北师大版高中数学必修5测试题含答案解析

合集下载

【北师大版】高中数学必修五期末试卷附答案(2)

【北师大版】高中数学必修五期末试卷附答案(2)

一、选择题1.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .32.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( ) A .6B .7C .8D .93.已知实数x y 、满足不等式组21010x x y m x y ≤⎧⎪-+≥⎨⎪+-≥⎩,若目标函数2z x y =-+的最大值不超过4,则实数m 的取值范围是 A.(B.⎡⎣C.⎡⎤⎣⎦D .[4.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A.B.C .6D .85.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC的面积为4,则a =( ) A .2B .3C .4D .56.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,c =S =( ) ABC .16D7.在△ABC 中,若b =2,A =120°,三角形的面积S =AB.C .2 D .48.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC 的面积为S ,且()22a b c=+-,则πsin4C⎛⎫+=⎪⎝⎭()A.1 B.2C.4D.49.在数列{}n a中,11a=-,33a=,212n n na a a++=-(*n N∈),则10a=()A.10 B.17 C.21 D.3510.已知数列1a,21aa,…1nnaa-,…是首项为1,公比为2的等比数列,则2logna=()A.(1)n n+B.(1)4n n-C.(1)2n n+D.(1)2n n-11.已知等差数列{}n a的前n项和为n S,55a=,836S=,则数列11{}n na a+的前n项和为()A.11n+B.1nn+C.1nn-D.11nn-+12.若{}n a是等比数列,其公比是q,且546,,a a a-成等差数列,则q等于()A.-1或2 B.1或-2 C.1或2 D.-1或-2二、填空题13.实数,x y满足2025040x yx yx y-+≥⎧⎪--≤⎨⎪+-≥⎩,则24z x y=+-的最大值是___.14.在ABC中,3Aπ∠=,D是BC的中点.若34AD BC≤,则sin sinB C的最大值为____________.15.在三角形ABC中,a,b,c分别是角A,B,C的对边,222a cb ac+-=,b=2a c+的最大值为______.16.设x、y满足约束条件22010240x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y=+的最大值是__________.17.已知x,y是正数,121x y+=,则21x yxy++的最小值为________.18.在ABC4cos sinC B=+,b=,则ABC面积的最大值是__________.19.在流行病学中,基本传染数0R是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设某种传染病的基本传染数03R =(注:对于01R >的传染病,要隔离感染者,以控制传染源,切断传播途径),那么由1个初始感染者经过六轮传染被感染(不含初始感染者)的总人数为______(注:初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……)20.已知函数()331xx f x =+,()x R ∈,正项等比数列{}n a 满足501a =,则()()()1299f lna f lna f lna ++⋯+等于______. 三、解答题21.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少. 22.如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD ,公园由矩形的休闲区(阴影部分)1111D C B A 和环公园人行道组成,已知休闲区1111D C B A 的面积为1000平方米,人行道的宽分别为4米和10米,设休闲区的长为x 米.(1)求矩形ABCD 所占面积S (单位:平方米)关于x 的函数解析式; (2)要使公园所占面积最小,问休闲区1111D C B A 的长和宽应分别为多少米? 23.在①()22sin sin sin sin sin A B C B C --=,②sin sin 2B Cb a B +=,③2sin sin 3a B b A π⎛⎫=-⎪⎝⎭这三个条件中任选一个,补充在下面问题中并作答. ABC 的内角A 、B 、C 的对边分别为a 、b 、c 22a b c +=,______求A 和C .24.在ABC 中,cos 3sin )sin cos B a b C b B C -=. (1)求B ;(2)若2c a =,ABC的面积为3,求ABC 的周长. 25.已知数列{}n a 满足:121(21)n n n a q ---=,224224231(N )22n n n n n a a a *++⋅⋅⋅+=+∈. (Ⅰ)求2n a ; (Ⅱ)若7553q <<,求数列{}n a 的最小项. 26.在数列{}n a ,{}n b 和{}n c 中,{}n a 为等差数列,设{}n a 前n 项的和为n S ,{}n c 的前n 项和为n T ,11a =,410S a =,12b =,n n n c a b =⋅,22n n T c =-. (1)求数列{}n a ,{}n b 的通项公式; (2)求证:()()()()()()12122311111111nn n c c c c c c c c c ++++<------.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2.C解析:C【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件5021010x yx yx+-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150xx y=⎧⎨+-=⎩,解得A(1,4),化目标函数z=x+2y﹣1为y1 222x z=-++,由图可知,当直线y1222x z=-++过A时,z有最大值为8.故选C.【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.3.D解析:D 【分析】将2z x y =-+化为2y x z =+,作出可行域和目标函数基准直线2y x =(如图所示),当直线2y x z =+将左上方平移时,直线2y x z =+在y 轴上的截距z 增大,由图象,得当直线2y x z =+过点A 时,z 取得最大值,联立2010x y m x y ⎧-+=⎨+-=⎩,得2211,22m m A ⎛⎫-+ ⎪⎝⎭,则22112422m m -+-⨯+≤,解得33m -≤≤;故选D.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.4.D解析:D 【分析】运用基本不等式2422422x y x y +≥=【详解】因为20,40xy>>,所以242422422228x y xy x y ++≥===,(当且仅当24x y =时取“=”). 故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数; ②和(或积)为定值; ③等号取得的条件.5.C解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1sin 2ABCSbc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,sin 4A ==,1131sin 2242ABCSbc A a a ==⨯⨯=,解得:4a =. 故选:C6.D解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以1cos ,sin 2C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 212S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.7.C解析:C 【解析】12sin1202S c==⨯︒,解得c=2.∴a2=22+22−2×2×2×cos120°=12,解得a=,∴24sinaRA===,解得R=2.本题选择C选项.8.D解析:D【分析】根据()22a b c=+-cos1C C-=,结合三角函数的性质,求得C的值,最后利用两角和的正弦函数,即可求解.【详解】由()22a b c=+-,可得2221sin22ab C a b c ab=+-+,因为2222cosa b c ab C+-=,所以sin2cos2C ab C ab=+,cos1C C-=,可得π2sin16C⎛⎫-=⎪⎝⎭,则π1sin62C⎛⎫-=⎪⎝⎭,又因为0πC<<,则ππ5π666C-<-<,所以ππ66C-=,解得π3C=,所以πππππππsin sin sin cos cos sin4343434C⎛⎫⎛⎫+=+=+⎪ ⎪⎝⎭⎝⎭122224=+⨯=.故选:D.【点睛】本题主要考查了两角和的正弦函数的化简、求值,以及余弦定理的应用,其中解答中根据题设条件和余弦定理,求得C的值,结合三角函数的性质求解是解答的关键,着重考查推理与运算能力.9.B解析:B【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.10.D解析:D 【分析】 根据题意,求得1nn a a -,再利用累乘法即可求得n a ,再结合对数运算,即可求得结果. 【详解】 由题设有111122(2)n n nn a n a ---=⨯=≥, 而(1)1213221121122(2)n n n n n n a aa a a n a a a -+++--=⨯⨯⨯⨯=⨯=≥,当1n =时,11a =也满足该式,故(1)22(1)n n n a n -=≥,所以2(1)log 2n n n a -=, 故选:D. 【点睛】本题考查利用累乘法求数列的通项公式,涉及对数运算,属综合基础题.11.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.12.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.二、填空题13.21【分析】画出满足的可行域当目标函数经过点时取得最大值求解即可【详解】画出满足的可行域由解得点则目标函数经过点时取得最大值为【点睛】本题考查的是线性规划问题解决线性规划问题的实质是把代数问题几何化解析:21 【分析】画出,x y 满足的可行域,当目标函数24z x y =+-经过点()7,9B 时,z 取得最大值,求解即可. 【详解】画出,x y 满足的可行域,由20250x y x y -+=⎧⎨--=⎩解得点()7,9B ,则目标函数24z x y =+-经过点()7,9B 时,z 取得最大值为718421+-=.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.14.【分析】设三角形三条边长分别为先分析得到再利用余弦定理得到最后利用正弦定理即得解【详解】设三角形三条边长分别为那么因为所以故由题意得故答案为:【点睛】本题主要考查正弦定理和余弦定理解三角形意在考查学 解析:1532【分析】设AD x =,三角形三条边长分别为,,a b c ,先分析得到222138b c a +≤,再利用余弦定理得到258bc a ≤,最后利用正弦定理即得解. 【详解】设AD x =,三角形三条边长分别为,,a b c , 那么2243,169x a x a ≤∴≤, 因为cos cos 0ADB ADC ∠+∠= 所以2222422+=+x a b c ,故2222222213168849,8x b c a a b c a =+-≤∴+≤由题意得222222221135cos ,,2288b c a A b c bc a a bc a bc +-==∴+=+≤∴≤255315sin sin sin =88432B C A ∴≤=⨯.故答案为:1532【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.15.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值. 【详解】因为222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C ====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+⎪⎝⎭()A ϕ=+,其中tan ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为: 【点睛】本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.16.16【分析】作出不等式组表示的平面区域由可得则表示直线在轴上的截距截距越大越大结合图象即可求解的最大值【详解】作出满足约束条件表示的平面区域如图所示:由可得则表示直线在轴上的截距截距越大越大作直线然解析:16 【分析】作出不等式组表示的平面区域,由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大,结合图象即可求解z 的最大值.【详解】作出x 、y 满足约束条件22010240x y x y x y +-⎧⎪-+⎨⎪--⎩表示的平面区域,如图所示:由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大作直线20x y +=,然后把该直线向可行域平移, 当直线经过A 时,z 最大 由10240x y x y -+=⎧⎨--=⎩可得(5,6)A ,此时16z =.故答案为:16.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z 的几何意义.属于中档题.17.【分析】首先将题中已知条件转化可得利用基本不等式可求得之后应用不等式的性质求得结果【详解】由可得即所以由得当且仅当时取等号所以有所以所以的最小值为当且仅当时取等号故答案为:【点睛】该题考查的是有关求解析:89【分析】首先将题中已知条件转化,可得2x y xy +=,利用基本不等式可求得8xy ≥,之后应用不等式的性质求得结果. 【详解】由121x y +=可得21x y xy+=,即2x y xy +=, 所以211111x y xy xy xy xy+==+++,由121x y =+≥ 得8xy ≥,当且仅当24x y ==时取等号,所以有1108xy <≤,19118xy <+≤,18191xy ≥+, 所以21811191x y xy xy xy xy+==≥+++, 所以21x y xy ++的最小值为89,当且仅当24x y ==时取等号, 故答案为:89. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有利用基本不等式求最值,利用不等式的性质求最值,属于中档题.18.【分析】根据已知条件利用边角互化即可求得再由余弦定理结合均值不等式即可求得的最大值则面积的最大值可解【详解】因为故可得即则又因为故可得又故可得由余弦定理可得即当且仅当时取得等号故故答案为:【点睛】本解析:)21【分析】根据已知条件,利用边角互化即可求得B ,再由余弦定理,结合均值不等式,即可求得ac 的最大值,则面积的最大值可解. 【详解】4cos sin C B =,b =,=+,即sinA sinBcosC sinCsinB =+ 则cosBsinC sinCsinB =, 又因为sin 0C ≠,故可得1tanB =, 又()0,B π∈,故可得4B π=.由余弦定理可得222222(2b a c accosB a c ac =+-+≥--=,即(42ac ≤+,当且仅当a c =时取得等号.故()11cos 422122ABC S ac B =≤⨯+=△.故答案为:)21【点睛】本题考查利用正余弦定理以及均值不等式求三角形面积的最值,属综合中档题.19.1092【分析】由题意分析传染模型为一个等比数列可解【详解】由题意:所以第六轮的传染人数为所以前六轮被传染的人数为故答案为:1092【点睛】数学建模是高中数学六大核心素养之一在高中数学中应用题是常见解析:1092 【分析】由题意分析,传染模型为一个101,3a q R ===等比数列,可解. 【详解】由题意:101,3a q R ===所以1113n n n a a q --==第六轮的传染人数为7a所以前六轮被传染的人数为771131109213S a --=-=-.故答案为:1092 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: 求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;20.【解析】试题分析:因为所以因为数列是等比数列所以即设①又+…+②①+②得所以考点:1等比数列的性质;2对数的运算;3数列求和【知识点睛】如果一个数列与首末两项等距离的两项之和等于首末两项之和(都相等 解析:992【解析】试题分析:因为3()31x x f x =+,所以33()()13131x xx x f x f x --+-=+=++.因为数列{}n a 是等比数列,所以21992984951501a a a a a a a =====,即1992984951ln ln ln ln ln ln 0a a a a a a +=+==+=.设9912399(ln )(ln )(ln )(ln )S f a f a f a f a =++++ ①,又99999897(ln )(ln )(ln )=++S f a f a f a +…+1(ln )f a ②,①+②,得99299=S ,所以99992=S . 考点:1、等比数列的性质;2、对数的运算;3、数列求和.【知识点睛】如果一个数列{}n a ,与首末两项等距离的两项之和等于首末两项之和(都相等,为定值),可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法.如等差数列的前n 项和公式即是用此法推导的.三、解答题21.(1)()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽. 【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x米, 因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<;(2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫⎪ ⎪⎝-⎝⎭⎭2808160648m =-=,当且仅当1600x x=,即()404,400x =∈时等号成立.因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题. 22.(1)1000(20)(8),(0)S x x x=++>;(2)休闲区1111D C B A 的长和宽应分别为50米,20米. 【分析】(1)先表示休闲区的宽,再表示矩形ABCD 长与宽,最后根据矩形面积公式得函数解析式,注意求函数定义域;(2)根据基本不等式求S 最小值,再根据等号取法确定休闲区1111D C B A 的长和宽. 【详解】(1)因为休闲区的长为x 米,休闲区1111D C B A 的面积为1000平方米,所以休闲区的宽为1000x 米;从而矩形ABCD 长与宽分别为20x +米1000,8x+米, 因此矩形ABCD 所占面积1000(20)(8),(0)S x x x=++>,(2)100020000(20)(8)1160811601960S x x x x =++=++≥+= 当且仅当200008,50x x x ==时取等号,此时100020x= 因此要使公园所占面积最小,休闲区1111D C B A 的长和宽应分别为50米,20米. 【点睛】本题考查函数应用、求函数解析式、利用基本不等式求最值,考查基本分析求解能力,属基础题.23.选择见解析,3A π=,512C π=. 【分析】选择条件①,利用正弦定理结合余弦定理求出cos A 的值,结合角A 的取值范围可求得A2b c +=sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果;选择条件②,利用诱导公式、正弦定理以及三角恒等变换思想求出sin2A的值,结合角A的取值范围可求得角A 2b c +=可得出sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果;选择条件③,由正弦定理以及两角差的正弦公式可求得tan A 的值,结合角A 的取值范围可求得角A 2b c +=sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果. 【详解】(1)选择条件①,由()22sin sin sin sin sin A B C B C --=及正弦定理知()22a b c bc --=,整理得,222b c a bc +-=,由余弦定理可得2221cos 222b c a bc A bc bc +-===,又因为()0,A π∈,所以3A π=,2b c +=sin 2sin A B C +=,由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭,即1sin 2sin 222C C C ++=,即3sin C C =6C π⎛⎫-= ⎪⎝⎭sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,662C πππ⎛⎫-∈- ⎪⎝⎭,从而64C ππ-=,解得512C π=; 选择条件②,因为A B C π++=,所以222B C Aπ+=-, 由sinsin 2B C b a B +=得cos sin 2Ab a B =,由正弦定理知,sin cossin sin 2sin cos sin 222A A AB A B B ==, ()0,B π∈,()0,A π∈,可得0,22A π⎛⎫∈ ⎪⎝⎭, 所以,sin 0B >,cos02A >,可得1sin 22A =,所以,26A π=,故3A π=.以下过程同(1)解答; 选择条件③,由2sin sin 3a B b A π⎛⎫=-⎪⎝⎭,及正弦定理知,2sin sin sin sin 3A B B A π⎛⎫=- ⎪⎝⎭,()0,B π∈,则sin 0B >,从而21sin sin sin 32A A A A π⎛⎫=-=+⎪⎝⎭,则sin A A =,解得tan A =又因为()0,A π∈,所以3A π=,以下过程同(1)解答.【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.24.(1)3B π=;(2)2+.【分析】(1cos sin B b A =,根据正弦定理、三角形内角的性质,即可求B ;(2)由三角形面积公式求出a 、c ,再根据余弦定理求b ,即可求ABC 的周长. 【详解】(1)由cos sin )sin cos B b C b B C -=,得cos cos sin sin cos B b B C b B C -=,∴cos sin cos cos sin B b B C b B C =+cos sin()B b B C =+,∴cos sin B b A =.cos sin sin A B B A =,又sin 0A ≠, ∴sin B B =,即tan B =0B π<<,∴3B π=.(2)由2,c a ABC =,得11sin 222ABCS ac B a a ==⨯⨯=解得a =2c a ==.由余弦定理2222cos b a c ac B =+-,可得2221242b =+-=⎝⎭⎝⎭,解得2b =. ∴ABC的周长为2233a b c ++=++=+ 【点睛】 关键点点睛:(1)利用三角恒等变换及正弦定理,将已知条件化简为一个内角的函数值,根据函数值确定角的大小.(2)综合应用正余弦定理求三角形的边,进而求其周长.25.(Ⅰ)2231n n a n =-;(Ⅱ)25q . 【分析】 (Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为nS ,利用122n n n n S S a -=-可求2n a . (2)讨论{}2-1n a 的单调性后可求数列{}21n a -的最小项,结合223n a >可求数列{}n a 的最小项. 【详解】解:(Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,即23122n S n n =+,∴2131(1)(1)22n S n n -=-+-.则12231(2)n n nn S S n n a -=-=-≥, 故()22231n na n n =≥-,当1n =,21a =,也符合此式, ∴2231n na n =-. (Ⅱ)222223313313n n a n n ==+>--. 考虑奇数项,∵12121n n q a n --=-,∴[]112121(21)(21)2121(21)(21)n n n n n q q n n q q a a n n n n --+---+-=-=+-+-()()()111121(21)(21)(21)(21)2222n n q n q q q q q n n n q n n --⎡⎤-+----==+⎢⎥-⎡⎤⎣⎦+⎦-⎣-,又()1112121q q q +=+--, ∵7553q <<,得()112,321q +∈-,而220q ->, ∴当2n ≤时,2121n n a a +-<,当3n ≥时,2121n n a a +->,即奇数项中5a 最小. 而25252593n q a a =<<<,所以数列{}n a 的最小项为255q a =. 【点睛】思路点睛:数列的最大项最小项,一般根据数列的单调性来处理,如果数列是分段数列,则可以分别讨论各段上的最大项最小项,比较后可得原数列的最大项最小项.26.(1)n a n =,2nn b n=;(2)证明见解析; 【分析】(1)设{}n a 的公差为d ,由410S a =,即可得到1d a =,从而求出{}n a 的通项公式,再由1122n n n n n c T T c c --=-=-,可得{}n c 是首项为2,公比为2的等比数列,即可求出{}n c 的通项,最后由n n n c a b =⋅,求出{}n b 的通项公式;(2)依题意可得()()1111112121n n n n n c c c ++=-----,利用裂项相消法求和即可得证;【详解】解:(1)因为{}n a 为等差数列,且{}n a 前n 项的和为n S ,设其公差为d , 因为410S a =,11a =,所以()11441492a d a d ⨯-+=+,所以11d a ==,所以n a n =,因为11a =,12b =,n n n c a b =⋅,所以1112c a b =⋅=,因为{}n c 的前n 项和为n T 且22n n T c =-,当2n ≥时,()()111222222n n n n n n n c T T c c c c ---=-=---=-,所以()122n n c c n -=≥,所以{}n c 是首项为2,公比为2的等比数列,所以2n n c =,因为n n n c a b =⋅,所以2nn n n c b a n== (2)因为()()()()1112111121212121n n n n n n n n c c c +++==-------所以()()()()()()1212231111111n n n c c c c c c c c c ++++------ 122311111111111111212121212121212121n n n n +++=-+-++-=-=-<---------【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.。

(常考题)北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)(3)

(常考题)北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)(3)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且CD =,3a b =,则c 的值为( )A .72B .3C .3D .2.在ABC 中,内角,A ,B C 的对边分别为,a ,b c ,已知b =22cos c a b A -=,则a c +的最大值为( )A B .C .D3.在△ABC 中,若222a c b -+=,则C =( ). A .45° B .30°C .60°D .120°4.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,60b c C ===︒D .4,3,30b c C ===︒5.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin sin A C B A C +-=,1b =,则2a -的最小值为( )A .4-B .-C .2-D .6.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形7.在ABC 中,内角,,A B C 所对应的边分别为,,a b c ,若sin cos 0b A B =,且2b ac =,则a cb+ 的值为( )A BC .2D .48.在直角梯形ABCD 中,//AB CD ,90ABC ∠=,22AB BC CD ==,则cos DAC ∠=( )A B C D .109.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且1a =,cos si 3n 3b c C B -=,则B 的值是( )A .6π B .3π C .23π D .56π 10.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若3a =,2b =,45B =︒,则A =( )A .30B .30或150︒C .60︒或120︒D .60︒11.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .1712.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,13a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 二、填空题13.已知ABC 的面积为4,2tan 3B =,AB AC >,设M 是边BC 的中点,若5AM =,则BC =___________.14.在ABC 中,点M 是边BC 的中点,3AM =2BC =,则2AC AB +的最大值为___________.15.某小区拟将如图的一直角三角形ABC 区域进行改建:在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知207m AB =,107m AC =,则DEF 区域面积(单位:2m )的最小值大约为______2m .7 2.65≈;3 1.73≈)16.如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75︒,距灯塔68海里的M 处,下午2时到达这座灯塔的东南方向N 处,则该船航行的速度为__________海里/小时.17.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.18.在ABC 中,若3b =3c =,30B ︒=,则a 等于________.19.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin 22sin sin b C c B a B C +=,2226b c a +-=,则ABC 的面积为_______. 20.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________. 三、解答题21.在ABC 中,已知边长是5,7,8BC AC AB ===. (1)求角B ;(2)求ABC 的面积; (3)求ABC 外接圆面积.22.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且()()()sin sin sin 3a b A B C c b -+=.(1)求角A ;(2)若ABC 的面积23ABC S =△a 的取值范围.23.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程22320x x -+=的两根,()2cos 1A B +=.(1)求角C 的度数; (2)求AB 的长.24.ABC 是等边三角形,点D 在边AC 的延长线上,且AD =3CD ,BD 7,求AD 的值和sin ∠ABD 的值25.在△ABC 中,BC =a ,AC =b ,a 、b 是方程22320x x -+=的两个根,且120A B +=︒,求ABC 的面积及AB 的长.26.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知2b ac =,且a 2-c 2=ac -bc ,求∠A 的大小及sin b Bc的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值. 【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 3c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.B解析:B 【分析】由正弦定理化边角,利用诱导公式两角和的正弦公式化简可得B 角,然后用余弦定理得2()33a c ac +-=,再利用基本不等式变形后解不等式得a c +的最大值.【详解】因为22cos c a b A -=,所以由正弦定理得,2sin sin 2sin cos C A B A -=,因为A B C π+=-,所以sin sin()sin cos cos sin C A B A B A B =+=+,所以2sin cos 2cos sin sin 2sin cos A B A B A B A +-=,化简得(2cos 1)sin 0B A -=,因为sin 0A ≠,所以2cos 10B -=,解得1cos 2B =,因为(0,)B π∈,所以3B π=,因为b =222232cos a c ac B a c ac =+-=+-,所以2()33a c ac +-=,所以222313()()()44a c a c a c ≥+-+=+,当且仅当a c =时取等号,所以a c +≤a c +的最大值为故选:B . 【点睛】方法点睛:本题考查主要正弦定理、余弦定理,在三角形问题中出现边角关系时可用正弦定理化边为角,然后由利用三角函数恒等变换公式如诱导公式,两角和与差的正弦公式等化简变形得出所要结论.3.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a c b -+=,∴22222a b c cosC ab +-==. 又∵C 为三角形内角∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.4.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin a b B A B =⇒=,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.5.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴2222a c b ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B ac π====,∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<,所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.6.D解析:D 【分析】根据cos cos a A b B =,利用正弦定理将边转化为角得到sin cos sin cos A A B B =,然后再利用二倍角的正弦公式化简求解. 【详解】因为cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.7.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.8.C解析:C 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=,在Rt ADE ∆中,AD ==AC在ACD ∆中,由余弦定理得2222cos2AC AD CD DAC AC AD +-∠===⋅, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.9.C解析:C 【分析】cos sin sin 33B C C B A =-,再由三角恒等变换化简可得sin 3=-B B ,进而可得tan 3B =.【详解】 因为1a =cos si 3n 3b c C B -=3cos sin 3b C c B a -=,cos sin sin 33B C C B A =-, 又()sin sin sin cos cos sin A B C B C B C =+=+,33in n co c s s os in s 3s n n i i B C B C C B B C =-, 化简得sin sin 3sin C B B C =-, 因为()0,C π∈,()0,B π∈,所以sin 0C ≠, 所以sin 3=B B 即tan 3B = 所以23B π=. 故选:C. 【点睛】本题考查了三角恒等变换及正弦定理的综合应用,考查了运算求解能力与转化化归思想,属于中档题.10.C解析:C 【解析】 ∵3,2,45a b B ===︒∴根据正弦定理sin sin a b A B=,即sin sin a B A b ===∵a b =>=∴()45,135A ∈︒︒ ∴60A =︒或120︒ 故选C11.D解析:D 【分析】由题意得出点D 为AF的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB =)22ABC1()sin 601217sin 602DEFAD S S ︒︒∴== 故选:D 【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.12.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-== ∴cos 2B =,又()0,πB ∈∴6B π=.故选:B .【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.二、填空题13.4【分析】首先利用余弦定理和三角形面积公式建立关于的方程再分别求根据余弦定理求结合条件求得的值【详解】得:解得:①中利用余弦定理②由①②可得解得:或即当时得此时不成立当时得此时成立故故答案为:4【点 解析:4【分析】首先利用余弦定理和三角形面积公式,建立关于,a c 的方程,再分别求,a c ,根据余弦定理求b ,结合条件AB AC >,求得BC 的值.【详解】2tan 3B =,得:sin 13B =,cos 13B =11sin 422ABC S ac B ac ===,解得:ac =① ABM中,利用余弦定理222252cos 5424a a a c c B c =+-⋅⋅=+= ② 由①②可得22174ac a c ⎧=⎪⎨+=⎪⎩,解得:2a c ⎧=⎪⎨=⎪⎩4a c =⎧⎪⎨=⎪⎩, AB AC >,即c b >当2a c ==时,2222cos 32b a c ac B =+-=,得b =c b <,不成立,当4,a c == 2222cos 5b a c ac B =+-=,得b =c b >,成立,故4BC a ==.故答案为:4【点睛】易错点点睛:本题的易错点是求得,a c 后,还需满足条件AB AC >这个条件,否则会增根. 14.【分析】用余弦定理表示出求出后利用余弦函数性质可得最大值【详解】记则在中同理在中可得∴设则其中是锐角显然存在使得∴的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理考查换元法求最值解题方法是用解析:【分析】用余弦定理表示出,AC AB ,求出2AC AB +后利用余弦函数性质可得最大值.【详解】记AMC α∠=,则AMB πα∠=-,在AMC中,2222cos 314AC AM MC AM MC ααα=+-⋅=+-=-, 同理在AMB中可得24AB α=+,∴228AB AC +=,设AB x =,AC x =,(0,)2x π∈.则12cos )cos )2AC AB x x x x x x +=+=+=+)x θ=+,其中cos θθ==θ是锐角, 显然存在0(0,)22x ππθ=-∈,使得0sin()1x θ+=, ∴2AC AB +的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理,考查换元法求最值.解题方法是用余弦定理表示出,AB AC ,得出228AB AC +=,利用三角换元法AB x =,AC x =,(0,)2x π∈.这里注意标明x 的取值范围.在下面求最值时需确认最值能取到,然后结合三角函数的性质求最值.15.【分析】设那么在中利用正弦定理求出关于的函数并求出其最大值即可求解【详解】在中可得所以设那么在中由正弦定理可得其中所以当时取到最小值最小值为故面积的最小值故答案为:【点睛】本题考解三角形的实际应用考 解析:130【分析】设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=,在BEF 中,利用正弦定理,求出x 关于θ的函数,并求出其最大值,即可求解.【详解】在Rt ABC △中,AB =,AC =,可得CB =. 所以6ABC π∠=设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=.在BFE △中,由正弦定理,可得sin sin 66xπθ=+ ⎪⎝⎭,132(cos sin )cos 1021,(3sin 2cos )102122x x xθθθθθ++=+=, 2121101010sin()3sin 2cos 7s 3in()x θαθθθα===+++,其中23tan α=, 所以当sin()1θα+=时,x 取到最小值,最小值为103, 故DEF 面积的最小值21sin 75375 1.73129.7513023S x π=⨯=≈⨯=≈. 故答案为:130【点睛】本题考解三角形的实际应用,考查正弦定理,三角恒等变换,以及三角函数的性质,属于中档题.本题解题的关键在于设CED θ∠=,m DE x =,进而在BFE △中,得1021cos sin sin 66xx θππθ-=⎛⎫+ ⎪⎝⎭,进而将问题转化为求边x 的最小值问题. 16.【解析】如图在△MNO 中由正弦定理可得则这艘船的航行速度(海里/小时)点睛:(1)测量两个不可到达的点之间的距离问题一般是把求距离问题转化为应用余弦定理求三角形的边长的问题然后把求未知的另外边长问题解析:176 【解析】如图,在△MNO 中,由正弦定理可得,68sin120686346sin 45MN === 则这艘船的航行速度6642v ==(海里/小时). 点睛:(1)测量两个不可到达的点之间的距离问题,一般是把求距离问题转化为应用余弦定理求三角形的边长的问题.然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量问题,然后运用正弦定理解决.(2)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知两个角和一条边解三角形的问题,从而运用正弦定理解决.17.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值.【详解】因为222a cb ac +-=,所以2221cos 222a c b ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C π====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+ ⎪⎝⎭()A ϕ=+,其中tan 2ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为:【点睛】 本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.18.或【分析】由正弦定理求得得到或分类讨论即可求得的值【详解】由正弦定理可得所以因为所以或当时可得;当时此时综上可得或故答案为:或【点睛】本题主要考查了正弦定理的应用其中解答中利用正弦定理求得的值得出的解析:【分析】由正弦定理,求得sin C =,得到60C ︒=或120C ︒=,分类讨论,即可求得a 的值. 【详解】 由正弦定理,可得sin sin b c B C =,所以sin 3sin c B C b ⋅===, 因为(0,180)C ∈,所以60C ︒=或120C ︒=,当60C ︒=时,90A ︒=,可得a =;当120C ︒=时,30A ︒=,此时a b ==综上可得a =a =故答案为:.【点睛】本题主要考查了正弦定理的应用,其中解答中利用正弦定理求得sin C 的值,得出C 的大小是解答的关键,着重考查分类讨论,以及运算与求解能力. 19.【分析】由正弦定理得由平方关系和余弦定理可得再利用面积公式即可得解【详解】由已知条件及正弦定理可得易知所以又所以所以所以即所以的面积故答案为:【点睛】本题考查了正弦定理余弦定理和三角形面积公式的应用 解析:32【分析】由正弦定理得sin A =32bc =,再利用面积公式1sin 2S bc A =即可得解. 【详解】由已知条件及正弦定理可得2sin sin sin sin B C A B C =,易知sin sin 0B C ≠,所以sin 2A =, 又2226b c a +-=,所以2223cos 2b c a A bc bc+-==,所以cos 0A >,所以cos A =32bc =,bc =,所以ABC 的面积113sin 2222S bc A ==⨯=. 故答案为:32. 【点睛】本题考查了正弦定理、余弦定理和三角形面积公式的应用,属于中档题. 20.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为 解析:2π 【分析】 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠,sin 1A ∴=,∴由于A 为三角形内角,可得2A π=. 故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦. 三、解答题21.(1)3π;(2)3)493π. 【分析】(1)由余弦定理,求得1cos 2B =,即可求得角B 的大小; (2)由三角形的面积公式,即可求得ABC S的面积; (3)由正弦定理,求得2sin AC R B ==. 【详解】 (1)由题意,在ABC 中,5BC =,7AC =,8AB =, 由余弦定理有2222225871cos 22582BC AB AC B BC AB +-+-===⋅⨯⨯, 因为(0,)B π∈,所以3B π=.(2)由三角形的面积公式,可得ABC S=11sin 8522AB BC B ⋅=⨯⨯= (3)由正弦定理,可得72sin sin 3AC R B π===,所以外接圆面积为2493ππ⨯=. 22.(1)30;(2)2a ≥【分析】(1)由正弦定理化角为边可得222b c a +-=,再利用余弦定理即可求出; (2)由面积公式可得8bc =+.(1)由已知结合正弦定理可得()()()3a b a b c c b -+=-,即2223b c a bc +-=, 则由余弦定理可得22233cos 2b c bc A bc a +===-, ()0,180A ∈,30A ∴=;(2)11sin 2324ABC S bc A bc ===+△,则843bc =+, 由2223234a b c bc bc bc =+-≥-=,当且仅当b c =时等号成立,2a ∴≥.23.(1)23C π=;(2)10AB . 【分析】(1)利用诱导公式可得角C 的余弦值,从而可求C 的大小.(2)利用余弦定理和韦达定理可求AB 的长.【详解】(1)由题设可得()1cos 2C π-=即1cos 2C =-, 而C 为三角形内角,故23C π=. (2)由韦达定理可得23,2a b ab +==, 由余弦定理可得()2222222cos 10AB a b ab C a b ab a b ab =+-=++=+-=,故10AB. 24.6;32114. 【分析】在BCD 中,根据AD =3CD ,BD =27,利用余弦定理求解CD ,在A BD 中,利用正弦定理求解.【详解】如图所示:在等边ABC 中,AD =3CD ,所以AC =2CD .又BD 7所以BD 2=BC 2+CD 2-2BC ⋅CD ⋅cos ∠BCD ,即)2=(2CD )2+CD 2-2⋅2CD ⋅CD ⋅cos120°,解得CD =2,可得AD=6,由sin 60AD ABD =∠, 得6sin 60ABD =∠, 解得sin ∠ABD25.S AB == 【分析】 利用韦达定理求出,a b ab +,再利用余弦定理,得到关于c 的方程,解之可得AB 的长;再结合面积公式可得.【详解】,a b 是方程220x-+=的两个根, 2a b ab ∴+==,又因为120A B +=︒则60C =︒,所以由余弦定理得:()(22222222221cos 22222c a b ab c a b c C ab ab -⨯-+--+-====⨯,解得c= 所以AB =ABC的面积11sin 222S ab C ==⨯= 26.3A π=,sin b B c 2= 【分析】 由已知条件变形,结合余弦定理可求得A ,由2b ac =得=b a c b,结合正弦定理可求得sin b B c. 【详解】由2b ac =,且a 2-c 2=ac -bc ,得222b c a bc +-=,所以2221cos 22b c a A bc +-==,因为0A π<<,所以3A π=. 因为2b ac =,所以=b ac b ,所以sin sin sin 2b B a B A c b === 故3A π=,sinb Bc =【点睛】关键点点睛:利用正弦定理和余弦定理求解是解题关键.。

北师大版高中数学必修5试卷及答案

北师大版高中数学必修5试卷及答案

高二数学高中数学必修5测试题宝鸡铁一中司婷一、选择题(每小题5分,共50分)1 .在△ ABC中,若a =2 , b = 2 .3 , A = 30°,则B 等于A. 60 B . 60 或120:C . 30 D . 30 或150;2 .在数列1,1,235,8, x,21,34,55 中,x等于()A. 11 B . 12 C . 13 D . 143. 等比数列中,a2 =9忌=243,则况啲前4项和为()A . 81B . 120C . 168D . 1924. 已知{an}是等差数列,且a2+ a3+ a$+ an=48,则a6+ a?二()A . 12B . 16C . 20D . 245. 等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和是()A.130B.170C.210D.2606. 已知等比数列{a n}的公比q—1,则a1貝a5 a等于()3 a? + a4 + a6 +A. -1B.-3C. 1D.3337.设a b, c d , 则下列不等式成立的是()。

A. a - c b-dB.ac bdC. - —D. b d :a cc b8 .如果方程x2(m-1)x • m2-2 =0的两个实根一个小于?1,另一个大于1, 那么实数m的取值范围是()A (- 2, 2) B. (-2, 0)C. (-2, 1)D . (0, 1)9. 已知点(3, 1 )和(-4 , 6)在直线3x-2y+a=0的两侧,则a的取值范围是()A. a<-7 或a>24B. a=7 或a=24C. -7< a<24D. -24< a<710. 有甲、乙两个粮食经销商每次在同一粮食生产地以相同的价格购进粮食,他们共购进粮食两次,各次的粮食价格不同,甲每次购粮10000千克,乙每次购粮食10000元,在两次统计中,购粮的平均价格较低的是()A. 甲B. 乙C. 一样低D. 不确定二、填空题(每小题5分,共20分)11 .在虫ABC中,若a=3,cosA = -丄,则MBC的外接圆的半径为 _____212 .在厶ABC中,若a2=b2+bc+c2,则A= ____________ 。

【北师大版】高中数学必修五期末试题带答案(1)

【北师大版】高中数学必修五期末试题带答案(1)

一、选择题1.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .32.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .73.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( ) A .2B .1CD .4.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-5.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC的面积S =根据此公式,若cos (2)cos 0a B b c A +-=,且2224b c a ,则ABC 的面积为( ) AB.CD.6.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC边上的中线BD =△ABC 的周长为( ) A .15B .14C .16D .127.在ABC 中,60A ∠=︒,4AC =,BC =ABC 的面积为 A.B .4C.D8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( ) A.BC .32D9.已知{}n a 是公比为整数的等比数列,设212n nn na ab a -+=,n ∈+N ,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( )A .11B .10C .9D .810.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏11.已知{}n a 是等比数列,且2222212345123451060a a a a a a a a a a ++++=++++=,,则24a a +=( )A .2B .3C .4D .512.已知数列{}n a 中,11a =,又()1,1n a a +=,()21,1n b a =+,若//a b ,则4a =( ) A .7B .9C .15D .17二、填空题13.已知2xy x =+,则42x y+的最小值为_________14.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.15.在△ABC 中,∠ABC 为直角,点M 在线段BA 上,满足BM =2MA =2,记∠ACM =θ,若对于给定的θ,这样的△ABC 是唯一确定的,则BC =_____.16.设角,,A B C 是ABC ∆的三个内角,已知向量()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥.则角C 的大小为_____________.17.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4a =,2c =,60B =︒,则b = ,C = .18.已知点(3,A ,O 是坐标原点,点(),Px y的坐标满足0200y x y -≤+≥⎨⎪≥⎪⎩,设z 为OA 在OP 上的投影,则z 的取值范围是__________.19.已知数列{}n a ,11a =,12n n a a n +=+,则4a =_____.20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.某位病人为了维持身体的健康状态,需要长期服用药物类营养液以补充食物难以提供的两种微量元素α和β.根据医学建议:病人每天微量元素α的摄入量应控制在[]300,330(单位:微克),微量元素β的摄入量应控制在[]250,280(单位:微克).目前,市面上可供选择的营养液主要是A 和B .已知1毫升营养液A 中含微量元素α是30微克,含微量元素β是10微克,每毫升费用5元;1毫升营养液B 中含微量元素α是15微克,含微量元素β是20微克,每毫升费用4元.(1)若该病人每天只吃单价较便宜的营养液B ,判断他的两种微量元素的摄入量能否同时符合医学建议,并说明理由;(2)如果你是医生,为了使得该病人两种微量元素的摄入量同时符合医学建议,且每天所需的费用最低,应该推荐病人每天服用营养液A 和营养液B 各多少毫升?该病人每天所需的营养液最低费用是多少元?22.已知函数f (x )=ax 2﹣(4a +1)x +4(a ∈R ).(1)若关于x 的不等式f (x )≥b 的解集为{x |1≤x ≤2},求实数a ,b 的值; (2)解关于x 的不等式f (x )>0.23.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且22cos b c a C -=. (1)求A ;(2)若ABC 为锐角三角形,2c =,求b 的取值范围.24.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin a S A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分. 25.已知{}n a 为等差数列,数列{}n b 的前n 和为1128,22,10n S a b a a ==+=,___________.在①112n n S b =-,②2n a n b λ=这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分).(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 26.已知数列{}n a 满足1*111,33().n n n a a a n ++==+∈N(1)求证:数列{}3nn a 是等差数列. (2)求数列{}n a 的通项公式.(3)设数列{}n a 的前n 项和为,n S 求证:37.324n n S n >-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.D解析:D【解析】分析:根据基本不等式的性质求出2a+b+c的最小值即可.详解:由题得:因为a2+ac+ab+bc=2,∴(a+b)(a+c)=2,又a,b,c均为正实数,∴2a+b+c=(a+b)+(a+c)()()a b a c++2,当且仅当a+b=a+c时,即b=c取等号.故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.4.A解析:A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.5.C解析:C 【分析】首先根据正弦定理化简已知,求得1cos 2A =,再根据余弦定理求bc ,最后代入面积公式求解. 【详解】由正弦定理边角互化可知cos (2)cos 0a B b c A +-=化简为()sin cos sin 2sin cos 0A B B C A +-=,sin cos sin cos 2sin cos A B B A C A +=即()sin sin 2sin cos A B C C A +==sin 0C ≠,1cos 2A ∴=, 222141cos 2222b c a A bc bc +-==⇔=,解得:4bc =,根据面积公式可知S === 故选:C 【点睛】关键点点睛,本题考查数学文化,理解面积公式,对于面积公式可变形为S =6.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =,故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.7.C解析:C 【分析】利用三角形中的正弦定理求出角B ,利用三角形内角和求出角C ,再利用三角形的面积公式求出三角形的面积,求得结果. 【详解】因为ABC ∆中,60A ∠=︒,4AC =,BC = 由正弦定理得:sin sin BC ACA B=,所以4sin 60sin B︒=,所以sin 1B =, 所以90,30B C ︒︒∠=∠=,所以14sin 302ABC S ︒∆=⨯⨯= C. 【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得sin 1B =,从而求得90,30B C ︒︒∠=∠=,之后应用三角形面积公式求得结果.8.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c ≥ac ≤6.当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 62222ABCSac B =≤⨯⨯=, ∴△ABC故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.9.B解析:B 【分析】设{}n a 是公比为q ,根据已知条件有1n n n b qq -=+求得2q,数列{}n b 的前n 项和为3(21)n n S =-即2020n S ≥可求n 的最小值【详解】令{}n a 是公比为q ,由212n nn na ab a -+=,n ∈+N ∴1n n n b qq -=+,又113072b =即10113072q q +=,又q Z ∈,知:2q∵{}n b 的前n 项和为n S ,则3(21)nn S =-∴2020n S ≥时,3(21)2020n -≥,n ∈+N 解得10n ≥ 故选:B 【点睛】本题考查了数列,由数列的递推关系及已知条件求公比,进而根据新数列的前n 项和及不等式条件求n 的最小值10.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=.故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.11.A解析:A 【分析】首先根据题意,利用等比数列求和公式,得到5112345(1)101a q a a a a a q -++++==-,222222101521234(1)601a q q a a a a a -=-++=++,两式相除得到51(1)61a q q+=+,即5112345(1)61a q a a a a a q+-+-+==+,与1234510a a a a a ++++=联立求得结果.【详解】设数列{}n a 的公比为q ,且1q ≠,则5112345(1)101a q a a a a a q -++++==-, 222222101521234(1)601a q q a a a a a -=-++=++,两式相除得210551112(1)(1)(1)6111a q a q a q q q q --+÷==--+, 所以5112345(1)61a q a a a a a q+-+-+==+, 又123123452445)()2()104(6a a a a a a a a a a a a --+-+=+=++-+=+, 所以242a a +=, 故选:A. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的求和公式,这题思维的应用,属于中档题目.12.C解析:C 【分析】利用向量平行的坐标运算公式得出121n n a a +=+,可得出1121n n a a ++=+,所以数列{}1n a +是以2为首项,公比为2的等比数列,然后求解4a . 【详解】因为//a b ,所以121n n a a +=+,则()112221n n n a a a ++=+=+,即1121n n a a ++=+, 又11a =,所以112a +=,所以数列{}1n a +是以2为首项,公比为2的等比数列, 所以441216a +==,得415a =.故选:C.【点睛】本题考查向量的平行,考查数列的通项公式求解及应用,难度一般. 一般地,若{}n a 满足()10,1,0n n a pa q p p q +=+≠≠≠,则只需构造()1n n a x p a x ++=+,其中1q x p =-,然后转化为等比数列求通项. 二、填空题13.【分析】依题意可得再利用基本不等式计算可得;【详解】解:因为所以所以所以所以所以所以所以当且仅当即时取等号;故答案为:【点睛】在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正解析:【分析】依题意可得21x y +=,再利用基本不等式计算可得;【详解】解:因为2xy x =+,2x xy =+-,所以()()()()2222221(1)42222x y x xy x x xy x y ⎡⎤+-+=+-=+-++⎣⎦, 所以2242144x y y x xy +-+=-,所以()()222210x y x y +-++=,所以()2210x y +-=,所以21x y +=,所以42x y +≥=42x y =,即14x =,12y=时取等号; 故答案为:【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. 14.2【分析】据题意由于MN 为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三 解析:2【分析】据题意,由于M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MNa ⋅≤(当且仅当MN 与a 共线同向时等号成立)从而求得最大值.【详解】由0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图 由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立),即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离. 22(31)(11)2-+-=,故答案为:2【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题.15.【分析】由题意利用直角三角形中的边角关系求出的值再利用两角差的正切公式求得从而求出的值【详解】解:设则为锐角∴∴依题意若对于给定的是唯一的确定的可得解得即的值为故答案为:【点睛】本题主要考查直角三角解析:6【分析】由题意利用直角三角形中的边角关系求出tan ACB∠、tan NCB∠的值,再利用两角差的正切公式求得tan tan()ACB MCBθ=∠-∠,从而求出BC的值.【详解】解:设BC x=,ACMθ∠=,则θ为锐角,∴3tan ACBx∠=,2tan MCBx∠=,∴tan tan()ACB MCBθ=∠-∠232132661xx xx xx x x-===+++,依题意,若对于给定的ACM∠,ABC∆是唯一的确定的,可得6xx=,解得6x=BC6,6.【点睛】本题主要考查直角三角形中的边角关系,两角差的正切公式,属于中档题.16.【分析】先利用得到三角正弦之间的关系再根据正余弦定理求出即得角【详解】因为且所以即根据正弦定理得故根据余弦定理知又因为得故答案为:【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用是常考的综合题解析:3π【分析】先利用0m n⋅=得到三角正弦之间的关系,再根据正、余弦定理求出cos C,即得角C.【详解】因为()sin sin,sin sinm A C B A=+-,()sin sin,sinn A C B=-,且m n⊥所以()()()sin sin sin sin sin sin sin 0m n A C A C B A B ⋅=+-+-=即222sin sin sin sin sin A B C A B +-=根据正弦定理得222a b c ab +-= 故根据余弦定理知222cos 122a b c C ab +-==,又因为()0,C π∈ 得3C π= 故答案为:3π. 【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用,是常考的综合题,属于中档题. 17.【分析】由余弦定理直接进行计算即可得的值根据正弦定理可求结合大边对大角可求的值【详解】解:由余弦定理得:则由正弦定理可得:为锐角故答案为:【点睛】本题主要考查正弦定理余弦定理在解三角形中的应用考查计解析:6π 【分析】由余弦定理直接进行计算即可得b 的值,根据正弦定理可求sin C ,结合大边对大角可求C 的值.【详解】解:4a =,2c =,60B =︒,∴由余弦定理得:22212cos 164242208122b ac ac B =+-=+-⨯⨯⨯=-=,则b = ∴由正弦定理sin sin b c B C=,可得:2·sin 1sin 2c B C b ===, c a <,C 为锐角,6C π∴=.故答案为:6π. 【点睛】本题主要考查正弦定理,余弦定理在解三角形中的应用,考查计算能力.18.【分析】作出可行域根据投影的定义得数形结合求出的取值范围即求z 的取值范围【详解】作出可行域如图所示∴当时;当时的取值范围是故答案为:【点睛】本题考查简单的线性规划和向量的投影属于中档题解析:[]3,3-【分析】作出可行域.根据投影的定义得23cos z AOP =∠,数形结合求出AOP ∠的取值范围,即求z 的取值范围.【详解】作出可行域,如图所示cos 3OA OPz OA AOP AOP OP ⋅==⋅∠=∠.5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦,∴当6AOP π∠=时,max 2336z π==;当56AOP π∠=时,min 52336z π==-,z ∴的取值范围是[]3,3-. 故答案为:[]3,3-.【点睛】本题考查简单的线性规划和向量的投影,属于中档题. 19.【分析】由已知递推关系式利用累加法和等差数列前项和公式可求出通项即可得【详解】故答案为:【点睛】本题主要考查了累加法以及等差数列前项和公式求通项公式求数列中的项属于中档题解析:13【分析】由已知递推关系式12n n a a n +-=,利用累加法和等差数列前n 项和公式,可求出{}n a 通项,即可得4a .【详解】12n n a a n +-=,∴2121a a -=⨯ ,3222a a -=⨯,4323a a -=⨯,12(1)n n a a n --=⨯-,∴ []1(11)(1)2123(1)2(1)2n n n a a n n n +---=++++-=⨯=- , ∴ 21n a n n =-+ , 2444113a ∴=-+= ,故答案为:13【点睛】本题主要考查了累加法以及等差数列前n 项和公式求通项公式,求数列中的项,属于中档题.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+.故答案为:1m +【点睛】 本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)不符合,理由见解析;(2)推荐病人每天服用5毫升营养液A ,服用10毫升营养液B ,既能符合医学建议又能使每天的营养液费用最少.病人每天服用营养液的最低费用为65元.【分析】(1)根据题意,由微量元素α的摄入量控制在[]300,330计算营养液B 的服用量必须控制在[]20,22,此时β的摄入量在[]400,440,不符合;(2)根据题意,建立线性规划模型:54z x y =+,其中,x y 满足300301533025010202800,0x y x y x y ≤+≤⎧⎪≤+≤⎨⎪≥≥⎩,利用线性规划求最值.【详解】解:(1)若该病人每天只吃单价较便宜的营养液B ,则为了将微量元素α的摄入量控制在[]300,330(单位:微克),营养液B 的服用量必须控制在[]20,22(单位:毫升),此时相应微量元素β的摄入量在[]400,440(单位:微克),不符合医学建议. 另解:“若该病人每天只吃单价较便宜的营养液B ,则为了将微量元素β的摄入量控制在[]250,280(单位:微克),营养液B 的服用量必须控制在[]12.5,14(单位:毫升),此时相应微量元素α的摄入量在[]187.5,210(单位:微克),不符合医学建议” (2)设该病人每天需服用x 毫升营养液A ,y 毫升营养液B ,则每天的营养液费用为54z x y =+,由题意,x y 满足300301533025010202800,0x y x y x y ≤+≤⎧⎪≤+≤⎨⎪≥≥⎩,即20222252280,0x y x y x y ≤+≤⎧⎪≤+≤⎨⎪≥≥⎩可行域如下图所示把54z x y =+变形为4415y x z =-+,得到斜率为54-,在y 轴上截距为14z 的一族平行直线.由图可以看出,当直线4415y x z =-+经过直线220x y +=和直线225x y +=的交点M 时,截距14z 最 小,此时z 最小.解方程组220225x y x y +=⎧⎨+=⎩,得点M 为()5,10,∴min 545541065z x y =+=⨯+⨯=元,答:推荐病人每天服用5毫升营养液A ,服用10毫升营养液B ,既能符合医学建议又能使每天的营养液费用最少.病人每天服用营养液的最低费用为65元.【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;(2)线性规划型应用性问题解题的关键是正确的建立线性规划模型.22.(1)-1,6;(2)答案见详解【分析】(1)由f (x )≥b 的解集为{x |1≤x ≤2}结合韦达定理即可求解参数a ,b 的值;(2)原式可因式分解为()()()14f x ax x =--,再分类讨论即可0,0,0a a a =<>,对0a >再细分为111,0,,,444a a a ⎛⎫⎛⎫=∈∈+∞ ⎪ ⎪⎝⎭⎝⎭即可求解. 【详解】(1)由f (x )≥b 得()24140ax a x b -++-≥,因为f (x )≥b 的解集为{x |1≤x ≤2},故满足4112a a ++=,412b a-⨯=,解得1,6a b =-=; (2)原式因式分解可得()()14f x a x x a ⎛⎫=-- ⎪⎝⎭, 当0a =时,()40f x x =-+>,解得(),4x ∈-∞;当0a <时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为1,4x a ⎛⎫∈ ⎪⎝⎭; 当0a >时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭, ①若14a =,即14a =,则()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为4x ≠; ②若14a <,即14a >时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭; ③若14a >,即104a <<时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭. 【点睛】本题考查由一元二次不等式的解求解参数,分类讨论求解一元二次不等式,属于中档题. 23.(1)π3;(2)()1,4. 【分析】(1)利用正弦定理和三角恒等变换化简已知即得解;(2)先求出ππ62C <<,再利用正弦定理求出1tan b C=+,即得解. 【详解】 (1)因为22cos b c a C -=,由正弦定理得2sin sin 2sin cos B C A C -=,又()()sin sin πsin B A C A C =-+⎡=⎤⎦+⎣,所以()2sin cos cos sin sin 2sin cos A C A C C A C +-=,所以2cos sin sin 0A C C -=.因为0πC <<,所以sin 0C ≠,所以1cos 2A =. 因为()0,πA ∈, 所以π3A =. (2)由(1)得π3A =, 根据题意得π0,2ππ,32C C ⎧<<⎪⎪⎨⎪+>⎪⎩,解得ππ62C <<. 在ABC 中,由正弦定理得sin sin c b C B=,所以π2sin sin sin 31sin sin sin tan C c B C C b C C C C⎛⎫+ ⎪+⎝⎭====+. 因为ππ62C <<,所以tan C ⎫∈+∞⎪⎝⎭,所以()0,3tan C ∈,所以()11,4tan C+∈. 故b 的取值范围为()1,4.【点睛】易错点睛:本题求b 的取值范围,利用的是函数的方法,学生容易把C 的范围求错,简单认为(0,)2C π∈,解不等式π0,2ππ,32C C ⎧<<⎪⎪⎨⎪+>⎪⎩得到的才是正确范围. 24.2+【分析】利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长.【详解】 由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A =因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =, 又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴= 由正弦定理得sin sin sin a b c A B C==代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C = 又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=. 由正弦定理得:sin sin sin a b c A B C ==,代入1,b c ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键. 25.条件选择见解析;(1)n a n =,2n n b =;(2)212222n n n n T +=-++. 【分析】选①(1)由等差数列的基本量法求出公差d 后可得通项公式n a ,再利用1(2)n n n b S S n -=-≥确定数列{}n b 是等比数列,从而得出通项公式n b ;(2)用分组(并项)求和法求和.选②(1)由等差数列的基本量法求出公差d 后可得通项公式,由112a b λ=求得λ,从而得通项公式n b ,并并确定其是等比数列;(2)用分组(并项)求和法求和.【详解】解:选①解:(1)设等差数列{}n a 的公差为d , 1281122,10,2810,1,1a a a a d a d =+=∴+=∴==,1(1)1n a n n ∴=+-⨯=, 由112n n S b =-,得()21n n S b =-, 当2n ≥时,()()112121n n n n n b S S b b --=-=---,即12n n b b -=,所以{}n b 是一个以2为首项,2为公比的等比数列.1222n n n b -∴=⨯=.(2)由(1)知2n n n a b n +=+,()()()1212222n n T n ∴=++++++, ()12(12)222n n T n =+++++++, ()21212(1)2221222n n n n n n n T +-+∴=+=-++-. 选②解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==,1(1)1n a n n ∴=+-⨯=.112,1,2n a n b a b λ===,令1n =,得112a b λ=,即22,1λλ=∴=, 22n a n n b ∴==.(2)解法同选①的第(2)问解法相同.【点睛】方法点睛:本题考查求等差数列和等比数列的通项公式,考查分组(并项)求和法. 数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 26.(1)证明见解析;(2)233n n a n ⎫⎛=-⋅ ⎪⎝⎭;(3)证明见解析. 【分析】(1)利用已知条件通分计算或者直接整理,证明11133n n n n a a ++-=,即证结论; (2)利用(1)求得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,即求得{}n a 的通项公式; (3)结合(2)的结果,利用错位相减法求得n S ,并计算整理3n n S ,根据7043n >⨯即证得结论.【详解】解:(1)解法1:由()1*133n n n a a n N ++=+∈,得111111333313333n n n n n n n n n n n a a a a a a ++++++-+--===. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列. 解法2:由()1*133n n n a a n N ++=+∈,得11133n n n n a a ++=+,即11133n n n n a a ++-=. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列. (2)由(1)得()111133n n a n =+-⨯,*N n ∈, 即233n n a n =-,故233n n a n ⎫⎛=-⋅ ⎪⎝⎭; (3)由(2)可知()121222213231333333n n n S n n -⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭① ()2312222313231333333n n n S n n +⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭② 由①②得1112397723133262n n n n S n n +++-⎫⎫⎛⎛=-⨯--=-⨯+ ⎪ ⎪⎝⎝⎭⎭故17732124n n n S +⎫⎛=-⨯+ ⎪⎝⎭,从而1737377372123343244324n n n n n n n S n n +⎫⎛-⨯ ⎪⎫⎛⎝⎭=+=-+>- ⎪⨯⨯⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:利用等差数列和等比数列前n 项和公式进行计算即可;(2)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法;(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(4)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(5)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(6)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1n n a f n =-类型,可采用两项合并求解.。

【北师大版】高中数学必修五期末试卷附答案(3)

【北师大版】高中数学必修五期末试卷附答案(3)

一、选择题1.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A .42B .32C .6D .82.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 3.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭4.在△ABC 中,若b =2,A =120°,三角形的面积3S =,则三角形外接圆的半径为A .3B .23C .2D .45.一艘游轮航行到A 处时看灯塔B 在A 的北偏东75︒,距离为126海里,灯塔C 在A 的北偏西30,距离为123海里,该游轮由A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东60︒方向,则此时灯塔C 位于游轮的( ) A .正西方向 B .南偏西75︒方向 C .南偏西60︒方向D .南偏西45︒方向6.如图所示,隔河可以看到对岸两目标A ,B ,但不能到达,现在岸边取相距4km 的C ,D 两点,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),则两目标A ,B 间的距离为( )km.A 85B .4153C .153D .57.已知a 、b 、c 分别是ABC 内角A 、B 、C 的对边,sin sin 3sin A B C +=,cos cos 2a B b A +=,则ABC 面积的最大值是( )A .2B .22C .3D .238.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .649.记n S 为数列{}n a 的前n 项和.若点(),n n a S ,在直线60x y +-=上,则4S =( ) A .92B .254C .458D .40910.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知222,,a b c 成等差数列,则cos B 的最小值为( )A .12B .22C .34D .3211.已知等差数列{}n a 中, 23a =,59a =,则数列{}n a 的前6项之和等于( ) A .11 B .12 C .24D .3612.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或二、填空题13.已知实数x ,y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为________.14.已知0a >,0b >,182+1a b +=,则2a b +的最小值为__________. 15.某小区拟将如图的一直角三角形ABC 区域进行改建:在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知207m AB =,107m AC =,则DEF 区域面积(单位:2m )的最小值大约为______2m .(保留到整数,参考数据:7 2.65≈;3 1.73≈)16.如图,A ,B 两点都在河的对岸(不可到达),在所在的河岸边选取相距30m 的C ,D两点,测得75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,其中A ,B ,C ,D 四点在同一平面内,则A ,B 两点之间的距离是_______m .17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.18.当x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩时,|2|x y a -≤恒成立,则实数a 的取值范围是________.19.已知数列{}n a 满足112a =,()*112n n a a n +=∈N .设2n n n b a λ-=,*n ∈N ,且数列{}n b 是递增数列,则实数λ的取值范围是________.20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 22.已知0a >,0b >且3a b +=.(Ⅰ)求311()a b +的最大值及此时a ,b 的值; (Ⅱ)求2231a b a b +++的最小值及此时a ,b 的值. 23.已知ABC 中,51tan 43A π⎫⎛-=⎪⎝⎭. (1)求2sin cos2A A +的值;(2)若ABC 的面积为4,4AB =,求BC 的值. 24.在ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.25.在①2*31,4(n S n kn n N k =-+∈为常数),②*1(,n n a a d n N d +=+∈为常数),③*1,,(0n n a qa q n N q +=>∈为常数)这三个条件中任选一个,补充到下面问题中,若问题中的数列存在,求数列()1*1n n n a N a +⎧⎫⎨⎭∈⎬⎩的前10项和;若问题中的数列不存在,说明理由.问题:是否存在数列{}*()∈n a n N ,其前n 项和为n S ,且131,4,a a ==___________?注:如果选择多个条件分别解答,按第一个解答计分.26.在①420S =,②332S a =,③3423a a b -=这三个条件中任选一个,补充在下面问题中,并作答.问题:已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,______,2138,34b b b =-=,是否存在正整数k ,使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34kT >?若存在,求k 的最小值;若不存在,说明理由, 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40xy>>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”).故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.2.A解析:A先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题3.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()2233x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.4.C【解析】132sin1202S c ==⨯︒ ,解得c =2.∴a 2=22+22−2×2×2×cos 120°=12,解得23a = ,∴2324sin 3a R A === , 解得R =2.本题选择C 选项. 5.C解析:C 【分析】根据题设中的方位角画出,ABD ACD ∆∆,在ABD ∆中利用正弦定理可求出AD 的长,在ACD ∆中利用余弦定理求出CD 的长,利用正弦定理求CDA ∠的大小(即灯塔C 的方位角). 【详解】 如图,在ABD ∆中,45B =︒,由正弦定理有126242sin 45sin 6032AD AB ===︒︒,24AD =. 在ACD ∆中,余弦定理有2222cos30CD AC AD AC AD =+-⨯⨯︒,因3AC=,24AD =,12CD =,由正弦定理有sin 30sin CD AC CDA =︒∠,3sin CDA ∠=60CDA ∠=︒或者120CDA ∠=︒.因AD CD >,故CDA ∠为锐角,所以60CDA ∠=︒,故选C. 【点睛】与解三角形相关的实际问题中,我们常常碰到方位角、俯角、仰角等,注意它们的差别.另外,把实际问题抽象为解三角形问题时,注意分析三角形的哪些量是已知的,要求的哪些量,这样才能确定用什么定理去解决.6.B解析:B 【分析】由已知可求30CAD ∠=︒,120ACD ∠=︒,由正弦定理可求AD 的值,在BCD ∆中,60CBD ∠=︒,由正弦定理可求BD 的值,进而由余弦定理可求AB 的值. 【详解】由已知,ACD ∆中,30CAD ∠=︒,120ACD ∠=︒,由正弦定理,sin sin CD ADCAD ACD =∠∠,所以·sin 4?sin120sin sin30CD ACD AD CAD ∠︒===∠︒在BCD ∆中,60CBD ∠=︒,由正弦定理,sin sin CD BDCBD BCD =∠∠,所以·sin 4sin45sin sin60CD BCD BD CBD ∠︒===∠︒ 在ABD ∆中,由余弦定理,222802?·3AB AD BD AD BD ADB =+-∠=,解得:AB =所以A 与B 的距离AB = 故选B 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题.7.B解析:B 【分析】由cos cos 2a B b A +=,利用余弦定理代入化简解得2c =,再根据sin sin 3sin A B C +=,利用正弦定理得到36a b c +==,即62CA CB AB +=>=,得到点C 的轨迹是以A ,B 为焦点的椭圆,再利用椭圆的焦点三角形求解. 【详解】∵cos cos 2a B b A +=,∴222222222a c b b c a a b ac bc+-+-⋅+⋅=,∴2c =,∵sin sin 3sin A B C += ∴36a b c +==,即62CA CB AB +=>=,∴点C 的轨迹是以A ,B 为焦点的椭圆,其中长半轴长3,短半轴长22, 以AB 为x 轴,以线段AB 的中点为原点,建立平面直角坐标系,其方程为22198x y ,如图所示:则问题转化为点C 在椭圆22198x y 上运动求焦点三角形的面积问题.当点C 在短轴端点时,ABC 的面积取得最大值,最大值为22故选:B . 【点睛】本题主要考查正弦定理,余弦定理以及椭圆焦点三角形的应用,还考查了转化求解问题的能力,属于中档题.8.D解析:D 【分析】先由不等式230ax bx a --≥的解集是[]4,1-求出a 、b ,再求b a 【详解】∵不等式230ax bx a --≥的解集是[]4,1-,∴23y ax bx a =--图像开口向下,即a <0,且23=0ax bx a --的两根为-4和1.∴12312034a b x x a a x x a ⎧⎪<⎪⎪+==-⎨⎪⎪-==-⎪⎩,解得:=26a b -⎧⎨=⎩ ∴()6=2=64b a -故选:D 【点睛】不等式的解集是用不等式对应的方程的根表示出来的.9.C解析:C 【分析】由题可得,S 60n n a +-=,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,可求得{}n a 为等比数列,进而可求得本题答案. 【详解】因为点(),n n a S 在直线60x y +-=上,所以S 60n n a +-=. 当1n =时,1160a S +-=,得13a =;当2n ≥时,S 60n n a +-=①,1160n n a S --+-=②,①-②得,112n n a a -=, 所以数列{}n a 为等比数列,且公比12q =,首项13a =, 则()4414131124511812a q S q⎡⎤⎛⎫⨯-⎢⎥⎪-⎝⎭⎢⎥⎣⎦===--. 故选:C 【点睛】本题主要考查根据,n n a S 的关系式求通项公式n a 的方法.10.A解析:A 【解析】分析:用余弦定理推论得222cos 2a c b B ac +-=.由222,,a b c 成等差数列,可得2222a c b += ,所以22222cos 24a c b a c B ac ac+-+==,利用重要不等式可得2221cos 442a c ac B ac ac +=≥=.详解:因为222,,a b c 成等差数列,所以2222a cb += . 由余弦定理推论得2222221cos 2442a cb ac ac B ac ac ac +-+==≥=当且仅当a c =时,上式取等号. 故选A .点睛:本题考查等差中项、余弦定理的推论、重要不等式等知识,考查学生的运算能力及转化能力.利用重要不等式、基本不等式求最值时,一定要判断能否取相等,不能相等时,应转化为函数求最值.11.D解析:D 【分析】根据等差数列的性质得162512a a a a +=+=,再根据等差数列前n 项和公式计算即可得答案. 【详解】解:因为等差数列{}n a 中, 23a =,59a =, 所以根据等差数列的性质得162512a a a a +=+=, 所以根据等差数列前n 项和公式()12n n n a a S +=得()16666123622a a S +⨯===. 故数列{}n a 的前6项之和等于36. 故选:D. 【点睛】本题考查等差数列的性质,前n 项和公式,考查运算能力,是中档题.12.B解析:B 【分析】结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.二、填空题13.【解析】作可行域如图则直线z=x+2y 过点A (20)时z 取最小值2点睛:线性规划的实质是把代数问题几何化即数形结合的思想需要注意的是:一准确无误地作出可行域;二画目标函数所对应的直线时要注意与约束条解析:【解析】作可行域,如图,则直线z=x+2y 过点A (2,0)时z 取最小值2.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.14.8【解析】由题意可得:则的最小值为当且仅当时等号成立点睛:在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得若忽略了某个条件就会出解析:8 【解析】 由题意可得:()211182121116110211161102219,a b a b a b a b b a a b b a ++⎛⎫⎡⎤=++⨯+ ⎪⎣⎦+⎝⎭+⎛⎫=++ ⎪+⎝⎭⎛+≥+⨯ +⎝=则2a b +的最小值为918-=. 当且仅当3,52a b ==时等号成立.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.15.【分析】设那么在中利用正弦定理求出关于的函数并求出其最大值即可求解【详解】在中可得所以设那么在中由正弦定理可得其中所以当时取到最小值最小值为故面积的最小值故答案为:【点睛】本题考解三角形的实际应用考 解析:130【分析】设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=,在BEF 中,利用正弦定理,求出x 关于θ的函数,并求出其最大值,即可求解. 【详解】在Rt ABC △中,AB =,AC =,可得CB =. 所以6ABC π∠=设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=.在BFE △中,由正弦定理,可得sinsin 66xπθ=+ ⎪⎝⎭,12(cos )cos 2cos )2x x x θθθθθ++=+=,sin()x θα===+,其中tan α=,所以当sin()1θα+=时,x取到最小值,最小值为 故DEF面积的最小值21sin 75 1.73129.7513023S x π=⨯=≈⨯=≈. 故答案为:130 【点睛】本题考解三角形的实际应用,考查正弦定理,三角恒等变换,以及三角函数的性质,属于中档题.本题解题的关键在于设CED θ∠=,m DE x =,进而在BFE △中,得cos sinsin 66x x θππθ=⎛⎫+ ⎪⎝⎭,进而将问题转化为求边x 的最小值问题. 16.【分析】本题先在中得出得的值然后在中由正弦定理得出的长最后在中由余弦定理算出即可得到AB 之间的距离【详解】解:如图所示∵∴∴在中∴∵在中∴由正弦定理得可得在中由余弦定理得∴(米)即AB 之间的距离为米解析:1015. 【分析】本题先在ACD △中,得出30CAD ADC ∠=∠=︒,得CD 的值,然后在BCD 中由正弦定理得出BC 的长,最后在ABC 中由余弦定理,算出21500AB =,即可得到A ,B 之间的距离. 【详解】解:如图所示,∵75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒, ∴7545120ACD ACB BCD ︒︒∠=∠+∠=+=︒,∴在ACD △中,18030CAD ACD ADC ADC ∠=︒-∠-∠=︒=∠, ∴30AC CD ==.∵在BCD 中,60CBD ∠=︒, ∴由正弦定理,得30sin 75sin 60BC =︒︒,可得sin 7530203sin 75sin 60BC ︒=⋅=︒︒. 在ABC 中,由余弦定理,得()222222cos 30203sin 75230203sin 75cos 75AB AC BC AC BC ACB =+-⋅∠=+︒-⨯⨯︒︒1500=,∴1015AB =(米),即A ,B 之间的距离为1015米. 故答案为:1015.【点睛】本题考查利用正余弦定理解决实际应用问题,是中档题.17.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2 【分析】直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个.故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.18.【分析】先根据条件作出可行域然后求出的取值范围由恒成立即即可得出答案【详解】由满足作出可行域如图设则表示直线在轴上的截距的相反数则由得当直线过点时有最大值4当直线过点时有最小值所以所以故答案为:【点解析:)4,⎡+∞⎣ 【分析】先根据条件作出可行域,然后求出2z x y =-的取值范围,由|2|x y a -≤恒成立,即max |2|x y a -≤,即可得出答案.【详解】由x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩,作出可行域,如图.设2z x y =-,则2y x z =-,z 表示直线2y x z =-在y 轴上的截距的相反数.则()()1,0,1,3A C ,由27010x y x y +-=⎧⎨--=⎩,得()3,2B .当直线2y x z =-过点()3,2B 时,z 有最大值4,当直线2y x z =-过点()1,3C 时,z 有最小值-1.所以|2|4x y -≤,所以4a ≤故答案为:[)4+∞,. 【点睛】本题考查简单的线性规划问题和恒成立求参数的问题,属于中档题.19.【分析】根据题意可得数列的通项公式代入表示根据数列是递增数列所以得恒成立参变分离以后计算【详解】由可得数列是首项和公比均为的等比数列所以则又因为是递增数列所以恒成立即恒成立所以所以故答案为:【点睛】解析:3,2⎛⎫-∞ ⎪⎝⎭【分析】根据题意可得数列{}n a 的通项公式,代入表示n b ,根据数列{}n b 是递增数列,所以得10n n b b +->恒成立,参变分离以后计算.【详解】 由()*112n n a a n +=∈N 可得,数列{}n a 是首项和公比均为12的等比数列,所以12n n a =,则()222n n nn b n a λλ-==-,又因为{}n b 是递增数列,所以()()()11122222220n n n n n b b n n n λλλ++=+---=+->-恒成立,即220n λ+->恒成立,所以()min 223n λ<+=,所以32λ<. 故答案为:3,2⎛⎫-∞ ⎪⎝⎭. 【点睛】关于数列的单调性应用的问题,一般需要计算1n n a a +-判断其正负,将不等式再转化为恒成立问题,通过参变分离的方法求解min ()a f n <或者max ()a f n >.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)()2111424f x x x =++;(2)答案见解析. 【分析】(1)由题得104a b -+=,20b a =-≤△且0a >,化简即得,a b 的值,即得函数的解析式;(2)由题得220cx x c -+<,再对c 分类讨论解不等式. 【详解】(1)()1104f a b -=-+=, 因为()0f x ≥恒成立,则20b a =-≤△且0a >,即221110,0,444a a a a ⎛⎫⎛⎫+-≤∴-≤∴= ⎪ ⎪⎝⎭⎝⎭,12b =, ()2111424f x x x ∴=++ (2)()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭, 即22111131424424x x c x x c ⎛⎫⎛⎫++>+-++ ⎪ ⎪⎝⎭⎝⎭ 220cx x c ∴-+<当0c时:解得0x >;当0c >时:244c =-故当1c ≥时:2440c =-≤,不等式无解;故当1c <时:2440c =->,不等式解为11x c c+<<综上所述,0c,不等式解集为0,;1c ≥时,不等式解集为∅;01c <<时,不等式解集为11c c ⎛⎫+ ⎪ ⎪⎝⎭【点睛】本题主要考查二次函数的解析式的求法,考查二次不等式的恒成立的问题,考查一元二次不等式的解法,意在考查学生对这些知识的理解掌握水平.22.(Ⅰ)32a b ==时,11a b ⎛⎫+ ⎪⎝⎭取得最大值为2-;(Ⅱ)6a =-,3b =-+,最小值为3+;【分析】(Ⅰ)利用“乘1法”与基本不等式的性质,对数函数的单调性即可得出;(Ⅱ)先对已知式子进行化简,然后结合基本不等式即可求解.【详解】解:(Ⅰ)1133224233333333333a b a b b a b aa b a b a b a b a b+++=+=+=+++=,当且仅当33b aa b=且3a b+=,即32a b==时取等号,311423loga b⎛⎫∴+=-⎪⎝⎭即最大值为2-,(Ⅱ)3a b+=,∴223313131(1)121111a ba b a ba b a b a b a b++=++-+=+-++=++++++3113(1)3(2()()332314444(1)4(1)a b ba ba b a b b++=+++=+++=++++,当且仅当3(1)44(1)b aa b+=+且3a b+=,即6a=-3b=-+时取等号,【点睛】本题考查了基本不等式的性质、方程的解法,考查了推理能力与计算能力,属于中档题.23.(1)45;(2)2.【分析】(1)首先利用两角差的正切公式求出tan A,再根据同角三角函数的基本关系及二倍角公式计算可得;(2)由(1)可知,1tan2A=,即可求出sin A,cos A,再利用余弦定理及面积公式计算可得;【详解】解:(1)5tan tan44A Aππ⎫⎫⎛⎛-=-⎪ ⎪⎝⎝⎭⎭1tan11tan3AA-==+,解得1tan2A=,故2222cossin cos2sin cosAAAA A+=+214tan15A==+.(2)由(1)可知,sin1tancos2AAA==①,且22sin cos1A A+=②;联立①②,解得sin5A=,cos5A=.又1sin42S bc A==,4c=,可得b=2222cos4a b c bc A=+-=,则2a=.即2BC=.24.ABC 为等腰三角形或直角三角形 【分析】设三角形外接圆半径为R ,根据a 2tan B =b 2tan A ,利用商数关系和正弦定理,变形为sin A cos A =sin B cos B ,再利用二倍角公式转化sin2A =sin2B ,得到角的关系判断. 【详解】设三角形外接圆半径为R , 因为a 2tan B =b 2tan A ,所以22sin sin cos cos a B b AB A=, 所以22224sin sin 4sin sin cos cos R A B R B AB A =,所以sin A cos A =sin B cos B , 所以sin2A =sin2B , 则2A =2B 或2A +2B =π, 所以A =B 或A +B =2π. 所以ABC 为等腰三角形或直角三角形. 25.答案见解析 【分析】选择①,由n S 求出1a 和3a ,常数k 不存在,数列不存在;选择②,得数列为等差数列,求出通项公式n a ,用裂项相消法结果; 选择③,得数列为等比数列,从而11{}n n a a +也是等比数列,由等比数列前n 项和公式可得结论. 【详解】解.如果选择①,由11332,,a S a S S =⎧⎨=-⎩即31142743324k k k ⎧=-+⎪⎪⎨⎪=--+⎪⎩解得3414k k ⎧=⎪⎪⎨⎪=-⎪⎩该方程组无解, 所以该数列不存在.如果选择*1,(n n a a d n N d +=+∈②为常数),即数列{}n a 为等差数列,由131,4==a a ,可得公差31322a a d -==, 所以3122n a n =- 所以12231011122310111112111111538a a a a a a a a a a a a ⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+-= ⎪⎝⎭ 如果选择*1(0,,n n a qa q n N q +=>∈③为常数),即数列{}n a 为等比数列,由131,4==a a,可得公比2q ==,所以11114(2)1n n n n n a a a a +-÷=≥, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭是首项为12,公比为14的等比数列,所以其前10项和为1021134⎛-⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题考查由前n 项和n S 求通项公式n a ,解题时要注意1(2)n n n a S S n -=-≥,而11a S =,是两种不同的求法,如果要求通项公式,注意最后的结论能否统一,否则写成分段函数形式.26.选①k 的最小值为4;选②k 的最小值为4;选③k 的最小值为3; 【分析】先由条件求出11162n n b -⎛⎫=⨯ ⎪⎝⎭,得出142a b ==,若选①可得2d =,则2n a n =,从而1111n S n n =-+,由裂项相消法求出k T ,可得答案;若选②可得12a d ==,所以2n a n =,一下同选①;若选③可得43d =,从而131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,由裂项相消法求出k T ,可得答案. 【详解】设等比数列{}n b 的公比为q ,由2138,34b b b =-= 所以18b q =,则8384q q -⨯=,解得12q =或23q =-(舍) 则1816b q ==,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭则142a b ==若选① 由4143486202S a d d ⨯=+=+=,则2d = 所以2n a n =, 则212nn a a S n n n +=⨯=+ 所以()111111n S n n n n ==-++ 则1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭由314k k T k =>+,则3k >,由k 为正整数,则k 的最小值为4. 若选② 由332S a =,即()11323222a d a d ⨯+=+ ,可得12a d == 所以2n a n =,一下同选①.若选③ 由3423a a b -=,可得()()113238a d a d +-+=,即43d = 所以()()14222233n n n S n n n -=+⨯=+ ()1313112242n S n n n n ⎛⎫=⨯=⨯- ⎪++⎝⎭ 12111311111311111432424212n n T S S S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=⨯-+-++-=+-- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦所以93118412n T n n ⎛⎫=-+ ⎪++⎝⎭所以9311124438k k k T ⎛⎫-+ ⎪++⎭>⎝=,即111122k k +<++,也即240k k --> 解得k >23<<,又k 为正整数,则k 的最小值为3. 【点睛】关键点睛:本题考查等差、等比数列求通项公式和等差数列的前n 项和以及用裂项相消法求和,解答本题的关键是将所要求和的数列的通项公式裂成两项的差,即1111n S n n =-+,131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,注意裂项和的系数和求和时相抵消的项以及最后余下的项,属于中档题.。

【北师大版】高中数学必修五期末试卷(及答案)(1)

【北师大版】高中数学必修五期末试卷(及答案)(1)

一、选择题1.已知实数x ,y 满足221x y x m -≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2B .3C .4D .8 2.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+3.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-4.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A .1a <1bB .a 2>b 2C .21a c +>21b c + D .a |c |>b |c |5.已知ABC ∆中,a =b =60B =,那么角A 等于( )A .135B .45C .135或45D .906.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、B 、C 成等差数列,且2sin 2sin a A c C+4ac =+,则ABC 的面积的最大值为( ) A.B.C.D7.设ABC 的三个内角,,A B C 的对边分别为,,a b c ,若6a =,8b =,12c =,若D 为AB 边的中点,则CD 的值为( ) A .7B .10CD.8.在ABC 中,tan sin 2A BC +=,若2AB =,则ABC 周长的取值范围是( ) A.(2,B.(4⎤⎦C.(4,2+D.(2⎤+⎦9.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 10.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .18911.设等差数列{}n a 的前n 项和为n S ,523S =,360n S =,5183n S -=,则n =( ) A .18B .19C .20D .2112.已知定义域为R 的函数f (x )满足f (x )=3f (x +2),且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,设f (x )在[2n -2,2n )上的最大值为*()n a n N ∈,且数列{a n }的前n 项和为S n ,若S n <k 对任意的正整数n均成立,则实数k 的取值范围为( ) A .27,8⎛⎫+∞⎪⎝⎭B .27,8⎡⎫+∞⎪⎢⎣⎭C .27,4⎛⎫+∞⎪⎝⎭D .27,4⎡⎫+∞⎪⎢⎣⎭二、填空题13.已知函数2()4f x x =+,()g x ax =,当[]1,4x ∈时,()f x 的图象总在()g x 图象的上方,则a 的取值范围为_________.14.已知,a b 为正实数,直线2y x a =-+与曲线1x b y e +=- 相切,则11a b+的最小值为________.15.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.16.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,sin sin B C +=bc 的值为______. 17.ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =.则sin sin BC=______. 18.在ABC ∆中,A ∠,B ,C ∠所对的边长分别为a ,b ,c .设a ,b ,c 满足222b c bc a +-=和12c b =,则tan B =______ 19.已知数列{}n a 的前n 项和n S ,且满足1n n a S +=,则39121239S S S S a a a a +++⋅⋅⋅+=___________. 20.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.三、解答题21.解关于x 的不等式2(41)40ax a x -++>. 22.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围. 23.在ABC 中a ,b ,c 分别为内角A ,B ,C 所对的边,若()()2sin 2sin sin 2sin sin a A B C b C B c =+++.(1)求A 的大小; (2)求sin sin B C +的最大值.24.在△ABC 中,BC =a ,AC =b ,a 、b 是方程220x -+=的两个根,且120A B +=︒,求ABC 的面积及AB 的长.25.已知数列{}n a 的前n 项和为n S ,且233n n S a =-. (1)求数列{}n a 的通项公式;(2)设3log n n b a =,n T 为数列{}n b 的前n 项和,求数列1n T ⎧⎫⎨⎬⎩⎭的前n 项和.26.已知正项等比数列{}n a 的前n 项和为653,2,40n S a S S ==+. (1)求数列{}n a 的通项公式;(2)令2log 4n n b a =+,记数列{}n b 的前n 项和为n T ,求n T 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出不等式组221x y x m-≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6,此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.A解析:A 【分析】当x >0时,不等式x 2﹣mx +9>0恒成立⇔m <(x 9x+)min ,利用基本不等式可求得(x 9x +)min =6,从而可得实数m 的取值范围. 【详解】当x >0时,不等式x 2﹣mx +9>0恒成立⇔当x >0时,不等式m <x 9x+恒成立⇔m <(x 9x+)min ,当x >0时,x 9x +≥=6(当且仅当x =3时取“=”), 因此(x 9x+)min =6, 所以m <6, 故选A . 【点睛】本题考查函数恒成立问题,分离参数m 是关键,考查等价转化思想与基本不等式的应用,属于中档题.3.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.4.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的;当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.5.B解析:B 【分析】先由正弦定理求出sin A ,进而得出角A ,再根据大角对大边,大边对大角确定角A . 【详解】由正弦定理得:sin sin sin sin a b A B A B =⇒=,sin 2A B ==, ∴45A =或135,∵a b <,∴A B <,∴45A =,故选B. 【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.6.B解析:B 【分析】由等差数列性质得3B π=,应用正弦定理边角转换、余弦定理由已知可求得三角形外接圆半径R ,从而边,a c 可用角表示,最后用角表示出三角形面积,结合三角函数恒等变换、正弦函数性质得出最大值. 【详解】∵角A 、B 、C 成等差数列,∴2B A C =+,又A B C π++=,∴3B π=,23C A π=-,2(0,)3A π∈,由正弦定理2sin sin sin a b c R A B C===得sin ,sin ,sin 222a b cA B C R R R ===,∵2sin 2sin a A c C +4ac =,∴2sin 2sin 2sin 4a A c Cb B ac +-=,即222a b c R R R +-=2222cos a c b ac BR R +-==,∴R =,又由正弦定理得2sin ,33a R A A c C ===,∴112sin sin sin()2233333ABC S ac B A C A A ππ==⨯⨯⨯=-△21sin )cos 2sin )2A A A A A A =+=+21cos 2)A A =+-)6A π=-,∵2(0,)3A π∈,∴3A π=时,sin(2)16A π-=,即ABCS 取得最大值83434333+=. 故选:B . 【点睛】本题以我们熟知的三角形为背景,探究的是三角形面积的最大值,结合等差数列的性质,利用正弦定理进行边角转换,考查目的是让考生发现、揭示问题本质的关联点,从而有效的激发考生学习兴趣,本题同时考查了考生的逻辑推理能力、直观想象能力.本题属于中档题.7.C解析:C 【分析】由已知可求6AD BD ==,在ABC 中,由余弦定理可求cos B 的值,在BCD 中,利用余弦定理即可求得||CD 的值. 【详解】解:6a =,8b =,12c =,若D 为AB 边的中点, 6AD BD ∴==,∴在ABC 中,222222612829cos 2261236a cb B ac +-+-===⨯⨯,∴在BCD 中,可得222229||2cos 662661436CD BD BC BD CB B =+-=+-⨯⨯⨯=.故选:C . 【点睛】本题主要考查了余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.8.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭,则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.9.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【详解】已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n n a a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-, ()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.10.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.11.A解析:A 【分析】根据题意,由等差数列的前n 项和公式可得()155355232a a S a+⨯===,变形可得3235a =,又由5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,变形可得21775n a -=,结合等差数列的性质分析可得答案. 【详解】根据题意,等差数列{}n a 中,523S =,则()155355232a a S a+⨯===,变形可得3235a =, 又由360n S =,5183n S -=,则5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,则21775n a -=, 又由360n S =,则()()()13223177203602210n n n a a n a a n n S n -+⨯+⨯+⨯=====,解可得18n =. 故选:A. 【点睛】本题考查利用等差数列求和公式求参数,同时也考查了等差数列基本性质的应用,考查计算能力,属于中等题.12.B解析:B 【分析】运用二次函数的最值和指数函数的单调性求得[0,2]x ∈的()f x 的最大值,由递推式可得数列{}n a 为首项为94,公比为13的等比数列,由等比数列的求和公式和不等式恒成立思想可得k 的最小值 【详解】解:当[0,2]x ∈时,且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩, 可得01x ≤<时,()f x 的最大值为(0)2f =,12x <≤时,()f x 的最大值为39()24f =,即当[0,2]x ∈时,()f x 的最大值为94, 当24x ≤<时,1()(2)3f x f x =-的最大值为912,当46x ≤<时,1()(2)3f x f x =-的最大值为936, ……可得数列{}n a 为首项为94,公比为13的等比数列, 所以91(1)2712743(1)183813n n nS -==-<-, 由S n <k 对任意的正整数n 均成立,可得278k ≥, 所以实数k 的取值范围为27,8⎡⎫+∞⎪⎢⎣⎭,故选:B 【点睛】此题考查分段函数的最值求法和等比数列的求和公式,以及不等式恒成立问题的解法,考查转化思想和运算能力,属于中档题二、填空题13.【分析】由参变量分离法可得知不等式对任意的恒成立利用基本不等式求出的最小值即可得出实数的取值范围【详解】由题意可得则从而有由基本不等式可得当且仅当时等号成立所以因此实数的取值范围是故答案为:【点睛】 解析:(),4-∞【分析】由参变量分离法可得知,不等式4a x x<+对任意的[]1,4x ∈恒成立,利用基本不等式求出4x x+的最小值,即可得出实数a 的取值范围. 【详解】由题意可得[]1,4x ∀∈,则24x ax +>,从而有4a x x<+,由基本不等式可得44x x +≥=,当且仅当2x =时,等号成立,所以,4a <. 因此,实数a 的取值范围是(),4-∞. 故答案为:(),4-∞. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.14.【分析】直线与曲线相切则切点在直线与曲线上且切点处的导数相等求出的关系再利用基本不等式求所求分式的最值【详解】解:由得;由得;因为直线与曲线相切令则可得代入得;所以切点为则所以故当且仅当时等号成立此 解析:2【分析】直线与曲线相切,则切点在直线与曲线上,且切点处的导数相等,求出a ,b 的关系,再利用基本不等式求所求分式的最值. 【详解】解:由2y x a =-+得1y '=;由1x by e +=-得x b y y e +'==;因为直线2y x a =-+与曲线1x by e+=-相切,令1x b e +=,则可得x b =-,代入1x by e +=-得0y =;所以切点为(,0)b -.则20b a --+=,所以2a b +=. 故11111()()112222222b a a a b a b a b a b b a+=++=+++=, 当且仅当1a b ==时等号成立,此时取得最小值2. 故答案为:2. 【点睛】本题主要考查导数的意义及基本不等式的综合应用.关于直线与曲线相切,求未知参数的问题,一般有以下几步:1、分别求直线与曲线的导函数;2、令两导数相等,求切点横坐标;3、代入两方程求参数关系或值,属于中档题.15.【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得化简得即可得解【详解】设不等式和不等式的解集分别为和则为方程的两个根为方程的两个根由韦达定理得所以即又所以所以即故答案 解析:56π 【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得2a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,化简得tan 2θ=即可得解. 【详解】设不等式()2220x x θ-+<和不等式()224sin 210x x θ++<的解集分别为(),a b 和11,b a⎛⎫ ⎪⎝⎭,则a ,b 为方程()2220x x θ-+=的两个根,1a ,1b为方程()224sin 210x x θ++=的两个根,由韦达定理得2a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,所以22sin 22θθ=-即tan 2θ= 又 ,2πθπ⎛⎫∈⎪⎝⎭,所以()2,2θππ∈, 所以523πθ=即56πθ=. 故答案为:56π. 【点睛】本题考查了一元二次不等式和一元二次方程之间的关系,考查了对于新概念的理解和三角函数的以值求角,属于中档题.16.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或解析:40 【分析】首先根据正弦定理求2R ,并表示sin sin 22b c B C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin a R R A =⇒==,根据正弦定理可知1322b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-, 得249133bc =-,解得:40bc =. 故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.17.【分析】直接利用三角形的面积建立等量关系进一步利用正弦定理的应用求出结果【详解】解:中D 是边上的点满足所以又因为则则故答案为:【点睛】本题考查了正弦定理三角形面积计算公式及其性质考查了推理能力与计算 解析:12【分析】直接利用三角形的面积建立等量关系,进一步利用正弦定理的应用求出结果. 【详解】解:ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =,所以1sin 90221sin 302ABD ACD AB AD S AB S ACAC AD ⋅︒==⋅⋅︒△△, 又因为4ABD ACD S BDS CD ==△△,则24AB BD AC CD==, 则sin 1sin 2B AC C AB ==. 故答案为:12.【点睛】本题考查了正弦定理、三角形面积计算公式及其性质,考查了推理能力与计算能力,属于中档题.18.【分析】先利用余弦定理求得再由正弦定理结合已知条件求得的关系式求得即可【详解】由得又因为得由正弦定理得又因为所以所以故答案为:【点睛】本题考查了正余弦定理的综合运用属于中档题 解析:12【分析】先利用余弦定理求得3A π=,再由正弦定理()sin sin sin sin A B c C b B B+==结合已知条件,求得tan B 的关系式,求得tan B 即可.【详解】由222b c bc a +-=得2221cos 22b c a A bc +-==, 又因为()0A π∈,得3A π=.由正弦定理,得()sin sin sin sin A B c C b B B +==sin cos cos sin 31sin 2tan 2A B A B B B +==+ 又因为132c b =+31=2+132+1tan 2B =. 故答案为:12. 【点睛】本题考查了正余弦定理的综合运用,属于中档题.19.【分析】由推得得到数列表示首项为公比为的等比数列求得和进而得到再结合等比数列求和公式即可求解【详解】由数列的前项和且满足当时两式相减可得即令可得解得所以数列表示首项为公比为的等比数列所以则所以所以故 解析:1013【分析】由1n n a S +=,推得11(2)2n n a n a -=≥,得到数列{}n a 表示首项为12,公比为12的等比数列,求得n a 和 n S ,进而得到21n nnS a =-,再结合等比数列求和公式,即可求解. 【详解】由数列{}n a 的前n 项和n S ,且满足1n n a S +=, 当2n ≥时,111n n a S --+=,两式相减,可得()11120n n n n n n a a S S a a ----+-=-=,即11(2)2n n a n a -=≥, 令1n =,可得11121a S a +==,解得112a =, 所以数列{}n a 表示首项为12,公比为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭, 则11122111212nn nS ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-,所以1122112nn n n n S a ⎛⎫- ⎪⎝⎭==-⎛⎫ ⎪⎝⎭,所以()2939121239222(111)S S S S a a a a ++++=+++-+++()9102129211101312-=-=-=-.故答案为:1013. 【点睛】关键点睛:由1n na S +=,利用1,1=,2n n n n S n a S S n -=⎧⎨-≥⎩,推得11(2)2n n a n a -=≥从而证得数列{}n a 为等比数列是解答本题的关键.20.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+,又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.三、解答题21.答案见解析 【分析】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x -->,再对a 进行分类讨论,比较根的大小,即可得答案; 【详解】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x -->(1)当0a =时,不等式化为40x -<,解得4x <, (2)当10a <时,不等式化为()140x x a ⎛⎫--< ⎪⎝⎭,解得14x a <<,(3)当104a <<时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得1x a <或4x >,(4)当14a=时,不等式化为2(4)0x ->,解得4x ≠, (5)当14a >时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得4x <或1x a >,综上所述,0a =时,不等式的解集为(,4)-∞ 0a <时,不等式的解集为1,4a ⎛⎫⎪⎝⎭; 14a >时,不等式的解集为1,(4,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭;14a =时,不等式的解集为(,4)(4,)-∞+∞; 104a <<时,不等式的解集为1(,4),a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 【点睛】本题考查含参一元二次不等式的求解,考查函数与方程思想、转化与化归思想、分类讨论思想,考查运算求解能力,求解时注意讨论的依据是比较根的大小. 22.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦.【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3. (2)①当0a =时,()30f x =-≤恒成立; ②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩ 解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<.综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦. 【点睛】研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果. 23.(1)23π;(2)1. 【分析】(1)由题意利用正弦定理角化边,然后结合余弦定理可得∠A 的大小; (2)由题意结合(1)的结论和三角函数的性质可得sin sin B C +的最大值. 【详解】(1)由己知,根据正弦定理得()()2222a b c b c b c =+++即222a b c bc =++由余弦定理得2222cos a b c bc A =+-故1cos 2A =-,所以23A π=. (2)由(1)得:1sin sin sin sin sin sin 3223B C B B B B B ππ⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪⎝⎭⎝⎭故当6B π=时,sin sin B C +取得最大值1.【点睛】方法点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.24.S AB == 【分析】利用韦达定理求出,a b ab +,再利用余弦定理,得到关于c 的方程,解之可得AB 的长;再结合面积公式可得. 【详解】,a b是方程220x -+=的两个根, 2a b ab ∴+==,又因为120A B +=︒则60C =︒,所以由余弦定理得:()(22222222221cos 22222c a b ab c a b cC ab ab -⨯-+--+-====⨯,解得c =所以AB =ABC的面积11sin 222S ab C ==⨯=25.(1)3nn a =;(2)2+1nn 【分析】(1)利用1n n n a S S -=-可得{}n a 是首项为3,公比为3的等比数列,即可求出通项公式;(2)可得n b n =,则()1+2n n n T =,1112+1nT n n ⎛⎫=- ⎪⎝⎭,由裂项相消法即可求出前n 项和. 【详解】 (1)233n n S a =-,即3322n n S a =-,当1n =时,1113322S a a =-=,解得13a =, 当2n ≥时,1133332222n n n n n a a a S S --⎛⎫---== ⎝-⎪⎭, 整理得13n n a a -=,{}n a ∴是首项为3,公比为3的等比数列,1333n n n a -∴=⨯=;(2)33l 3log og nn n b a n ===,()1+2n n n T ∴=,则()12112+1+1nT n n n n ⎛⎫==- ⎪⎝⎭, 数列1n T ⎧⎫⎨⎬⎩⎭的前n 项和为11111221+++223+1+1nn n n ⎛⎫---= ⎪⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.(1)1322nn a -=;(2)最大值为64.【分析】(1)已知条件用1a 和公比q 表示后解得1,a q ,得通项公式;(2)由(1)求得n b ,由0n b ≥求得n T 最大时的n 值,再计算出最大的n T . 【详解】解:(1)设数列{}n a 的公比为(0)q q >,由62a =,有512a q =①,又由5340S S =+,有4540a a +=,得341140a q a q +=②,①÷②有21120q q =+,解得14q =或15q =-(舍去), 由14q =,可求得1112a =,有111113211224n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭,故数列{}n a 的通项公式为1322nn a -=; (2)1322log 24172nn b n -=+=-, 若0n b ,可得172n ,可得当18n 且*n ∈N 时0n b >;当9n 且*n ∈N 时0n b <, 故8T 最大,又由115b =,可得887158(2)642T ⨯=⨯+⨯-=, 故n T 的最大值为64. 【点睛】思路点睛:本题考查求等比数列通项公式,求等差数列前n 项和最大值,求等差数列前n 项和的最大值方法:数列{}n b 是等差数列,前n 项和为n T , (1)求出前n 项和n T 的表达式,利用二次函数的性质求得最大值;(2)解不等式0n b ≥,不等式的解集中最大的整数n 就是使得n T 最大的n 值,由此可计算出最大的n T (注意n b =0时,1n n T T -=).。

(常考题)北师大版高中数学必修五第一章《数列》测试卷(含答案解析)(3)

(常考题)北师大版高中数学必修五第一章《数列》测试卷(含答案解析)(3)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.在等比数列{}n a 中,有31598a a a =,数列{}n b 是等差数列,且99b a =,则711b b +等于( ) A .4B .8C .16D .243.已知数列{}n a 满足11a =,24a =,310a =,1{}n n a a +-是等比数列,则数列{}n a 的前8项和8S =( ) A .376B .382C .749D .7664.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N*-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .175.数列{}n a 中,11a =,113,3,3n n n n a N a n a N *+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为( ) A .1008B .2016C .2018D .20206.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51017.已知数列1a ,21a a ,…1nn a a -,…是首项为1,公比为2的等比数列,则2log n a =( )A . (1)n n +B .(1)4n n - C .(1)2n n + D .(1)2n n -8.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ). A .12B .11C .10D .99.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .1210.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .4511.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-12.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-二、填空题13.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.14.数列{}n a 中,16a =,29a =,且{}1n n a a +-是以2为公差的等差数列,则n a =______.15.数列{}n a 满足11a =,22a =,且2221sin 2cos 22n nn n a a ππ+⎛⎫=+⋅+ ⎪⎝⎭(*n N ∈),则2020a =__.16.已知等差数列{}n a 的前n 项和为n S ,1a 为整数,213a =-,8n S S ≥,则数列{}n a 的通项公式为n a =________.17.设,n n S T 分别是等差数列{}{},n n a b 的前n 项和,已知()*2142n n S n n N T n +=∈-,则10317a b b =+_________.18.已知n S 为数列{}n a 的前n 项和,若112a =,且122n n a a +=-,则100S =________. 19.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____.20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知等差数列{}n a 满足()()()()*122312(1)n n a a a a a a n n n N +++++⋅⋅⋅++=+∈. (1)求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .22.在①119n n a a +-=-,②113n n a a +=-③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.设n S 是数列{}n a 的前n 项和,且19a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值:若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分23.已知数列{}n a 的前n 项和为n S ,且11a =,()121n n a S n N *+=+∈,等差数列{}n b 满足39b =,15272b b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 的前n 项和为n T ,且n n n c a b =⋅,求n T . 24.已知递增等比数列{}n a 满足:12a =,416a = . (1)求数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,且满足221b a =-,3358b a =,求数列{}n b 的通项公式及前10项的和;25.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式;(2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈.26.设等差数列{}n a 的首项1a 为()0a a >,其前n 项和为n S . (Ⅰ)若1S ,2S ,4S 成等比数列,求数列{}n a 的通项公式;(Ⅱ)若对任意的*n ∈N ,恒有0n S >,问是否存在()*2,k k k ≥∈N ,使得ln k S 、1ln k S +、2ln k S +成等比数列?若存在,求出所有符合条件的k 值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272n nn c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n n n n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.C解析:C 【分析】根据等比数列性质求得9a ,再由等差数列性质求解. 【详解】∵{}n a 是等比数列,∴2931598a a a a ==,90a ≠,所以98a =,即998b a ==,∵{}n b 是等差数列,所以7119216b b b +==. 故选:C . 【点睛】关键点点睛:本题考查等差数列和等比数列的性质,掌握等差数列和等比数列的性质是解题关键,设,,,m n p l 是正整数,m n p l +=+,若{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =.p l =时,上述结论也成立.3.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项.4.C解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.5.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C. 【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.6.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.7.D解析:D 【分析】根据题意,求得1nn a a -,再利用累乘法即可求得n a ,再结合对数运算,即可求得结果.【详解】由题设有111122(2)n n nn a n a ---=⨯=≥, 而(1)1213221121122(2)n n n n n n a aa a a n a a a -+++--=⨯⨯⨯⨯=⨯=≥,当1n =时,11a =也满足该式,故(1)22(1)n n n a n -=≥,所以2(1)log 2n n n a -=, 故选:D. 【点睛】本题考查利用累乘法求数列的通项公式,涉及对数运算,属综合基础题.8.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.9.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==.故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.10.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ===1n n =-+. 12n n S a a a ∴=++⋯+122=-+1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.11.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.12.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.二、填空题13.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.14.【分析】由是以2为公差的等差数列可得:再利用累加求和方法等差数列的求和公式即可得出【详解】∵是以2为公差的等差数列∴∴故答案为:【点睛】本题考查了等差数列的通项公式与求和公式累加求和方法考查了推理能 解析:25n +【分析】由{}1n n a a +-是以2为公差的等差数列,可得:121n n a a n --=-,再利用累加求和方法、等差数列的求和公式即可得出. 【详解】∵{}1n n a a +-是以2为公差的等差数列, ∴()()1212221n n a a a a n n --=-+-=-,∴()()()12116321n n n a a a a a a n -=+-+⋯⋯+-=++⋯⋯+-()2121552n n n +-=+=+, 故答案为:25n +. 【点睛】本题考查了等差数列的通项公式与求和公式、累加求和方法,考查了推理能力与计算能力,属于中档题.15.2020【分析】当n 为偶数时可得出故偶数项是以2为首项公差为2的等差数列求出通项公式代值计算即可得解【详解】当n 为偶数时即故数列的偶数项是以2为首项公差为2的等差数列所以所以故答案为:2020【点睛解析:2020 【分析】当n 为偶数时,可得出22n n a a +=+,故偶数项是以2为首项,公差为2的等差数列,求出通项公式,代值计算即可得解. 【详解】 当n 为偶数时,2223cos 1sin 2cos 1cos 2222n n n n n n n a a a n a ππππ+-⎛⎫=+⋅+=⋅++=+ ⎪⎝⎭, 即22n n a a +=+,故数列{}n a 的偶数项是以2为首项,公差为2的等差数列, 所以2122n n a n ⎛⎫=+-⨯=⎪⎝⎭, 所以20202020a =. 故答案为:2020. 【点睛】本题考查数列的递推式,解题关键是得出当n 为偶数时,可得出2n a +与n a 的关系式,进而求出{}n a 的通项公式,考查逻辑思维能力和计算能力,属于常考题.16.【分析】设等差数列的公差为由等差数列的性质及前n 项和公式可得再由二次函数的图象与性质可得求得后再由等差数列的通项公式即可得解【详解】设等差数列的公差为则为整数所以由结合二次函数的图象与性质可得解得所 解析:217n -【分析】设等差数列{}n a 的公差为d ,由等差数列的性质及前n 项和公式可得231322n n d d S n ⎛⎫+ ⎝-⎪⎭=,再由二次函数的图象与性质可得313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯,求得d 后再由等差数列的通项公式即可得解. 【详解】设等差数列{}n a 的公差为d ,则1213a a d d =-=--,d 为整数, 所以()()()2131313112222n d S d n n n n d a n d d n n n --=+⎛⎫--++ ⎪⎝=⎭=-, 由8n S S ≥,结合二次函数的图象与性质可得0d >,313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯, 解得131376d ≤≤, 所以2d =,所以1215a a d =-=-,所以()()111521217n a a n d n n =+-=-+-=-. 故答案为:217n -. 【点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了利用二次函数的图象与性质解决等差数列前n 项和最值的问题,属于中档题.17.【分析】利用等差数列的性质得到再根据求解【详解】因为所以故答案为:【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用还考查了运算求解的能力属于中档题 解析:39148【分析】利用等差数列的性质得到1013171191912a a a b b b b =⨯+++191912S T =⨯,再根据2142n n S n T n +=-求解.【详解】因为()*2142n n S n n N T n +=∈-, 所以()()110113171119191991921912221a a a b b b a b b b a =⨯=⨯+++++,191911219139224192148S T ⨯+=⨯=⨯=⨯-, 故答案为:39148【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用,还考查了运算求解的能力,属于中档题.18.【分析】由递推公式依次计算出数列的前几项得出数列是周期数列从而可求和【详解】由题意∴数列是周期数列且周期为4故答案为:【点睛】本题考查数列的周期性考查求周期数列的和解题时可根据递推公式依次计算数列的解析:4256【分析】 由递推公式依次计算出数列的前几项,得出数列是周期数列,从而可求和. 【详解】 由题意2241322a ==-,33a =,42a =-,512a =, ∴数列{}n a 是周期数列,且周期为4.10012341442525()2532236S a a a a ⎛⎫=+++=⨯++-= ⎪⎝⎭.故答案为:4256. 【点睛】本题考查数列的周期性,考查求周期数列的和,解题时可根据递推公式依次计算数列的项,然后归纳出周期性.19.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数.7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)21n a n =-;(2)2332n nn S +=-. 【分析】(1)利用已知条件列出关于首项与公差的方程组,解方程组即得数列{}n a 的通项公式;(2)先由(1)得到n n n a 2n 122-=,再利用错位相减法求和即可. 【详解】(1)设等差数列{}n a 的公差为d ,由已知得()()121223412a a a a a a +=⎧⎨+++=⎩,即122348a a a a +=⎧⎨+=⎩,所以()()()1111428a a d a d a d ⎧++=⎪⎨+++=⎪⎩,解得112a d =⎧⎨=⎩,所以21n a n =-. (2)由(1)得n n n a 2n 122-=, 所以1212321223212n n n n n S ---=++⋯++,① 231123212222213n n n n n S +--=++⋯⋯++,② -①②得:21111112132322222222n n n n n n S ++-+⎛⎫=+⨯+⋯+-=- ⎪⎝⎭, 所以2332n nn S +=-.易错点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 22.答案见解析 【分析】选①:由等差数列通项公式得出通项n a 后,解0n a ≥,满足此不等式的最大的n 使得n S 最大,注意若n a 0=,则有两个值使得n S 最大,选②:由等比数列前n 项和公式得出n S ,由于公比是负数,因此按n 的奇偶性分类讨论求得n S 的最大值;选③:由累加法求得n a ,利用n a 的表达式是n 的二次函数形式,当15n ≥时,0n a >,确定n S 不存在最大值. 【详解】 选①因为119n n a a +-=-,19a =,所以{}n a 是首项为9,公差为19-的等差数列.所以()118291999n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭. 由182099n -+≥,得82n ≤,即820a ≥ 所以n S 存在最大值,且最大值为81S 或82S , 因为818180181936929S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为369. 选② 因为113n n a a +=-,19a =,所以{}n a 是首项为9,公比为13-的等比数列. 所以1311933n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.1︒当n 为奇数时,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为271143n ⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为19S =;2︒当n 为偶数的,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+, 且2712719434n n S ⎛⎫=-<< ⎪⎝⎭, 综上,n S 存在最大值,且最大值为9. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…,19n n a a n --=-, 以上1n -个等式相加得()()21791171622n n n n n a a -+---+-==, 因为19a =,所以()2173422n n n a n -+=≥,又19a =也满足上式,所以217342n n n a -+=. 当15n ≥时,0n a >,故n S 不存在最大值. 【点睛】关键点点睛:本题考查数列前n 项和的最大值问题,一种方法是求出n S 的表达式,由函数的性质确定n S 的最大值,一种是利用数列项的性质,如数列是递减的数列,10a >,则满足0n a ≥的最大的n 使得n S 最大. 23.(1)13-=n n a ,3n b n =;(2)1321344n n n T +-=+⋅. 【分析】(1)由数列的递推关系式求出等比数列{}n a 的通项公式,利用等差数列的基本量运算得出{}n b 的通项公式; (2)利用错位相减法求出n T . 【详解】(1)1211n n a S n +=+≥①1212n n a S n -=+≥②①-②得:13n n a a +=,2n ≥ 又因为11a =,23a =所以数列{}n a 是以1为首项,3为公比的等比数列所以13-=n n a因为{}n b 为等差数列且39b =,15272b b +=所以有:()111292724b d b b d +=⎧⎨+=+⎩解得:13b =,3d =,所以3n b n =(2)由(1)知3nn c n =⋅213233n n T n =⋅+⋅+⋅①()23131323133n n n T n n +=⋅+⋅+-⋅+⋅②①-②得:2312333...33n n n T n +-=++++-⋅()11131********2n n n n n T n n +++---=-⋅=-⋅-1321344n n n T +-=+⋅【点睛】方法点睛:本题考查数列的通项公式,考查数列的求和,数列求和的方法总结如下: 1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.24.(1)2nn a =;(2)21n b n =-,数列{}n b 前10项的和10100S =.【分析】(1)利用等比数列的通项公式,结合已知12a =,416a =,可以求出公比,这样就可以求出数列{}n a 的通项公式;(2)由数列{}n a 的通项公式,可以求出21a -和 358a 的值,这样也就求出2b 和 3b 的值,这样可以求出等差数列{}n b 的公差,进而可以求出通项公式,利用前n 项和公式求出数列{}n b 前10项的和.【详解】(1)设等比数列的公比为q ,由已知12a =,34121616q a a q =⇒⋅=⇒=,所以112n n n a q a -=⋅=,即数列{}n a 的通项公式为2n n a =;(2)由(1)知2nn a =,所以2221213b a =-=-=,333552588b a ==⨯=, 设等差数列{}n b 的公差为d ,则322d b b -==,12121n d b b n b =-=∴=-, 设数列{}n b 前10项的和为10S ,则11010910910101210022S d b ⨯⨯=+⋅=⨯+⨯=, 所以数列{}n b 的通项公式21n b n =-,数列{}n b 前10项的和10100S =. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.25.(1)()*1(1)2n n a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21nn a n N =-∈,化简可得11212222n n nn a a +=+≤+-,放缩后,通过分组求和可证得结果. 【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,nn a n ⎧=⎨⎩为奇数为偶数).(2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+, 即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21nn a n N=-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 26.(Ⅰ)0d =时,n a a =;2d a =时,2n a an a =-;(Ⅱ)不存在,理由见解析. 【分析】(Ⅰ)根据等差数列写出(1)2n n n dS na -=+,利用等比中项性质列式代入求解;(2)设存在()*2,k k k ≥∈N ,根据等比中项列式,整理化简之后分类讨论0d =与0d >是否成立. 【详解】(Ⅰ)因为1S ,2S ,4S 成等比数列,所以2214S S S ,又因为数列{}n a 是等差数列,首项1a 为()0a a >,所以(1)2n n n d S na -=+,则()()2246a d a a d +=+,可得0d =或2d a =,当0d =时,n a a =;当2d a =时,2(1)2n a a n a an a =+-=-.(Ⅱ)设存在()*2,k k k ≥∈N,使ln kS、1ln k S +、2ln k S +成等比数列,则122ln l ln n k k k S S S ++=⋅,对任意的*n ∈N ,恒有0n S >,首项0a >,所以0d ≥因为()22222ln ln ln ln ln 22k k k k k k S S S S S S +++⋅⎡⎤+⎡⎤⋅<=⎢⎥⎢⎥⎣⎦⎣⎦()()()22211121112ln ln 22k k k k k k k k S dS a a S a S a ++++++++⎡⎤+--+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦,当0d =时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k S dS a a S a S S +++++++⎡⎤⎡⎤⎡⎤+--⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即122ln l ln n k k k S S S ++>⋅,不成立;当0d >时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k k S dS a a S dS a S S +++++++⎡⎤⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即122ln l ln n k k k S S S ++>⋅,不成立;综上,不存在()*2,k k k ≥∈N ,使得ln kS、1ln k S +、2ln k S +成等比数列.【点睛】关于等比中项性质的运用,需要注意,,a b c 三个数成等比数列,列式得2b ac =,然后再根据数列是等差还是等比数列化为基本量1,a d 或1,a q 计算.。

(常考题)北师大版高中数学必修五第二章《解三角形》测试题(有答案解析)(3)

(常考题)北师大版高中数学必修五第二章《解三角形》测试题(有答案解析)(3)

一、选择题1.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b c =且sin 1cos sin cos B BA A-=,若点O 是ABC 外一点,()0AOB θθπ∠=<<,2OA =,1OB =.则平面四边形OACB 的面积的最大值是( )A .8534+ B .4534+ C .3 D .4532+ 2.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos 8AOB ∠=-,则此山的高PO =( )A .1 kmB .2km C . 3 km D . 2 km3.如图,地面四个5G 中继站A 、B 、C 、D ,已知()62km CD =+,30ADB CDB ∠=∠=︒,45DCA ∠=︒,60ACB ∠=︒,则A 、B 两个中继站的距离是( )A .3kmB .10kmC 10kmD .62km4.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形5.如图所示,隔河可以看到对岸两目标A ,B ,但不能到达,现在岸边取相距4km 的C ,D 两点,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),则两目标A ,B 间的距离为( )km.A 85B 415C 215D .56.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c ac b +=+,则cos sin A C +的取值范围为( )A .3322⎛⎫ ⎪ ⎪⎝⎭B .222⎛⎫⎪ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .)3,27.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,2sin 3BAC ∠=,32AB =3BD =, 则cos C ( ) A .63B .33C .23D .138.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin 3cos 0b A a B -=,且三边a b c ,,成等比数列,则2a cb +的值为( ) A .24B .22C .1D .29.在ABC 中,60A ∠=︒,4AC =,23BC =ABC 的面积为 A .3B .4C .23D 310.在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若22b c ac =+,则角C 的取值范围是( ) A .π(0,)4B .ππ(,)42C .ππ(,)43D .π,64π⎛⎫ ⎪⎝⎭11.已知a 、b 、c 分别是ABC 内角A 、B 、C 的对边,sin sin 3sin A B C +=,cos cos 2a B b A +=,则ABC 面积的最大值是( )A .2B .22C .3D .2312.小华想测出操场上旗杆OA 的高度,在操场上选取了一条基线BC ,请从测得的数据①12m BC =,②B 处的仰角60°,③C 处的仰角45∘,④36cos BAC ∠=⑤30BOC ∠=︒中选取合适的,计算出旗杆的高度为( ) A .103mB .12mC .122mD .123m二、填空题13.在ABC 中,角,,A B C 分别对应边,,a b c ,ABC 的面积为S ,若,,B A C 成等差数列,3cos cos 3S a B b A =+,3c =,则a =__________. 14.甲船正离开岛A 沿北偏西10︒的方向以每小时1海里的速度航行,乙船在岛A 处南偏西50︒的B 处,且AB 的距离为2海里,若乙船要用2小时追上甲船,则乙船速度大小为每小时________海里.15.在ABC ∆中,已知角,,A B C 的对边分别为,,a b c ,且a x =,3b =,60B =,若ABC ∆有两解,则x 的取值范围是__________.16.ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若2222b a c ac +-=,3sin B =,则C =__________. 17.如图,研究性学习小组的同学为了估测古塔CD 的高度,在塔底D 和A ,B (与塔底D 同一水平面)处进行测量,在点A ,B 处测得塔顶C 的仰角分别为45︒和30,且A ,B 两点相距127m ,150ADB ∠=︒,则古塔CD 的高度为______m .18.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .19.如图,要计算某湖泊岸边两景点B 与C 的距离,由于受地形的限制,需要在岸上选取A 和D 两点,现测得5km AB =,7km AD =,60ABD ∠=︒,15CBD ∠=︒,120BCD ∠=︒,则两景点B 与C 的距离为________km.20.在ABC ∆中,A ∠,B ,C ∠所对的边长分别为a ,b ,c .设a ,b ,c 满足222b c bc a +-=和132c b =,则tan B =______ 三、解答题21.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知)2cos cos b a C c A -=.(1)求角C 的大小; (2)若2a =()2cos cos c a B b A b -=,求ABC 的面积.22.已知在△ABC 3sin (A +B )=1+2sin 22C . (1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.23.在ABC 中,角,,A B C 的对边分别为,,a b c ,已知:5,2,45b c B ==∠=︒.(1)求边BC 的长和三角形ABC 的面积;(2)在边BC 上取一点D ,使得4cos 5ADB ,求tan DAC ∠的值. 24.在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin2sin .a B b A =(1)若3,7a b ==,求c ;(2)求cos cos a C c Ab-的取值范围.25.在①2222b ac a c =+,②cos sin a B b A =,③sin cos 2B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,___________,3A π=,2b =ABC 的面积.26.已知,,A B C 为ABC 的三内角,且其对边分别为,,a b c ,若()cos 2cos 0a C c b A ++=.(1)求A ;(2)若3a =4b c +=,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由条件整理可得ABC 是等边三角形,利用OACB AOBABCS SS=+可化简得532sin 3OACB S πθ⎛⎫=-+⎪⎝⎭. 【详解】在ABC 中,sin 1cos sin cos B BA A-=, sin cos cos sin sin B A B A A ∴+=, 即sin()sin()sin sin A B C C A π+=-==A C ∴=,b c =, ∴ABC 是等边三角形,OACB AOBABCS SS∴=+2113||||sin ||222OA OB AB θ=⋅+⨯⨯()221321sin ||||2||||cos 2OA OB OA OB θθ=⨯⨯⨯++-⋅ 3sin (41221cos )4θθ=++-⨯⨯⨯ 53sin 3cos θθ=-+532sin 3πθ⎛⎫=-+⎪⎝⎭, 0θπ<<,2333πππθ∴-<-<, 则当32ππθ-=,即56πθ=时,sin 3πθ⎛⎫- ⎪⎝⎭取得最大值1,故四边形OACB 面积的最大值为53853244++=. 故选:A.【点睛】本题考查两角差的正弦公式,考查三角形的面积公式,考查余弦定理,考查三角恒等变换的应用,解题的关键是利用三角形面积公式结合三角恒等变换化简得532sin 3OACB S πθ⎛⎫=-+⎪⎝⎭ 2.A解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以)2222.532333h h h h =+-⨯⎛ ⎝⎭⨯,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.3.C解析:C 【分析】由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案. 【详解】由题意可得75DAC ∠=︒,45DBC ∠=︒, 在ADC 中,由正弦定理得362sin 223sin sin 75CD ADCAC DAC⋅∠===∠︒在BDC 中,由正弦定理得162sin 231sin 22CD BDCBC DBC⨯⋅∠===∠,在ACB △中,由余弦定理得2222cos AB AC BC AC BC ACB =+-⨯⨯⋅∠())22112112=+-⨯⨯=,所以AB =. 故选:C. 【点睛】本题考查了正弦定理、余弦定理解三角形的应用.4.D解析:D 【分析】根据角A 的平分线交BC 于E ,满足0AE BC ⋅=,得到ABC 是等腰三角形,再由2221sin 24+-==ABC a b c S ab C ,结合余弦定理求解. 【详解】因为0AE BC ⋅=, 所以AE BC ⊥,又因为AE 是角A 的平分线, 所以ABC 是等腰三角形, 又2221sin 24+-==ABCa b c Sab C , 所以2221sin cos 22a b c ab C C ab+-==,因为()0,C π∈, 所以4Cπ,所以ABC 是等腰直角三角形, 故选:D 【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.5.B解析:B 【分析】由已知可求30CAD ∠=︒,120ACD ∠=︒,由正弦定理可求AD 的值,在BCD ∆中,60CBD ∠=︒,由正弦定理可求BD 的值,进而由余弦定理可求AB 的值. 【详解】由已知,ACD ∆中,30CAD ∠=︒,120ACD ∠=︒,由正弦定理,sin sin CD ADCAD ACD =∠∠,所以·sin 4?sin120sin sin30CD ACD AD CAD ∠︒===∠︒在BCD ∆中,60CBD ∠=︒, 由正弦定理,sin sin CD BDCBD BCD=∠∠,所以·sin 4sin45sin sin60CD BCD BD CBD ∠︒===∠︒在ABD ∆中,由余弦定理,222802?·3AB AD BD AD BD ADB =+-∠=,解得:AB =所以A 与B的距离3AB =. 故选B 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题.6.A解析:A 【分析】 由余弦定理求得6B π=,并求得32A ππ<<,利用三角恒等变换思想将cos sin A C +化为以角A 为自变量的正弦型函数,利用正弦函数的基本性质可求得cos sin A C +的取值范围. 【详解】由222a cb +=+和余弦定理得222cos 2a c b B ac +-==,又()0,B π∈,6B π∴=.因为三角形ABC 为锐角三角形,则0202A C ππ⎧<<⎪⎪⎨⎪<<⎪⎩,即025062A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32A ππ<<,1cos sin cos sin cos sin cos cos 662A C A A A A A A Aπππ⎛⎫⎛⎫+=+--=++=+ ⎪ ⎪⎝⎭⎝⎭3cos 23A A A π⎛⎫=+=+ ⎪⎝⎭, 32A ππ<<,即25336A πππ<+<,所以,1sin 23A π⎛⎫<+< ⎪⎝⎭,3cos sin 2A C <+<,因此,cos sin A C +的取值范围是32⎫⎪⎪⎝⎭. 故选:A. 【点睛】本题考查三角形中代数式取值范围的计算,涉及利用余弦定理求角,解题的关键就是利用三角恒等变换思想将代数式转化为以某角为自变量的三角函数来求解,考查计算能力,属于中等题.7.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()sin sin 90cos BAC BAD BAD ∴∠=∠+︒=∠=在ABC 中,AB =BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又cos 3BAD ∠=,可得1sin 3BAD ∠=,则sin 3ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒3cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性8.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.9.C解析:C 【分析】利用三角形中的正弦定理求出角B ,利用三角形内角和求出角C ,再利用三角形的面积公式求出三角形的面积,求得结果. 【详解】因为ABC ∆中,60A ∠=︒,4AC =,BC = 由正弦定理得:sin sin BC ACA B=,4sin B=,所以sin 1B =, 所以90,30B C ︒︒∠=∠=,所以14sin 302ABC S ︒∆=⨯⨯= C. 【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得sin 1B =,从而求得90,30B C ︒︒∠=∠=,之后应用三角形面积公式求得结果.10.D解析:D【分析】由22b c ac =+,并结合余弦定理,可求得2cos c a c B =-,进而结合正弦定理可得sin sin 2sin cos C A C B =-,由()sin sin A B C =+,代入并整理得sin C ()sin B C =-,结合△ABC 为锐角三角形,可得出2B C =,从而可得π02ππ2B BC ⎧<<⎪⎪⎨⎪<+<⎪⎩,即可求出答案. 【详解】由余弦定理可得,2222cos b a c ac B =+-,所以2222cos a c ac B c ac +-=+,即2cos c a c B =-, 由正弦定理可得,sin sin 2sin cos C A C B =-, 又()sin sin sin cos sin cos A B C B C C B =+=+, 所以sin sin cos sin cos 2sin cos C B C C B C B =+-()sin cos sin cos sin B C C B B C =-=-,因为π,0,2B C ⎛⎫∈ ⎪⎝⎭,所以ππ,22B C ⎛⎫-∈- ⎪⎝⎭, 所以C B C =-,即2B C =.在锐角△ABC 中,π02ππ2B B C ⎧<<⎪⎪⎨⎪<+<⎪⎩,即π022π3π2C C ⎧<<⎪⎪⎨⎪<<⎪⎩,解得ππ64C <<.故选:D. 【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查两角和的正弦公式的运用,考查学生的计算求解能力,属于中档题.11.B解析:B 【分析】由cos cos 2a B b A +=,利用余弦定理代入化简解得2c =,再根据sin sin 3sin A B C +=,利用正弦定理得到36a b c +==,即62CA CB AB +=>=,得到点C 的轨迹是以A ,B 为焦点的椭圆,再利用椭圆的焦点三角形求解. 【详解】∵cos cos 2a B b A +=,∴222222222a c b b c a a b ac bc+-+-⋅+⋅=,∴2c =,∵sin sin 3sin A B C += ∴36a b c +==,即62CA CB AB +=>=,∴点C 的轨迹是以A ,B 为焦点的椭圆,其中长半轴长3,短半轴长22, 以AB 为x 轴,以线段AB 的中点为原点,建立平面直角坐标系,其方程为22198x y ,如图所示:则问题转化为点C 在椭圆22198x y 上运动求焦点三角形的面积问题.当点C 在短轴端点时,ABC 的面积取得最大值,最大值为22故选:B . 【点睛】本题主要考查正弦定理,余弦定理以及椭圆焦点三角形的应用,还考查了转化求解问题的能力,属于中档题.12.D解析:D 【分析】设旗杆的高度OA h =.选①②③⑤,表示出OB OC ,,在BOC ∆中,由余弦定理列方程求解;选①②③④,表示出AB AC ,,在BAC ∆中,由余弦定理列方程求解. 【详解】设旗杆的高度OA h =.选①②③⑤,则OC h =,3OB =, 在BOC ∆中,由余弦定理得2222cos BC OB OC OB OC BOC =+-⋅⋅∠,即222312233h h =+-⋅,解得123h =选①②③④,则3AB h =,2AC h =, 在BAC ∆中,由余弦定理得2222cos BC AB AC AB AC BAC =+-⋅⋅∠, 即()2223612222833h h =+-⋅⋅⋅ ⎪⎝⎭,解得123h =. 故选:D .【点睛】本题主要考查了余弦定理在解三角形的应用,考查了仰角的概念,考查了学生对概念的理解和运算求解能力,属于中档题.二、填空题13.【分析】由三角形内角和为及内角的等差关系可得再由面积公式和正弦定理可得再由余弦定理可得解【详解】由成等差数列可知即解得由可知根据正弦定理知即因此由余弦定理得故故答案为:【点睛】本题主要考查了解三角形 13【分析】由三角形内角和为π及内角的等差关系可得3A π=,再由面积公式和正弦定理可得4b =,再由余弦定理可得解.【详解】由,,B A C 成等差数列可知2A B C =+,即3A π=,解得3A π=.3cos cos S a B b A =+31sin cos cos 2ab C a B b A =+, 31sin sin sin cos 2A b C AB ⋅=sin cos sin B AC +=, 即sin 23b A =4b =,由余弦定理得22212cos 169243=132a b c bc A =+-=+-⨯⨯⨯,故13a =. 13 【点睛】本题主要考查了解三角形的相关知识,涉及等差中项的应用,属于基础题.14.【分析】由题意画出示意图三角形(假设在处追上)然后设乙船速度为由此表示出的长度求出的长度在借助于余弦定理求出的长则速度可求【详解】解:由题意设乙船的速度为且在处乙船与甲船相遇做出图形如右:所以由题意 解析:3【分析】由题意画出示意图三角形ABC (假设在C 处追上),然后设乙船速度为x ,由此表示出BC 的长度,求出AC 的长度,在借助于余弦定理求出BC 的长,则速度可求. 【详解】解:由题意,设乙船的速度为x ,且在C 处乙船与甲船相遇, 做出图形如右:所以1801050120BAC ∠=︒-︒-︒=︒.由题意知2AB =,122AC =⨯=,2BC x =,120BAC ∠=︒.在ABC 中由余弦定理得2222cos BC AB AC AB AC CAB =+-∠. 即2444222cos12012x =+-⨯⨯︒=, 所以23x =,3x =/小时). 3 【点睛】本题考查解三角形的应用举例问题,根据题意建立合适的解三角形模型,运用正余弦定理构造方程求解,属于中档题.15.【分析】利用正弦定理得到再根据有两解得到计算得到答案【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理有两解意在考查学生的计算能力 解析:(3,23)【分析】利用正弦定理得到sin 23A =,再根据ABC ∆有两解得到sin sin 123B A <=<,计算得到答案. 【详解】由正弦定理得:sinsin sin sin a b x A A B A =⇒== 若ABC ∆有两解:sin sin 13B A x <=<⇒<<故答案为(3, 【点睛】本题考查了正弦定理,ABC ∆有两解,意在考查学生的计算能力.16.【分析】首先利用余弦定理将题中条件整理得到根据正弦定理可得结合三角形内角的取值范围最后求得结果【详解】内角的对边分别为且整理得所以由正弦定理得整理得因为所以故答案为:【点睛】该题考查的是有关解三角形 解析:6π【分析】首先利用余弦定理将题中条件整理得到cos b C c =,根据正弦定理可得sin tan B C ==,结合三角形内角的取值范围,最后求得结果. 【详解】ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2222b a c ac +-=,整理得222cos 22b a c ab ac C +-==,所以cos b C c =,由正弦定理得sin cos sin B C C =,整理得sin tan B C ==,因为(0,)C π∈,所以6B π=,故答案为:6π. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理、正弦定理、已知三角函数值求角,属于中档题.17.12【分析】设用表示出在中由余弦定理列方程求出【详解】由题意知:平面设则在中由余弦定理得:即解得故答案为:12【点睛】此题考查了余弦定理以及特殊角的三角函数值熟练掌握余弦定理是解本题的关键属于中档题解析:12 【分析】设CD h =,用h 表示出,AD BD ,在ABD △中,由余弦定理列方程求出h . 【详解】由题意知:CD ⊥平面,45,30,150,,ABD DAC DBC ADB AB ∠=︒∠=︒∠=︒=设CD h =,则,AD CD h BD ====,在ABD △中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅⋅∠即(222233h h h =++,解得12h m =故答案为:12 【点睛】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键,属于中档题.18.30【分析】结合图形利用正弦定理与直角三角形的边角关系即可求出塔高AB 的长【详解】在△BCD 中∠BCD =15°∠CBD =30°∴=∴=CB =30×=30;中∠ACB =45°∴塔高AB =BC =30m 故解析:30 【分析】结合图形,利用正弦定理与直角三角形的边角关系,即可求出塔高AB 的长. 【详解】在△BCD 中,∠BCD =15°,∠CBD =30°,CD =,∴sin CD CBD ∠=sin CB CDB ∠,∴sin 30︒=()sin 1801530CB ︒︒︒--,CB =30; Rt ABC △中,∠ACB =45°, ∴塔高AB =BC =30m . 故答案为:30. 【点睛】本题考查了正弦定理和直角三角形的边角关系应用问题,是基础题.19.【分析】在中根据由余弦定理解得然后在中利用正弦定理求解【详解】在中因为由余弦定理得整理得解得或(舍去)在中因为所以由正弦定理得:所以故答案为:【点睛】本题主要考查余弦定理和正弦定理的应用还考查了运算【分析】在ABD △中,根据5km AB =,7km AD =,60ABD ∠=︒,由余弦定理解得8BD =,然后在BCD △中,利用正弦定理sin sin BD BCBCD BDC=∠∠求解.【详解】在ABD △中,因为5km AB =,7km AD =,60ABD ∠=︒, 由余弦定理得2222cos AD AB BD AB BD ABD =+-⋅⋅∠,整理得249255BD BD =+-, 解得8BD =或3BD =-(舍去),在BCD △中,因为15CBD ∠=︒,120BCD ∠=︒, 所以45BDC ∠=︒, 由正弦定理得: sin sin BD BCBCD BDC=∠∠,所以sin 45sin1203BD BC ⋅︒==︒.故答案为:3【点睛】本题主要考查余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.20.【分析】先利用余弦定理求得再由正弦定理结合已知条件求得的关系式求得即可【详解】由得又因为得由正弦定理得又因为所以所以故答案为:【点睛】本题考查了正余弦定理的综合运用属于中档题 解析:12【分析】先利用余弦定理求得3A π=,再由正弦定理()sin sin sin sin A B c C b B B+==结合已知条件,求得tan B 的关系式,求得tan B 即可.【详解】由222b c bc a +-=得2221cos 22b c a A bc +-==, 又因为()0A π∈,得3A π=.由正弦定理,得()sin sin sin sin A B c C b B B +==sin cos cos sin 1sin 2tan 2A B A B B B +==+又因为12c b =+1=2+12+1tan 2B =. 故答案为:12. 【点睛】本题考查了正余弦定理的综合运用,属于中档题.三、解答题21.(1)4π;(2)12.【分析】(1)利用正弦定理化边为角,利用三角恒等变换公式化简,得到cos 2C =,从而求得C 的大小;(2)利用余弦定理化简()2cos cos c a B b A b -=,得到222a b =,求出b ,再计算面积即可. 【详解】解:(1cos sin cos sin cos B C A C C A -=.∴()cos sin cos cos sin sin B C A C A C A C =+=+.∵πA C B +=-,∴()sin sin A C B +=. ∴cos sin B C B =.又∵sin 0B ≠,∴cos 2C =. ∵()0,πC ∈,∴π4C =. (2)由已知及余弦定理,得222222222a c b b c a ac bc b ac bc +-+-⋅-⋅=.222222222a cb bc a b +-+--= 化简,得222a b =.又∵a =∴1b =.∴ABC的面积111sin 12222ABC ab C S ==⨯=△.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.22.(1)3π;(2) 【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin (C +6π)=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出AIB ∠,设出ABI ∠,将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值可得解.【详解】 (1)∵3sin (A +B )=1+2sin 22C,且A +B +C=π, ∴3sin C =1+1﹣cos C =2﹣cos C ,即3sin C +cos C =2,∴sin (C +6π)=1. ∵C ∈(0,π),∴C +6π∈(6π,76π),∴C +6π=2π,即C =3π.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,sin ABACB ∠=sin3AB π=2×2=4,∴AB =23, ∵∠ACB =3π,∴∠ABC +∠BAC =23π,∵∠BAC 与∠ABC 的内角平分线交于点Ⅰ, ∴∠ABI +∠BAI =3π,∴∠AIB =23π,设∠ABI =θ,则∠BAI =3π﹣θ,且0<θ<3π, 在△ABI 中,由正弦定理得,sin()3BIπθ-=sin AI θ=sin ABAIB ∠23sin3π4, ∴BI =4sin (3π﹣θ),AI =4sin θ, ∴△ABI 的周长为3+4sin (3π﹣θ)+4sin θ=3(32cos θ﹣12sin θ)+4sin θ =33θ+2sin θ=4sin (θ+3π)3 ∵0<θ<3π,∴3π<θ+3π<23π,∴当θ+3π=2π,即6πθ=时,△ABI 的周长取得最大值,最大值为3,故△ABI 的周长的最大值为3. 【点睛】关键点点睛:将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值是解题关键.23.(1)3BC =;32ABCS =;(2)211. 【分析】(1)法一:ABC 中,由余弦定理求BC 的长,应用三角形面积公式求ABC 的面积;法二:过A 作出高交BC 于F ,在所得直角三角形中应用勾股定理求,BF FC ,即可求BC ,由三角形面积公式求ABC 的面积;(2)由正弦定理、三角形的性质、同角三角函数的关系,法一:求sin C 、cos C 、sin ADB ∠、cos ADB ∠,由sin sin()DAC ADB C ∠=∠-∠结合两角差正弦公式求值即可;法二:求tan C 、tan ADB ∠,再由tan tan(())DAC ADC C π∠=-∠+∠结合两角和正切公式求值即可;法三:由(1)法二所作的高,直角△AFD 中求sin ADB ∠,进而求sin ADC ∠,再根据正弦定理及同角三角函数关系求值即可. 【详解】(1)法一:在ABC 中,由5,2,45b c B ==∠=︒,由余弦定理,2222cos b a c ac B =+-,得2252222a a =+-⨯⨯⨯,解得3a =或1a =-(舍),所以3BC a ==,1123sin 322222ABCSac B ==⋅⋅⋅=. 法二:(1)过点A 作出高交BC 于F ,即ABF 为等腰直角三角形,2AB =1AF BF ==,同理△AFC 为直角三角形,1,5AF AC ==2FC ∴=,故3BC BF FC =+=,13||||22ABCSBC AF =⋅=. (2)在ABC 中,由正弦定理sin sin b c B C =52=,得5sin C =,又52b c =>=,所以C ∠为锐角,法一:由上,25cos 1sin 5C C =-=,由4cos 5ADB (ADB ∠为锐角),得2163sin 1cos 1255ADB ADB ∠=-∠=-=, sin sin()DAC ADB C ∠=∠-∠3254525sin cos cos sin 55ADB C ADB C =∠⋅∠-∠⋅∠=⨯-⨯=, 由图可知:DAC ∠为锐角,则2115cos 1sin DAC DAC ∠=-∠=,所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.法二:由上,1tan 2C =,由4cos 5ADB (ADB ∠为锐角),得3tan 4ADB ∠=, ADB ADC π∠+∠=,3tan 4ADC ∴∠=-,故tan tan(())DAC ADC C π∠=-∠+∠tan()tan()tan()1tan()tan()ADC C ADC C ADC C ∠+∠=-∠+∠=--∠⋅∠312423111142⎛⎫-+ ⎪⎝⎭=-=⎛⎫--⋅ ⎪⎝⎭.法三:△AFD 为直角三角形,且4||1,cos 5AF ADB =∠=,所以2163sin 1cos 1255ADB ADB ∠=-∠=-=, 5423,cos ,,sin sin 3335AF AD DF AD ADB CD ADC ADB ∴===⋅∠==∠=∠,在ADC 中,由正弦定理得,sin sin CD AC DAC ADC =∠∠,故25sin 25DAC ∠=,由图可知DAC ∠为锐角,则2115cos 1sin 25DAC DAC ∠=-∠=,所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.【点睛】关键点点睛:(1)应用余弦定理的边角关系或勾股定理求边长,由三角形面积公式求面积;(2)综合应用三角形性质、正弦定理、同角三角函数关系以及三角恒等变换求三角函数值. 24.(1)2c =;(2)()1,1-. 【分析】(1)由正弦定理及二倍角公式可得1cos 2B =,进而得解; (2)根据正弦定理边角互化可得cos cos 223a C c A A b π-⎛⎫∴=-⎪⎝⎭,结合锐角三角形的范围可得解. 【详解】(1)由sin 2sin a B b A =,得sin sin2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=,由余弦定理2222cos b c a ac B =+-, 得27923cos3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍), 故2c =符合. (2)由(1)得3B π=,所以23C A π=-,cos cos sin cos cos sin 22sin 3a C c A A C A C A b B π--⎛⎫∴===- ⎪⎝⎭, ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 2232A π⎛⎫<-< ⎪⎝⎭, cos cos 11a C c Ab-∴-<<,故cos cos a C c Ab-的取值范围是()1,1-.【点睛】关键点点睛:本题的解题关键是熟练应用正余弦定理进行边角互化,正确分析锐角三角形中角的范围是解题的关键.25.条件选择见解析;ABC【分析】选择①,用余弦定理求得B 角,选择②,用正弦定理化边为角后求得B 角,选择③用两角和的正弦公式变形后求得B 角,然后利用正弦定理求得a ,再由诱导公式与两角和的正弦公式求得sin C ,最后由面积公式计算出面积. 【详解】解:(1)若选择①,222b a c =+由余弦定理,222cos 2a c b B ac +-===因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭所以11sin 22ABC S ab C ===△. (2)若选择②cos sin a B b A =,则sin cos sin sin A B B A =, 因为sin 0A ≠,所以sin cos B B =, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△.(3)若选择③sin cos B B +=4B π⎛⎫+= ⎪⎝⎭sin 14B π⎛⎫+= ⎪⎝⎭, 因为()0,B π∈,所以5,444B πππ⎛⎫+∈ ⎪⎝⎭, 所以42B ππ+=,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△. 【点睛】关键点点睛:本题考查正弦定理、余弦定理、三角形的面积公式,解题中要注意条件与结论之间的联系,确定选用的公式与顺序.用正弦定理进行边角转换是一种重要技巧,它的目的是边角分离,公式应用明确.本题是求三角形面积,一般要知道两边和夹角的正弦,在已知一角和一边情况下还需要求得一条边长及两边夹角,这样我们可以采取先求B 角,再求a 边和sin C ,从而得面积. 26.(1)23π;(2【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin 2sin cos 0B B A +=,由于sin 0B ≠,可求cos A 的值,结合()0,A π∈,可求A 的值.(2)由已知利用余弦定理可求bc 的值,进而根据三角形的面积公式即可得解. 【详解】解:(1)∵()cos 2cos 0a C c b A ++=,∴由正弦定理可得:()sin cos sin 2sin cos 0A C C B A ++=, 整理得sin cos sin cos 2sin cos 0A C C A B A ++=, 即:()sin 2sin cos 0A C B A ++=, 所以sin 2sin cos 0B B A +=, ∵sin 0B ≠,∴1cos 2A =-,∵()0,A π∈,∴23A π=.(2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-, ∴2212()22cos 3b c bc bc π=+--,即有1216bc =-, ∴4bc =,∴ABC 的面积为112sin 4sin223S bc A π==⨯⨯= 【点评】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解题的过程中注意以下公式的灵活应用:22()22cos a b c bc bc A =+--、()sin sin A C B +=、()cos cos A C B +=-.。

新北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)

新北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC 的面积为3154,则a =( ) A .2B .3C .4D .52.在ABC ∆中,若sin (sin cos )sin 0A B B C +-=,sin cos 20B C +=,4a =,则ABC ∆的面积为( )A .243+B .43+C .623+D .843+3.如图,四边形ABCD 中,CE 平分ACD ∠,23AE CE ==,3DE =,若ABC ACD ∠=∠,则四边形ABCD 周长的最大值( )A .24B .1233+C .183D .(3534.2020年5月1日起,新版《北京市生活垃圾管理条例》实施,根据该条例:小区内需设置可回收垃圾桶和有害垃圾桶.已知李华要去投放这两类垃圾,他从自家楼下出发,向正北方向走了80米,到达有害垃圾桶,随后向南偏东60°方向走了30米,到达可回收物垃圾桶,则他回到自家楼下至少还需走( ) A .50米B .57米C .64米D .70米5.设,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=与sin sin 0b x y B C ⋅-⋅+=位置关系是( ) A .平行B .重合C .垂直D .相交但不垂直6.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒7.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin 3sin sin A C B A C +-=,1b =,则223a c -的最小值为( )A .4-B .23-C .2-D .3-8.已知锐角ABC 的内角,,A B C 的对边分别为,,a b c .若()2c a a b =+,则2cos cos()AC A -的取值范围是( )A .2,1⎛⎫⎪⎪⎝⎭B .13,2⎛⎫⎪⎪⎝⎭ C .23,⎛⎫⎪⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭9.在△ABC 中,a 2tanB =b 2tanA ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形10.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m11.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4312.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( ) A .33B .332C .32D 3二、填空题13.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,133sin sin 14B C +=,则bc 的值为______. 14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.16.在ABC 中,2AB =,30C ︒=,则AB BC 的取值范围是________. 17.在锐角ABC ∆中,2AC =,22AB =D 在BC 边上,并且2BD DC =,6π∠=CAD ,则ABC ∆的面积为__________.18.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足22()a b c S --=,b +c =2,则S 的最大值是________19.在ABC 中,2AB =,4AC =.BC 边上的中线2AD =,则=ABC S △_____. 20.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若2b =,2a c =,则当角C 取最大值时,△ABC 的面积为__________.三、解答题21.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若1||2AB AC AC ⋅=,且1c =. 在①cos cos 2a C c A +=;② sin 3cos b C c B c =;③ sin 2sin a B c A =这三个条件中任选一个,补充在下面问题中,并解答问题. (1)求角A ;(2)若___________,角B 的平分线交AC 于点D ,求BD 的长. (注:如果选择多个条件分别解答,按第一个解答计分)22.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A 为锐角,22sin cos 2c a B C ab--=. (1)求A ;(2)若34b c =,且BC 边上的高为23ABC 的面积. 23.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积. 24.已知ABC 的内角,,A B C 的对边分别为,,a b c ,2cos cos cos aA b C c B=+.(1)求角A 的大小;(2)若a =11b c+的取值范围. 25.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin aS A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分.26.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin sin A C B A C +=+.(1)求角B 的大小;(2)若ABC 为锐角三角形,b =2a c -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1sin 2ABCS bc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,sin A ==,1131sin 2242ABCSbc A a a ==⨯⨯=,解得:4a =. 故选:C 2.C解析:C 【分析】在ABC ∆中,()sin sin B A C +=,化简sin (sin cos )sin 0A B B C +-=可得4A π=,又sin cos 20B C +=和34B C π+=,解得3B π=,512C π=,最后通过正弦定理求出1)c =,再根据三角形面积公式得到面积.【详解】由sin (sin cos )sin 0A B B C +-=得:sin sin sin cos sin cos cos sin sin sin cos sin 0A B A B A B A B A B A B ⋅+⋅-⋅-⋅=⋅-⋅=,∴sin cos A A =,又0()A π∈,,则4A π=,则34B C π+=, 又3sin cos 2sin 22B C C π⎛⎫=-=-⎪⎝⎭,则3222B C k ππ=-+或222B C k ππ=-+,(0)B C π∈、,,则322B C π+=或22C B π-=,又34B C π+=,则取22C B π-=,得3B π=,512C π=,又4a =,根据正弦定理,sin 1)sin a Cc A ⋅==,∴1sin 62ABC S ac B ∆=⋅=+ 故选C. 【点睛】思路点睛:在三角形中,由于A B C π++=,根据诱导公式,()sin sin A B C +=,()sin sin A C B +=,()sin sin C B A +=,()cos cos A B C +=-,()cos cos A C B +=-,()cos cos C B A +=-等,以上常见结论需要非常熟练. 3.D解析:D 【分析】ACD △和CDE △中,结合正弦定理可求得6ACE DCE π∠=∠=,这样可得,DC AC ,在ABC 中,由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,应用基本不等式可得AB BC +的最大值,从而可得四边形ABCD 周长的最大值. 【详解】设ABC ACD ∠=∠2θ=,(0,)2πθ∈,∵CE 平分ACD ∠,∴DCE ACE θ∠=∠=, 又AE CE =,∴EAC ACE θ∠=∠=,AE CE ==DE =AD =ACD △中,由正弦定理得sin sin CD AD DAC ACD =∠∠,则CD ==, CDE △中,2DEC EAC ECA θ∠=∠+∠=,由正弦定理得sin sin CD DE CED DCE =∠∠,则CD θ==,∴θ=,解得cos θ=,6πθ=,∴3CD ==,ACD △中,由角平分线定理得AC AE CD DE ==236AC =⨯=. ABC 中,23ABC πθ∠==,由余弦定理得2222cos 3AC AB BC AB BC π=+-⋅,即2222223136()3()()()44AB BC AB BC AB BC AB BC AB BC AB BC AB BC =+-⋅=+-⋅≥+-+=+,当且仅当AB BC =时等号成立,12AB BC +≤,此时ABC 为等边三角形.∴AB BC CD DA +++的最大值为12315++=+ 故选:D . 【点睛】本题主要考查正弦定理、余弦定理的应用,考查基本不等式求最值,在平面图形中充分利用平面几何的知识可减少计算量.本题解题关键是求出6ACE π∠=.4.D解析:D 【分析】画出图形,在ABC 中,利用余弦定理,即可求解AC 的长,得到答案. 【详解】由题意,设李华家为A ,有害垃圾点为B ,可回收垃圾点为C , 则李华的行走路线,如图所示,在ABC 中,因为80,30,60AB BC B ===, 由余弦定理可得:70AC ===米, 即李华回到自家楼下至少还需走70米. 故选:D .【点睛】本题主要考查了解三角形的实际应用,以及余弦定理的应用,其中解答中作出示意图,结合余弦定理求解是解答的关键,着重考查推理与运算能力.5.C解析:C 【解析】,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=斜率为:sin Aa-, sin sin 0b x y B C ⋅-⋅+=的斜率为:sin bB, ∵sin sin A ba B-=﹣1,∴两条直线垂直.故选C .6.A解析:A 【详解】由题设可得060B =311sin sin 2A A =⇒=,则030A =或0150A =,但a b AB <⇔<,应选答案A .7.A解析:A 【分析】由222sin sin sin 3sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到223a c -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin 3sin sin A C B A C +-=,∴2223a c b ac +-=,∴2222a c b ac +-=∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B ac π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos 2C C ⎛⎫=- ⎪ ⎪⎝⎭4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-. 故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.8.C解析:C 【分析】由余弦定理和正弦定理进行边化角,结合诱导公式和两角和与差的正弦公式可得2C A =,由锐角三角形得出A 角范围,再代入化简求值式,利用余弦函数性质可得结论. 【详解】∵2()c a a b =+,∴22222cos c a ab a b ab C =+=+-,∴(12cos )b a C =+,由正弦定理得sin sin (12cos )B A C =+,∴sin()sin (12cos )sin cos cos sin A C A C A C A C +=+=+,整理得sin sin cos cos sin sin()A C A C A C A =-=-,∵,A C 是三角形的内角,∴A C A =-,即2C A =,又三角形是锐角三角形,∴2222A A A πππ⎧<⎪⎪⎨⎪--<⎪⎩,解得64A ππ<<,由2C A =得22cos cos cos cos()cos A A A C A A ==∈-⎝⎭. 故选:C . 【点睛】本题考查正弦定理和余弦定理的边角转换,考查两角与差的正弦公式,余弦函数的性质,考查学生分析问题解决问题的能力,属于中档题.9.D解析:D 【分析】根据正弦定理22tan ta in n s sin B B A A =⋅⋅,化简得到sin 2sin 2A B =,得到答案. 【详解】22tan tan a B b A =,故22tan ta in n s sin B B A A =⋅⋅,即sin 2sin 2A B =.故22A B =或22A B π+=,即A B =或2A B π+=.故选:D . 【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力.10.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBDsin 45BC302sin 45203BC3tan 3020320AB BC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.11.A解析:A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C .【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan2CC C ⨯===---, 故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.12.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c ≥ac ≤6.当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 62222ABCSac B =≤⨯⨯=, ∴△ABC故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.二、填空题13.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或解析:40 【分析】首先根据正弦定理求2R ,并表示sin sin 22b c B C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin a R R A =⇒==,根据正弦定理可知1322b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-,得249133bc =-,解得:40bc =. 故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC AB θ=⋅⋅︒==OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=+13(sin )60)2θθθ==-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2 【分析】直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个. 故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.16.【分析】首先根据正弦定理得化简得到再求其范围即可【详解】由正弦定理得:所以所以因为所以即故的取值范围是故答案为:【点睛】本题主要考查正弦定理的应用同时考查三角函数的值域问题属于中档题 解析:[6,2]-【分析】首先根据正弦定理得4sin =BC A ,化简得到()4sin 2302⋅=+-AB BC A ,再求其范围即可. 【详解】 由正弦定理得:4sin sin ==AB BCC A,所以4sin =BC A . 所以()cos 1808sin cos ⋅=⋅-=-AB BC AB BC B A B()()8sin cos 180308sin cos 30⎡⎤=--+=+⎣⎦AA A A 218sin sin cos 4sin 22⎛⎫=-=- ⎪⎪⎝⎭A A A A A A ()()221cos 24sin 2302=--=+-A A A因为0150<<A ,所以3030330<2+<A , 即()1sin 2301-≤+≤A ,()64sin 23022-≤+-≤A .故AB BC 的取值范围是[6,2]-. 故答案为:[6,2]- 【点睛】本题主要考查正弦定理的应用,同时考查三角函数的值域问题,属于中档题.17.【分析】在中由正弦定理可得到在中由正弦定理可得到由是锐角可知结合三角形的面积公式可得到答案【详解】在中由正弦定理得:则在中由正弦定理得:则因为所以由于三角形是锐角三角形故则故的面积为【点睛】本题考查 1【分析】在ADC ∆中,由正弦定理sin sin DC AC CAD ADC =∠∠,可得到1sin ADC DC∠=,在ADB ∆中,由正弦定理sin sin DB ABBAD ADB=∠∠,可得到12sin sin 2DCDB ADBDC BAD AB ∠∠===,由BAD ∠是锐角,可知4BAD π∠=,46BAC ππ∠=+,结合三角形的面积公式可得到答案.【详解】在ADC ∆中,由正弦定理得:sin sin DC ACCAD ADC=∠∠,则11sin 2sin6ADC DC DCπ∠=⨯⨯=, 在ADB ∆中,由正弦定理得:sin sin DB AB BAD ADB =∠∠,则sin sin DB ADBBAD AB ∠∠=,因为1sin sin ADB ADC DC∠=∠=,2BD DC =,所以122sin 22DCDC BAD ∠==,由于三角形是锐角三角形,故4BAD π∠=,则26sin sin 46BAC ππ+⎛⎫∠=+=⎪⎝⎭,故ABC ∆的面积为126222312+⨯⨯⨯=+.【点睛】本题考查了正弦定理在解三角形中的应用,考查了三角形的面积公式,属于中档题.18.【分析】结合余弦定理同角三角函数的基本关系式和基本不等式先求得然后求得的最大值【详解】由余弦定理得依题意所以由于是三角形的内角所以所以由解得所以当且仅当时等号成立所以的最大值为故答案为:【点睛】本小 解析:417【分析】结合余弦定理、同角三角函数的基本关系式和基本不等式,先求得sin A ,然后求得S 的最大值. 【详解】由余弦定理得2222cos a b c bc A =+-, 依题意221()sin 2a b c S bc A --==,2b c +=, ()()222212cos 221cos sin sin 41cos 2b c bc A b c bc bc A bc A A A +---+=-=⇒=-,所以1cos 1sin 4A A =-,221sin 1sin 14A A ⎛⎫+-= ⎪⎝⎭,2171sin sin 0162A A -=,由于A 是三角形ABC 的内角,所以sin 0A >,所以由2171sin sin 0162A A -=解得8sin 17A =.所以21444sin 21717217b c S bc A bc +⎛⎫==≤⨯= ⎪⎝⎭,当且仅当1b c ==时等号成立,所以S 的最大值为417. 故答案为:417【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值,属于中档题.19.【分析】中分别用余弦定理表示再利用解边长再根据余弦定理求角最后根据三角形面积公式求解【详解】设中中解得:中故答案为:【点睛】本题考查解三角形重点考查数形结合分析问题计算能力属于基础题型 解析:15【分析】ABD △,ADC 中,分别用余弦定理表示cos ADB ∠,cos ADC ∠,再利用cos cos 0ADB ADC ∠+∠=解边长BC ,再根据余弦定理求角BAC ∠,最后根据三角形面积公式求解. 【详解】 设BD DC x ==,ABD △中,22222cos 224x xADB x +-∠==⋅⋅,ADC 中,22222412cos 224x x ADC x x+--∠==⋅⋅ 180ADB ADC ∠+∠=,cos cos 0ADB ADC ∴∠+∠=,212044x x x -∴+=,解得:6x =26BC ∴=, ABC 中,(22224261cos 2244BAC +-∠==-⨯⨯,sin BAC ∴∠==1242ABCS∴=⨯⨯=【点睛】本题考查解三角形,重点考查数形结合分析问题,计算能力,属于基础题型.20.【分析】由余弦定理可得再利用基本不等式的性质可得的最大值再利用三角形面积计算公式即可得出【详解】解:在中由余弦定理可得:时取等号此时当取最大值时的面积故答案为:【点睛】本题考查了余弦定理基本不等式的【分析】由余弦定理可得cos C ,再利用基本不等式的性质可得C 的最大值,再利用三角形面积计算公式即可得出. 【详解】解:2b =,2a c =,∴在ABC ∆中,由余弦定理可得:22222441311cos ()22222242a b c c c c C ab c c +-+-===+⨯⨯⨯,(0,)C π∈,3c =时取等号.此时,3a =, 06Cπ∴<,∴当C 取最大值6π时,ABC 的面积11222S =⨯=.【点睛】本题考查了余弦定理、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)3A π=; (2 【分析】(1)由1||2AB AC AC ⋅=,得到1cos 2AB A =,进而求得1cos 2A =,即可求解;(2)分别选①②③,结合正弦定理和余弦定理,求得2B π=,得到4ABD π∠=,进而得到sin ADB ∠的值,在ABD △中结合正弦定理,即可求解. 【详解】 (1)由1||2AB AC AC ⋅=,可得1cos ||2AB AC A AC ⋅=,所以1cos 2AB A =,又由1c =,所以1cos 2A =, 因为(0,)A π∈,所以3A π=. (2)若选①:因为cos cos 2a C c A +=,由余弦定理可得222222222a b c b c a a c ab bc+-+-⋅+⋅=,整理得220b b,解得2b =,又由余弦定理可得2222212cos 2122132a b c bc A =+-=+-⨯⨯⨯=,即a = 因为222a c b +=,所以2B π=,又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 若选②:由sin cos bC B c =,根据正弦定理可得sin sin cos sin B C C B C =, 因为(0,)Cπ∈,可得sin 0C >,所以sin1B B =, 可得sin 2sin()13B B B π-=-=,即1sin()32B π-=,因为2333B πππ-<-<,所以36B ππ-=,可得2B π=又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 若选③:由sin 2sin a B c A =,根据正弦定理可得sin sin 2sin sin A B C A =, 因为(0,)C π∈,可得sin 0C >,可得sin 2sin B C =, 又由()()3C A B B πππ=-+=-+,可得sin 2sin 2sin()sin 3B C B B B π==+=+,所以cos 0B =,因为(0,)B π∈,所以2B π=.又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 【点睛】方法点睛:对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用. 22.(1)6π;(2) 【分析】(1)先用余弦定理化余弦为边,再用正弦定理化边为角从而求得A ;(2)由余弦定理用c 表示a ,然后把三角形的面积用两种方法表示求得c ,从而可计算出面积. 【详解】(1)由22sin cos 2c a B C ab--=得222sin 2cos ab B ab C c a -=-,由余弦定理得222222sin ab B c a b c a +--=-,所以2sin a B b =, 由正弦定理得2sin sin sin A B B =,B 是三角形内角,sin 0B ≠, 所以1sin 2A =,又A 为锐角,所以6A π=.(2)由(1)2222232cos 2cos 166a b c bc A c c c π=+-=+-⋅⋅2716c =,4a =,所以11sin 22ABC S bc A a ==⨯△2111222⨯=⨯c =b == 111sin 222ABC S bc A ===△【点睛】思路点睛:本题考查正弦定理、余弦定理、三角形面积公式.利用正弦定理和余弦定理进行边角互化是解题关键.三角形的面积采取了二次计算,通过不同的计算方法得出等式,从而求解.这是一种解题技巧.23.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 22ABCSac B ===. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件. 24.(1)3A π=;(2)⎫+∞⎪⎪⎣⎭. 【分析】(1)利用正弦定理边化角可化简已知关系式求得cos A ,结合A 的范围可求得结果;(2)解法一:利用正弦定理边化角可整理得到1161sin 262B b c B ππ⎛⎫+ ⎪⎝⎭+=⎛⎫-+⎪⎝⎭,利用B 的范围可求得sin 6B π⎛⎫+⎪⎝⎭的范围,代入整理可求得结果; 解法二:利用余弦定理和基本不等式可求得3bc ≤,整理得到11b c +=合二次函数的性质可求得所求的范围. 【详解】(1)由正弦定理得:()sin sin 2cos sin cos sin cos sin A AA B C C B B C ==++. B C A π+=-,()sin sin B C A ∴+=,2cos 1A ∴=,即1cos 2A =, ()0,A π∈,3A π∴=.(2)解法一:由正弦定理知,2sin sin sin sin 3a b c A B C ====,sin sin 1111sin sin 3612sin 2sin 2sin sin 2sin sin sin 2362B B B B C b c B C B C B B B ππππ⎛⎫⎛⎫+++ ⎪ ⎪+⎝⎭⎝⎭∴+=+===⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭.3A π=,20,3B π⎛⎫∴∈ ⎪⎝⎭. 令6B πθ=+,则5,66ππθ⎛⎫∈ ⎪⎝⎭,则1sin ,12θ⎛⎤∈ ⎥⎝⎦.则11cos 24sin sin 22sin 22b cθθθθ⎫+====+∞⎪⎪⎣⎭-+--+⎪⎝⎭.解法二:3a =,3A π=,∴由余弦定理知:2232b c bc bc bc +-=≥-(当且仅当b c =时取等号), 3bc ∴≤,()233b c bc +=+,则113bc ≥,11b c b c bc +∴+===.11b c ∴+的取值范围为⎫+∞⎪⎪⎣⎭. 【点睛】方法点睛:求解与边长相关的取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;将所求式子化为符合基本不等式的形式或配凑成函数的形式来进行求解;应用此方法时,需注意基本不等式等号成立的条件.25.2+ 【分析】利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长. 【详解】由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A =因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =, 又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴= 由正弦定理得sin sin sin a b c A B C ==代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C = 又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=. 由正弦定理得:sin sin sin a b c A B C ==,代入1,b c ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键. 26.(1)3B π=;(2)()0,3.【分析】(1)利用正弦定理边角互化,再利用余弦定理求出角B 的大小;(2)利用正弦定理结合三角恒等变换化简2a c -,再由锐角三角形得出C 的范围,进而得出答案.【详解】(1)由已知222sin sin sin sin sin A C B A C +=+,结合正弦定理,得222a c b ac +=+. 再由余弦定理,得2221cos 222a cb ac B ac ac +-===,又()0,B π∈,则3B π=.(2)由3B π=,b = 224sin 2sin 4sin 2sin 3a c AC C C π⎛⎫-=-=-- ⎪⎝⎭224sin cos cos sin 2sin 33C C C C ππ⎛⎫=--= ⎪⎝⎭因为ABC 为锐角三角形,则62C ππ<<,则0cos C << 所以2a c -的取值范围为()0,3.。

北师大版数学必修5试题及答案

北师大版数学必修5试题及答案
2(1 2n ) n …………………… 12 分 1 2
2n1 n 2 ……………… 14 分

17.在△ABC 中,∠ABC=155o-125o=30o,…………1 分
125o 155o
B
∠BCA=180o-155o+80o=105o,
符合题目要求的)
1. 已知等差数列{an}中, a7 a9 16, a4 1,则a12 的值是
A 。 15
B 。 30
C. 31
D. 64
2。
若全集 U=R,集合 M=
x x2 4
,S=
x
3 x x 1
0
,则
M
ðU
S
=
A.{x x 2} B。 {x x 2或x 3} C。 {x x 3}
bn1 bn 2,即数列bn是等差数列,又b1=1,bn 2n 17分
(II)cn=(2n 1)2n ,
Tn=a1b1 a2b2 anbn 1 2 3 22 5 23 (2n 1)2n , ……9 分
④当 a=1 时,不等式的解为 .
………………………12 分
综上,当 a=0 时,不等式的解集为(1,+∞);当 a<0 时,不等式的解集为(-∞, 1 )∪(1,+
a
∞);当 0<a<1 时,不等式的解集为(1, 1 );当 a〉1 时,不等式的解集为( 1 ,1);当 a=1 时,
a
a
不等式的解集为 。
所以 log2 (an 1) 1 (n 1) 1 n, an 2n 1. ………………………………7 分 (2) an 2n 1. Sn a1 a2 an (2 1) (22 1) (2n 1) ………………9 分 (2 22 2n ) n

高中数学北师大版必修5测试卷含答案

高中数学北师大版必修5测试卷含答案

一、选择题(本大题共12小题,每小题3分,共36分)1.已知数列{a n }满足a 1=1,a n =1+11-n a (n >1,n ∈N ∗),则a 3=( )A 、2B 、23C 、35D 、58 2.已知a =2+7,b =3+6,则下列结论正确的是( )A 、a =bB 、a >bC 、a <bD 、不能确定3.已知集合A ={x|(x −3)(x +1)<0},B ={x|2x +1>0},则A ∩B =( )A 、(−3,21)B 、(−3,−21) C 、(21,3) D 、(−21,3) 4.在△ABC 中,若BC =23,AC =5,∠C =30°,则AB =( )A 、7B 、23C 、19D 、31037-5.已知等差数列{a n }的前n 项和S n ,若a 1=1,a 4+a 6=18,则S 5=( )A 、25B 、39C 、45D 、546.若a ,b ,c ∈R ,则下列结论正确的是( )A 、若a >b ,则ac 2>bc 2B 、若a <b ,则a 1>b1 C 、若a >b ,c >d ,则ac >bdD 、若a >b ,则a −c >b −c7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为21a 2t ,则t =( ) A 、C B A sin sin sin B 、BC A sin sin sin C 、A C B sin sin sinD 、A C B cos sin sin 8.设等比数列{a n }前n 项和为S n ,且S 1=18,S 2=24,则S 4等于( )A 、376B 、379C 、380D 、382 9.三角形的一个角为60°,夹这个角的两边之比为8:5,则这个三角形的最大角的正弦值为( )A 、23B 、734C 、1435D 、78 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若k A sin =3sin B =4sin C (k 为非零实数),则下列结论错误的是( )A 、当k =5时,△ABC 是直角三角形B 、当k =3时,△ABC 是锐角三角形C 、当k =2时,△ABC 是钝角三角形D 、当k =1时,△ABC 是钝角三角形11.已知正数a ,b 满足ab =a +b +3,则ab 的最小值是( )A 、9B 、10C 、11D 、1212.已知数列{a n }满足a 1=1,a 1 n •a n =2n (n ∈N*),S n 是数列{a n }的前n 项和,则( )A 、a 2019=22019B 、a 2019=21010C 、S 2019=21010−3 D 、S 2019=21011−3 二、填空题(本大题共4小题,每小题3分,共12分)13.若数列的前4项分别是21,41,81,161,则它的一个通项公式是___________. 14.在锐角△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若b =2asinB ,则角A 等于__________.15.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的71是较小的两份之和,则最小一份的量为_________.16.已知△ABC 中,BC =2,AB =2AC ,则△ABC 面积的最大值为___________三、解答题(本大题共7小题,共52分)17.如图,在△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°(1)求∠BAC 的度数;(2)求AD 的长度.18.已知等比数列{a n }的前n 项和为S n ,且S 1,S 3,S 2成等差数列,(1)求数列{a n }的公比q ;(2)若a 1−a 3=6,求数列{a n }的通项公式.19.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔20250m ,速度为1000km/h ,飞行员在A 处先看到山顶C 的俯角为18°30',经过150s 后又在B 处看到山顶C 的俯角为81°(1)求飞机在B 处与山顶C 的距离(精确到1m );(2)求山顶的海拔高度(精确到1m )参考数据:sin18.5≈0.32,cos18.5≈0.95,sin62.5≈0.89,cos62.5°≈0.46,sin81°≈0.99,cos81°≈0.1620.已知数列{a n }满足n a 1−11+n a =12+⋅n n a a ,数列{b n }满足S n +b n =2,其中S n 为{b n }的前n 项和,且a 1=b 1=1,n ∈N ∗(1)求数列{a n }和{b n }的通项公式(2)求数列{a n ⋅b n }的前n 项和S n .21.如图,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,点A ,B 分别在半径OP ,OQ 上,且OACB 是平行四边形,记∠COP =α,四边形OACB 的面积为S ,问当α取何值时,S 最大?S的最大值是多少?22.如图,某地三角工厂分别位于边长为2的正方形ABCD 的两个顶点A ,B 及CD 中点M 处.为处理这三角工厂的污水,在该正方形区域内(含边界)与A ,B 等距的点O 处建一个污水处理厂,并铺设三条排污管道AO ,BO ,MO ,记铺设管道总长为y 千米.(1)按下列要求建立函数关系式:(i )设∠BAO =θ,将y 表示成θ的函数;(ii )设MO =2−x ,将y 表示成x 的函数;(2)请你选用一个函数关系,确定污水厂位置,使铺设管道总长最短.参考答案1-5 BCDAA 6-10 DCCBD 11-12 AD 13.n n a 21=14.︒30 15.35 16.34 17.(1)︒120(2)218.(1)21(2)41)21()1(--⋅-n n 19.(1)14981 (2)5419 20.(1)12-=n a n 1)21(-=n n b (2)1)21()32(6-⋅+-n n 21.6π 63 22.33 32+。

高中数学北师大版高二必修5_第三章4.2、4.3_简单线性规划及其应用_作业含解析

高中数学北师大版高二必修5_第三章4.2、4.3_简单线性规划及其应用_作业含解析

⾼中数学北师⼤版⾼⼆必修5_第三章4.2、4.3_简单线性规划及其应⽤_作业含解析⾼中数学北师⼤版⾼⼆必修5_第三章4.2、4.3_简单线性规划及其应⽤_作业含解析[学业⽔平训练]1.设x ,y 满⾜2x +y ≥4,x -y ≥-1,x -2y ≤2,则z =x +y ( )A .有最⼩值2,最⼤值3B .有最⼩值2,⽆最⼤值C .有最⼤值3,⽆最⼩值D .既⽆最⼩值,也⽆最⼤值解析:选B.由图像可知z =x +y 在点A 处取最⼩值,即z m in =2,⽆最⼤值.2.设变量x ,y 满⾜x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最⼤值为( )A .20B .35C .45D .55 解析:选D.作出可⾏域如图所⽰.令z =2x +3y ,则y =-23x +13z ,要使z 取得最⼤值,则需求直线y =-23x +13z 在y 轴上的截距的最⼤值,移动直线l 0:y =-23x ,可知当l 0过点C (5,15)时,z 取最⼤值,且z m ax =2×5+3×15=55,于是2x +3y 的最⼤值为55.故选D.3.(2013·⾼考课标全国卷Ⅱ)设x ,y 满⾜约束条件x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最⼩值是( )A .-7B .-6C .-5D .-3解析:选B.作出不等式组表⽰的可⾏域,如图(阴影部分).易知直线z =2x -3y 过点C 时,z 取得最⼩值.由?x =3,x -y +1=0,得x =3,y =4,∴z m in =2×3-3×4=-6,故选B.4.直线2x +y =10与不等式组x ≥0y ≥0x -y ≥-24x +3y ≤20,表⽰的平⾯区域的公共点有( )A .0个B .1个C .2个D .⽆数个解析:选B.画出可⾏域如图阴影部分所⽰.∵直线过(5,0)点,故只有1个公共点(5,0).5.已知实数x ,y 满⾜y ≥1,y ≤2x -1,x +y ≤m .如果⽬标函数z =x -y 的最⼩值为-1,则实数m 等于( )A .7B .5C .4D .3解析:选B.画出x ,y 满⾜的可⾏域,可得直线y =2x -1与直线x +y =m 的交点使⽬标函数z =x -y 取得最⼩值,解?y =2x -1,x +y =m 得x =m +13,y =2m -13,代⼊x -y =-1,得m +13-2m -13=-1,解得m =5.6.已知点P (x ,y )的坐标满⾜条件x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,那么|PO |的最⼩值等于________,最⼤值等于________.解析:画出约束条件对应的可⾏域,如图阴影部分所⽰,∵|PO |表⽰可⾏域上的点到原点的距离,从⽽使|PO |取得最⼩值的最优解为点A (1,1);使|PO |取得最⼤值的最优解为B (1,3),∴|PO |m in =2,|PO |m ax =10.答案:2 107.(2013·⾼考⼤纲全国卷)若x ,y 满⾜约束条件x ≥0,x +3y ≥4,3x +y ≤4,则z =-x +y 的最⼩值为________.解析:由不等式组作出可⾏域,如图阴影部分所⽰(包括边界),且A (1,1),B (0,4),C (0,43).由数形结合知,直线y =x +z 过点A (1,1)时,z m in =-1+1=0.答案:08.某企业⽣产甲、⼄两种产品,已知⽣产每吨甲产品要⽤A 原料3吨、B 原料2吨;⽣产每吨⼄产品要⽤A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨⼄产品可获得利润3万元.该企业在⼀个⽣产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得最⼤利润是________.解析:设该企业⽣产甲产品为x 吨,⼄产品为y 吨,则该企业可获得利润为z =5x +3y ,且x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,联⽴3x +y =13,2x +3y =18,解得?x =3,y =4.由图可知,最优解为P (3,4).故z 的最⼤值为z =5×3+3×4=27(万元).答案:27万元9.已知x ,y 满⾜条件y ≤x ,x +2y ≤4,y ≥-2,若r 2=(x +1)2+(y -1)2(r >0),求r 的最⼩值.解:作出不等式y ≤x ,x +2y ≤4,y ≥-2所表⽰的平⾯区域如图:依据上图和r 的⼏何意义可知:r 的最⼩值是定点P (-1,1)到直线y =x 的距离,即r m in =|1+1|2= 2.10.某⼯⼚制造A 种仪器45台,B 种仪器55台,现需⽤薄钢板给每台仪器配⼀个外壳.已知钢板有甲、⼄两种规格:甲种钢板每张⾯积2 m 2,每张可作A 种仪器外壳3个和B 种仪器外壳5个.⼄种钢板每张⾯积3 m 2,每张可作A 种仪器外壳6个和B 种仪器外壳6个,问甲、⼄两种钢板各⽤多少张才能⽤料最省?(“⽤料最省”是指所⽤钢板的总⾯积最⼩)解:设⽤甲种钢板x 张,⼄种钢板y 张,依题意x ,y ∈N ,3x +6y ≥45,5x +6y ≥55,钢板总⾯积z =2x +3y .作出可⾏域如图所⽰中阴影部分的整点.由图可知当直线z =2x +3y 过点P 时,z 最⼩.由⽅程组3x +6y =45,5x +6y =55得?x =5,y =5. 所以甲、⼄两种钢板各⽤5张⽤料最省.[⾼考⽔平训练]1.若实数x ,y 满⾜不等式组y ≥0x -y ≤42x -y -2≥0,则w =y -1x +1的取值范围是( )A .[-1,13]B .[-12,13]C .[-12,2)D .[-12,+∞)解析:选C.把w =y -1x +1理解为⼀动点P (x ,y )与定点Q (-1,1)连线斜率的取值范围,可知当x =1,y =0时,w m in =-12,且w <2.2.若实数x 、y 满⾜x -y +1≥0,x +y ≥0,x ≤0.则z =3x+2y的最⼩值是________.解析:由不等式组,得可⾏域是以A (0,0),B (0,1),C (-0.5,0.5)为顶点的三⾓形,易知当x =0,y =0时,z ′=x +2y 取最⼩值0.∴z =3x +2y 的最⼩值为1.答案:13.某营养师要为某个⼉童预订午餐和晚餐,已知1个单位的午餐含12个单位的碳⽔化合物,6个单位的蛋⽩质和6个单位的维⽣素C ;1个单位的晚餐含8个单位的碳⽔化合物,6个单位的蛋⽩质和10个单位的维⽣素C.另外,该⼉童这两餐需要的营养中⾄少含64个单位的碳⽔化合物,42个单位的蛋⽩质和54个单位的维⽣素C.如果1个单位的午餐、晚餐的费⽤分别是2.5元和4元,那么要满⾜上述的营养要求,并且花费最少,应当为该⼉童分别预订多少个单位的午餐和晚餐?解:法⼀:设需要预订满⾜要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费⽤为z 元,则依题意,得z =2.5x +4y ,且x ,y 满⾜x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.作出可⾏域如图,则z 在可⾏域的四个顶点A (9,0),B (4,3),C (2,5),D (0,8)处的值分别是z A =2.5×9+4×0=22.5, z B =2.5×4+4×3=22, z C =2.5×2+4×5=25, z D =2.5×0+4×8=32.⽐较之,z B 最⼩,因此,应当为该⼉童预订4个单位的午餐和3个单位的晚餐,就可满⾜要求.法⼆:设需要预订满⾜要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费⽤为z 元,则依题意,得z =2.5x +4y ,且x ,y 满⾜x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.作出可⾏域如图,让⽬标函数表⽰的直线2.5x +4y =z 在可⾏域上平移,由此可知z =2.5x +4y 在B (4,3)处取得最⼩值.因此,应当为该⼉童预订4个单位的午餐和3个单位的晚餐,就可满⾜要求.4.已知实数x 、y 满⾜x +y -3≥0,x -y +1≥0,x ≤2,(1)若z =2x +y ,求z 的最⼤值和最⼩值;(2)若z =x 2+y 2,求z 的最⼤值和最⼩值;(3)若z =yx,求z 的最⼤值和最⼩值.解:不等式组x +y -3≥0,x -y +1≥0,x ≤2表⽰的平⾯区域如图阴影部分所⽰.由x +y -3=0,x -y +1=0,得x =1,y =2,∴A (1,2);由x =2,x -y +1=0,得x =2,y =3,∴M (2,3);由x =2,x +y -3=0,得? x =2,y =1,∴B (2,1). (1)∵z =2x +y ,∴y =-2x +z ,当直线y =-2x +z 经过可⾏域内点M (2,3)时,直线在y 轴上的截距最⼤,z 也最⼤,此时z m ax =2×2+3=7.当直线y =-2x +z 经过可⾏域内点A (1,2)时,直线在y 轴上的截距最⼩,z 也最⼩,此时z m in =2×1+2=4.∴z 的最⼤值为7,最⼩值为4.(2)过原点(0,0)作直线l 垂直于直线x +y -3=0,垂⾜为N ,则直线l 的⽅程为y =x .由?y =x ,x +y -3=0,得?x =32,y =32,∴N32,32. 点N 32,32在线段AB 上,也在可⾏域内.此时可⾏域内点M 到原点的距离最⼤,点N 到原点的距离最⼩.⼜|OM |=13,|ON |=92,即92≤x 2+y 2≤13,∴92≤x 2+y 2≤13,∴z 的最⼤值为13,最⼩值为92.(3)∵k OA =2,k OB =12,∴12≤yx≤2,∴z 的最⼤值为2,最⼩值为12.。

(常考题)北师大版高中数学必修五第二章《解三角形》测试(包含答案解析)(4)

(常考题)北师大版高中数学必修五第二章《解三角形》测试(包含答案解析)(4)

一、选择题1.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos AOB ∠=-,则此山的高PO =( )A .1 kmB .2km 2C 3 kmD 2 km2.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12π C .12π D .3π3.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒4.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin 3sin sin A C B A C +-=,1b =,则23a c -的最小值为( )A .4-B .3-C .2-D .3-5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2aB c=,21sin sin (2cos )sin 22A B C A -=+,则A =( )A .6π B .3π C .2π D .23π 6.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( )A .2+B 1C .2D 17.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形8.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin cos 0b A B -=,且三边a b c ,,成等比数列,则2a cb +的值为( )A .4B .2C .1D .29.在ABC 中,60A ∠=︒,1b =,ABCS =2sin 2sin sin a b cA B C++=++( )A .3B C D .10.正三棱锥P ABC -中,若6PA =,40APB ∠=︒,点E 、F 分别在侧棱PB 、PC 上运动,则AEF 的周长的最小值为( )A .36sin 20︒B .C .12D .11.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( )A .B .2C .32D 二、填空题13.已知ABC 的面积为4,2tan 3B =,AB AC >,设M 是边BC 的中点,若AM =,则BC =___________.14.在ABC 中,3B π=,2AC =,则4AB BC +的最大值为_______. 15.若A ,B ,C 为ABC 的内角,满足sin A ,sin C ,sin B 成等差数列,则cos C 的最小值是________.16.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC 面积的最大值为____________.17.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.19.在钝角ABC 中,已知2a =,4b =,则最大边c 的取值范围是__________. 20.已知ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,AB 边上的高为CD ,且2CD AB =,则a bb a+的取值范围是___________. 三、解答题21.如图,在平面四边形ABCD 中,AD ⊥CD , ∠BAD =34π,2AB =BD =4.(1)求cos ∠ADB ; (2)若BC 22CD .22.在ABC 中,,,a b c 分别是角,,A B C 的对边.若272,cos b c C -==,再从条件①与②中选择一个作为已知条件,完成以下问题: (1)求,b c 的值;(2)求角A 的值及ABC 的面积. 条件①:7cos cos 14a B b A ac +=;条件②:72cos 27b C ac =-. 23.如图所示,某镇有一块空地OAB ,其中3km,60,90OA OAM AOB =∠=∠=.当地政府计划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖OMN ,其中,M N 都在边AB 上,且30MON ∠=,挖出的泥土堆放在OAM △地带上形成假山,剩下的OBN△地带开设儿童游乐场.为安全起见,需在OAN 的周围安装防护网.设AOM θ∠=.(1)当3km 2AM =时,求θ的值,并求此时防护网的总长度;(2)若=15θ,问此时人工湖用地OMN 的面积是堆假山用地OAM △的面积的多少倍?(3)为节省投入资金,人工湖OMN 的面积要尽可能小,问如何设计施工方案,可使OMN 的面积最小?最小面积是多少?24.请从下面三个条件中任选一个,补充在下面的横线上,并解答. ()3cos cos sin A c B b C a A +=; ②2cos 2b cC a-=③tan tan tan 3tan A B C B C ++=.已知ABC 的内角,,A B C 的对应边分别为,,a b c , . (1)求A ;(2)若2,10a b c =+=ABC 的面积. 25.已知ABC 中,632AB BC ==225AC AB +=. (1)求ABC ∠的值;(2)若P 是ABC 内一点,且53,64APB CPB ππ∠=∠=,求tan PBA ∠. 26.在△ABC 中,BC =a ,AC =b ,a 、b 是方程22320x x -+=的两个根,且120A B +=︒,求ABC 的面积及AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以)2222.5323338h h h h =+-⨯⎛⎫- ⎪ ⎝⎭⨯⎪,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.2.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-,所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,2R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.4.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴22222a cb ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B a c π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.5.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =.∵212cos sin sin (2cos )sin 222A ABC A --=+=,易知2cos 0A -≠, ∴1sin sin 2B C =,又sin sin B C =,∴2sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.6.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.7.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.8.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin 3cos 0b A a B =,由正弦定理边角互化的思想得sin sin 3cos 0A B A B =,sin 0A >,sin 30B B ∴=,tan 3B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.9.B解析:B 【分析】由三角形的面积公式可得,4c =,再由余弦定理可得a =,最后由正弦定理可得结果. 【详解】11c sin60=424︒=⋅⋅⋅=∴=ABCSc c由余弦定理可得:22212cos 1612413,2=+-=+-⨯⨯=∴=a b c bc A a由正弦定理可得:2sin sin sin 2sin sin 3++=====++a b c a b c sinA B C A B C 故选:B 【点睛】本题考查了正弦定理和余弦定理的应用,考查了运算求解能力,属于基础题目. 10.D解析:D 【分析】画出正三棱锥P ABC -侧面展开图,将问题转化为求平面上两点间的距离最小值问题,不难求得结果. 【详解】将三棱锥由PA 展开,如图,正三棱锥P ABC -中,40APB ∠=︒,则图中1120APA ∠=︒, 当点A 、E 、F 、1A 位于同一条直线上时,AEF ∆的周长最小, 故1AA 为AEF ∆的周长的最小值, 又1PA PA =,1PAA ∴∆为等腰三角形,6PA =,16PA ∴=,1AA ∴==,AEF ∴∆的最小周长为:63.故选:D . 【点睛】本题考查的知识点是棱锥的结构特征,其中将三棱锥的侧面展开,将空间问题转化为平面上两点之间的距离问题,是解答本题的关键.11.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.12.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c ≥ac ≤6. 当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 622ABCSac B =≤⨯=∴△ABC故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.二、填空题13.4【分析】首先利用余弦定理和三角形面积公式建立关于的方程再分别求根据余弦定理求结合条件求得的值【详解】得:解得:①中利用余弦定理②由①②可得解得:或即当时得此时不成立当时得此时成立故故答案为:4【点解析:4 【分析】首先利用余弦定理和三角形面积公式,建立关于,a c 的方程,再分别求,a c ,根据余弦定理求b ,结合条件AB AC >,求得BC 的值. 【详解】2tan 3B =,得:sin B =,cos B =11sin 42213ABCSac B ac ==⋅=,解得:ac =① ABM中,利用余弦定理222252cos 542413a a a c c B c ac =+-⋅⋅=+-= ②由①②可得22174ac a c ⎧=⎪⎨+=⎪⎩,解得:2a c ⎧=⎪⎨=⎪⎩4a c =⎧⎪⎨=⎪⎩, AB AC >,即c b >当2a c ==时,2222cos 32b a c ac B =+-=,得b =c b <,不成立,当4,a c == 2222cos 5b a c ac B =+-=,得b =c b >,成立,故4BC a ==. 故答案为:4 【点睛】易错点点睛:本题的易错点是求得,a c 后,还需满足条件AB AC >这个条件,否则会增根.14.【分析】利用正弦定理可将表示关于角的三角函数求出角的取值范围利用正弦型函数的基本性质可求得的最大值【详解】由正弦定理可得则则其中为锐角且所以当时取最大值故答案为:【点睛】求三角形有关代数式的取值范围【分析】利用正弦定理可将4AB BC +表示关于角A 的三角函数,求出角A 的取值范围,利用正弦型函数的基本性质可求得4AB BC +的最大值. 【详解】由正弦定理可得21sin sin sin sin 3BC AB ACA CB π====,则sin BC A =,sin AB C =,3B π=,203A π∴<<,则()14sin 4sin sin 4sin sin 4sin 2AB BC C A A B A A A A+=+=++=++()9sin 2A A A ϕ=+=+, 其中ϕ为锐角,且tan ϕ=,23A πϕϕϕ∴<+<+, 所以,当2A πϕ+=时,4AB BC +取【点睛】求三角形有关代数式的取值范围是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解.15.【分析】根据成等差数列利用等差中项结合正弦定理得到然后由利用基本不等式求解【详解】因为成等差数列所以由正弦定理得所以当且仅当时取等号所以的最小值是故答案为:【点睛】本题主要考查正弦定理和余弦定理的应 解析:12【分析】根据sin A ,sin C ,sin B 成等差数列,利用等差中项结合正弦定理得到2c a b =+,然后由()22222cos 122a b c a b c C ab ab+-+-==-,利用基本不等式求解.【详解】因为sin A ,sin C ,sin B 成等差数列, 所以2sin sin sin C A B =+, 由正弦定理得2c a b =+,所以()22222cos 122a b c a b c C ab ab+-+-==-,()2222231112222a b c c c a b +-≥-=-=+⎛⎫⎪⎝⎭,当且仅当a b =时取等号,所以cos C 的最小值是12. 故答案为:12【点睛】本题主要考查正弦定理和余弦定理的应用以及等差数列和基本不等式的应用,还考查了运算求解的能力,属于中档题.16.【分析】先利用正弦定理将条件中的角转化为边的关系再利用余弦定理求解出角A 的值再利用边a 的余弦定理和均值不等式求出bc 的最大值后即可求解出面积的最大值【详解】因为所以根据正弦定理得:化简可得:即(A 为【分析】先利用正弦定理将条件()(sin sin )()sin a b A B c b C +-=-中的角转化为边的关系,再利用余弦定理求解出角A 的值,再利用边a 的余弦定理和均值不等式求出bc 的最大值后即可求解出面积的最大值. 【详解】因为()(sin sin )()sin a b A B c b C +-=-, 所以根据正弦定理得:(a b)()(c b)a b c +-=-, 化简可得:222b c a bc +-=,即2221cos 22b c a A bc +-==,(A 为三角形内角) 解得:60A ︒=,又224b c bc bc +-=≥,(b =c 时等号成立)故1sin 2ABC S bc A ∆=≤【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用,属于中档题目,解题的关键有两点,首先是利用正余弦定理实现边角之间的互化,其次是利用余弦定理和均值不等式求出三角形边的乘积的最大值.17.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正解析:3【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B =,根据正弦定理:sin sin b cB C=,∴=c , 根据余弦定理:2222cos a b c bc A =+-,又222a b =,故可联立方程:222222cos 2c a b c bc A a b ⎧=⎪=+-⎨⎪=⎩,解得:cos A =.故答案为:3. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.18.【分析】由题意利用正弦定理边化角求得∠B 的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力 解析:3-【分析】由题意利用正弦定理边化角,求得∠B 的值,然后结合数量积的定义求解AB BC ⋅的值即可. 【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=, 60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭故答案为3- 【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.19.【分析】利用三角形三边大小关系余弦定理即可得出【详解】因为三角形两边之和大于第三边故解得故答案为:【点睛】本题考查了三角形三边大小关系余弦定理考查了推理能力与计算能力属于中档题解析:【分析】利用三角形三边大小关系、余弦定理即可得出. 【详解】因为三角形两边之和大于第三边,故6c a b <+=.22224cos 0224c C +-=<⨯⨯,解得c >c ∴∈.故答案为:. 【点睛】本题考查了三角形三边大小关系、余弦定理,考查了推理能力与计算能力,属于中档题.20.【分析】由余弦定理得出由三角形的面积公式得出进而可得出利用正弦函数的有界性和基本不等式即可求得的取值范围【详解】如下图所示:由余弦定理得由三角形的面积公式得得则当时即当时取得最大值由基本不等式可得当解析:2,⎡⎣【分析】由余弦定理得出2222cos a b c ab C =++,由三角形的面积公式得出22sin c ab C =,进而可得出4b a C a b π⎛⎫+=+ ⎪⎝⎭,利用正弦函数的有界性和基本不等式即可求得a bb a +的取值范围. 【详解】 如下图所示:由余弦定理得2222cos c a b ab C =+-,2222cos a b c ab C ∴+=+,1122CD AB c ==,由三角形的面积公式得11sin 222ABC c S ab C c ==⋅△,得22sin c ab C =,()222sin cos 22sin 4a b ab C C ab C π⎛⎫∴+=+=+ ⎪⎝⎭,则22224b a a b C a b ab π+⎛⎫+==+ ⎪⎝⎭, 0C π<<,5444C πππ∴<+<,当42C ππ+=时,即当4C π时,b aa b+取得最大值2由基本不等式可得2b a b a a b a b+≥⋅=,当且仅当a b =时,等号成立, 因此,a bb a+的取值范围是2,22⎡⎤⎣⎦. 故答案为:2,22⎡⎣.【点睛】本题考查三角形中代数式的取值范围的求解,考查了余弦定理、三角形的面积公式、基本不等式以及正弦函数有界性的应用,考查计算能力,属于中等题.三、解答题21.(1)14cos 4ADB ∠=;(2)32CD =【分析】(1)ABD △中,利用正弦定理可得sin ADB ∠,进而得出答案; (2)BCD △中,利用余弦定理可得CD . 【详解】(1)ABD △中,sin sin AB BDADB BAD=∠∠,即2sin 2ADB =∠,解得sin 4ADB ∠=,故cos 4ADB ∠=; (2)sin cos ADB CDB ∠==∠ BCD △中,222cos 2BD CD BC CDB BD CD +-∠=⋅⋅,即2224424CD CD+-=⋅⋅,化简得(0CD CD -+=,解得CD =22.(1)6,4b c ==; (2)3A π=,S =【分析】(1)选用条件①:由正弦定理求得a =2b c -=,即可求解; 选用条件②:由正弦定理求得cos 14B =,得出sin 14B =,再由cos 7C =,求得得sin 7C =,结合正弦定理,即可求解; (2)由余弦定理求得A 的值,结合面积公式,即可求解. 【详解】(1)选用条件①:因为cos cos a B b A +=,由正弦定理得sin cos sin cos sin A B B A C +=,可得sin sin C C =, 又因为(0,)C π∈,所以sin 0C ≠,可得a =又由cos C =,由余弦定理得2222a b c ab +-=, 将2b c -=代入上式,解得6,4b c ==. 选用条件②:因为2cos 27b C a =-,由正弦定理得2sin cos 2sin B C A C =2sin()B C C =+-2(sin cos cos sin )B C B C C =+即2cos sin 0B C C =, 又因为(0,)C π∈,所以sin 0C ≠,可得cos B =,则sin 14B =,又由cos 7C =,可得221sin 1cos 7C C由正弦定理sin sin b cB C =,得sin 3sin 2b Bc C ==, 又由2b c -=,可得6,4b c ==.(2)由余弦定理得2221cos 22b c a A bc +-==, 因为0A π<<,所以3A π=.所以ABC的面积为11sin 6422S bc A ==⨯⨯= 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.23.(1)9km ;(23)15θ=︒时,OMN 的面积最小,最小面积为(2272km 4.【分析】(1)利用余弦定理求得 OM ,结合勾股定理求得θ,判断出OAN 是等边三角形,由此求得防护网的总长度. (2)结合正弦定理求得MNAM,由此求得人工湖用地OMN 的面积是堆假山用地OAM △的面积的倍数.(3)求得,OM ON ,由此求得三角形OMN 面积的表达式,结合三角函数最值的求法,求得当15θ=︒时,OMN 的面积最小为(2272km 4.【详解】(1)在三角形OAM中,由余弦定理得OM ==所以222279944OM AM OA +=+==,所以三角形OAM 是直角三角形,所以90,30OMA θ∠=︒=︒.由于30MON ∠=,所以60AON A ∠=∠=︒,所以OAN 是等边三角形,周长为339⨯=,也即防护网的总长度为9km . (2)15θ=︒时,在三角形OAM 中,由正弦定理得sin 60sin 60sin15sin15OM AM AM OM ⋅︒=⇒=︒︒︒,在三角形OMN 中,180********ONA ∠=︒-︒-︒-︒=︒,由正弦定理得sin 30sin 60sin 30sin 30sin 75sin 75sin 75sin15MN OM OM AM MN ⋅︒⋅︒⋅︒=⇒==︒︒︒︒︒.所以sin 60sin 30sin 60sin 30sin 60sin 302sin 601sin 75sin15cos15sin15sin 302MN AM ︒⋅︒︒⋅︒︒⋅︒====︒=︒︒︒︒︒以O 为顶点时,OMN 和OAM △的高相同,所以3OMN OMNOAMOAMS MNS SSAM===,即人工湖用地OMN 的面积是堆假山用地OAM △.(3)在三角形OAN 中,180603090ONA θθ∠=︒-︒-︒-=︒-,由正弦定理得()333sin 60sin 60sin 90cos cos ON ON θθθ⋅︒==⇒==︒︒-.在三角形OAM 中,18060OMA θ∠=︒-︒-,由正弦定理得()()()()333sin 60sin 60sin 18060sin 60sin 602sin 60OM OM θθθθ⋅︒==⇒==︒︒-︒-+︒+︒+︒.所以()()11271sin 30242cos 2sin 6016sin 60cos OMNSOM ON θθθθ=⋅⋅⋅︒=⋅⋅=⋅+︒+︒⋅ ()27116sin cos 60cos sin 60cos θθθ=⋅︒+︒⋅27271616==2727168==272784==.由于()0,60AOM θ∠=∈︒︒,所以当26090,15θθ+︒=︒=︒时,OMN S △最小值为(22722727km 444-==.【点睛】求面积最值的实际问题,可转化为三角函数求最值来求解.24.(1)3A π=;(2 【分析】第(1)小问:方案①中是利用正弦定理将边转化为角的关系,化简后求得3A π=;方案②首先利用正弦定理将边长之比转化为角的正弦之比,再化简求得3A π=;方案③利用两角和的正切公式将tan tan tan A B C ++化成tan tan()(1tan tan )A B C B C ++⋅-,再利用tan()tan B C A +=-对式子进行化简得到3A π=;第(2)小问:由余弦定理2222cos ,2,3a b c bc A a A π=+-==可以得到关于,b c 的关系式,再结合b c +=2bc =,最后求得三角形的面积即可.【详解】()1方案①()2sin cos sin cos sin A C B B C A +=()2sin sin A C B A +=,2sin sin A A A = 又()0,A π∈, 所以sin 0A ≠,所以tan A = 所以3A π=方案②:由已知正弦定理得()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin C A B C A C C A C A C C =-=+-=+-所以2cos sin sin 0,A C C -= 即2cos sin sin ,A C C = 又()0,C π∈, 所以sin 0,C ≠ 所以1cos 2A = 所以3A π=方案③:因为tan tan tan tan A B C B C ++=所以tan tan tan tan tan tan()(1tan tan )A B C B C A B C B C ++==++⋅-()tan tan 1tan tan tan tan tan A A B C A B C =--=tan tan tan tan B C A B C =又()0A B C π∈,,,,所以tan 0,tan 0B C ≠≠,所以1tan ,2A A ==所以3A π=()2由余弦定理2222cos ,2,3a b c bc A a A π=+-==,得224b c bc =+- 即()243b c bc +=+,又因为b c +=所以2bc =所以1sin 2ABC S bc A ==【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.25.(1)4ABC π∠=;(2)tan PBA ∠=. 【分析】(1)由已知求得25AC =-cos 2ABC ∠=,即可求得ABC ∠;(2)由题可得PBA PCB ∠=∠,设PBA α∠=,由正弦定理可得2sin 6PB παα⎛⎫==- ⎪⎝⎭,化简即可求出. 【详解】解:(1)由AB BC ==,知AB BC ==,由225AC AB +=,知2525AC AB =-=-在ABC 中,由余弦定理得:222cos22BC AB AC ABC AB BC +-∠===⨯,0ABC π<∠<,4ABC π∴∠=; (2),44PBA PBC PCB PBC BPC πππ∠+∠=∠+∠=-∠=, PBA PCB ∴∠=∠,设PBA α∠=,则在PBC 中,由正弦定理得,2sin 3sin sin 4PB BC PB απα=∴=, 在APB △中,由正弦定理得:,56sin sin 66PBAB PB παππα⎛⎫=∴=- ⎪⎛⎫⎝⎭- ⎪⎝⎭,sin sin cos cos sin 666πππαααα⎛⎫⎫∴=-=- ⎪⎪⎝⎭⎭,化简可得:tan α=,故tan PBA ∠=. 【点睛】本题考查正余弦定理的应用,解题的关键是先得出PBA PCB ∠=∠,设PBA α∠=,由正弦定理可得2sin 6PB παα⎛⎫==- ⎪⎝⎭. 26.2S AB == 【分析】 利用韦达定理求出,a b ab +,再利用余弦定理,得到关于c 的方程,解之可得AB 的长;再结合面积公式可得.【详解】,a b是方程220x -+=的两个根, 2a b ab ∴+==,又因为120A B +=︒则60C =︒,所以由余弦定理得:()(22222222221cos 22222c a b ab c a b cC abab -⨯-+--+-====⨯,解得c =所以AB =ABC的面积11sin 222S ab C ==⨯=。

(常考题)北师大版高中数学必修五第二章《解三角形》测试题(答案解析)(2)

(常考题)北师大版高中数学必修五第二章《解三角形》测试题(答案解析)(2)

一、选择题1.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos 8AOB ∠=-,则此山的高PO =( )A .1 kmB .2km 2C . 3 kmD . 2 km2.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割,如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是两底角为72︒的等腰三角形(另一种是两底角为36︒的等腰三角形),例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,51BC AC -=.根据这些信息,可得sin54︒=( ).A .154B 35+ C .458+ D .1254-3.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣B .()3,+∞C .()2,+∞D .[)2,+∞4.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形5.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .53km6.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知3a =,(23,32b ∈,且223cos cos a b B b A =+,则cos A 的取值范围为( ).A .133,244⎡⎤⎢⎥⎣⎦B .133,244⎛⎫⎪⎝⎭C .13,24⎡⎤⎢⎥⎣⎦D .13,24⎛⎫⎪⎝⎭7.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若22tan tan B Cb c=,则ABC 的形状为( )A .等腰三角形或直角三角形B .等腰直角三角形C .等腰三角形D .直角三角形8.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知3a =cos sin b A B =,则A =( )A .12πB .6π C .4π D .3π9.已知锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,若22sin sin sin sin B A A C -=⋅,3c =,则a 的取值范围是( )A .2,23⎛⎫⎪⎝⎭B .()1,2C .()1,3D .3,32⎛⎫ ⎪⎝⎭10.在ABC 中,60A ∠=︒,1b =,ABCS =2sin 2sin sin a b cA B C++=++( )ABCD.11.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( ) A .35mB .10mC .490013m D.12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒二、填空题13.在ABC 中,6B π=,D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACDBC =_____________.14.在ABC 中,内角,,A B C 的对边分别是,,a b c,若22a b -=,sin C B =,则A =____.15.在ABC 中,3A π∠=,D 是BC 的中点.若34AD BC ≤,则sin sin B C 的最大值为____________.16.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若8cos 3ABC bc A S =△,则22cos sin 122sin cos B CA A A++-=-________. 17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos 2c B a b =+,且ABC的面积为223a c +的最小值为__________.18.在锐角ABC ∆中,2AC =,AB =D 在BC 边上,并且2BD DC =,6π∠=CAD ,则ABC ∆的面积为__________.19.ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若2222b a c ac +-=,sin 3B =,则C =__________. 20.在ABC中,60,12,ABCA b S =︒==,则sin sin sin a b cA B C ____________.三、解答题21.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C ,现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量得4sin 5C =,63sin 65B =,B 为钝角.(1)求缆车线路AB 的长:(2)问乙出发多少min 后,乙在缆车上与甲的距离最短. 22.在ABC 中,角,,A B C 的对边分别为,,a b c ,若1sin cos sin cos 2a B C c B Ab +=,且c b >.(1)求角B 的值;(2)若6A π=,且ABC 的面积为43BC 边上的中线AM 的长.23.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin c bC a-=tan cos A C -. (1)求角A 的大小;(2)若32b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD . 24.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 12+=A C a c ,且2b =.(1)证明:4+≥a c ;(2)若ABC 的周长为232+S .25.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()3sin 2cos b A a B =+. (1)求角B ;(2)若3b =,且ABC 的面积等于32,求11a c +的值.26.请从下面三个条件中任选一个,补充在下面的横线上,并解答.①()3cos cos cos sin A c B b C a A +=; ②2cos 2b cC a-=③tan tan tan 3tan tan A B C B C ++=.已知ABC 的内角,,A B C 的对应边分别为,,a b c , . (1)求A ;(2)若2,10a b c =+=,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以)2222.5323338h h h h =+-⨯⎛⎫- ⎪ ⎝⎭⨯⎪,即2252544h =,解得:1h =,所以山的高1PO =, 故选:A.2.A解析:A 【分析】在ABC ,由正弦定理可知sin sin BC BAC AC ABC ∠=∠可得1cos364︒=,进而根据诱导公式得sin54cos36︒== 【详解】在ABC ,由正弦定理可知:sin sin 36sin 3611sin sin 722sin 36cos362cos362BC BAC AC ABC ︒︒︒︒︒︒∠=====∠,∴cos36︒== 由诱导公式()sin54sin 9036cos36︒=-=,所以sin54︒=. 故选:A. 【点睛】本题主要考查了根据正弦定理和诱导公式求三角函数值,解题关键是掌握正弦定理公式和熟练使用诱导公式,考查了分析能力和计算能力,属于中档题.3.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围. 【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠,则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.4.B解析:B 【分析】利用正弦定理、余弦定理将角化为边,即可得到,a b 之间的关系,从而确定出三角形的形状. 【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=,所以22a b =,所以a b =,所以三角形是等腰三角形, 故选:B. 【点睛】本题考查利用正、余弦定理判断三角形的形状,难度一般.本例还可以直接利用()sin sin C A B =+,通过三角函数值找到角之间的联系从而判断三角形形状. 5.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=, 在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.6.B解析:B 【分析】由正弦定理进行边角互化可得9c b=,由余弦定理可得22819cos 18b b A +-=,进而可求出cos A 的范围【详解】因为3a =,223cos cos a b B b A =+,所以22cos cos a ab B b A =+, 所以()22sin sin sin cos sin cos sin sin sin sin A A B B B A B A B B C =+=+=,即29a bc ==,所以9c b=,则22222819cos 218b bc a b A bc +-+-==.因为(b ∈,所以()212,18b ∈,81y x x=+在()12,18上递增, 所以22817545,42b b ⎛⎫+∈ ⎪⎝⎭,则133cos ,244A ⎛⎫∈ ⎪⎝⎭. 故选:B 【点睛】本题考查了正弦定理,考查了余弦定理.解答本题的关键是用b 表示cos A .7.A解析:A 【分析】由三角函数恒等变换的应用,正弦定理化简已知等式可得sin 2sin 2B C =,可得22B C =,或22B C π+=,解得B C =,或2B C π+=,即可判断ABC ∆的形状.【详解】22tan tan B C b c =, ∴22sin sin cos cos B C b B c C =,由正弦定理可得:22cos cos b cb Bc C=,可得:cos cos b B c C =,可得sin cos sin cos B B C C =,可得:sin 2sin 2B C =,22B C ∴=,或22B C π+=,B C ∴=,或2B C π+=,ABC ∆∴的形状为等腰三角形或直角三角形. 故选:A . 【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.8.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,1cos A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=,由正弦定理有sin sin a b A B=, 又a =1cos A=.所以tan A =因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.9.D解析:D 【分析】由正弦定理可得三边的关系,再由余弦定理可得312cos a B=+,结合三角形为锐角三角形可得a 的取值范围. 【详解】∵22sin sin sin sin B A A C -=⋅, ∴由正弦定理可得22b a ac -=,∵由余弦定理2222cos b a c ac B =+-,可得2222cos a c ac B a ac +-=+, 又3c =,∴可得312cos a B=+,∵锐角ABC 中,若B 是最大角,则B 必须大于 3π,所以,3B ππ⎛⎫∈⎪⎝⎭, 所以1cos 02B ⎛⎫∈ ⎪⎝⎭,,所以3,32a ⎛⎫∈ ⎪⎝⎭, 故选:D.【点睛】本题主要考查三角形的正余弦定理的应用,及锐角三角形的性质,属于中档题.10.B解析:B 【分析】由三角形的面积公式可得,4c =,再由余弦定理可得a =,最后由正弦定理可得结果. 【详解】11c sin6042︒=⋅⋅⋅=∴=ABCSc由余弦定理可得:22212cos 1612413,2=+-=+-⨯⨯=∴=a b c bc A a由正弦定理可得:2sin sin sin 2sin sin 3++=====++a b c a b c sinA B C A B C 故选:B 【点睛】本题考查了正弦定理和余弦定理的应用,考查了运算求解能力,属于基础题目. 11.D解析:D 【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h,由已知可知,OA OB h ==,且150AOB ∠=,在三角形AOB中,由余弦定理得222352cos15033h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得h =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.12.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.二、填空题13.【分析】先由面积公式求出即得再由余弦定理求出进而利用正弦定理求出再在中利用正弦定理即可求出【详解】在中解得是锐角三角形则由余弦定理可得即则在中由正弦定理可得即则则在中即解得故答案为:【点睛】本题考查 15【分析】先由面积公式求出sin ACD ∠,即得cos ACD ∠,再由余弦定理求出AD ,进而利用正弦定理求出sin A ,再在ABC 中利用正弦定理即可求出. 【详解】 在ACD △中,11sin 42sin 22ACDS AC CD ACD ACD =⨯⨯⨯∠=⨯⨯⨯∠=解得sin 4ACD ∠=,ACD △是锐角三角形,1cos 4ACD ∴∠=,则由余弦定理可得222142242164AD =+-⨯⨯⨯=,即4AD =, 则在ACD △中,由正弦定理可得sin sin AD CDACD A=∠2sin A =,则sin 8A =, 则在ABC 中,sin sin BC ACA B=412=,解得BC =.【点睛】本题考查正余弦定理和三角形面积公式的应用,解题的关键是先在ACD △中,利用面积公式和正余弦定理解出sin A .14.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:由故答案为:【点睛】本题主要考查了求三角形的一个内角解 解析:6π【分析】由sin C B =,根据正弦定理“边化角”,可得c =,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角A .【详解】sin C B =根据正弦定理:sin sin b cB C= ∴可得c =根据余弦定理:2222cos a b c bc A =+-由已知可得:22a b -=故可联立方程:222222cos c a b c bc A a b ⎧=⎪=+-⎨⎪-=⎩解得:cos 2A =. 由0A π<<∴6A π=故答案为:6π. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.15.【分析】设三角形三条边长分别为先分析得到再利用余弦定理得到最后利用正弦定理即得解【详解】设三角形三条边长分别为那么因为所以故由题意得故答案为:【点睛】本题主要考查正弦定理和余弦定理解三角形意在考查学 解析:1532【分析】设AD x =,三角形三条边长分别为,,a b c ,先分析得到222138b c a +≤,再利用余弦定理得到258bc a ≤,最后利用正弦定理即得解. 【详解】设AD x =,三角形三条边长分别为,,a b c , 那么2243,169x a x a ≤∴≤, 因为cos cos 0ADB ADC ∠+∠= 所以2222422+=+x a b c ,故2222222213168849,8x b c a a b c a =+-≤∴+≤由题意得222222221135cos ,,2288b c a A b c bc a a bc a bc +-==∴+=+≤∴≤255315sin sin sin =88432B C A ∴≤=⨯.故答案为:1532【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.16.【分析】由三角形的面积公式结合等式可求得然后利用二倍角余弦公式结合弦化切可求得所求代数式的值【详解】因为所以则故故答案为:【点睛】本题考查利用三角形的面积公式二倍角余弦公式诱导公式以及弦化切求值考查解析:12-【分析】由三角形的面积公式结合等式8cos 3ABC bc A S =△,可求得3tan 4A =,然后利用二倍角余弦公式、结合弦化切可求得所求代数式的值. 【详解】因为881cos sin 332ABC bc A S bc A ==⨯△,所以4cos sin 3A A =,则3tan 4A =,故()()22cos sin 1cos sin sin cos sin cos 22sin cos 2sin cos 2sin cos 2sin cos B CA B C A A A A A A A A A A A A A π++-+++--===---- tan 112tan 12A A -==--. 故答案为:12-.【点睛】 本题考查利用三角形的面积公式、二倍角余弦公式、诱导公式以及弦化切求值,考查计算能力,属于中等题.17.80【分析】由已知结合正弦定理以及三角形内角和性质有根据面积公式有再应用余弦定理可得结合目标式有利用基本不等式即可求最小值;【详解】由及正弦定理可得∴即又故故因为的面积为所以即故由余弦定理可得∴当且解析:80 【分析】由已知结合正弦定理,以及三角形内角和性质有23C π=,根据面积公式有16ab =,再应用余弦定理可得22216c a b =++,结合目标式有22223164a c a b +++=,利用基本不等式即可求最小值; 【详解】由2cos 2c B a b =+及正弦定理可得2sin cos 2sin sin C B A B =+,∴2sin cos 2sin()sin C B B C B =++,即2sin cos sin 0B C B +=,又sin 0B >,故1cos 2C =-,故23C π=. 因为ABC的面积为1sin 2ab C =122ab ⨯=16ab =, 由余弦定理可得222222212cos 216162c a b ab C a b a b ⎛⎫=+-=+-⨯⨯-=++ ⎪⎝⎭, ∴2222233a c a a b +=++221641641680a b ab +=++≥+=,当且仅当2a b ==时等号成立,故223a c +的最小值为80. 故答案为:80. 【点睛】本题考查了正余弦定理,应用了三角形内角和性质、三角形面积公式以及基本不等式求最值;18.【分析】在中由正弦定理可得到在中由正弦定理可得到由是锐角可知结合三角形的面积公式可得到答案【详解】在中由正弦定理得:则在中由正弦定理得:则因为所以由于三角形是锐角三角形故则故的面积为【点睛】本题考查1【分析】在ADC ∆中,由正弦定理sin sin DC AC CAD ADC =∠∠,可得到1sin ADC DC∠=,在ADB ∆中,由正弦定理sin sin DB ABBAD ADB=∠∠,可得到12sin sin 2DCDB ADBDC BAD AB∠∠===,由BAD ∠是锐角,可知4BAD π∠=,46BAC ππ∠=+,结合三角形的面积公式可得到答案.【详解】在ADC ∆中,由正弦定理得:sin sin DC AC CAD ADC=∠∠,则11sin 2sin6ADC DC DCπ∠=⨯⨯=, 在ADB ∆中,由正弦定理得:sin sin DB AB BAD ADB =∠∠,则sin sin DB ADBBAD AB ∠∠=,因为1sin sin ADB ADC DC∠=∠=,2BD DC=,所以12sin DCDC BAD ∠==,由于三角形是锐角三角形,故4BAD π∠=,则26sin sin 46BAC ππ+⎛⎫∠=+=⎪⎝⎭,故ABC ∆的面积为1262223124+⨯⨯⨯=+.【点睛】本题考查了正弦定理在解三角形中的应用,考查了三角形的面积公式,属于中档题.19.【分析】首先利用余弦定理将题中条件整理得到根据正弦定理可得结合三角形内角的取值范围最后求得结果【详解】内角的对边分别为且整理得所以由正弦定理得整理得因为所以故答案为:【点睛】该题考查的是有关解三角形 解析:6π【分析】首先利用余弦定理将题中条件整理得到cos b C c =,根据正弦定理可得3sin tan B C ==,结合三角形内角的取值范围,最后求得结果. 【详解】ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2222b a c ac +-=,整理得222cos 22b a c ab ac C +-==,所以cos b C c =, 由正弦定理得sin cos sin B C C =,整理得3sin tan 3B C ==,因为(0,)C π∈,所以6B π=,故答案为:6π. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理、正弦定理、已知三角函数值求角,属于中档题.20.【分析】根据三角形面积公式以及余弦定理求解即可【详解】由余弦定理可知故答案为:【点睛】本题主要考查了三角形面积公式以及余弦定理的应用属于中档题 解析:12【分析】根据三角形面积公式以及余弦定理求解即可.【详解】11sin 1222ABC S bc A c ==⨯=△6c ∴=由余弦定理可知a =12sin sin sin sin a b c a A B C A ++∴===++故答案为:12 【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.三、解答题21.(1)1040m ;(2)3537min 【分析】(1)在ABC 中,根据4sin 5C =,63sin 65B =,由正弦定理sin sin AB ACC B=,可得AB ;(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得2d =235625200373737t ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪⎝⎭⎝⎭,再利用二次函数求解. 【详解】(1)在ABC 中,根据4sin 5C =,63sin 65B =, 由正弦定理得:sin sin AB ACC B=,得41260sin 5104063sin 65AC C AB B ⋅⋅===(m )所以缆车线路AB 的长为1040m(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得()()()222121005013021301005013d t t t t =++-⨯⨯+⨯()2200377050t t =-+235625200373737t ⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又在AB 段的时间10400130t ≤≤,即08t ≤≤,故3537t =时,甲,乙两游客的距离最短. 【点睛】关键点点睛:本题主要考查了解三角形的实际应用.实际应用题关键是构造三角形,将各个已知条件向这个主三角形集中,转化为数学模型,列出数学表达式,再通过正弦、余弦定理,勾股定理或其他基本性质建立条件之间的联系,列方程或列式求解.22.(1)6π;(2) 【分析】(1)先由正弦定理边角互化,计算求得sin B ;(2)由(1)可知ABC 是等腰三角形,根据面积公式求边长a ,AMC 中,再根据余弦定理求中线AM 的长. 【详解】(1)∵1sin cos 2a B Ab =, 由正弦定理边角互化得1sin sin cos sin sin cos sin 2A B C C B A B +=, 由于(0,),sin 0B B π∈≠,∴1sin cos sin cos 2A C C A +=,即1sin()2A C +=,得1sin 2B =. 又c b >,∴02B π<<,∴6B π=.(2)由(1)知6B π=,若6A π=,故a b =,则2112sin sin 223ABC S ab C a π∆=== ∴4a =,4a =-(舍)又在AMC 中,22222cos 3AM AC MC AC MC π=+-⋅, ∴222221121()2cos 42242()282232AM AC AC AC AC π=+-⋅⋅⋅=+-⋅⋅⋅-=,∴AM =23.(1)π4A =;(2)a =3AD =. 【分析】(1()sin sin sin tan cos C B A C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =,求得cos 10B =-,由题得出3a BD ==,再由余弦定理即可求出AD . 【详解】解:(1()sin sin sin tan cos C B A C A C -=-,()()sin sin sin tan cos C A C A C A C -+=-,∴2sin sin cos cos sin sin sin cos cos AC A C A C C A C A--=-,∵sin 0C ≠,∴2sin cos cos AA A+=∴cos A =0πA <<,∴π4A =.(2)由余弦定理可得:2222cos 1841210a b c bc A =+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴33a BD ==,又222cos 2a c b B ac +-==∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴3AD =. 【点睛】关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.24.(1)证明见解析;(2. 【分析】(1)解法一:用正弦定理化边为角,得到2sin sin sin B A C =,再变成2b ac =,运用基本不等式可证明解法二:用余弦定理化角为边,得到关系式2b ac =,再用基本不等式求解即可. (2)用余弦定理求出3cos 4B =,再用三角形面积公式求解即可. 【详解】(1)解法一:由已知及正弦定理,得cos cos 1sin sin sin A C A C B +=因为cos cos cos sin cos sin sin()sin sin sin sin sin sin sin sin sin +++===A C A C C A A C BA C A C A c A c所以sin 1sin sin sin =B A c B,2sin sin sin B A C =由正弦定理得2b ac =,即4ac =.4a c +≥=.解法二:由已知及余弦定理,得222221222+-+-+=b c a a b c abc abc ,得24==ac b ,所以4a c +≥=.(2)因为ABC 的周长为2+a c += 因为22222cos ()22cos b a c ac B a c ac ac B =+-⋅=+--⋅又因为4ac =,所以3cos 4B =得sin B =.所以1sin 2sin 22===ABCSac B B . 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)2π3;(2)2. 【分析】(1)利用正弦定理的边角互化以及辅助角公式即可求解.(2)根据三角形的面积公式可得2ac =,再利用余弦定理可得a c +=. 【详解】解:(1sin (2cos )A a B =+,sin sin (2cos )A B A B =+. ∵(0π)A ∈,,∴sin 0A >, ∴cos 2B B -=,∴π2sin 26B ⎛⎫-= ⎪⎝⎭,∴ππ62B -=,∴2π3B =.(2)因为2ABCS =,∴12πsin 23ac =,∴2ac =. 又∵22222cos ()b a c ac B a c ac =+-=+-,∴a c +=∴11a c a c ac ++==.26.(1)3A π=;(2)2. 【分析】 第(1)小问:方案①中是利用正弦定理将边转化为角的关系,化简后求得3A π=; 方案②首先利用正弦定理将边长之比转化为角的正弦之比,再化简求得3A π=;方案③利用两角和的正切公式将tan tan tan A B C ++化成tan tan()(1tan tan )A B C B C ++⋅-,再利用tan()tan B C A +=-对式子进行化简得到3A π=;第(2)小问:由余弦定理2222cos ,2,3a b c bc A a A π=+-==可以得到关于,b c的关系式,再结合b c +=2bc =,最后求得三角形的面积即可.【详解】()1方案①()2sin cos sin cos sin A C B B C A +=()2sin sin A C B A +=,2sin sin A A A =又()0,A π∈,所以sin 0A ≠,所以tan A = 所以3A π=方案②:由已知正弦定理得()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin C A B C A C C A C A C C =-=+-=+-所以2cos sin sin 0,A C C -=即2cos sin sin ,A C C =又()0,C π∈,所以sin 0,C ≠ 所以1cos 2A =所以3A π=方案③:因为tan tan tan tan A B C B C ++=所以tan tan tan tan tan tan()(1tan tan )A B C B C A B C B C ++==++⋅- ()tan tan 1tan tan tan tan tan A A B C A B C =--=tan tan tan tan B C A B C =又()0A B C π∈,,,,所以tan 0,tan 0B C ≠≠,所以1tan ,2A A ==所以3A π=()2由余弦定理2222cos ,2,3a b c bc A a A π=+-==,得224b c bc =+- 即()243b c bc +=+,又因为b c +=所以2bc =所以1sin 22ABC S bc A == 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.。

高中数学北师大版必修五达标练习:第3章 §4-4.3 简单线性规划的应用 含解析

高中数学北师大版必修五达标练习:第3章 §4-4.3 简单线性规划的应用 含解析

[A 基础达标]1.某学校用800元购买A 、B 两种教学用品,A 种用品每件100元,B 种用品每件160元,两种用品至少各买一件,要使剩下的钱最少,A 、B 两种教学用品应各买的件数为( )A .2件,4件B .3件,3件C .4件,2件D .不确定解析:选B.设买A 种教学用品x 件,B 种教学用品y 件,剩下的钱为z 元,则⎩⎨⎧100x +160y ≤800,x ≥1,y ≥1,x ,y ∈N +,求z =800-100x -160y 取得最小值时的整数解(x ,y ),用图解法求得整数解为(3,3).2.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )A .5种B .6种C .7种D .8种解析:选C.设购买软件x 片,磁盘y 盒,则⎩⎪⎨⎪⎧60x +70y ≤500,x ≥3,x ∈N +,y ≥2,y ∈N +,画出线性约束条件表示的平面区域,可行域内的整点有(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2)共7个整点.3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元.对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元解析:选B.设对项目甲投资x 万元,对项目乙投资y 万元,则⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5.目标函数z =0.4x +0.6y .作出可行域如图所示,由直线斜率的关系知目标函数在A 点取最大值,代入得z max =0.4×24+0.6×36=31.2,所以选B.4.某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工.每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( )A .甲车间加工原料10箱,乙车间加工原料60箱B .甲车间加工原料15箱,乙车间加工原料55箱C .甲车间加工原料18箱,乙车间加工原料50箱D .甲车间加工原料40箱,乙车间加工原料30箱解析:选B.设甲车间加工原料x 箱,乙车间加工原料y 箱(x ,y ∈N ),根据题意,得约束条件⎩⎨⎧x +y ≤70,10x +6y ≤480,x ≥0,y ≥0,画出可行域如图.目标函数z =280x +200y ,即y =-75x +z 200, 作直线y =-75x 并平移,得最优解A (15,55). 所以当x =15,y =55时,z 取最大值.5.车间有男工25人,女工20人,要组织甲、乙两种工作小组,甲组要求有5名男工,3名女工,乙组要求有4名男工,5名女工,并且要求甲种组数不少于乙种组数,乙种组数不少于1组,则要使组成的组数最多,甲、乙各能组成的组数为( )A .甲4组、乙2组B .甲2组、乙4组C .甲、乙各3组D .甲3组、乙2组解析:选D.设甲种x 组,乙种y 组.则⎩⎪⎨⎪⎧5x +4y ≤25,3x +5y ≤20,x ≥y ,y ≥1,x ∈N +,y ∈N + 总的组数z =x +y ,作出该不等式组表示的平面区域如图中阴影中整点部分,寻找整点分析,x =3,y =2时,为最优解.6.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:由题意,设产品A 生产x 件,产品B 生产y 件,利润z =2 100x +900y ,线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,y ≥0.作出不等式组表示的平面区域如图阴影中的整点部分所示,又由x ∈N ,y ∈N ,可知取得最大值时的最优解为(60,100),所以z max =2 100×60+900×100=216000(元).答案:216 0007.小明准备用积攒的300元零用钱买一些科普书和文具,作为礼品送给山区的学生.已知科普书每本6元,文具每套10元,并且买的文具的数量不少于科普书的数量.那么最多可以买的科普书与文具的总数是________.解析:设买科普书x 本,文具y 套,总数为z =x +y .由题意可得约束条件为⎩⎪⎨⎪⎧6x +10y ≤300,x ≤y ,x ≥0,x ∈N ,y ≥0,y ∈N ,作出可行域如图中阴影部分整点所示,将z =x +y 化为y =-x +z ,作出直线y =-x 并平移,使之经过可行域,易知经过点A ⎝⎛⎭⎫754,754时,纵截距最大,但因x ,y 均属于正整数,故取得最大值时的最优解应为(18,19),此时z 最大为37.答案:378.某企业拟用集装箱托运甲、乙两种产品,甲种产品每件体积为5 m 3,重量为2吨,运出后,可获利润10万元;乙种产品每件体积为4 m 3,重量为5吨,运出后,可获利润20万元,集装箱的容积为24 m 3,最多载重13吨,装箱可获得最大利润是________.解析:设甲种产品装x 件,乙种产品装y 件(x ,y ∈N ),总利润为z 万元,则⎩⎨⎧5x +4y ≤24,2x +5y ≤13,x ≥0,y ≥0,且z =10x +20y .作出可行域,如图中的阴影部分所示.作直线l 0:10x +20y =0,即x +2y =0.当l 0向右上方平移时z 的值变大,平移到经过直线5x +4y =24与2x +5y =13的交点(4,1)时,z max =10×4+20×1=60(万元),即甲种产品装4件、乙种产品装1件时总利润最大,最大利润为60万元.答案:60万元9.A ,B 两仓库各有麻袋50万个、30万个,现需调运到甲地40万个,乙地20万个,已知从A 仓库调运到甲、乙两地的运费分别为120元/万个,180元/万个,从B 仓库调运到甲、乙两地的运费分别为100元/万个,150元/万个,怎样安排调运,能使总运费最少?最少总运费为多少?解:设从A 仓库调运x 万个到甲地,y 万个到乙地,则从B 仓库调40-x 万个到甲地,20-y 万个到乙地,总运费记为z 元,则有⎩⎨⎧x +y ≤50,40-x +20-y ≤30,0≤x ≤40,0≤y ≤20,z =120x +180y +100(40-x )+150(20-y ),即z =20x +30y +7 000,作出可行域及直线l 0:20x +30y =0,经平移知直线经可行域上点M (30,0)时与原点距离最小,即x =30,y =0时,z 有最小值,z min =20×30+30×0+7 000=7 600(元),即从A 仓库调运30万个到甲地,从B 仓库调运10万个到甲地,20万个到乙地总运费最小,其最小值为7 600元.10.雾霾大气严重影响人们的生活,某科技公司拟投资开发新型节能环保产品,策划部制定投资计划时,不仅要考虑可能获得的盈利,而且还要考虑可能出现的亏损,经过市场调查,公司打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和60%,可能的最大亏损率分别为20%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.6万元.(1)若投资人用x 万元投资甲项目,y 万元投资乙项目,试写出x ,y 所满足的条件,并在直角坐标系内作出表示x ,y 范围的图形.(2)根据(1)的规划,投资公司对甲、乙两个项目分别投资多少万元,才能使可能的盈利最大? 解:(1)由题意,知x ,y 满足的条件为⎩⎨⎧x +y ≤10,0.2x +0.1y ≤1.6,x ≥0,y ≥0,上述不等式组表示的平面区域如图中阴影部分(含边界).(2)根据第一问的规划和题设条件,可知目标函数为z =x +0.6y .如图所示,作直线l 0:x +0.6y =0.当直线l 0经平移过直线x +y =10与0.2x +0.1y =1.6的交点A 时,其纵截距最大,解方程组⎩⎪⎨⎪⎧x +y =10,0.2x +0.1y =1.6,解得⎩⎪⎨⎪⎧x =6,y =4, 即A (6,4),此时z =6+0.6×4=8.4(万元),所以当x =6,y =4时,z 取得最大值.即投资人用6万元投资甲项目,4万元投资乙项目,才能确保亏损不超过1.6万元,且使可能的利润最大.[B 能力提升]11.某厂生产的甲、乙两种产品每件可获利润分别为30元、20元,生产甲产品每件需用A 原料2 kg 、B 原料4 kg ,生产乙产品每件需用A 原料3 kg 、B 原料2 kg.A 原料每日供应量限额为60 kg ,B 原料每日供应量限额为80 kg.要求每天生产的乙种产品不能比甲种产品多于10件,则合理安排生产可使每日获得的利润最大为( )A .500元B .700元C .400元D .650元解析:选D.设每天生产甲、乙两种产品分别为x ,y 件,则x ,y 满足⎩⎪⎨⎪⎧2x +3y ≤60,4x +2y ≤80,y -x ≤10,x ≥0,y ≥0,x ,y ∈N .利润z =30x +20y .不等式组所表示的平面区域为如图所示的阴影区域内的整数点,根据目标函数的几何意义,在直线2x +3y =60和直线4x +2y =80的交点B 处取得最大值,解方程组得B (15,10),代入目标函数得z max =30×15+20×10=650.12.某运输公司接受了向地震灾区每天至少运送180吨支援物资的任务,该公司有8辆载重为6吨的A 型卡车和4辆载重为10吨的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次,每辆卡车每天往返的成本费用为A 型卡车为320元,B 型卡车为504元.每天调配A 型卡车______辆,B 型卡车______辆,可使公司所花的成本费用最低.解析:设每天调出A 型卡车x 辆,B 型卡车y 辆,公司所花的成本为z 元,依题意有 ⎩⎪⎨⎪⎧x ≤8,y ≤4,x +y ≤10,4×6x +3×10y ≥180(4x +5y ≥30),x ,y ∈N ,目标函数z =320x +504y (其中x ,y ∈N ).作出上述不等式组所确定的平面区域如图所示阴影中的整点部分,即可行域.由图易知,直线z =320x +504y 在可行域内经过的整数点中,点(8,0)使z =320x +504y 取得最小值,z min =320×8+504×0=2 560(元).答案:8 013.某化工集团在靠近某河流处修建两个化工厂,流经第一化工厂的河流流量为500万m 3/天,在两个化工厂之间还有一条流量为200万m 3/天的支流并入大河(如图).第一化工厂每天排放含有某种有害物质的工业废水2万m 3;第二化工厂每天排放这种工业废水1.4万m 3,从第一化工厂排出的工业废水在流到第二化工厂之前,有20%可自然净化.环保要求:河流中工业废水的含量应不大于0.2%,因此,这两个工厂都需各自处理部分工业废水,第一化工厂处理工业废水的成本是1 000元/万m 3,第二化工厂处理工业废水的成本是800元/万m 3.试问:在满足环保要求的条件下,两个化工厂应各自处理多少工业废水,才能使这两个工厂总的工业废水处理费用最小?解:设第一化工厂每天处理工业废水x 万m 3,需满足:2-x 500≤0.2%,0≤x ≤2; 设第二化工厂每天处理工业废水y 万m 3,需满足:0.8(2-x )+(1.4-y )700≤0.2%,0≤y ≤1.4. 两个化工厂每天处理工业废水总的费用为z =1 000x +800y 元.问题即为:在约束条件⎩⎪⎨⎪⎧2-x 500≤0.2%,0.8(2-x )+(1.4-y )700≤0.2%,0≤x ≤2,0≤y ≤1.4即⎩⎪⎨⎪⎧x ≥1,4x +5y -8≥0,0≤x ≤2,0≤y ≤1.4,求目标函数z =200(5x +4y )的最小值.如图,作出可行域.可知当x =1,y =0.8时目标函数有最小值,即第一化工厂每天处理工业废水1万m 3,第二化工厂每天处理工业废水0.8万m 3,能使这两个工厂总的工业废水处理费用最小.14.(选做题)某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示: 原料肥料A B C 甲4 8 3 乙5 5 10现有A 已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润. 解:(1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.设二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z 3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z 3最大,即z 最大. 解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24). 所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.。

(常考题)北师大版高中数学必修五第三章《不等式》测试(含答案解析)(3)

(常考题)北师大版高中数学必修五第三章《不等式》测试(含答案解析)(3)

一、选择题1.设0,0a b >>,若4a b +=.则49a b+的最小值为( ) A .254B .252 C .85D .1252.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( )A .12B .45C .92D .4193.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .64.已知()()22log 1log 24a b -++=,则+a b 的最小值为( ) A .8B .7C .6D .35.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-16.已知0x >,0y >,21x y +=,若不等式2212m m x y+>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m ≤- B .2m ≥或4m ≤- C .24m -<< D .42m -<<7.若正数a ,b 满足111a b +=,则41611a b +--的最小值为( ) A .16 B .25C .36D .498.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R9.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A.B.C .6D .810.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<-11.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.已知2xy x =+,则42x y+的最小值为_________14.已知实数x y ,,正实数a b ,满足2x y a b ==,且213x y+=-,则2a b +的最小值为__________.15.已知变量x ,y 满足430401x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x y xy +的最大值为______.16.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.17.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 18.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元.19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.已知函数()21f x x x =-+,若在区间[]1,1-上,不等式()2f x x m >+恒成立,则实数m 的取值范围是___________.三、解答题21.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值. 22.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1.(1)求f(x)的解析式; (2)解不等式f(x)>2x +5.23.已知函数f (x )=ax 2﹣(4a +1)x +4(a ∈R ).(1)若关于x 的不等式f (x )≥b 的解集为{x |1≤x ≤2},求实数a ,b 的值; (2)解关于x 的不等式f (x )>0.24.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?25.若实数0x >,0y >,且满足8x y xy +=-. (1)求xy 的最大值; (2)求x y +的最小值26.如果x ,y R ∈,比较()222+x y 与()2xy x y +的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用“1”的代换凑配出定值后用基本不等式可得最小值. 【详解】0,0,4a b a b >>+=()(4914914912513134444b a a b a b a b a b ⎛⎫⎛⎫∴+=++=++≥⨯+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当49b aa b =,即812,55a b ==时取等号. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2.C解析:C 【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值. 【详解】作出可行域,如图ABC 内部(含边界),()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min0213222PM--==,(点M 到直线BC 的距离) ∴()222x y +-的最小值是232922⎛⎫= ⎪ ⎪⎝⎭. 故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型:(1)22()()x a y b -+-,两点间的距离公式;(2)y bx a--:两点连线斜率, 3.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.4.B解析:B 【分析】由对数运算可得出()()1216a b -+=,利用基本不等式可求得+a b 的最小值. 【详解】因为()()22log 1log 24a b -++=,即()()2log 124a b -+=⎡⎤⎣⎦, 所以,()()1216a b -+=且有10a ->,20b +>,由基本不等式可得()()128a b -++≥=,所以,7a b +≥,所以(1)(2)16a b -+=,且10a ->,20b +>, 当且仅当124a b -=+=时等号成立. 因此,+a b 的最小值为7. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】 作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值,解方程组2122x y x y -≤⎧⎨-≥⎩,求得1x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.6.D解析:D 【分析】先根据已知结合基本不等式得218x y+≥,再解不等式228m m +<即可得答案.【详解】解:由于0x >,0y >,21x y +=, 所以()21214424428y x y x x y x y x y x y x y⎛⎫+=++=++≥+⋅= ⎪⎝⎭, 当且仅当4y x x y =,即122x y ==时等号成立, 由于不等式2212m m x y+>+成立, 故228m m +<,解得:42m -<<. 故实数m 的取值范围是:42m -<<. 故选:D. 【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题.7.A解析:A 【分析】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--化简,利用基本不等式可求函数最小值. 【详解】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--得到:416416416(1)16111111a a ab a a a +=+=+-≥=------ 当且仅当:4=16(1)1a a --即32a =时取等号.故选:A 【点睛】本题考查了均值不等式在求最值问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.8.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.9.D解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40x y >>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”). 故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.10.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题11.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()2233x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.12.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.【分析】依题意可得再利用基本不等式计算可得;【详解】解:因为所以所以所以所以所以所以所以当且仅当即时取等号;故答案为:【点睛】在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正解析:【分析】依题意可得21x y +=,再利用基本不等式计算可得; 【详解】解:因为2xy x =+,2x xy =+-,所以()()()()2222221(1)42222x y x xy x x xy x y ⎡⎤+-+=+-=+-++⎣⎦, 所以2242144x y y x xy +-+=-, 所以()()222210x y x y +-++=, 所以()2210x y +-=,所以21x y +=,所以42x y +≥=42x y =,即14x =,12y =时取等号;故答案为:【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14.【分析】由条件化简可得利用均值不等式求最小值即可【详解】正实数满足取对数可得所以所以由均值不等式知当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(解析:2【分析】由条件化简可得218a b =,利用均值不等式求最小值即可.【详解】正实数a b ,满足2x y a b ==, 取对数可得log 2,log 2a b x y ==, 所以2222212log log log 3a b a b x y+=+==-, 所以218a b =,由均值不等式知,22a b +≥=,当且仅当2a b =,即a =,4b =时等号成立.故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】 作出可行域,令yt x =,OA OB y k k x ≤≤,所以7,313t ⎡⎤∈⎢⎥⎣⎦,22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值. 【详解】由43040x y x y -+=⎧⎨+-=⎩解得:13575x y ⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A ⎛⎫ ⎪⎝⎭,由140x x y =⎧⎨+-=⎩解得:13x y =⎧⎨=⎩,所以()1,3B ,y x 表示可行域内的点与原点连线的斜率,所以OA OB yk k x ≤≤, 775131305OAk -==-,30310OB k -==-,令7,313y t x ⎡⎤=∈⎢⎥⎣⎦, 所以22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 1y t t =+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增,当3t =时,1713109213791y ⎛⎫=+=⎪⎝⎭,当75t=时,1153233y ⎛⎫=+= ⎪⎝⎭, 所以222x y xy +的最大值为53,故答案为:53. 【点睛】 思路点睛:非线性目标函数的常见类型及解题思路:1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的ac倍;2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)z Ax By C =++=(),x y 到直线0Ax By C ++=倍.16.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.17.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12-【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m的最小值为:1 2-,故答案为12-.【点睛】本题考查二次函数的性质,关键是将x2+mx+m≥0在x∈[1,2]上恒成立转化为二次函数y=x2+mx+m在x∈[1,2]上的最值问题.18.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000【分析】设每月生产甲产品x件,生产乙产品y件,每月收入为z元,列出实际问题中x、y所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y=+的最大值.【详解】设每月生产甲产品x件,生产乙产品y件,每月收入为z元,目标函数为30002000z x y=+,需要满足的条件是24002500x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y=+可转化直线3122000y x z=-+,数形结合知当直线经过点A时z取得最大值.解方程组24002500x yx y+=⎧⎨+=⎩,可得点()200,100A,则z 的最大值为30002002000100z =⨯+⨯=800000元. 故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=,2(2)2(2)26m n s t s t ∴+=-+-=+-,而112223(2)()3(12)3(32)3(322)s t s ts t s t s t t s t s+=++=+++⨯+=+,当且仅当2s tt s=,即s =时,等号成立.2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+ 【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.【分析】由参变量分离法得出对任意的恒成立利用二次函数的基本性质可求得函数在区间上的最小值进而可求得实数的取值范围【详解】要使在区间上不等式恒成立只需恒成立设只需小于在区间上的最小值因为所以当时所以所 解析:(),1-∞-【分析】由参变量分离法得出231m x x <-+对任意的[]1,1x ∈-恒成立,利用二次函数的基本性质可求得函数()231g x x x =-+在区间[]1,1-上的最小值,进而可求得实数m 的取值范围.【详解】要使在区间[]1,1-上,不等式()2f x x m >+恒成立, 只需()2231m f x x x x <-=-+恒成立,设()231g x x x =-+,只需m 小于()y g x =在区间[]1,1-上的最小值,因为()22353124g x x x x ⎛⎫=-+=-- ⎪⎝⎭,所以当1x =时,()()min 11g x g ==-, 所以1m <-,所以实数m 的取值范围是(),1-∞-. 故答案为:(),1-∞-. 【点睛】本题考查利用二次不等式在区间上恒成立求参数,考查了参变量分离法的应用,考查计算能力,属于中等题.三、解答题21.(1)1;(2)9. 【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a+=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值. 【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<,即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --, 又不等式的解集为{|02}x x <<, 所以2(2)2m --=,解得1m =; (2)由正实数a ,b 满足4a b mab +=, 所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号, 所以+a b 的最小值为9. 【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 22.(1)2()1f x x x =-+;(2)()(),14,-∞-+∞【分析】(1) 设二次函数f (x )=ax 2+bx+c ,利用待定系数法即可求出f (x ); (2) 利用一元二次不等式的解法即可得出. 【详解】(1).设二次函数f (x )=ax 2+bx+c , ∵函数f (x )满足f (x+1)﹣f (x )=2x ,∴ f(x +1)-f(x)=()()211a x b x c ++++-()2ax bx c ++=2ax+a+b=2x ∴ 220a a b =⎧⎨+=⎩ ,解得11a b =⎧⎨=-⎩.且f (0)=1.∴ c=1∴f (x )=x 2﹣x+1.(2) 不等式f (x )>2x+5,即x 2﹣x+1>2x+5,化为x 2﹣3x ﹣4>0. 化为(x ﹣4)(x+1)>0,解得x >4或x <﹣1. ∴原不等式的解集为()(),14,-∞-⋃+∞ 【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题. 23.(1)-1,6;(2)答案见详解 【分析】(1)由f (x )≥b 的解集为{x |1≤x ≤2}结合韦达定理即可求解参数a ,b 的值;(2)原式可因式分解为()()()14f x ax x =--,再分类讨论即可0,0,0a a a =<>,对0a >再细分为111,0,,,444a a a ⎛⎫⎛⎫=∈∈+∞ ⎪ ⎪⎝⎭⎝⎭即可求解.【详解】(1)由f (x )≥b 得()24140ax a x b -++-≥,因为f (x )≥b 的解集为{x |1≤x ≤2},故满足4112a a ++=,412b a-⨯=,解得1,6a b =-=; (2)原式因式分解可得()()14f x a x x a ⎛⎫=-- ⎪⎝⎭, 当0a =时,()40f x x =-+>,解得(),4x ∈-∞;当0a <时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为1,4x a ⎛⎫∈ ⎪⎝⎭; 当0a >时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭, ①若14a =,即14a =,则()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为4x ≠;②若14a <,即14a >时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭;③若14a >,即104a <<时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭. 【点睛】本题考查由一元二次不等式的解求解参数,分类讨论求解一元二次不等式,属于中档题. 24.(1)400吨;(2)不获利,补40000元. 【分析】(1)求得每吨二氧化碳的平均处理成本为1800002002y x x x=+-,利用基本不等式求得yx的最小值,利用等号成立的条件求得x 的值,由此可得出结论; (2)令()2211100200800003008000022f x x x x x x ⎛⎫=--+=-+-⎪⎝⎭,求得该函数在区间[]400,600的最大值,进而可得出结论. 【详解】(1)由题意可知,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为()21200800004006002y x x x =-+≤≤, 所以,每吨二氧化碳的平均处理成本为1800002002y x x x=+-,由基本不等式可得200200y x ≥=(元), 当且仅当1800002x x=时,即当400x =时,等号成立, 因此,该单位每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)令()()222111100200800003008000030035000222f x x x x x x x ⎛⎫=--+=-+-=--- ⎪⎝⎭,400600x ≤≤,函数()f x 在区间[]400,600上单调递减,当400x =时,函数()f x 取得最大值,即()()max 40040000f x f ==-. 所以,该单位每月不能获利,国家至少需要补贴40000元才能使该单位不亏损. 【点睛】本题考查基本不等式和二次函数的实际应用,考查计算能力,属于中等题. 25.(1)4;(2)4. 【分析】(1)由于0x >,0y >,根据基本不等式得出8xy x y -=+≥不等式的解法,即可求出xy 的最大值;(2)根据题意,由0x >,0y >,根据基本不等式得出28()()2x y x y xy +-+=≤,通过解一元二次不等式,即可求出x y +的最小值.【详解】解:(1)∵0x >,0y >,∴8xy x y -=+≥80xy +≤,即2)0≤,解得:02<,04xy ∴<≤(当且仅当2x y ==时取等号), ∴xy 的最大值为4.(2)∵0x >,0y >,28()()2x y x y xy +∴-+=≤, 即2()()802x y x y +-++≥, 整理得:2()()3204x y x y +++-≥, ∴()()840x y x y +++-⎡⎤⎡⎤⎣⎦⎦≥⎣,∴4x y +≥(当且仅当2x y ==时取等号), 所以x y +的最小值为4. 【点睛】本题考查基本不等式的应用,考查利用基本不等式求和的最小值和积的最大值,以及一元二次不等式的解法,考查转化思想和运算能力. 26.()()2222x y xy x y ≥++,当且仅当x y =时等号成立【分析】运用作差比较法,结合配方法进行比较大小即可. 【详解】()()()2222442224433222x y xy x y x y x y xy x xy y x y x y xy +-++--++=+--=()()()()()()()2223333222324y x x y yy x x y xyx y xxy yx y x y ⎡⎤⎛⎫=-+-=--=-++=-++⎢⎥⎪⎝⎭⎢⎥⎣⎦()20x y -≥,223024y x y ⎛⎫++≥ ⎪⎝⎭,()2223024y x y x y ⎡⎤⎛⎫∴-++≥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. ()()2222x y xy x y ∴≥++,当且仅当x y =时等号成立.【点睛】本题考查了用作差比较法进行比较两个多项式的大小,考查了配方法的应用,属于中档题.。

【北师大版】高中数学必修五期末试卷(带答案)(3)

【北师大版】高中数学必修五期末试卷(带答案)(3)

一、选择题1.若正数x ,y 满足21y x+=,则2x y +的最小值为( )A .2B .4C .6D .82.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D3.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-4.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) ABCD5.在ABC 中,,,a b c 分别是角,,A B C 的对边,以下四个结论中,正确的是( ) A .若a b c >>,则sin sin sin A B C >> B .若A B C >>,则sin sin sin A B C << C .cos cos sin a B b A c C +=D .若222a b c +<,则ABC 是锐角三角形6.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos cos a B b A B =,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.在ABC 中,a ,b ,c 分别为角A ,B ,C的对边,若a =b =45B =︒,则A =( )A .30B .30或150︒C .60︒或120︒D .60︒8.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、B 、C 成等差数列,且2sin 2csin csin 2sin a A C a B b B +=+,则ABC 的面积的最大值为( ) A.BC.D.9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( )A .20192020B .20202021C .20212022D .1010101110.2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采样返回,标志着中国航天向前又迈出了一大步.月球距离地球约38万千米,有人说:在理想状态下,若将一张厚度约为0.1毫米的纸对折n 次其厚度就可以超过到达月球的距离,那么至少对折的次数n 是( )(lg 20.3≈,lg3.80.6≈) A .40B .41C .42D .4311.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .102412.已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4B .5C .6D .7二、填空题13.已知函数2()4f x x =+,()g x ax =,当[]1,4x ∈时,()f x 的图象总在()g x 图象的上方,则a 的取值范围为_________.14.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.15.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,其中2a =,若()()22sin sin sin 3sin sin B C B C B C +-+=,则ABC 面积的最大值是______.16.ABC 中,a ,b ,c 分别是,,A B C ∠∠∠的对边,2224ABCa b c S+-=,则C =_________.17.已知2z y x =-,式中变量x ,y 满足下列条件:213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩,若z 的最大值为11,则k 的值为______.18.如图,要计算某湖泊岸边两景点B 与C 的距离,由于受地形的限制,需要在岸上选取A 和D 两点,现测得5km AB =,7km AD =,60ABD ∠=︒,15CBD ∠=︒,120BCD ∠=︒,则两景点B 与C 的距离为________km.19.若数列{}n a 满足12a =,1441n n n a a a +=+,则使得22020n a ≥成立的最小正整数n 的值是______.20.已知数列{}n a 的通项公式为3217n n a n -=-,前n 项和为n S ,则n S 取得最小值时n 的值为_________.三、解答题21.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供([0,10])∈x x (万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅-⎪+⎝⎭(万件),其中k 为工厂工人的复工率([0.5,1]k ∈).A 公司生产t 万件防护服还需投入成本(20950)x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)在复工率为k 时,政府补贴多少万元才能使A 公司的防护服利润达到最大? (3)对任意的[0,10]x ∈(万元),当复工率k 达到多少时,A 公司才能不产生亏损?(精确到0.01).22.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?23.在ABC 中,cos 3sin )sin cos B a b C b B C -=. (1)求B ;(2)若2c a =,ABC的面积为3,求ABC 的周长. 24.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin a S A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分.25.在数列{}n a ,{}n b 中,2165n n n a a a +++=,()*13n n n b a a n +=-∈N ,且11a =,22b =.(1)求3a ,1b 的值; (2)求{}n b 的通项公式; (3)设()()11311n n n n b c b b +++=--,记{}n c 的前n 项和为n S ,证明:2479n S ≤<.26.已知数列{}n a ,11a =,121n n a a +=+. (1)求证数列{}1n a +是等比数列; (2)令()2log 1n n b a =+,求数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩,即412x y=⎧⎪⎨=⎪⎩时,等号成立,∴min 28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.3.B解析:B 【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值. 【详解】根据题中约束条件1x y ax y +≥⎧⎨-≤-⎩可画出可行域如图所示,两直线交点坐标为:11,22a a A -+⎛⎫⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.4.C解析:C 【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值. 【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点, 可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b +-+)120=(7()61169611696b b b b -+++-+)≥,当且仅当()61169611696b b b b -+=-+时,即b =,a =720+, 故选:C . 【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题.5.A解析:A 【分析】由正弦定理2sin sin sin a b cR A B C===,可判定A 正确;由大边对大角定理和正弦定理可判定B 错误;由正弦定理,可判定C 错误;根据余弦定理,可判定D 错误. 【详解】对于A 中,由于a b c >>,由正弦定理2sin sin sin a b cR A B C===, 可得sin sin sin A B C >>,故A 正确;对于B 中,A B C >>,由大边对大角定理可知,则a b c >>,由正弦定理2sin sin sin a b cR A B C===,可得sin sin sin A B C >>,故B 错误; 对于C 中,由正弦定理可得cos cos 2(sin cos sin cos )a B b A R A B B A +=+2sin()2sin()2sin R A B R C R C c π=+=-==,故C 错误;对于D 中,由222a b c +<,根据余弦定理可得222cos 02a b c C ab+-=<,因为(0,)C π∈,可得C 是钝角,故D 错误.故选:A. 【点睛】本题主要考查了以解三角形为背景的命题真假判定问题,其中解答中熟记解三角形的正弦定理、余弦定理,合理推算是解答的关键,着重考查推理与运算能力,属于基础题.6.B解析:B 【分析】根据正弦定理得到2sin sin sin cos cos A B B A B =,化简得到()sin cos 0B A B -+=,计算得到答案. 【详解】2sin cos cos a B b A B =,所以2sin sin sin cos cos A B B A B =,所以()sin sin sin cos cos 0B A B A B -=,即()sin cos 0B A B -+=. 因为0A π<<,0B π<<,所以2A B π+=,故ABC ∆是直角三角形.故选:B 【点睛】本题考查了正弦定理和三角恒等变换,意在考查学生对于三角公式的综合应用.7.C解析:C 【解析】∵45a b B ===︒∴根据正弦定理sin sin a b A B=,即sin sin 2a B A b ===∵a b =>=∴()45,135A ∈︒︒ ∴60A =︒或120︒ 故选C8.B解析:B 【分析】由等差数列性质得3B π=,应用正弦定理边角转换、余弦定理由已知可求得三角形外接圆半径R ,从而边,a c 可用角表示,最后用角表示出三角形面积,结合三角函数恒等变换、正弦函数性质得出最大值. 【详解】∵角A 、B 、C 成等差数列,∴2B A C =+, 又A B C π++=,∴3B π=,23C A π=-,2(0,)3A π∈,由正弦定理2sin sin sin a b c R A B C===得sin ,sin ,sin 222a b c A B C R R R ===, ∵2sin 2csin csin 2sin a A C a B b B +=+,∴2sin 2sin 2sin a A c C b B +-=,即2222a b c ac R R R +-=,2222cos 2a c b ac Bac R R+-==,∴3R =,又由正弦定理得2sin ,a R A A c C ===,∴112sin sin sin sin()2233333ABC S ac B A C A A △ππ==⨯⨯⨯=-21sin (sin )cos 2sin )3223A A A A A A =+=+21cos 2)A A =+-)6A π=-,∵2(0,)3A π∈,∴3A π=时,sin(2)16A π-=,即ABCS += 故选:B . 【点睛】本题以我们熟知的三角形为背景,探究的是三角形面积的最大值,结合等差数列的性质,利用正弦定理进行边角转换,考查目的是让考生发现、揭示问题本质的关联点,从而有效的激发考生学习兴趣,本题同时考查了考生的逻辑推理能力、直观想象能力,本题属于中档题.9.C解析:C 【分析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】 数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=. 故选:C 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.10.C解析:C 【分析】设对折n 次时,纸的厚度为n a ,则{}n a 是以10.12a =⨯为首项,公比为2的等比数列,求出{}n a 的通项,解不等式460.12381010n n a =⨯≥⨯⨯即可求解【详解】设对折n 次时,纸的厚度为n a ,每次对折厚度变为原来的2倍, 由题意知{}n a 是以10.12a =⨯为首项,公比为2的等比数列,所以10.1220.12n nn a -=⨯⨯=⨯,令460.12381010n n a =⨯≥⨯⨯,即122 3.810n ≥⨯,所以lg 2lg 3.812n≥+,即lg 20.612n ≥+,解得:12.6420.3n ≥=, 所以至少对折的次数n 是42,故选:C 【点睛】关键点点睛:本题解题的关键是根据题意抽象出等比数列的模型,求出数列的通项,转化为解不等式即可.11.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】由参变量分离法可得知不等式对任意的恒成立利用基本不等式求出的最小值即可得出实数的取值范围【详解】由题意可得则从而有由基本不等式可得当且仅当时等号成立所以因此实数的取值范围是故答案为:【点睛】 解析:(),4-∞【分析】由参变量分离法可得知,不等式4a x x<+对任意的[]1,4x ∈恒成立,利用基本不等式求出4x x+的最小值,即可得出实数a 的取值范围. 【详解】由题意可得[]1,4x ∀∈,则24x ax +>,从而有4a x x<+,由基本不等式可得44x x +≥=,当且仅当2x =时,等号成立,所以,4a <. 因此,实数a 的取值范围是(),4-∞. 故答案为:(),4-∞.结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.14.2【分析】据题意由于MN 为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2 【分析】据题意,由于M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MNa ⋅≤(当且仅当MN 与a 共线同向时等号成立)从而求得最大值. 【详解】由0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立), 即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离.2=, 故答案为:2 【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题.15.【分析】根据利用正弦定理得到再利用余弦定理求得然后由余弦定理结合基本不等式得到再利用三角形面积公式求解【详解】因为所以即所以因为所以由余弦定理得:所以所以故面积的最大值是故答案为:【点睛】本题主要考【分析】根据()()22sin sin sin 3sin sin B C B C B C +-+=,利用正弦定理得到222b c a bc +-=,再利用余弦定理求得3A π=,然后由余弦定理结合基本不等式得到4bc ≤,再利用三角形面积公式求解. 【详解】因为()()22sin sin sin 3sin sin B C B C B C +-+= 所以()223b c a bc +-=,即222b c a bc +-=,所以2221cos 22b c a A bc +-==, 因为()0,A π∈, 所以3A π=,由余弦定理得:222222cos a b c bc A b c bc bc =+-=+-≥, 所以4bc ≤,所以1sin 2ABC S bc A =≤△,故ABC【点睛】本题主要考查正弦定理,余弦定理的应用以及基本不等式的应用,还考查了运算求解的能力,属于中档题.16.【分析】由结合余弦定理得到求解【详解】因为所以即:因为所以故答案为:【点睛】本题主要考查三角形面积公式与余弦定理的应用还考查了运算求解的能力属于中档题解析:4π【分析】由2221sin 24+-==ABC a b c S ab C ,结合余弦定理得到tan 1C =求解.【详解】因为2221sin 24+-==ABCa b c Sab C , 所以222sin cos 2a b c C C ab+-==,即:tan 1C =, 因为()0,C π∈, 所以4Cπ,故答案为:4π 【点睛】本题主要考查三角形面积公式与余弦定理的应用,还考查了运算求解的能力,属于中档题.17.23【分析】先画出约束条件所表示的可行域结合图象确定目标函数的最优解代入最优解的坐标即可求解【详解】画出不等式组所表示的可行域如图所示可得交点又由解得目标函数可化为当直线过点C 时直线在轴上的截距最大解析:23 【分析】先画出约束条件所表示的可行域,结合图象确定目标函数的最优解,代入最优解的坐标,即可求解. 【详解】画出不等式组213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩所表示的可行域,如图所示,可得交点(0,1),(7,1)A B ,又由21211x y y x -=-⎧⎨-=⎩,解得(3,7)C ,目标函数2z y x =-可化为122z y x =+, 当直线122zy x =+过点C 时,直线在y 轴上的截距最大,此时目标函数取得最大值,将C 代入直线320x y k +-=,解得23k =. 故答案为:23【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出不等式组所表示的平面区域,结合图象得出目标函数的最优解是解答的关键,着重考查数形结合法,以及计算能力.18.【分析】在中根据由余弦定理解得然后在中利用正弦定理求解【详解】在中因为由余弦定理得整理得解得或(舍去)在中因为所以由正弦定理得:所以故答案为:【点睛】本题主要考查余弦定理和正弦定理的应用还考查了运算 解析:863【分析】在ABD △中,根据5km AB =,7km AD =,60ABD ∠=︒,由余弦定理解得8BD =,然后在BCD △中,利用正弦定理sin sin BD BCBCD BDC=∠∠求解.【详解】在ABD △中,因为5km AB =,7km AD =,60ABD ∠=︒, 由余弦定理得2222cos AD AB BD AB BD ABD =+-⋅⋅∠, 整理得249255BD BD =+-, 解得8BD =或3BD =-(舍去),在BCD △中,因为15CBD ∠=︒,120BCD ∠=︒, 所以45BDC ∠=︒, 由正弦定理得:sin sin BD BCBCD BDC=∠∠,所以sin 45sin1203BD BC ⋅︒==︒.【点睛】本题主要考查余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.19.【分析】根据递推关系式可证得数列为等比数列根据等比数列通项公式求得代入不等式结合可求得结果【详解】数列是以为首项为公比的等比数列由得:即且满足题意的最小正整数故答案为:【点睛】本题考查根据数列递推关 解析:11【分析】根据递推关系式可证得数列}1,代入不等式,结合n *∈N 可求得结果. 【详解】()21411n n a a +=+=,1=,)121=,∴数列}111=为首项,2为公比的等比数列, )1112n -+=⨯,)1121n -=⨯-,由22020n a ≥2020≥,即)1220211837n -≥=⨯≈,92512=,1021024=且n *∈N ,∴满足题意的最小正整数11n =.故答案为:11. 【点睛】本题考查根据数列递推关系式求解数列通项公式并解不等式的问题,关键是能够通过构造的方式,通过递推关系式得到等比数列的形式,进而利用等比数列通项公式来进行求解.20.8【分析】求出数列在n 的不同取值范围的正负判断出的单调性可求出【详解】令解得或当时单调递增当时单调递减当时单调递增所以取得最小值时的值为8故答案为:8【点睛】本题考查数列前n 项和的最值的求法解题的关解析:8 【分析】求出数列在n 的不同取值范围的正负判断出n S 的单调性可求出. 【详解】 令30217n n a n -=≥-,解得3n ≤或172n ≥,∴当3n ≤时,0n a ≥,n S 单调递增,当47n ≤≤时,0n a <,n S 单调递减, 当8n ≥时,0n a >,n S 单调递增, 所以n S 取得最小值时n 的值为8. 故答案为:8. 【点睛】本题考查数列前n 项和的最值的求法,解题的关键是根据数列的正负判断n S 的单调性.三、解答题21.(1)3601808204ky k x x =---+,[0,10]x ∈,[0.5,1]k ∈;(2)4-;(3)0.65 【分析】(1)根据已知条件列出关系式,即可得出答案; (2)由()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦,进而结合基本不等式求出()4544kx x +++的最小值,此时y 取得最大值,从而可求出答案; (3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,可知36018082004kk x x ---≥+在[0,10]x ∈上恒成立,利用参变分离,可得()()20841802x x k x ++≥+,求出()()20842x x x +++的最大值,令()()max20841802x x k x ++⎡⎤≥⎢⎥+⎣⎦,即可得出答案. 【详解】 (1)由题意,80(20950)y x t x t =+-++30820t x =--123068204k x x ⎛⎫=⋅--- ⎪+⎝⎭3601808204kk x x =---+,即3601808204ky k x x =---+,[0,10]x ∈,[0.5,1]k ∈. (2)()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦, 因为[0,10]x ∈,所以4414x ≤+≤,所以()4544k x x ++≥=+4544k x x+=+,即4x =时,等号成立.所以()451801284180124k y k x k x ⎡⎤=+-++≤+-⎢⎥+⎣⎦故政府补贴为4万元才能使A 公司的防护服利润达到最大,最大为18012k +-.(3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,则36018082004kk x x ---≥+在[0,10]x ∈上恒成立,不等式整理得,()()20841802x x k x ++≥+,令2m x =+,则[]2,12m ∈,则()()()()208484288202x x m m m x mm++++==+++, 由函数()8820h m m m=++在[]2,12上单调递增,可得()()max 821281*********h m h ==⨯++=+, 所以21801163k ≥+,即211630.65180k +≥≈. 所以当复工率k 达到0.65时,对任意的[0,10]x ∈(万元),A 公司都不产生亏损.【点睛】本题考查函数模型及其应用,考查利用基本不等式求最值,考查不等式恒成立问题,考查学生分析问题、解决问题的能力,属于中档题. 22.(1)400吨;(2)不获利,补40000元. 【分析】(1)求得每吨二氧化碳的平均处理成本为1800002002y x x x=+-,利用基本不等式求得yx的最小值,利用等号成立的条件求得x 的值,由此可得出结论; (2)令()2211100200800003008000022f x x x x x x ⎛⎫=--+=-+-⎪⎝⎭,求得该函数在区间[]400,600的最大值,进而可得出结论. 【详解】(1)由题意可知,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为()21200800004006002y x x x =-+≤≤, 所以,每吨二氧化碳的平均处理成本为1800002002y x x x=+-,由基本不等式可得200200y x ≥=(元), 当且仅当1800002x x=时,即当400x =时,等号成立, 因此,该单位每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)令()()222111100200800003008000030035000222f x x x x x x x ⎛⎫=--+=-+-=--- ⎪⎝⎭,400600x ≤≤,函数()f x 在区间[]400,600上单调递减,当400x =时,函数()f x 取得最大值,即()()max 40040000f x f ==-. 所以,该单位每月不能获利,国家至少需要补贴40000元才能使该单位不亏损. 【点睛】本题考查基本不等式和二次函数的实际应用,考查计算能力,属于中等题.23.(1)3B π=;(2)2+.【分析】(1cos sin B b A =,根据正弦定理、三角形内角的性质,即可求B ;(2)由三角形面积公式求出a 、c ,再根据余弦定理求b ,即可求ABC 的周长. 【详解】(1)由cos sin )sin cos B b C b B C -=,得cos cos sin sin cos B b B C b B C -=,∴cos sin cos cos sin B b B C b B C =+cos sin()B b B C =+, ∴cos sin B b A =.cos sin sin A B B A =,又sin 0A ≠, ∴sin B B =,即tan B =0B π<<,∴3B π=.(2)由2,c a ABC =,得11sin 22223ABCS ac B a a ==⨯⨯⨯=,解得a =2c a ==.由余弦定理2222cos b a c ac B =+-,可得2221242b =+-=⎝⎭⎝⎭,解得2b =.∴ABC 的周长为2233a b c ++=++=+ 【点睛】 关键点点睛:(1)利用三角恒等变换及正弦定理,将已知条件化简为一个内角的函数值,根据函数值确定角的大小.(2)综合应用正余弦定理求三角形的边,进而求其周长.24.2+【分析】利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长. 【详解】由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A = 因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =,又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴=由正弦定理得sin sin sin a b cA B C==代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C = 又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=.由正弦定理得: sin sin sin a b c A B C==, 代入1,b c ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键. 25.(1)314a =,11b =;(2)12n nb -=;(3)见详解.【分析】 (1)根据题中条件,得到312232653a a a b a a +=⎧⎨=-⎩,求出3a ,2a ,进而可得1b ; (2)根据题中条件,得到()211323n n n n a a a a +++=--,推出数列{}n b 是以2为公比的等比数列,进而可求出通项公式;(3)由(2)先得()()222121nn n n c +=--,利用裂项相消的方法求出n S ,进而可得结论成立.【详解】(1)因为2165n n n a a a +++=,()*13n n n b a a n +=-∈N , 所以312232653a a a b a a +=⎧⎨=-⎩, 又11a =,22b =,所以32326532a a a a +=⎧⎨-=⎩,解得23414a a =⎧⎨=⎩, 所以12131b a a =-=;(2)由2165n n n a a a +++=可得211263n n n n a a a a +++=--,即()211323n n n n a a a a +++=--,又()*13n n n b a a n +=-∈N,所以12n n b b +=,则数列{}n b 是以2为公比的等比数列, 又11b =,所以12n n b -=;(3)由(2)可得()()()()()()()()21221321212111321212121n n n n n n n n n n n b c b b ++++++---===⨯------211132121n n +⎛⎫=⨯- ⎪--⎝⎭, 因此{}n c 的前n 项和为32435211111111132121321213212111321211n n n S +⎛⎫⎛⎫⎛⎫⎛⎫⨯=-+-+-+⋅⋅⋅+ ⎪ ⎪ ⎪----- ⎪--⎝--⎝⎭⎝⎭⎝⎭⎭23234511111111132121121321212121n n +⎛⎫⎛⎫=+++⋅⋅⋅+-+++⋅⋅⋅+ ⎪ ⎪-------⎝⎭⎝⎭ 121212211111111144113213239121212121321n n n n n n +++++++-----⎛⎫⎛⎫⎛⎫=+--=--=- ⎪ ⎪ ⎪-⎝⎭⎝-⎝⎭⎭因为*n ∈N ,所以121102121n n +++>--,则12112124493911n n n S ++⎛⎫=-< ⎪⎝⎭+--, 又121121211493n n n S ++⎛⎫=-+- ⎝-⎪⎭显然单调递增, 所以127n S S ≥=, 综上2479n S ≤<. 【点睛】结论点睛:裂项相消法求数列和的常见类型:(1)等差型111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,其中{}n a 是公差为()0d d ≠的等差数列; (2k =; (3)指数型()11n n n a a aa +-=-; (4)对数型11log log log n a a n a n na a a a ++=-. 26.(1)证明见解析;(2)()()235412n n n T n n +=++ 【分析】(1)利用等比数列的定义变形为()1121n n a a ++=+,证明数列{}1n a +是等比数列;(2)首先求数列{}n b 的通项公式,再利用裂项相消法求和.【详解】(1)121n n a a +=+,()1121n n a a +∴+=+, 即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是公比为2的等比数列;(2)由(1)可知11222n n n a -+=⋅=,所以2log 2n n b n ==,()211111222n n b b n n n n +⎛⎫==- ⎪++⎝⎭, 则11111111111...232435112n T n n n n ⎛⎫=-+-+-++-+- ⎪-++⎝⎭111112212n n ⎛⎫=+-- ⎪++⎝⎭()()235412n n n n +=++ 【点睛】关键点点睛:本题第二问考查裂项相消法求和,这样的形式不是连续相消,如果前面剩下两个正数项,那么最后一定剩下两个负数项.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修5测试题
1.选择题(每道4分,共计40分)
1.由 , 确定的等差数列 ,当 时,序号 等于 ( )
A.99B.100C.96D.101
2. 中,若 ,则 的面积为 ( )
A. B. D.
3.已知 等比数列,且 那么 =()
A.ቤተ መጻሕፍቲ ባይዱ5B. 10C. 15D. 20
4.已知 ,函数 的最小值是 ( )
求:(1)角C的度数;
(2)AB的长度。
18.(8分)若不等式 的解集是 ,
(1) 求 的值;
(2) 求不等式 的解集.
19.(8分)如图,货轮在海上以35n mile/h的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为 的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为 .半小时后,货轮到达C点处,观测到灯塔A的方位角为 .求此时货轮与灯塔之间的距离.
9.在△ABC中,如果 ,那么cosC等于 ( )
10.一个等比数列 的前n项和为48,前2n项和为60,则前3n项和为( )
A、63 B、108 C、75 D、83
二、填空题(每道4分,共计16分)
11.在 中, ,那么A=_____________;
克糖水中含有b克糖 ,若在糖水中加入x克糖,则糖水变甜了。试根据这个事实提炼出一个不等式:____________
A.5 B.4 C.8 D.6
5.数列 前n项的和为()
A. B. C. D.
6.不等式 的解集为 ,那么 ( )
A. B. C. D.
7.设 满足约束条件 ,则 的最大值为 ( )
A.5??????B. 3???????C. 7??????D. -8
8.在 中, ,则此三角形解的情况是 ( )
A.一解 B.两解 C.一解或两解 D.无解
20.(8分)某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。该公司第n年需要付出设备的维修和工人工资等费用 的信息如下图。
(1)求 ;
(2)引进这种设备后,第几年后该公司开始获利;
(3)这种设备使用多少年,该公司的年平均获利最大
附加题
1.(10分)设a>0,b>0,且a+b= 1,求证:
(3)∵
∴ …
要使 对所有n∈N*恒成立,
∴ , ,
∵m∈N*,∴m的最小值为30。
(3)年平均收入为 =20-
当且仅当n=5时,年平均收益最大.所以这种设备使用5年,该公司的年平均获利最大。
附加题
1 .证:∵ ∴ ∴

2.解:∵数列{an}为等差数列,∴ ,
∵S1,S2,S4成等比数列,∴S1·S4=S22
∴ ,∴
∵公差d不等于0,∴
(1)
(2)∵S2=4,∴ ,又 ,
∴ ,∴ 。
2.(10分)若S 是公差不为0的等差数列 的前n项和,且 成等比数列。
(1)求等比数列 的公比;(2)若 ,求 的通项公式;
(3)设 , 是数列 的前n项和,求使得 对所有 都成立的最小正整数m。
答案
一.选择题:BCABBACBDA
二.填空题。
11. 或
12.
13.16
14. =2n
三.解答题。
15.解:设公比为 ,
13.若x>0,y>0,且 ,则x+y的最小值是___________
14.已知数列{an}的前n项和 ,那么它的通项公式为an=_________
三、解答题
15.(6分)已知等比数列 中, ,求其第4项及前5项和.
16.(6分)(1)求函数的定义域:
(2)求解关于 的不等式
17 .(8分)在△ABC中,BC=a,AC=b,a,b是方程 的两个根, 且 。
由已知得

②÷①得 ,
将 代入①得 ,

16.(1)
(2)当a<1时,
当a=1时,
当a>1时,
17. 解:(1)
C=120°
(2)由题设:
18.(1)依题意,可知方程 的两个实数根为 和2,
由韦达定理得: +2=
解得: =-2
(2)
19.在△ABC中,∠B=152o-122o=30o,∠C=180o-152o+32o=60o,
∠A=180o-30o-60o=90o,
BC= ,
∴AC= sin30o= .
答:船与灯塔间的距离为 nmile.
20.解:(1)由题意知,每年的费用是以2为首项,2为公差的等差数列,求得:
(2)设纯收入与年数n的关系为f(n),则:
由f(n)>0得n2-20n+25<0解得
又因为n ,所以n=2,3,4,……18.即从第2年该公司开始获利
相关文档
最新文档