多缸运动控制回路共20页

合集下载

多缸工作控制回路及其他回路

多缸工作控制回路及其他回路
*
2.采用顺序节流阀的叠加阀式防干扰回路
当阀4、8的左侧电磁铁均通电时,液压缸A、B均由低压大流量泵2供油,实现快速向左运动。
1
当有快进转变成工进时,节流顺序阀打开,系统由高压小流量的泵1供油。由于高压油的作用,单向阀关闭。
2
当阀4、8的右侧电磁铁通电,实现快退。
3
当阀4、8的电磁铁均断电,液压缸停止运动。
6-3 多缸工作控制回路
在液压系统中,如果由一个油源给多个液压缸输送压力油,这些液压缸会因压力和流量的彼此影响而在动作上相互牵制,必须使用一些特殊的回路才能实现预定的动作要求。 常见的这类回路主要有以下三种:顺序动作回路、同步回路和多缸快慢速互不干扰回路。
一.顺序动作回路
顺序动作回路的功用是使多缸液压系统中的各个液压缸严格地按照规定的顺序动作。 按控制方式不同,可分为行程控制和压力控制两大类。
*
*
1.带补偿措施的串联液压缸同步回路
图中,缸1有肝腔的有效作用面积等于缸2无肝腔的有效作用面积。 补偿原理为:若缸1的活塞先运动到缸底,压下行程开关a使阀5得电。 若缸2先到缸底,先压下行程开关b使电磁阀4得电。 这种串联式同步运动回路只能用于负载较小的液压系统。
2.用同步缸的同步回路
1
图a为同步缸的同步回路,同步缸A、B两腔的有效作用面积相等,两液压缸的有效作用面积也相等。 该同步回路的同步精度取决于液压缸的加工精度和密封性,其精度可达到98%~99%。 由于同步缸的尺寸不宜作的太大,故只用于小容量的场合。
*
当各执行元件单独工作时,工作压力由各自的溢流阀调定。 若各执行元件同时工作,由于前一个回路的溢流阀受后一个回路的压力信号控制,泵转入叠加负载下工作。由于泵的出口压力随负载的变化而变化,故传动效率高,具有节能的效果。 特点:结构简单,由于采用定量泵供油,因而比较经济。但由于负载叠加,两个执行元件的负载不能过大。

液压基本回路

液压基本回路

上一页 下一页 返回
7.2 压力控制回路
• 7.2.4 卸荷回路
• 当系统中执行元件短时间工作时,常使液压泵在很小的功率下作空运 转,而不是频繁启动驱动液压泵的原动机。因为泵的输出功率为其输 出压力与输出流量之积,当其中的一项数值等于或接近于零时,即为 液压泵卸荷。这样可以减少液压泵磨损,降低功率消耗,减小温升。 卸荷的方式有两类:一类是液压缸卸荷,执行元件不需要保持压力;另 一类是液压泵卸荷,但执行元件仍需保持压力。 • 1.执行元件不需保压的卸荷回路 • (1)换向阀中位机能的卸荷回路 • 图7-11所示为采用M型(或H型)中位机能换向阀实现液压泵卸荷的回 路。当换向阀处于中位时,液压泵出口通油箱,泵卸荷。
第7章 液压基本回路
• • • • 7.1 7.2 7.3 7.4 方向控制回路 压力控制回路 速度控制回路 多缸动作控制回路
7.1 方向控制回路
• 在液压系统中,工作机构的启动、停止或变化运动方向等都是利用控 制进入执行元件液流的通、断及改变流动方向来实现的。实现这些功 能的回路称为方向控制回路。常见的方向控制回路有换向回路和锁紧 回路。
上一页 下一页 返回
7.3 速度控制回路
• • • • • • • 进油路节流调速回路的特点如下: ①结构简单,使用简单 ②可以获得较大的推力和较低的速度 ③速度稳定性差 ④运动平稳性差 ⑤系统效率低,传递功率低 用节流阀的进油节流调速回路一般应用于功率较小、负载变化不大的 液压系统中。 • (2)回油路节流调速回路 • 把流量控制阀安装在执行元件通往油箱的回油路上的调速回路称为回 油节流调速回路,如图7-16所示。
上一页 下一页 返回
7.3 速度控制回路
• (3)旁油路节流调速回路 • 如图7-17所示,将节流阀设置在与执行元件并联的旁油路上,即构成 了旁油路节流调速回路。该回路中,节流阀调节了液压泵溢回油箱的 流量q2,从而控制了进入液压缸的流量q1,调节流量阀的通流面积, 即可实现调速。这时,溢流阀作为安全阀,常态时关闭。回路中只有 节流损失,无溢流损失,功率损失较小,系统效率较高。 • 旁油路节流调速回路主要用于高速、重载、对速度平稳性要求不高的 场合。 • 使用节流阀的节流调速回路,速度受负载变化的影响比较大,亦即速 度稳定性较差,为了克服这个缺点,在回路中可用调速阀替代节流阀。

第十四章-气动基本回路

第十四章-气动基本回路

第六节 延时回路
右图为延时输出回路。
左图为气缸延时返回 回路。
第七节 安全保护和操作回路
由于气动机构负荷的过载、气压的突然降低 以及气动执行机构的快速动作等原因,都可 能危及操作人员或设备的安全,因此在气动 回路中,常常需要设计安全保护回路。
一、过载保护回路
活塞杆在伸 出过程中, 系统过载时, 活塞杆立即 缩回。
用行程阀控制的单缸单往复动作回路。
下图为用阻容控制的单缸 单往复延时返回回路。
上图为用压力阀控制的 单缸单往复动作回路。
2、单缸多往复动作回路
按下带定位装置的手动 阀1:连续往复运动; 松开带定位装置的手动 阀1:下位工作,气缸停 止运动。
二、互锁回路
只有三个机动换向阀同时 动作,主控阀才能换向, 气缸才能伸出。
三、双手操作安全回路
锻压、冲压设备中必须设置 安全保护回路,以保证操作 者双手的安全。
左图为“与”回路的双 手操作安全回路。 注意: 两个手动阀的安装距离必 须保证单手不能同时操作。
1、阀2与阀3同时按 下:主控阀上位工 作,气缸伸出;
✓为获得稳定的运动速 度,气动系统多采用出 口节流调速。
2、双向调速回路
✓排气节流阀
调速回路 : 通过两个单向 节流阀或两个 排气节流阀控 制气缸伸缩的 速度。
三、快速往返运动回路
用两个快排阀实现双 作用气缸的快速往返, 可达到节省时间的要 求。
四、速度换接回路
采用二位二通 阀与节流阀并联, 由行程开关发出电 信号,控制二位二 通阀换向,改变排 气通路,从而控制 气缸速度改变。行 程开关的位置,可 根据需要选定。
五、缓冲回路
活塞快速向右运 动接近末端,压下机 动换向阀,气体经节 流阀排气,活塞低速 运动到终点。

液压基本回路及典型液压系统

液压基本回路及典型液压系统

1压力控制回路
1压力控制回路
2 )利用蓄能器的保压回路: 这种 蓄能器借助蓄能器来保持系统压力, 补偿系统泄漏。图5-10所示为利用虎 钳做工件的夹紧。将换向阀移到阀左 位时,活塞前进将虎钳夹紧,这时泵 继续输出的压力油将蓄能器充压,直 到卸荷阀被打开卸载,此时作用在活 塞上的压力由蓄能器来维持并补充液 压缸的漏油作用在活塞上,当工作压 力降低到比卸荷阀所调定的压力还低 时,卸荷阀又关闭,泵的液压油再继 续送往蓄能器。本系统可节约能源并 回路是利用压力控制阀来控制系统整体或某 一部分的压力,以满足液压执行元件对力或转矩要求的回路, 这类回路包括调压、减压、增压、保压、卸荷和平衡等多种 回路。 1.1 调压回路:调压回路的功用是使液压系统整体或部分的 压力保持恒定或不超过某个数值。在定量泵系统中,液压泵 的供油压力可以通过溢流阀来调节。在变量泵系统中 , 用安 全阀来限定系统的最高压力,防止系统过载。若系统中需要 二种以上的压力,则可采用多级调压回路。
中南大学——液压与气动技术 2019年2月2日星期六
2 速度控制回路 1. 快速与慢速的换接回路:
5.2 速度控制回路
2.两种慢速的换接回路:图5-16a中的两个调速阀并联,由换向 阀实现换接。两个调速阀可以独立地调节各自的流量.互不影响;但是. 一个调速阀工作时另一个调速阀内无油通过,它的减压阀不起作用而 处于最大开口位置,因而速度换接时大量油液通过该处将使机床工作 部件产生突然前冲现象。因此它不宜用于在工作过程中的速度换接, 只可用在速度预选的场合。 图5-16b所示为两调速阀串联的速度换接回路。当主换向阀D左位 接人系统时,调速阀B被换向阀C短接;输入液压缸的流量由调速阀A 控制。当阀C右位接入回路时,由于通过调速阀B的流量调得比A小, 所以输入液压缸的流量由调速阀B控制。在这种回路中的调速阀A一直 处于工作状态,它在速度换接时限制着进入调速阀B的流量,因此它的速 度换接平稳性较好,但由于油液经过两个调速阀,所以能量损失较大。

多缸顺序控制回路的应用实例

多缸顺序控制回路的应用实例

多缸顺序控制回路的应用实例1. 引言多缸顺序控制回路是一种常见的控制系统,它可以用于控制多个活塞发动机的工作顺序。

本文将介绍多缸顺序控制回路的原理、应用实例以及优缺点。

2. 多缸顺序控制回路原理多缸顺序控制回路是一种基于电子控制单元的控制系统,它通过控制活塞发动机的点火顺序,实现多个缸的工作顺序控制。

其原理如下:1.传感器采集:控制系统通过传感器采集发动机的转速、气缸位置等参数。

2.信号处理:控制系统对采集到的信号进行处理,计算出每个缸的点火时机。

3.点火控制:控制系统根据计算结果控制点火系统,使每个缸在适当的时机点火。

4.工作顺序控制:控制系统根据设定的工作顺序,依次控制每个缸的点火。

3. 多缸顺序控制回路的应用实例多缸顺序控制回路广泛应用于汽车发动机、工业机械等领域。

下面将介绍两个应用实例。

3.1. 汽车发动机多缸顺序控制回路在汽车发动机中的应用是最为常见的。

汽车发动机通常采用多缸设计,每个缸都有一个点火系统。

通过多缸顺序控制回路,可以实现每个缸按照设定的顺序点火,从而保证发动机的平稳运行。

多缸顺序控制回路在汽车发动机中的工作原理如下:1.传感器采集:控制系统通过曲轴传感器监测发动机的转速。

2.信号处理:控制系统根据转速信号计算出每个缸的点火时机。

3.点火控制:控制系统通过点火模块控制每个缸的点火。

4.工作顺序控制:控制系统根据设定的工作顺序,依次控制每个缸的点火。

多缸顺序控制回路在汽车发动机中的应用可以提高发动机的燃烧效率,减少排放,提升动力性能。

3.2. 工业机械多缸顺序控制回路也广泛应用于工业机械中,特别是需要精确控制工作顺序的场合,如某些生产线上的装配工序。

在工业机械中,多缸顺序控制回路的应用可以实现以下目标:1.控制工作顺序:通过多缸顺序控制回路,可以精确控制每个工作站的工作顺序,确保产品的装配顺序正确。

2.提高生产效率:多缸顺序控制回路可以实现多个工作站的并行操作,提高生产效率。

液压技术第四版教学课件第六章 液压基本回路

液压技术第四版教学课件第六章  液压基本回路

为较高的压力进入液压缸左腔。
(2)当三位四通换向阀在右位工作时,活塞
作空行程返回,油泵的出口油液压力由溢流阀3调
定为较低压力进入液压缸右腔。
(3)活塞退到终点后,油泵在低压下卸荷。
中国劳动社会保障出版社
§6-2
压力控制回路
4.支路减压回路
系统工作压力由溢流阀2调定,在
液压缸6的进油路上串联单向减压阀5。
路、卸荷回路、平衡回路和保压回路等。
一、调压回路
控制系统的工作压力,使其不超过某一预先调定好的数值,或者
使工作机构在运动过程的各个阶段具有不同压力的回路称为调压回路。
中国劳动社会保障出版社
§6-2
压力控制回路
1.二级调压回路
(1)电磁换向阀3断电时,先导式溢流阀4
工作,系统压力由阀4的先导阀控制,系统在较
当压力超过溢流阀5的调定值时,溢流5溢流,
液压缸左腔通过单向阀6从油箱补油。
(2)活塞向左运动突然切换换向阀至中位时,
溢流阀4起缓冲作用,单向阀7从油箱补油。
中国劳动社会保障出版社
第六章 液压基本回路
§6-2
压力控制回路
利用压力控制阀来调节系统或其中某一
部分压力的回路称为压力控制回路。
压力控制回路主要有调压回路、增压回
§6-2
压力控制回路
油泵继续供油,压力上升,电接
点压力表的控制系统使电磁铁CB1断电,
换向阀处于中位,液压泵卸荷。液压
缸由液控单向阀保压。
当液压缸上腔的压力降到电接触
式压力表的下限值时,压力表发出信
号,使电磁铁CB1通电,液压泵再次向
系统供油,使系统压力升高。
中国劳动社会保障出版社
第六章 液压基本回路

《液压与气动技术》电子教案 第17单元课:多缸工作控制回路、液压伺服控制回路

《液压与气动技术》电子教案 第17单元课:多缸工作控制回路、液压伺服控制回路

第17单元课:多缸工作控制回路、液压伺服控制回路引入新课一、复习和成果展示1.知识点回顾(1)压力控制回路的种类。

(2)压力控制回路的工作原理及应用。

(3)速度控制回路的种类。

(4)速度控制回路的工作原理及应用。

(5)容积调速回路的调节方法及应用。

2.成果展示由26-30号学生展示第16单元课的理实作业,老师点评,纠正错误点。

二、项目情境小王刚刚从事液压回路设计工作,但他对多缸工作控制回路和液压伺服控制回路的工作原理不太清楚。

通过本节课的学习,我们来帮助小王解决这个问题。

三、教学要求1.教学目标(1)掌握多缸工作控制回路的种类。

(2)掌握多缸工作控制回路的工作原理及应用。

(3)掌握多缸工作控制回路的实现方式。

(4)液压伺服回路的工作原理、特点以及分类。

2.重点和难点(1)多缸工作控制回路的种类。

(2)多缸工作控制回路的工作原理及应用。

(3)多缸工作控制回路的实现方式。

(4)液压伺服回路的工作原理、特点以及分类。

教学设计任务1:多缸工作控制回路一、相关知识液压系统中,一个油源往往可驱动多个液压缸。

按照系统的要求,这些液压缸或顺序动作,或同步动作,多缸之间要求能避免在压力和流量上的相互干扰。

1.顺序动作回路此回路用于使各液压缸按预定的顺序动作,如工件应先定位、后夹紧、再加工等。

按照控制方式的不同,有行程控制和压力控制两大类。

(1)行程控制的顺序动作回路1)用行程阀控制的顺序动作回路在图7-28所示的状态下,A、B两缸的活塞皆在左端位置。

当手动换向阀C左位工作时,缸A右行,实现动作①。

在挡块压下行程阀D后,缸B右行,实现动作②。

手动换向阀复位后,缸A先复位,实现动作③。

随着挡块后移,阀D复位,缸B退回,实现动作④。

至此,顺序动作全部完成。

图7-28 用行程阀控制的顺序动作回路2)用行程开关控制的顺序动作回路如图7-29所示的回路中,1Y A通电,缸A右行完成动作①后,又触动行程开关1ST 使2Y A通电,缸B右行,在实现动作②后,又触动2ST使1YA断电,缸A返回,在实现动作③后,又触动3ST使2Y A断电,缸B返回,实现动作④,最后触动4ST使泵卸荷或引起其他动作,完成一个工作循环。

7第七章 液压基本回路

7第七章  液压基本回路
m (q-输入流量;Vm--液压马达的排量)
液压缸的运动速度v=q/A (q--输入流量;A--有效作用面积) 2.调速回路的主要方式:
节流调速回路:由定量泵供油,用流量阀调节进入或流出执行机构 的流量来实现调速;
容积调速回路:用调节变量泵或变量马达的排量来调速; 容积节流调速回路:用限压变量泵供油,由流量阀调节进入执行机 构的流量,并使变量泵的流量与调节阀的调节流量相适应来实现调速。 此外还可采用几个定量泵并联,按不同速度需要,启动一个泵或几个泵 供油实现分级调速。
1.利用液压泵的保压回路
maojian@
2.利用蓄能器的保压回路
maojian@
3.自动补油保压回路
maojian@
第二节
速度控制回路

调速回路 快速回路
速度换接回路
maojian@
一、调速回路
1.调速回路的基本原理
液压马达的转速nM=q/V
2. 在泵-缸回油节流调速回路中,三位四通换向阀处于不同位置时,可使液 压缸实现快进—工进-端点停留—快退的动作循环。试分析:在( )工况 下,泵所需的驱动功率为最大;在( )工况下,缸输出功率最小。 (A)快进 (B)工进 (C)端点停留 (D)快退
(B、C;C)
3. 系统中中位机能为P型的三位四通换向阀处于不同位置时,可使单活塞杆 液压缸实现快进—慢进—快退的动作循环。试分析:液压缸在运动过程中, 如突然将换向阀切换到中间位置,此时缸的工况为( );如将单活塞杆缸 换成双活塞杆缸,当换向阀切换到中位置时,缸的工况为( )。(不考虑 惯性引起的滑移运动) (A)停止运动 (B)慢进 (C)快退 (D)快进 (D;A)
maojian@
2.流量控制式同步回路 (1)用调速阀控制的同步回路

多缸控制回路

多缸控制回路

B2
工作原理: 1YA+,A 缸右行完成动作 1,碰上挡铁后,系统压力升高,压力
继电器发讯,使 2YA+,B 缸右行完成动作 2。
特点:因为回路中安装了节流阀和二位二通电磁,所以 B 缸运动速度可以
调节。又因为为了保证严格的动作顺序,防止压力继电器 乱发信号,所以 P 先动
127
湖南工业职业技术学院教案
院 制,完成预定功能的回路。 2、多缸动作回路分类 学 顺序动作回路(如图 7-34 所示)、同步动作回路(如图 7-35 所示)、互不干
扰回路。



职 (a)行程阀控制顺序动作回路
(b) 行程开关和电磁阀控制顺序动作回路
图 7-34 顺序动作回路



湖 图 7-35 同步动作回路 二、顺序动作回路
1、定义
各执行元件严格按预定顺序运动的回路称为顺序运动回路。
如:组合机床回转工作台的抬起和转位、定位夹紧机构的定位和夹紧、
进给系统的先夹紧后进给等。
125
湖南工业职业技术学院教案
2、பைடு நூலகம்用
使多缸液压系统中的各液压缸按规定的顺序动作。
3、分类
按照控制方式不同分:行程控制 、 压力控制两大类。
4、行程控制的顺序动作回路 1)定义
湖南工业职业技术学院教案
第十八讲
☆课 题
7.4 多缸控制回路
7.4.1 顺序动作回路

☆ 教学准备
制作 CAI 课件、挂图、电子教案

☆ 目的与要求
术 1:了解多缸运动控制回路的分类、组成、特点
技 2:了解顺序动作回路的分类、组成、特点
3:掌握顺序动作回路工作原理和控制方式

多缸同步回路

多缸同步回路

多缸同步回路多缸同步回路是指由多个缸体组成的回路,在工程领域中广泛应用于液压系统中。

它是一种用于控制液压柱塞缸工作的回路,通过同步回路可以实现多个缸体的同步工作,确保系统的稳定性和精度。

多缸同步回路的结构通常由主缸、从缸和回路控制阀组成。

主缸是整个系统的核心,它负责主要的工作任务。

从缸是主缸的辅助装置,通过与主缸相连,实现对主缸的支持和协调。

回路控制阀则起到控制和调节液压系统的作用,保证各缸体的同步工作。

在多缸同步回路中,主缸和从缸的工作是相互协调的。

主缸通过执行器产生的运动信号传递给从缸,从缸通过感应器接收到信号后,按照一定的规律进行动作。

这样,主缸和从缸的动作就可以保持同步,确保系统的稳定性和精度。

多缸同步回路的工作原理是利用液压流体的力学性质来实现的。

当主缸运动时,液压流体会从主缸流向从缸,从缸则通过控制阀调节流量和压力,以实现对主缸的支持和协调。

在这个过程中,液压流体的流动速度和压力会受到多种因素的影响,如液压泵的输出压力、回路控制阀的开启程度等。

因此,为了确保多缸同步回路的稳定性和精度,需要对液压系统进行严密的控制和调节。

多缸同步回路在工程领域中有着广泛的应用。

例如,在起重机、注塑机、机床等设备中,多缸同步回路可以实现对重物的平稳提升、注塑机构件的精准运动、机床切削的高精度等工作任务。

通过合理设计和调节,可以使多缸同步回路的工作更加稳定可靠,提高设备的工作效率和性能。

然而,多缸同步回路也存在一些问题和挑战。

首先,由于液压系统中液压泵和回路控制阀等元件的性能和参数会随着时间的变化而发生变化,因此需要定期进行维护和检修,以保证系统的正常工作。

其次,多缸同步回路的设计和调节需要考虑到多个缸体之间的配合和协同,这对工程师的技术要求较高。

此外,多缸同步回路的故障诊断和排除也是一个复杂的过程,需要对系统的各个部分进行全面的分析和判断。

多缸同步回路是一种用于控制液压柱塞缸工作的回路,通过同步回路可以实现多个缸体的同步工作,确保系统的稳定性和精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.4 多缸运动控制回路在液压与气压传动系统中,用一个能源驱动两个或多个缸(或马达)运动,并按各缸之间运动关系要求进行控制,完成预定功能的回路,被称为多缸运动回路。

多缸运动回路分为顺序运动回路、同步运动回路和互不干扰回路等。

顺序动作回路缸严格地按给定顺序运动的回路,称为顺序运动回路。

这种回路在机械制造等行业的液压系统中得到了普遍应用。

如组合机床回转工作台的抬起和转位,夹紧机构的定位和夹紧等,都必须按固定的顺序运动。

同步回路同步运动回路是用于保证系统中的两个或多个执行元件在运动中以相同的位移或速度运动,也可以按一定的速比运动。

在同步运动回路中影响同步运动精度的因素很多,如外负载,泄漏,摩擦阻力,元件的变形及液体中含有气体等都会使执行元件运动同步不精确。

为此,同步运动回路应尽量克服或减少上述因素的影响。

同步运动分为位置同步和速度同步两种。

互不干扰回路在多缸液压系统中,多数情况下各液压缸运动时的负载压力是不等的。

这样,在负载压力小的液压缸运动期间,负载压力大的液压缸就不能运动。

例如,在组合机床液压系统中,当某液压缸快速运动时,因其负载压力小,其它液压缸就不能工作进给(因为工进时负载压力大)。

这种现象被称为各缸之间运动的相互干扰。

行程开关和电磁换向阀控制的顺序运动回路在用行程开关和电磁换向阀控制的顺序运动回路中,左电磁换向阀的电磁铁通电后,左液压缸按箭头①的方向右行。

当它右行到预定位置时,挡块压下行程开关2,发出信号使右电磁换向阀的电磁铁通电,则右液压缸按箭头②的方向右行。

当它运行到预定位置时,挡块压下行程开关4,发出信号使左电磁换向阀的电磁铁断电,则左液压缸按箭头③的方向左行。

当它左行到原位时,挡块压下行程开关1,使右电磁换向阀的电磁铁断电,则右液压缸按箭头④的方向左行,当它左行到原位时,挡块压下行程开关3,发出信号表明工作循环结束。

这种用电信号控制转换的顺序运动回路,使用调整方便,便于更改动作顺序,因此,应用较广泛。

回路工作的可靠性取决于电器元件的质量。

目前来讲还可采用PLC(可编程序控制器)利用编程来改变行程控制,这是一个发展趋势。

行程换向阀控制的顺序运动回路在用行程换向阀(又称机动换向阀)控制的顺序运动回路中,电磁换向阀和行程换向阀处于图示状态时,左液压缸和右液压缸的活塞都处于左端位置(即原位)。

当电磁换向阀的电磁铁通电后,左液压缸的活塞按箭头①的方向右行。

当液压缸运行到预定的位置时,挡块压下行程换向阀,使其上位接入系统,则右液压缸的活塞按箭头②的方向右行。

当电磁换向阀的电磁铁断电后,左液压缸的活塞按箭头③的方向左行。

当挡块离开行程换向阀后,右液压缸按箭头④的方向左行退回原位。

该回路中的运动顺序①与②和③与④之间的转换,是依靠机械挡块、推压行程换向阀的阀心使其位置变换实现第 3 页的,因此,动作可靠。

但是,行程换向阀必须安装在液压缸附近,而且改变运动顺序较困难。

顺序阀控制的顺序运动回路在使用顺序阀来实现两个液压缸顺序动作的回路中,当三位四通换向阀左位接入回路且顺序阀D的调定压力大于液压缸A 的最大前进工作压力时,压力油先进入液压缸A左腔,实现动作①;液压缸运动至终点后压力上升,压力油打开顺序阀D进入液压缸B的左腔,实现动作②;同样地,当三位四通换向阀右位接入回路且顺序阀C的调定压力大于液压缸B的最大返回工作压力时,两液压缸按③和④的顺序返回。

时间控制的顺序运动回路在采用延时阀进行时间控制的顺序运动回路中,当一个执行元件开始运动后,经过预先设定的一段时间,另一个执行元件再开始运动。

时间控制可利用时间继电器、延时继电器或延时阀等实现。

在采用延时阀进行时间控制的顺序运动回路中,延时阀由单向节流阀和二位三通液动换向阀组成。

当电磁铁1YA通电时,右液压缸向右运行。

同时,液压油进入延时阀中液动换向阀的左端腔,推动阀心右移,该阀右端腔的液压油经节流阀回油箱,经过一定时间后,延时阀中的二位三通换向阀左位接入系统,压力油经该阀左位进入左液压缸的左腔,使其向右运行。

右液压缸与左液压缸向右运行开始的时间间隔可用延时阀中的节流阀调节。

当电磁铁2YA通电后,右液压缸与左液压缸一起快速左行返回原位。

同时,压力油进入延时阀的右端腔,使延时阀中的二位三通阀阀心左移复位。

由于延时阀所设定的时间易受油温的影响,常在一定范围内波动,因此,很少单独使用,往往采用行程—时间复合控制方式。

容积式同步运动回路——同步泵同步回路第 5 页容积式同步运动回路是用相同的液压泵、执行元件(缸或马达)或用机械联结的方法来实现的。

用两个同轴等排量的液压泵分别向两液压缸供油,实现两液压缸同步运动的回路。

容积式同步运动回路——同步缸同步回路在用两个尺寸相同的双杆液压缸连接的同步液压缸3来实现液压缸1和液压缸2同步运动的回路中,当同步液压缸的活塞左移时,油腔a与b中的油液使液压缸1和液压缸2同步上升。

若液压缸1的活塞先到终点,则油腔a 的剩余油液经单向阀4和安全阀5排回油箱,油腔b的油继续进入液压缸2的下腔,使之到达终点。

同理,若液压缸2的活塞先到达终点,也可使液压缸1的活塞相继到终点。

机械同步回路在用机械联结来实现的同步运动的回路中,用刚性梁或齿轮齿条等机械零件使两液压缸的活塞杆间建立刚性的运动联结,实现位移同步。

节流式同步运动回路1第 7 页两个尺寸相同的液压缸的进油路上,串接分流阀。

该分流阀能保证进入两液压缸的流量相等,从而实现速度同步运动。

其工作原理如下:分流阀中左右两个固定节流口的尺寸和特点相同。

分流阀阀芯可依据液压缸负载变化自由地轴向移动,来调节a、b两处节流口的开度,保证阀芯左端压力与右端压力相等。

这样,可保持左固定节流口4两端压力差()与右固定节流口5两端压力差()相等,从而使进入两液压缸的流量相同,来实现两缸速度同步。

例如:当阀芯处于某一平衡位置()时,若左液压缸的负载增大,也会随之增大。

假设此时的阀芯不动,由于左固定节流口4的工作压差()减小,会使进入液压缸1的流量减少,造成两缸第 9 页不同步。

但是,在增大时,由于,使阀芯3右移,节流口a变大,b变小,结果使减小,增大,直到时阀芯停留在新的平衡位置。

只要,左右两固定节流口上的工作压差相等,流过节流阀的流量相等,则保证了两缸的速度同步。

两缸反向时,两缸分别通过各自的单向阀回油,不受分流阀控制。

节流式同步运动回路2第 11 页例阀同步运动回路中,使用了一个普通调速阀和一个电液比例调速阀,分别控制液压缸3和液压缸4的运动,当两液压缸出现位置误差时,第 13 页双泵供油的快慢速互不干扰回路各液压缸(1和2)工进时(工作压力大),由左侧的小流量液压泵5供油,用左调速阀3调节左液压缸1的工进速度,用右调速阀4调节右液压缸2的工进速度。

快进时(工作压力小),由右侧大流量液压泵6供油。

两个液压泵的输出油路,由二位五通换向阀隔离,互不相混。

这样,避免了因工作压力不同所引起的运动干扰,使各液压缸均可单独实现快进→工进→快退的工作循环。

通过电磁铁动作表,可以看出自动工作循环各个阶段油路走向及换向的状态。

电磁铁动作表1YA、3YA2YA、4YA第 15 页快进+-工进-+快退--7.5 其它控制回路延时回路延时接通回路延时断开回路往复运动单往复回路连续往复延时接通与延时断开回路在延时接通回路中,当有信号K输入时,阀A换向,此时气源经节流阀缓慢向气容C充气,经一段时间t延时后,气容内压力升高到预定值,使主阀B换向,气缸开始右行;当信号K输消失后,气容C中的气体可经单向阀迅速排出,主阀B立即复位,气缸返回。

将图中的单向节流阀反接,则为延时断开回路,其作用正好与上述相反,延时时间由节流阀调节。

延时接通与延时断开回路延时接通回路中,当有信号K输入时,阀A换向,此时气源经节流阀缓慢向气容C充气,经一段时间t延时后,气容内压力升高到预定值,使主阀B换向,气缸开始右行;当信号K输消失后,气容C中的气体可经单向阀迅速排出,主阀B立即复位,气缸返回。

将左图中的单向节流阀反接,则为延时断开回路,其作用正好与上述相反,延时时间由节流阀调节。

往复运动回路第 17 页往复运动回路常用于气压系统中。

在行程阀控制的单往复运动回路中,按下手动换向阀1的手柄,主阀3切换,气缸右行;当撞块碰下行程阀2时,主阀复位,气缸自动返回。

在行程阀控制的连续往复动作回路中,按下手动换向阀1的手柄,主阀4切换,气缸右行;此时由于二位二通机动换向阀3复位而将控制气路断开,主阀不能复位。

当活塞行至终点,撞块碰下二位二通行程换向阀2时,主阀的控制气体经阀排出,主阀在弹簧作用下复位,气缸自动返回;当活塞返回到终点压下机动换向阀时,主阀切换,重复上述循环动作,断开手动换向阀方可使这一连续往复动作在活塞返回到原位置时停止。

本章习题1.2.3.4.5.6.7.8.希望以上资料对你有所帮助,附励志名3条:1、积金遗于子孙,子孙未必能守;积书于子孙,子孙未必能读。

不如积阴德于冥冥之中,此乃万世传家之宝训也。

2、积德为产业,强胜于美宅良田。

3、能付出爱心就是福,能消除烦恼就是慧。

第 19 页。

相关文档
最新文档