(S*T) 这说明复合运算是可结合的。我们常删去括号 将它们写成R*S*T。 由归纳法易证, 任意n个关系的合成也是可结合 的。在R1*R2*…*Rn中, 只要不改变它们的次序, 不论在它们之间怎样加括号, 其结果是一样的.
4
2010-11-3
定义4.1.2 给定集合A和B,若有序对的第一分 量是A的元素,第二分量是B的元素,所有这些 有序对的集合,称为A和B的笛卡尔积,记为 A×B, A×B={‹x,y›|x∈A∧y∈B}
5
2010-11-3
例 设A = {a, b, c}, B = {0, 1}, 则 A × B = {‹a, 0›, ‹a, 1›, ‹b, 0›, ‹b, 1›, ‹c, 0›, ‹c, 1›} B × A = {‹0, a›, ‹0, b›, ‹0, c›, ‹1, a›, ‹1, b›, ‹1, c›} A × A = {‹a, a›, ‹a, b›, ‹a, c›, ‹b, a›, ‹b, b›, ‹b, c›, ‹c, a›, ‹c, b›, ‹c, c›} B × B = {‹0, 0›, ‹0, 1›, ‹1, 0›, ‹1, 1›} 可以看出:A × B ≠ B × A (除非A = ∅或 B = ∅或 A = B,见后面定理) 即笛卡尔积不满足交换律。
18
2010-11-3
例 设A和B分别是学校的所有学生和所有课程的集合。假 设R由所有有序对‹a,b›组成,其中a是选修课程b的学生。 S由所有有序对‹a,b›构成,其中课程b是a的必修课。什么 是关系R∪S,R∩S,R⊕S,R-S和S-R? 解:关系R∪S由所有的有序对‹a,b›组成,其中a是一个学 生,他或者选修了课程b,或者课程b是他的必修课。 R∩S是所有有序对‹a,b›的集合,其中a是一个学生,他选 修了课程b并且课程b也是a的必修课。 R⊕S由所有有序 对‹a,b›组成,其中学生a已经选修了课程b,但课程b不是 a的必修课,或者课程b是a的必修课,但a没有选修它。 R-S是所有有序对‹a,b›的集合,其中a已经选修了课程b但 课程b不是a的必修课。S-R是所有有序对‹a,b›的集合,其 中课程b是a的必修课,但a没有选它。
离散数学课件第四章二元关系习题
闭包的定义基于关系的传递 性,即如果关系R满足传递性, 那么对于任何元素x,如果存 在元素y和z,使得xRy和yRz, 那么一定存在一个元素z',使 得xRz'。闭包就是由给定关系 和所有满足闭包定义的新元 素构成的关系集合。
闭包具有一些重要的性质, 这些性质决定了闭包在数学 和计算机科学中的广泛应用 。
同余关系的应用
应用1
在密码学中,同余关系可用于生成加 密密钥。例如,通过选择两个同余的 数作为密钥,可以确保加密和解密操 作的一致性。
应用2
在计算机科学中,同余关系可用于实 现数据校验。例如,通过将数据与一 个已知的校验值进行同余运算,可以 检测数据是否在传输过程中被篡改。
THANKS
感谢观看
反对称性
如果对于关系中的每一对 元素,如果元素x与元素y 有关系,且元素y与元素x 也有关系,但元素x与元 素y的关系不等于元素y与 元素x的关系,则称该关 系具有反对称性。
习题解析
习题1
判断给定的关系是否具有自反性、反自反性、对称性和反对称性。通过举例和推理,分析 给定的关系是否满足这些性质。
习题2
表示方法
总结词
掌握二元关系的表示方法是解题的关键。
详细描述
在数学中,我们通常使用笛卡尔积来表示二元关系。例如,如果A和B是两个集合, 那么A和B的笛卡尔积可以表示为A×B,它包含了所有形如(a, b)的元素,其中a属于 A,b属于B。
习题解析
总结词
通过解析具体习题,可以加深对二元关系定义和表示方法的理解。
有着广泛的应用。
05
习题五:关系的同余
同余关系的定义与性质
定义
反身性
对称性
传递性
如果对于任意元素$x$, 都有$f(x) = g(x)$,则 称$f$和$g$是同余的。
离散数学 二元关系
第四章二元关系1举出A={1, 2, 3}上关系R的例子,使其具有下述性质:a)既是对称的,又是反对称的;b)既不是对称的,又不是反对称的;c)是传递的。
2举出一个集合上关系的例子,分别适合于自反,对称,传递中的两个且仅适合两个。
3如果关系R和S是自反的,对称的和传递的,证明RÇS也是自反的,对称的和传递的。
4设R1和R2是A上的二元关系,说明以下命题的真假:a)若R1和R2是自反的,则R1 o R2是自反的;b)若R1和R2是反自反的,则R1 o R2是反自反的;c)若R1和R2是对称的,则R1 o R2是对称的;d)若R1和R2是传递的,则R1 o R2是传递的。
5画出集合A={1, 2, 3, 4, 5, 6}在偏序关系“整除”下的哈斯图,并讨论:a)写出{1, 2, 3, 4, 5, 6}的极大元,极小元,最大元,最小元;b)分别写出{2, 3, 6}和{2, 3, 5}的上界,下界,上确界,下确界。
6是非判断:设R和S是A上的二元关系,确定下列命题是真还是假。
如果命题为真,则证明之;如果命题为假,则给出一个反例。
(1)若R和S是传递的,则RÈS是传递的。
(2)若R和S是传递的,则RÇS是传递的。
(3)若R和S是传递的,则RoS是传递的。
(4)若R是传递的,则R-1是传递的。
(5)若R和S是自反的,则RÈS是自反的。
(6)若R和S是自反的,则RÇS是自反的。
(7)若R和S是自反的,则RoS是自反的。
(8)若R是自反的,则R-1是自反的。
(9)若R和S是对称的,则RÈS是对称的。
(10)若R和S是对称的,则RÇS是对称的。
(11)若R和S是对称的,则RoS是对称的。
(12)若R是对称的,则R-1是对称的。
(13)若R和S是反对称的,则RÈS是反对称的。
(14)若R和S是反对称的,则RÇS是反对称的。
(15)若R和S是反对称的,则RoS是反对称的。
重庆大学《离散数学》课件-第4章函数
∈ ( − )。由的任意性可知 − () ⊆ ( − )成立
4.2 逆函数和复合函数
▪ 例:定义一函数: → 如下:
1、 的定义域不是,而是的子集
2、 不满足函数定义:值的唯一性
所以 是一种二元关系,但不是函数
一个函数的逆函数存在的话,则此函
数一定是双射函数。
▪ 定理:设: X → 是一双射函数,那么 是Y → X的双射函数。
▪ 证明: (1)首先证明 :Y → X的函数。
因为是满射的,对任意的 ∈ 必有 < , >∈ ,且 = ,因此< , >∈
等函数。
定理:设函数: X → ,则 = ∘ = ∘
定理:如果函数: → 有逆函数 −1 : → ,则 −1 ∘ = ,且
∘ −1 =
例:令:{0,1,2} →{a,b,c},其定义如下图所示,求 −1 ∘ 和 ∘ −1
设: X → ,: → 是两个函数,则复合函数 ∘ 是一个从X到的
函数,对于每一个 ∈ 有 ∘ = (())。
例:设 = 1,2,3 , = , , = , ,
= < 1, >, < 2, >, < 3, > , = < , >, < , > , 求 ∘
, = 。又因为是入射,对每一个 ∈ 必有唯一的 ∈ ,使得<
, >∈ ,因此仅有唯一的 ∈ ,使得
< , >∈ 。因此 是一个函数。
(2)证 :Y → X满射的。
= =
离散数学第四章二元关系和函数
例题
• 例题4.8:下列关系都是整数集Z上的关系,分别求出它们的 定义域和值域.
– R1={<x,y>|x,yZxy}; – R2={<x,y>|x,yZx2+y2=1};
• domR1=ranR1=Z. R={<0,1>,<0,-1>,<1,0>,<-1,0>} domR2=ramR2={0,1,-1}
IA={<0,0>,<1,1>,<2,2>}
关系实例
• 设A为实数集R的某个子集,则A上的小于等于关系定义为 LA={<x,y>|x,yA,xy}.
• 例4.4 设A={a,b},R是P(A)上的包含关系, R={<x,y>|x,yP(A),xy}, 则有 P(A)={,{a},{b},A}. R={<, >,<,{a}>,<,{b}>,<,A>, <{a},{a}>,<{a},A>,<{b},{b}>,<{b},A>,<A,A>}.
– 例如:A={a,b},B={0,1,2},则 AxB={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>}; BxA={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>}.
– 如果A中的元素为m个元素,B中的元素为n个元素, 则AxB和BxA中有mn个元素.
0100 1010 . 0001 0000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y, x
x, y R
LA 为 A 上小于等于关系, 例5、 A {2,3,6} ,
1 L 解: A 2, 2 , 3,3 , 3, 2 , 6, 2 , 6,3 , 6, 6
1 1 DA 为 A 上整除关系,分别求出 L 。 , D A A
x, y
x, y A x y
第四章 二元关系和函数 第一节 二元关系及其运算 内容: 二元关系,关系图,关系矩阵,关系的运算 重点: (1)二元关系的定义及三种表示法,
(2) 一些特殊的二元关系。
(3)二元关系的逆、复合、幂运算
了解:关系的复合运算性质,矩阵法求幂运算
一、二元关系。 1、定义: (1) 若集合 R 为空集或它的元素都是有序对, 则称 R 为二元关系。 若 x, y R ,则记作 xRy , 否则,记作 xRy 。 (2) A B的任何子集都称作从 A 到 B 的关系, 特别,当 A B 时,称作 A 上关系。
则 A A n2 ,
A A 的子集共有 2 个,
n2
n 元集 A 上不同的关系共有 2 个。
n2
3、特殊的关系。 空关系 ,全域关系 EA ,恒等关系 I A 。 对任意集合 A , 空关系 , 全域关系 E A x, y | x A y A A A, 恒等关系 I A x, x | x A 。
一般:设 A {x1 , x2 ,
, xn }
1 xi Rx j M R (rij )nn ,其中 rij 0 xi Rx j
点( n 个顶点)
关系图表示
边(每个有序对对应一条有向弧)
二、逆关系,复合关系。 1、关系的逆。 (1) 定义:关系 R 的逆关系定义为
R 1
求 R S, R R,S S , S R,
( R R) R ,( R S ) R 。
解:R S 1, 4 , 3, 2 , 4, 2
R ) R 1, 2 , 2, 2
S R 1,5 , 2,5 , 3, 2 , 3,5 S S 1,1 , 3,3 , 4,5 R R 1, 2 , 2, 2
1 L 即 A 为 A 上大于等于关系。
1 DA 2, 2 , 6, 2 , 3,3 , 6,3 , 6, 6
x, y | x, y A x是y的倍数
1 即DA 为 A 上的倍数关系。
的关系矩阵 M R1 与 R 的关系矩阵 M R , (2) R 1 满足 M 1 M R 的转置。 R
例3、 A {a, b},求 P ( A) 上的包含关系 R 。
解: P( A) ,{a},{b}, A ,
R , , ,{a} , ,{b} ,
,{a, b} , {a},{a} , {a}, A ,
{b},{b} , {b}, A , A, A
5、 A 上二元关系的表示法。
DA 。 例2、 A {2,3, 6,8},求 LA ,
LA 2, 2 , 2, 3 , 2, 6 , 2,8 , 3, 3 , 解: 3, 6 , 3,8 , 6, 6 , 6,8 , 8,8
DA 2, 2 , 2, 6 , 2,8 , 3,3 , 3, 6 , 6, 6 , 8,8
(R
( R S ) R 3, 2
(2) R S 的关系矩阵 M R S 与 R, S 的关系矩阵
M R , M S 满足 M R S M S M R 。
逻辑加法:0 0 0 ,0 1 1 ,
1 0 1 ,1 1 1 。 R S 的关系图可将 R, S 的关系图连接
起来求得。
(3) 合成关系满足结合律: ( R S ) T R ( S T )。 (4) 关系 R 的 n 次幂。
定义:设 R 为 A 上关系, n N,
R 的 n 次幂规定为:
0 R x, x | x A ①
② Rn Rn1 R (n 1)
n次幂的运算满足:
R m R n R m n ,( Rm )n Rmn (m, n N )
例7、A {a, b, c, d }, R a, b , b, a , b, c , c, d 求 Ri ,i 0,1, 2,3, 4,5 。
集合表示法 有三种 矩阵表示法
图形表示法
例4、已知 A {1, 2,3, 4} ,A 上关系
R 1, 2 , 1,3 , 2,1 , 2, 2 , 3,3 , 4,3 ,
求 R 的关系矩阵 M R 和关系图。
解: 0 1 1 0 关系图:
1 1 0 0 MR 0 0 1 0 0 0 1 0
4、常用关系。 (1) 设 A R , A 上小于等于关系:
LA DB
x, y x, y
x, y A x y x, y B x | y
B Z (2) 设 ,B 上整除关系:
(3) 幂集 P ( A)上的包含关系 R :
R x, y | x, y P( A) x y
例1、 A {a, b} ,B {0,1, 2}
设 R1 a, 0 , b, 0 , b, 2
R2 R3 A B
R4 b,1
则 R1 , R2 , R3 , R4 都是从A 到B 的关系。
2、A 上不同关系的数目。 若 A 为 n 元集,记 A n,
R
( R1 )1 R 。
2、关系的(复合 。
(1) 定义,关系R和S的合成关系定义为:
R S
x, y
z ( xSz zRy )
例6、设 R 1, 2 , 2, 2 , 3, 4
S 1,3 , 2,5 , 3,1 , 4, 2 , 4,5