数值分析 龙格现象 matlab代码分享知识分享
拉格朗日插值龙格现象的matlab实现
拉格朗日插值法在实践中的应 用
在数值分析中的应用
单击此处添加标题
插值法:拉格朗日插值法是数值分析中常用的插值方法之一,具有简单易 行、计算量小等优点。
单击此处添加标题
数据拟合:拉格朗日插值法可以用于数据拟合,通过对已知数据进行插值, 得到未知数据的近似值。
单击此处添加标题
数值微积分:拉格朗日插值法在数值微积分中也有广泛应用,例如在求解 函数的导数、积分等运算时,可以利用拉格朗日插值法进行近似计算。
龙格现象
龙格现象的定义
定义:当插值多项式的阶数过高时, 插值结果可能变得不可预测或出现 剧烈振荡
解决方法:在实际应用中,应避免 使用过高的插值多项式阶数,而应 选择合适的阶数以保证插值结果的 稳定性和准确性
添加标题
添加标题
添加标题
添加标题
原因:由于高阶插值多项式对数据 点的敏感性增强,导致插值结果不 稳定
拉格朗日插值龙格现象的 Matlab实现
汇报人:XX
单击输入目录标题 拉格朗日插值法 龙格现象 拉格朗日插值法在Matlab中的实现 拉格朗日插值法的龙格现象分析 拉格朗日插值法在实践中的应用
添加章节标题
拉格朗日插值法
插值法的定义
插值法是一种数学方法,通过已知的离散数据点,构造一个多项式函数,使得该函数在 数据点处的取值等于已知的数据点值。
算法收敛性:在某些情况下,龙格现象可能导致算法收敛速度减慢,增加计算时间和计算成本。
实际应用限制:由于龙格现象的存在,某些数值方法在实际应用中可能受到限制,无法处理某些 复杂问题。
算法改进需求:为了克服龙格现象的影响,需要研究和发展新的数值方法和算法,提高数值计算 的稳定性和精度。
拉格朗日插值法在Matlab中的 实现
数值分析-MATLAB相关算法
数值分析-MATLAB算法刘亚1、四阶龙格库塔法:function yout=xin(bianliang)%定义输入输出clear allx0=0;xn=1;y0=1;h=0.1;%设置初始值、区间和步长[y,x]=lgkt4j(x0,xn,y0,h);%四阶龙格库塔法n=length(x);fprintf(' i x(i) y(i)\n');%输出格式for i=1:nfprintf('%2d %3.3f %4.4f\n',i,x(i),y(i)); endfunction [y,x]=lgkt4j(x0,xn,y0,h)x=x0:h:xn;%设置区间n=length(x);y1=x;y1(1)=y0;for i=1:nK1=f(x(i),y1(i));K2=f(x(i)+h/2,y1(i)+h/2*K1);K3=f(x(i)+h/2,y1(i)+h/2*K2);K4=f(x(i)+h,y1(i)+h*K3);y1(i+1)=y1(i)+h/6*(K1+2*K2+2*K3+K4);endy=y1;function Dy=f(x,y)Dy=y-2*x/y;C语言程序#include<math.h>main(){float x=0,y0=1,h=0.2,y1,k1,k2,k3,k4;k1=y0-2*x/y0;k2=y0+h/2*k1-(2*x+h)/(y0+h/2*k1);k3=y0+h/2*k2-(2*x+h)/(y0+h/2*k2);k4=y0+h*k3-(2*x+2*h)/(y0+h*k3);y1=y0+h/6*(k1+2*k2+2*k3+k4);do{printf("%5.4f\n",y1);x=x+h;y0=y1;k1=y0-2*x/y0;k2=y0+h/2*k1-(2*x+h)/(y0+h/2*k1);k3=y0+h/2*k2-(2*x+h)/(y0+h/2*k2);k4=y0+h*k3-(2*x+2*h)/(y0+h*k3);y1=y0+h/6*(k1+2*k2+2*k3+k4);}while(x<1);}2、幂法求特征值function [m x biaozhi]=mifa(A,jingdu,cishu)%幂法求矩阵最大特征值,其中%m为绝对值最大的特征值,x为对应最大特征值的特征向量%biaozhi表明迭代是否成功if nargin<3cishu=100;endif nargin<2jingdu=1e-5;endn=length(A);x=ones(n,1);biaozhi='迭代失败!';k=0;m1=0;while k<=cishuv=A*x;[vmax,k]=max(abs(v));m=v(k);x=v/m;if abs(m-m1)<jingdubiaozhi='迭代成功!';break;endm1=m;k=k+1;end3、拉格朗日插值function [c,l]=lglr(x,y)%x为n个节点的横坐标组成的向量,y为纵坐标组成的向量%c为插值函数的系数组成的向量%输出为差值多项式的系数w=length(x);n=w-1;l=zeros(w,w);for k=1:n+1v=1;for j=1:n+1if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j));endendl(k,:)=v;endc=y*l;举例4、改进欧拉法function yout=gaijinoula(f,x0,y0,xn,n)%定义输入输出x=zeros(1,n+1);y=zeros(1,n+1);x(1)=x0;y(1)=y0;h=(xn-x0)/n;for i=1:nx(i+1)=x(i)+h;z0=y(i)+h*feval(f,x(i),y(i));y(i+1)=y(i)+(feval(f,x(i),y(i))+feval(f,x(i+1),z0))*h/2; endshuchu=[x',y']fprintf(' x(i) y(i)')function Dy=f(x,y)Dy=x+y;5、最小二乘M文件:function c=zxrc(x,y,m)%x 是数据点横坐标,y 数据点纵坐标%m 要构造的多项式的系数,c 是多项式由高到低的系数所组成的向量 n=length(x);b=zeros(1:m+1);f=zeros(n,m+1);for k=1:m+1f(:,k)=x'.^(k-1);enda=f'*f;b=f'*y';c=a\b;c=flipud(c);-2-1.5-1-0.500.51 1.52---6、矩阵相关的算法(1).求矩阵的行列式function d=hanglieshi(a)%求任意输入矩阵的行列式clear all;a=input('输入矩阵a=');d=1;n=size(a); %方阵的行(或者列)数for k=1:n-1e=a(k,k); %设矩阵的主元for i=k:n %求出矩阵的全主元for j=k:nif abs(a(i,j))>ee=a(i,j);p=i;q=j;else c=0;endendendfor j=k:n %行交换t=a(k,j);a(k,j)=a(p,j);a(p,j)=t;endif p~=k %判断行列式是否换号d=d*(-1);else d=d;endfor i=k:n %列交换t=a(i,k);a(i,k)=a(i,q);a(i,q)=t;endif q~=k %判断行列式是否换号d=d*(-1);else d=d;endif a(k,k)~=0for i=k+1:n %消元r=a(i,k)/a(k,k);for j=k+1:na(i,j)=a(i,j)-r*a(k,j);endendelse d=d;endendfor i=1:n%求行列式d=d*a(i,i);enddisp('矩阵a的行列式为:')d(2)矩阵的换行function c=huanhang(a)%实现矩阵换行clear all;a=input('输入矩阵a=');[m,n]=size(a);for j=1:nt=a(1,j);a(1,j)=a(2,j);a(2,j)=t;endc=a;disp('换行后矩阵a变为:')c(3)列主元消元法解方程function d=jiefang(a)%列主元消元法解方程clear all;a=input('输入矩阵a=');[row,column]=size(a);for i=1:column%每一列的列标m(i)=i;s(i)=0;x(i)=0;endfor k=1:row-1%最后一行不用比较e=a(k,k);p=k;q=k;for i=k:rowfor j=k:column-1if abs(a(i,j))>abs(e)e=a(i,j);p=i;q=j;else c=0;endendendt=m(k); %换列标记m(k)=m(q);m(q)=t;for i=1:row %列交换t=a(i,k);a(i,k)=a(i,q);a(i,q)=t;endfor j=k:column %行变换t=a(k,j);a(k,j)=a(p,j);a(p,j)=t;endif a(k,k)==0 %消元disp('非唯一解')else for i=k+1:rowr=a(i,k)/a(k,k);for j=k:columna(i,j)=a(i,j)-r*a(k,j);endendendendif a(row,row)==0disp('非唯一解')elses(row)=a(row,column)/a(row,row);s(row)q=m(row);x(q)=s(row);for i=row-1:1for j=i+1:rows(i)=s(i)+a(i,j)*x(i);ends(i)=[a(i,column)-s(i)]/a(i,i);q=m(i);x(q)=s(i);endendfor i=1:rowx(i)endend(4)两矩阵相乘function d=chengfa(A,B)% 实现两个矩阵相乘clear all;A=input('输入矩阵A=');B=input('输入矩阵B=')[m n]=size(A);[nb p]=size(B);C=zeros(m,p);if n~=nbdisp('不满足矩阵相乘条件') else for i=1:mfor j=1:pd=0;for k=1:nd=d+A(i,k)*B(k,j);endC(i,j)=d;endenddisp('矩阵AB结果为:')CEnd(5)矩阵元素最大值及下标function d=xunzhuyuan(a)%求一个矩阵的最大元素及其下标clear all;a=input('输入矩阵a=');e=a(1,1); %设e=a(1,1)为最大元素p=1;q=1;[m,n]=size(a);for i=1:mfor j=1:nif abs(a(i,j))>ee=a(i,j);p=i;q=j;else c=0;endendenddisp('最大元素为:')d=a(p,q)disp('最大元素所在的行为:')pdisp('最大元素所在的列为:')qend(6)矩阵元素最大值及下标function d=zuidazhi(A)%求矩阵的最大元素及其下标clear all;A=input('输入矩阵A=');B=A'; %转置[a,r]=max(A); %求出矩阵A每一列的最大值和每列最大值所在的行数[maxV,column]=max(a); %最大元素及其所在的列[b,c]=max(B);[maxV1,row]=max(b);%最大元素及其所在的行disp('矩阵A的最大元素为:')maxVdisp('矩阵A最大元素所在的列为:')columndisp('矩阵A最大元素所在的行为:')row。
matlab龙格库塔法程序,给出实例
一、介绍龙格库塔法龙格库塔法(Runge-Kutta method)是一种数值计算方法,用于求解常微分方程的数值解。
它通过多步迭代的方式逼近微分方程的解,并且具有较高的精度和稳定性。
二、龙格库塔法的原理龙格库塔法采用迭代的方式来逼近微分方程的解。
在每一步迭代中,计算出当前时刻的斜率,然后根据这个斜率来求解下一个时刻的值。
通过多步迭代,可以得到微分方程的数值解。
三、龙格库塔法的公式龙格库塔法可以表示为以下形式:k1 = f(tn, yn)k2 = f(tn + h/2, yn + h/2 * k1)k3 = f(tn + h/2, yn + h/2 * k2)k4 = f(tn + h, yn + h * k3)yn+1 = yn + h/6 * (k1 + 2k2 + 2k3 + k4)其中,k1、k2、k3、k4为斜率,h为步长,tn为当前时刻,yn为当前时刻的解,yn+1为下一个时刻的解。
四、使用matlab实现龙格库塔法在MATLAB中,可以通过编写函数来实现龙格库塔法。
下面是一个用MATLAB实现龙格库塔法的简单例子:```matlabfunction [t, y] = runge_kutta(f, tspan, y0, h)t0 = tspan(1);tf = tspan(2);t = t0:h:tf;n = length(t);y = zeros(1, n);y(1) = y0;for i = 1:n-1k1 = f(t(i), y(i));k2 = f(t(i) + h/2, y(i) + h/2 * k1);k3 = f(t(i) + h/2, y(i) + h/2 * k2);k4 = f(t(i) + h, y(i) + h * k3);y(i+1) = y(i) + h/6 * (k1 + 2*k2 + 2*k3 + k4);endend```以上就是一个简单的MATLAB函数,可以利用该函数求解给定的微分方程。
微分方程的数值解法matlab(四阶龙格—库塔法)
解析解: x x x1 3 2(((ttt))) 0 .0 8 1 1 2 P k 8 0siw n t) (2 .6 3 0 3 3 P k 0siw n t) (0 .2 12 2 2 P k 0siw n t)(
第一个质量的位移响应时程
Y (t)A(Y t)P(t)
(2)
Y (t)A(Y t)P(t)
3. Matlab 程序(主程序:ZCX)
t0;Y0;h;N;P0,w; %输入初始值、步长、迭代次数、初始激励力;
for i = 1 : N
t1 = t0 + h
P=[P0*sin(w*t0);0.0;0.0]
%输入t0时刻的外部激励力
Van der Pol方程
% 子程序 (程序名: dYdt.m ) function Ydot = dYdt (t, Y) Ydot=[Y(2);-Y(2)*(Y(1)^2-1)-Y(1)];
或写为
function Ydot = dYdt (t, Y) Ydot=zeros(size(Y)); Ydot(1)=Y(2); Ydot(2)=-Y(2)*(Y(1).^2-1)-Y(1)];
Solver解算指令的使用格式
说明:
t0:初始时刻;tN:终点时刻 Y0:初值; tol:计算精度
[t, Y]=solver (‘ODE函数文件名’, t0, tN, Y0, tol);
ode45
输出宗量形式
y1 (t0 )
Y
y1
(t1
)
y
1
(t
2
)
y2 (t0 )
y
2
(
t1
)
y
2
(
t
数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程
数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程Matlab 应用使用Euler 和Rungkutta 方法解臂状摆的能量方程背景单摆是常见的物理模型,为了得到摆角θ的关于时间的函数,来描述单摆运动。
由角动量定理我们知道εJ M =化简得到 0sin 22=+θθlg dt d 在一般的应用和计算中,只考虑摆角在5度以内的小摆动,因为可以吧简化为θ,这样比较容易解。
实际上这是一个解二阶常微分方程的问题。
在这里的单摆是一种特别的单摆,具有均匀的质量M 分布在长为2的臂状摆上,使用能量法建立方程 WT = h mg ?=2J 21ω 化简得到θθcos35499.722=dtd 重力加速度取9.806651使用欧拉法令dxdy z =,这样降阶就把二阶常微分方程转化为一阶微分方程组,再利用向前Euler 方法数值求解。
y(i+1)=y(i)+h*z(i);z(i+1)=z(i)+h*7.35499*cos(y(i));y(0)=0z(0)=0精度随着h 的减小而更高,因为向前欧拉方法的整体截断误差与h 同阶,(因为是用了泰勒公式)所以欧拉方法的稳定区域并不大。
2.RK4-四阶龙格库塔方法使用四级四阶经典显式Rungkutta 公式稳定性很好,RK4法是四阶方法,每步的误差是h5阶,而总积累误差为h4阶。
所以比欧拉稳定。
运行第三个程序:在一幅图中显示欧拉法和RK4法,随着截断误差的积累,欧拉法产生了较大的误差h=0.01h=0.0001,仍然是开始较为稳定,逐渐误差变大总结:RK4是很好的方法,很稳定,而且四阶是很常用的方法,因为到五阶的时候精度并没有相应提升。
通过这两种方法计算出角度峰值y=3.141593,周期是1.777510。
三个程序欧拉法clear;clch=0.00001;a=0;b=25;x=a:h:b;y(1)=0;z(1)=0;for i=1:length(x)-1 % 欧拉y(i+1)=y(i)+h*z(i);z(i+1)=z(i)+h*7.35499*cos(y(i));endplot(x,y,'r*');xlabel('时间');ylabel('角度');A=[x,y];%y(find(y==max(y)))%Num=(find(y==max(y)))[y,T]=max(y);fprintf('角度峰值等于%d',y) %角度的峰值也就是πfprintf('\n')fprintf('周期等于%d',T*h) %周期legend('欧拉');龙格库塔方法先定义函数rightf_sys1.mfunction w=rightf_sys1(x,y,z)w=7.35499*cos(y);clear;clc;%set(0,'RecursionLimit',500)h=0.01;a=0;b=25;x=a:h:b;RK_y(1)=0; %初值RK_z(1)=0; %初值for i=1:length(x)-1K1=RK_z(i);L1=rightf_sys1(x(i),RK_y(i),RK_z(i)); % K1 and L1 K2=RK_z(i)+0.5*h*L1;L2=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K1,RK_z(i)+0.5*h*L1 );K3=RK_z(i)+0.5*h*L2;L3=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K2,RK_z(i)+0.5*h*L2 );K4=RK_z(i)+h*L3;L4=rightf_sys1(x(i)+h,RK_y(i)+h*K3,RK_z(i)+h*L3); % K4 and L4RK_y(i+1)=RK_y(i)+1/6*h*(K1+2*K2+2*K3+K4);RK_z(i+1)=RK_z(i)+1/6*h*(L1+2*L2+2*L3+L4);endplot(x,RK_y,'b+');xlabel('Variable x');ylabel('Variable y');A=[x,RK_y];[y,T]=max(RK_y);legend('RK4方法');fprintf('角度峰值等于%d',y) %角度的峰值也就是πfprintf('\n')fprintf('周期等于%d',T*h) %周期两个方法在一起对比使用跟上一个相同的函数rightf_sys1.mclear;clc; %清屏h=0.0001;a=0;b=25;x=a:h:b;Euler_y(1)=0;Euler_z(1)=0; %欧拉的初值RK_y(1)=0;RK_z(1)=0; %龙格库塔初值for i=1:length(x)-1%先是欧拉法Euler_y(i+1)=Euler_y(i)+h*Euler_z(i);Euler_z(i+1)=Euler_z(i)+h*7.35499*cos(Euler_y(i));%龙格库塔K1=RK_z(i); L1=rightf_sys1(x(i),RK_y(i),RK_z(i)); % K1 and L1 K2=RK_z(i)+0.5*h*L1;L2=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K1,RK_z(i)+0.5*h*L1);% K2 and L2K3=RK_z(i)+0.5*h*L2;L3=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K2,RK_z(i)+0.5*h*L2 );% K3 and L3K4=RK_z(i)+h*L3;L4=rightf_sys1(x(i)+h,RK_y(i)+h*K3,RK_z(i)+h*L3); % K4 and L4RK_y(i+1)=RK_y(i)+1/6*h*(K1+2*K2+2*K3+K4);RK_z(i+1)=RK_z(i)+1/6*h*(L1+2*L2+2*L3+L4);endplot(x,Euler_y,'r-',x,RK_y,'b-');[y,T]=max(RK_y);fprintf('角度峰值等于%d',y) %角度的峰值也就是πfpri ntf('\n') fprintf('周期等于%d',T*h) %周期xlabel('时间');ylabel('角度');legend('欧拉','RK4');。
数值分析实验— MATLAB实现
数值分析实验——MATLAB实现姓名sumnat学号2013326600000班级13级应用数学2班指导老师2016年1月一、插值:拉格朗日插值 (1)1、代码: (1)2、示例: (1)二、函数逼近:最佳平方逼近 (2)1、代码: (2)2、示例: (2)三、数值积分:非反常积分的Romberg算法 (3)1、代码: (3)2、示例: (4)四、数值微分:5点法 (5)1、代码: (5)2、示例: (6)五、常微分方程:四阶龙格库塔及Adams加速法 (6)1、代码:四阶龙格库塔 (6)2、示例: (7)3、代码:Adams加速法 (7)4、示例: (8)六、方程求根:Aitken 迭代 (8)1、代码: (8)2、示例: (9)七、线性方程组直接法:三角分解 (9)1、代码: (9)2、示例: (10)八、线性方程组迭代法:Jacobi法及G-S法 (11)1、代码:Jacobi法 (11)2、示例: (12)3、代码:G-S法 (12)4、示例: (12)九、矩阵的特征值及特征向量:幂法 (13)1、代码: (13)2、示例: (13)一、插值:拉格朗日插值1、代码:function z=LGIP(x,y)%拉格朗日插值n=size(x);n=n(2);%计算点的个数syms a;u=0;%拉格朗日多项式f=1;%插值基函数for i=1:nfor j=1:nif j==if=f;elsef=f*(a-x(j))/(x(i)-x(j));endendu=u+y(i)*f;f=1;endz=expand(u);%展开2、示例:>> x=1:6;y1=x.^5+3*x.^2-6;y2=sin(x)+sqrt(x);>> f1=LGIP(x,y1)f1 =-6+3*a^2+a^5%可知多项式吻合得很好>> f2=vpa(LGIP(x,y2),3)f2 =.962e-1*a^4+1.38*a+.300*a^2+.504-.436*a^3-.616e-2*a^5二、函数逼近:最佳平方逼近1、代码:function z=BestF(u,a,b,n)%最佳平方逼近,用x^i逼近,n为逼近的次数n=n+1;syms xreal;old=findsym(u);u=subs(u,old,x); %将u中变量替换为xf=sym('');H=sym('');d=sym('');for i=1:n %生成函数系f(1,i)=x^(i-1);endfor i=1:n %生成内积Hfor j=1:nH(i,j)=int(f(1,i)*f(1,j),a,b);endendfor i=1:n %生成内积dd(i,1)=int(f(1,i)*u,a,b);enda=H\d;%解法方程Ha=dz=a'*f';2、示例:>> syms x>> f1=sqrt(x);>> f2=x^5+x^2;>> f3=exp(x);>> a=0 ;b=1;>> BestF(f1,a,b,5)ans =12/143+420/143*x-1120/143*x^2+2016/143*x^3-1800/143*x^4+56/13*x^5>> BestF(f2,a,b,5)ans =x^5+x^2>> BestF(f3,a,b,5)ans =-566826+208524*exp(1)+(16733010-6155730*exp(1))*x+(-115830120+42611520*exp(1))* x^2+(306348840-112699440*exp(1))*x^3+(-342469260+125987400*exp(1))*x^4+(136302012-5 0142708*exp(1))*x^5>> vpa(ans,3)ans =.1e4-.1e6*x-.1e7*x^3+.1e7*x^4三、数值积分:非反常积分的Romberg算法1、代码:function z=IntRom(f,a,b) %Romberg 算法e=1e-10;I{1}=linspace(a,b,2);%1等分I{2}=linspace(a,b,3);%2等分L=setdiff(I{2},I{1});%新得插值点h=b-a;T(1,1)=h/2*sum(subs(f,I{1}));T(2,1)=1/2*T(1,1)+h/2*sum(subs(f,L));T(2,2)=4/3*T(2,1)-1/3*T(1,1);k=2;while abs(T(k,k)-T(k-1,k-1))>e %精度要求k=k+1;I{k}=linspace(a,b,2^(k-1)+1);L=setdiff(I{k},I{k-1});%集合差运算,新得插值点h=h/2;T(k,1)=1/2*T(k-1,1)+h/2*sum(subs(f,L));%梯形for i=2:kT(k,i)=(4^(i-1)/(4^(i-1)-1))*T(k,i-1)-(1/(4^(i-1)-1))*T(k-1,i-1);%加速endEndz=T(k,k);2、示例:>> syms x>> f=x^4;>> a=-4;b=4;>> IntRom(f,a,b)T =1.0e+003 *2.04800000000000 0 0 01.02400000000000 0.68266666666667 0 00.57600000000000 0.42666666666667 0.40960000000000 00.45200000000000 0.41066666666667 0.40960000000000 0.40960000000000ans =4.096000000000000e+002>> vpa((int(f,a,b)-ans),3)ans =0.>> f=exp(x);>> a=0;b=1;>> IntRom(f,a,b)T =Columns 1 through 41.85914091422952 0 0 01.75393109246483 1.71886115187659 0 01.72722190455752 1.71831884192175 1.71828268792476 01.72051859216430 1.71828415469990 1.71828184221844 1.718281828794531.71884112857999 1.71828197405189 1.71828182867536 1.718281828460391.71842166031633 1.71828183756177 1.71828182846243 1.71828182845905Columns 5 through 60 00 00 00 01.71828182845908 01.71828182845905 1.71828182845905ans =1.71828182845905>> vpa((int(f,a,b)-ans),3)ans =0.四、数值微分:5点法1、代码:function z=VDiff(f,x0)%5点法求导数值e=1e-15;h=0.01;for i=0:4x(i+1)=x0+i*h;endy=subs(f,x);m(1)=(1/(12*h))*(-25*y(1)+48*y(2)-36*y(3)+16*y(4)-3*y(5));%5点导数公式h=h/2;for i=0:4x(i+1)=x0+i*h;endy=subs(f,x);m(2)=(1/(12*h))*(-25*y(1)+48*y(2)-36*y(3)+16*y(4)-3*y(5));h=h/2;for i=-0:4x(i+1)=x0+i*h;endy=subs(f,x);m(3)=(1/(12*h))*(-25*y(1)+48*y(2)-36*y(3)+16*y(4)-3*y(5));k=3;while abs(m(k)-m(k-1))<abs(m(k-1)-m(k-2)) & abs(m(k)-m(k-1))>e & (h/10)>0%控制收敛条件及精度要求及h非0h=h/2;k=k+1;for i=0:4x(i+1)=x0+i*h;endy=subs(f,x);m(k)=(1/(12*h))*(-25*y(1)+48*y(2)-36*y(3)+16*y(4)-3*y(5));ende=abs(m(k)-m(k-1));z=[m(k);e];2、示例:>> syms x>> f=exp(x);>> x0=2;>> VDiff(f,x0)ans =7.389056098949710.00000000002558五、常微分方程:四阶龙格库塔及Adams加速法1、代码:四阶龙格库塔function z=RGFour(f,y0,a,b)%4阶龙格库塔,f为函数句柄h=0.01;X=a:h:b;Y(1)=y0;n=size(X);n=n(2);for i=1:n-1K1=f([X(i) Y(i)]);K2=f([X(i)+h/2,Y(i)+h/2*K1]);K3=f([X(i)+h/2,Y(i)+h/2*K2]);K4=f([X(i)+h,Y(i)+h*K3]);Y(i+1)=Y(i)+h/6*(K1+2*K2+2*K3+K4);endz=Y;plot(X,Y);2、示例:>> f=@(x)sin(x(1));>> y0=0;a=0;b=2*pi;>> figure(1);>> RGFour(f,y0,a,b);3、代码:Adams加速法function z=myAdams(f,y0,a,b)h=0.01;p(4)=1;c(4)=1;X=a:h:b;Y(1)=y0;n=size(X);n=n(2);for i=1:3K1=f([X(i) Y(i)]);K2=f([X(i)+h/2,Y(i)+h/2*K1]);K3=f([X(i)+h/2,Y(i)+h/2*K2]);K4=f([X(i)+h,Y(i)+h*K3]);Y(i+1)=Y(i)+h/6*(K1+2*K2+2*K3+K4);endfor i=4:n-1p(i+1)=Y(i)+h/24*(55*f([X(i),Y(i)])-59*f([X(i-1),Y(i-1)])+37*f([X(i-2 ),Y(i-2)])-9*f([X(i-3),Y(i-3)]));m(i+1)=p(i+1)+251/720*(c(i)-p(i));m(i+1)=f([X(i+1),m(i+1)]);c(i+1)=Y(i)+h/24*(9*f([X(i+1),m(i+1)])+19*f([X(i),Y(i)])-5*f([X(i-1), Y(i-1)])+f([X(i-2),Y(i-2)]));Y(i+1)=c(i+1)-19/720*(c(i+1)-p(i+1));endz=Y;plot(X,Y);4、示例:>> f=@(x)exp(x(1));>> myAdams(f,0,0,2*pi);六、方程求根:Aitken 迭代1、代码:function z=myAitken(f,x0);%Aitken 迭代求方程的根e=1e-15;xu1=x0;xv1=subs(f,xu1);xv2=subs(f,xv1);if xv2-2*xv1+xu1==0%防止除0;xu2=xv2;elsexu2=xv2-(xv2-xv1)^2/(xv2-2*xv1+xu1);endwhile abs(xu2-xu1)>e%精度控制xu1=xu2;xv1=subs(f,xu1);xv2=subs(f,xv1);if xv2-2*xv1+xu1==0%防止除0;xu2=xv2;elsexu2=xv2-(xv2-xv1)^2/(xv2-2*xv1+xu1);%Aitken加速公式endendz=xu2;2、示例:>> syms x>> f=cos(x/2)+x;>> x0=3;>> myAitken(f,x0)ans =3.14159265358979>> f=x^2-2+x;>> x0=1;>> myAitken(f,x0)ans =1.41421356237309七、线性方程组直接法:三角分解1、代码:function z=myGuess(A,b);%线性方程组三角分解求根n=size(A);if n~=rank(A)z=['矩阵A线性相关,不符合要求'];return;endn=n(2);L=eye(n);for i=1:n-1for j=i+1:nL(j,i)=A(j,i)/A(i,i);A(j,:)=A(j,:)-L(j,i)*A(i,:);endendU=A;for i=1:n %解Ly=b,得ys=0;for j=1:i-1s=s+y(j)*L(i,j);endy(i)=(b(i)-s)/L(i,i);endfor i=n:-1:1 %解Ux=y,得xs=0;for j=i+1:ns=s+x(j)*U(i,j);endx(i)=(y(i)-s)/U(i,i);endLUz=x';2、示例:>> A=[1 2 3;2 1 5;11 17 21];>> b=[1 3 5]';>> myGuess(A,b)L =1.00000000000000 0 02.00000000000000 1.00000000000000 011.00000000000000 1.66666666666667 1.00000000000000U =1.000000000000002.000000000000003.000000000000000 -3.00000000000000 -1.000000000000000 0 -10.33333333333333ans =-0.06451612903226-0.580645161290320.74193548387097>> t=A\bt =-0.06451612903226-0.580645161290320.74193548387097八、线性方程组迭代法:Jacobi法及G-S法1、代码:Jacobi法function z=myJacobi(A,b)n=size(A);n=n(2);x{1}=zeros(n,1);%初始值e=1e-10;D=diag(diag(A));L=D-tril(A);U=D-triu(A);B=D\(L+U);f=D\b;Q=B'*B;[w,d]=eig(Q);p=max(abs(diag(d))) ; %谱半径if p>=1z=['迭代发散'];return;endx{2}=B*x{1}+f;k=2;while norm(x{k}-x{k-1})>ek=k+1;x{k}=B*x{k-1}+f;endz=x{k};2、示例:>> A=[8 -3 2;4 11 -1;6 3 12];>> b=[20 33 36]';>> myJacobi(A,b)ans =3.000000000013402.000000000012610.999999999992373、代码:G-S法function z=myGS(A,b)n=size(A);n=n(2);x{1}=zeros(n,1);e=1e-10;D=diag(diag(A));L=D-tril(A);U=D-triu(A);B=(D-L)\U;f=(D-L)\b;Q=B'*B;[w,d]=eig(Q);p=max(abs(diag(d))) ; %谱半径if p>=1z=['迭代发散'];return;endx{2}=B*x{1}+f;k=2;while norm(x{k}-x{k-1})>ek=k+1;x{k}=B*x{k-1}+f;endz=x{k};4、示例:>> A=[8 -3 2;4 11 -1;6 3 12];>> b=[20 33 36]';>> myGS(A,b)ans =3.000000000001351.999999999999160.99999999999954九、矩阵的特征值及特征向量:幂法1、代码:function z=myChar(A);%幂法求主特征值及对应的特征向量e=1e-10;n=size(A);n=n(2);v1=ones(n,1);u1=v1;v2=A*u1;a=min(v2);b=max(v2);if abs(a)>abs(b)c=a;elsec=b;endu2=v2/c;%规范化while norm(u2-u1)>eu1=u2;v2=A*u1;a=min(v2);b=max(v2);if abs(a)>abs(b)c=a;elsec=b;endu2=v2/c;%规范化endz{1}=c;z{2}=v2;2、示例:>> A=[8 -3 2;4 11 -1;6 3 12];>> u=myChar(A)u =[14.00000000046956] [3x1 double]>> u{1}ans =14.00000000046956 >> u{2}ans =4.20000000191478 0.93333333198946 14.00000000046956。
数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程-推荐下载
四阶龙格库塔方法使用四级四阶经典显式Rungkutta公式稳定性很好,RK4法是四阶方法,每步的误差是h5阶,而总积累误差为h4阶。
所以比欧拉稳定。
运行第三个程序:在一幅图中显示欧拉法和RK4法,随着截断误差的积累,欧拉法产生了较大的误差h=0.01h=0.0001,仍然是开始较为稳定,逐渐误差变大总结:RK4是很好的方法,很稳定,而且四阶是很常用的方法,因为到五阶的时候精度并没有相应提升。
通过这两种方法计算出角度峰值y=3.141593,周期是1.777510。
三个程序欧拉法clear;clch=0.00001;a=0;b=25;x=a:h:b;y(1)=0;z(1)=0;for i=1:length(x)-1 % 欧拉y(i+1)=y(i)+h*z(i);z(i+1)=z(i)+h*7.35499*cos(y(i));endplot(x,y,'r*');xlabel('时间');ylabel('角度');A=[x,y];%y(find(y==max(y)))%Num=(find(y==max(y)))[y,T]=max(y);fprintf('角度峰值等于%d',y) %角度的峰值也就是πfprintf('\n')fprintf('周期等于%d',T*h)%周期legend('欧拉');龙格库塔方法先定义函数rightf_sys1.mfunction w=rightf_sys1(x,y,z)w=7.35499*cos(y);clear;clc;%set(0,'RecursionLimit',500)h=0.01;a=0;b=25;x=a:h:b;RK_y(1)=0; %初值%RK_z(1)=0;初值for i=1:length(x)-1K1=RK_z(i); L1=rightf_sys1(x(i),RK_y(i),RK_z(i));%K1 and L1K2=RK_z(i)+0.5*h*L1;L2=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K1,RK_z(i)+0.5*h*L1);K3=RK_z(i)+0.5*h*L2;L3=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K2,RK_z(i)+0.5*h*L2);K4=RK_z(i)+h*L3;% K4L4=rightf_sys1(x(i)+h,RK_y(i)+h*K3,RK_z(i)+h*L3);and L4RK_y(i+1)=RK_y(i)+1/6*h*(K1+2*K2+2*K3+K4);RK_z(i+1)=RK_z(i)+1/6*h*(L1+2*L2+2*L3+L4);endplot(x,RK_y,'b+');xlabel('Variable x');ylabel('Variable y');A=[x,RK_y];[y,T]=max(RK_y);legend('RK4方法');fprintf('角度峰值等于%d',y) %角度的峰值也就是πfprintf('\n')%周期fprintf('周期等于%d',T*h)两个方法在一起对比使用跟上一个相同的函数rightf_sys1.mclear;clc; %清屏h=0.0001;a=0;b=25;x=a:h:b;Euler_y(1)=0;%欧拉的初值Euler_z(1)=0;RK_y(1)=0;%龙格库塔初值RK_z(1)=0;for i=1:length(x)-1%先是欧拉法Euler_y(i+1)=Euler_y(i)+h*Euler_z(i);Euler_z(i+1)=Euler_z(i)+h*7.35499*cos(Euler_y(i));%龙格库塔K1=RK_z(i); L1=rightf_sys1(x(i),RK_y(i),RK_z(i)); % K1 andL1K2=RK_z(i)+0.5*h*L1;L2=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K1,RK_z(i)+0.5*h*L1);% K2 and L2K3=RK_z(i)+0.5*h*L2;L3=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K2,RK_z(i)+0.5*h*L2);% K3 and L3K4=RK_z(i)+h*L3; L4=rightf_sys1(x(i)+h,RK_y(i)+h*K3,RK_z(i)+h*L3); K4 and L4RK_y(i+1)=RK_y(i)+1/6*h*(K1+2*K2+2*K3+K4);RK_z(i+1)=RK_z(i)+1/6*h*(L1+2*L2+2*L3+L4);endplot(x,Euler_y,'r-',x,RK_y,'b-');[y,T]=max(RK_y);%角度的峰值也就是πfprintf('角度峰值等于%d',y)fprintf('\n')%周期fprintf('周期等于%d',T*h)xlabel('时间');ylabel('角度');legend('欧拉','RK4');。
龙格库塔方法及其matlab实现
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载龙格库塔方法及其matlab实现地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容龙格-库塔方法及其matlab实现摘要:本文的目的数值求解微分方程精确解,通过龙格-库塔法,加以利用matlab为工具达到求解目的。
龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法,用于数值求解微分方程。
MatLab软件是由美国Mathworks公司推出的用于数值计算和图形处理的科学计算系统环境。
MatLab 是英文MATrix LABoratory(矩阵实验室)的缩写。
在MratLab环境下,用户可以集成地进行程序设计、数值计算、图形绘制、输入输出、文件管理等各项操作。
关键词:龙格-库塔 matlab 微分方程前言1.1:知识背景龙格-库塔法(Runge-Kutta)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。
这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。
通常所说的龙格库塔方法是相对四阶龙格库塔而言的,成为经典四阶龙格库塔法。
该方法具有精度高,收敛,稳定,计算过程中可以改变步长不需要计算高阶导数等优点,但是仍需计算在一些点上的值,比如四阶龙格-库塔法没计算一步需要计算四步,在实际运用中是有一定复杂性的。
Matlab是在20世纪七十年代后期的事:时任美国新墨西哥大学计算机科学系主任的Cleve Moler教授出于减轻学生编程负担的动机,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。
经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。
MATLAB龙格-库塔法微分方程求解
龙格-库塔方法是一种经典方法,具有很高的精度,它间接的利用了泰勒级数展开,避免了高阶偏导数的计算。
此处以最为经典的四级四阶龙格-库塔方法为例,计算格式如下()()()112341213243226,,22,+22,n n n n n n n n n n h y y K K K K K f x y h h K f x y K h h K f x y K K f x h y hK +⎧=++++⎪⎪⎪=⎪⎪⎛⎫=++⎨ ⎪⎝⎭⎪⎪⎛⎫=+⎪ ⎪⎝⎭⎪⎪=++⎩1龙格-库塔法解一阶ODE 对于形如()()0, dy f x y a x b dx y a y ⎧=<≤⎪⎨⎪=⎩的一阶ODE 初值问题,可以直接套用公式,如今可以借助计算机方便的进行计算,下面给出一个实例()2 0101dy x y x dx y y ⎧=-<≤⎪⎨⎪=⎩取步长h=0.1,此处由数学知识可得该方程的精确解为y =。
在这里利用MATLAB 编程,计算数值解并与精确解相比,代码如下:(1)写出微分方程,便于调用和修改function val = odefun( x,y )val = y-2*x/y;end(2)编写runge-kutta方法的函数代码function y = runge_kutta( h,x0,y0 )k1 = odefun(x0,y0);k2 = odefun(x0+h/2,y0+h/2*k1);k3 = odefun(x0+h/2,y0+h/2*k2);k4 = odefun(x0+h,y0+h*k3);y = y0+h*(k1+2*k2+2*k3+k4)/6;end(3)编写主函数解微分方程,并观察数值解与精确解的差异clear allh = 0.1;x0 = 0;y0 = 1;x = 0.1:h:1;y(1) = runge_kutta(h,x0,y0);for k=1:length(x)x(k) = x0+k*h;y(k+1) = runge_kutta(h,x(k),y(k));endz = sqrt(1+2*x);plot(x,y,’*’);hold onplot(x,z,'r');结果如下图,数值解与解析解高度一致2龙格-库塔法解高阶ODE对于高阶ODE来说,通用的方法是将高阶方程通过引入新的变量降阶为一阶方程组,此处仍以一个实例进行说明。
龙格现象matlab算法
实验报告课程名称:___计算方法____________指导老师:___程晓良________成绩:__________________实验名称:___观察龙格现象________________实验类型:________________同组学生姓名:__________一、实验目的和要求(必填) 二、实验内容和原理(必填)三、主要仪器设备(必填) 四、操作方法和实验步骤五、实验数据记录和处理 六、实验结果与分析(必填)七、讨论、心得一、问题描述在计算方法中,有利用多项式对某一函数的近似逼近,这样,利用多项式就可以计算相应的函数值。
例如,在事先不知道某一函数的具体形式的情况下,只能测量得知某一些分散的函数值。
例如我们不知道气温随日期变化的具体函数关系,但是我们可以测量一些孤立的日期的气温值,并假定此气温随日期变化的函数满足某一多项式。
这样,利用已经测的数据,应用待定系数法便可以求得一个多项式函数f (x )。
应用此函数就可以计算或者说预测其他日期的气温值。
一般情况下,多项式的次数越多,需要的数据就越多,而预测也就越准确。
例外发生了:龙格在研究多项式插值的时候,发现有的情况下,并非取节点(日期数)越多多项式就越精确。
著名的例子是f (x )=1/(1+25x^2).它的插值函数在两个端点处发生剧烈的波动,造成较大的误差。
二、相关公式三、MATLAB 程序一、取等距节点,n=5,10,15,20for n = 5:5:20subplot(2,2,n/5)syms x ;专业:___机械工程____姓名:___林炜奕_______学号:_3130102509____ 日期:________________ 地点:_______桌号f = 1/(1+25*x^2);x1=sym(zeros(n+1));W=sym(ones(n+1));L=sym(0);for i=0:nx1(i+1)=-1+2*i/n;endfor i=0:nfor j=0:nif j~=iw=(x-x1(j+1))/(x1(i+1)-x1(j+1));W(i+1)=W(i+1)*w;endendL=L+W(i+1)*(1/(1+25*x1(i+1)^2));endLL(n)=simplify(L);x=-1:0.01:1;y1=subs(f,x);y2=subs(L,x);plot(x,y1,'b');hold on;plot(x,y2,'r');hold off;title(['Ô-º¯Êýf(x)=1/(1+25*x^2)Óë',num2str(n),'´Î²åÖµº¯Êý']); xlabel('x');ylabel('y');legend('Ô-º¯Êý','²åÖµº¯Êý');grid onend二、取节点X j=cosjπ/n,j=0,1,…,n.n分别取5,10,15,20,…,50for n = 5:5:50subplot(2,5,n/5)syms x;f = 1/(1+25*x^2);x1=sym(zeros(n+1));W=sym(ones(n+1));L=sym(0);for i=0:nx1(i+1)=cos(i*pi/n);endfor i=0:nfor j=0:nif j~=iw=(x-x1(j+1))/(x1(i+1)-x1(j+1));W(i+1)=W(i+1)*w;endendL=L+W(i+1)*(1/(1+25*x1(i+1)^2));endLL(n)=simplify(L);x=-1:0.01:1;y1=subs(f,x);y2=subs(L,x);plot(x,y1,'b');hold on;plot(x,y2,'r');hold off;title(['Ô-º¯Êýf(x)=1/(1+25*x^2)Óë',num2str(n),'´Î²åÖµº¯Êý']); xlabel('x');ylabel('y');legend('Ô-º¯Êý','²åÖµº¯Êý');grid onend四、实验分析当采用等距节点时,随着节点数量的增多,插值函数的误差越大。
Matlab中龙格-库塔(Runge-Kutta)方法原理及实现
函数功能ode是专门用于解微分方程的功能函数,他有ode23,ode45,ode23s等等,采用的是Runge-Kutta算法。
ode45表示采用四阶,五阶runge-kutta单步算法,截断误差为(Δx)³。
解决的是Nonstiff(非刚性)的常微分方程.是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,换用ode23来解.使用方法[T,Y] = ode45(odefun,tspan,y0)odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名tspan 是区间[t0 tf] 或者一系列散点[t0,t1,...,tf]y0 是初始值向量T 返回列向量的时间点Y 返回对应T的求解列向量[T,Y] = ode45(odefun,tspan,y0,options)options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等[T,Y,TE,YE,IE] =ode45(odefun,tspan,y0,options)在设置了事件参数后的对应输出TE 事件发生时间YE 事件解决时间IE 事件消失时间sol =ode45(odefun,[t0 tf],y0...)sol 结构体输出结果应用举例1 求解一阶常微分方程程序:一阶常微分方程odefun=@(t,y) (y+3*t)/t^2; %定义函数tspan=[1 4]; %求解区间y0=-2; %初值[t,y]=ode45(odefun,tspan,y0);plot(t,y) %作图title('t^2y''=y+3t,y(1)=-2,1<t<4')legend('t^2y''=y+3t')xlabel('t')ylabel('y')% 精确解% dsolve('t^2*Dy=y+3*t','y(1)=-2')% ans =一阶求解结果图% (3*Ei(1) - 2*exp(1))/exp(1/t) - (3*Ei(1/t))/exp(1/t)2 求解高阶常微分方程关键是将高阶转为一阶,odefun的书写.F(y,y',y''...y(n-1),t)=0用变量替换,y1=y,y2=y'...注意odefun方程定义为列向量dxdy=[y(1),y(2)....]程序:function Testode45tspan=[3.9 4.0]; %求解区间y0=[2 8]; %初值[t,x]=ode45(@odefun,tspan,y0);plot(t,x(:,1),'-o',t,x(:,2),'-*')legend('y1','y2')title('y'' ''=-t*y + e^t*y'' +3sin2t')xlabel('t')ylabel('y')function y=odefun(t,x)y=zeros(2,1); % 列向量y(1)=x(2);y(2)=-t*x(1)+exp(t)*x(2)+3*sin(2*t);endend高阶求解结果图相关函数ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tbMatlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
龙格-库塔法(Runge-Kutta)matlab代码及含义
龙格-库塔法(Runge-Kutta)数值分析中,龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。
这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。
经典四阶龙格库塔法RK4””或者就是龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4“龙格库塔法”。
令初值问题表述如下。
则,对于该问题的RK4由如下方程给出:其中这样,下一个值(yn+1)由现在的值(yn)加上时间间隔(h)和一个估算的斜率的乘积决定。
该斜率是以下斜率的加权平均:k1是时间段开始时的斜率;k2是时间段中点的斜率,通过欧拉法采用斜率k1来决定y在点tn+h/2的值;k3也是中点的斜率,但是这次采用斜率k2决定y值;k4是时间段终点的斜率,其y值用k3决定。
当四个斜率取平均时,中点的斜率有更大的权值:RK4法是四阶方法,也就是说每步的误差是h5阶,而总积累误差为h4阶。
注意上述公式对于标量或者向量函数(y可以是向量)都适用。
显式龙格库塔法显示龙格-库塔法是上述RK4法的一个推广。
它由下式给出其中(注意:上述方程在不同著述中由不同但却等价的定义)。
要给定一个特定的方法,必须提供整数s(阶段数),以及系数aij(对于1≤j<i≤s),bi(对于i=1,2,2,...,...,s)和ci(对于i=2,3,3,...,...,s)。
这些数据通常排列在一个助记c3a31如果要求方法有精度p则还有相应的条件,也就是要求舍入误差为O(hp+1)时的条件。
这些可以从舍入误差本身的定义中导出。
例如,一个2阶精度的2段方法要求b1+b2=1,b2c2=1/2,以及b2a21=1/2。
龙格现象matlab程序
龙格现象matlab程序龙格现象(Runge's Phenomenon)是数值分析中的一个现象,指的是在使用等距节点进行插值时,当节点数量增多时,插值多项式会出现振荡的现象。
这个现象最早由德国数学家卡尔·龙格(Carl Runge)于1901年发现,因此得名。
龙格现象的产生是由于等距节点在插值中的特殊性质导致的。
在等距节点插值中,节点的间距是相等的,例如在区间[-1,1]上选择n 个等距节点。
利用这些节点进行插值,我们可以得到一个n次多项式来拟合所给的函数。
然而,当n增大时,插值多项式在区间的两个端点附近会出现振荡现象,即多项式值在两个端点附近迅速增大然后迅速减小,最终达到函数值的波动。
为了更好地理解龙格现象,我们可以通过一个简单的例子来说明。
考虑函数f(x)=1/(1+25x^2),我们在区间[-1,1]上选择不同数量的等距节点进行插值。
首先,选择5个等距节点进行插值,得到插值多项式P5(x)。
在图表中我们可以观察到,P5(x)在区间的两个端点附近出现了振荡现象。
随着节点数量的增加,振荡现象变得更加明显。
当节点数量增加到10时,插值多项式P10(x)的振荡现象更加明显。
这说明了龙格现象的存在。
为了解决龙格现象,我们可以采用非等距节点进行插值。
非等距节点插值可以通过使用更加合适的节点分布来减小振荡现象。
例如,在区间[-1,1]上使用Chebyshev节点进行插值可以有效地减小龙格现象的影响。
龙格现象在实际应用中具有重要的意义。
在数值计算中,我们经常需要使用插值来近似函数值。
如果不了解龙格现象,仅仅选择等距节点进行插值可能会导致误差的增大。
因此,了解龙格现象的存在和原因对于选择合适的插值方法具有重要的指导意义。
龙格现象是等距节点插值中的一个振荡现象,会导致插值多项式在区间的两个端点附近出现振荡。
为了解决龙格现象,可以采用非等距节点进行插值。
了解龙格现象的存在和原因对于数值计算具有重要的指导意义。
Matlab数值计算龙格库塔
clearclch=0.001;%前几行都是给变量赋初始值,是已知的x0=0;y0=0;t0=0;for i=1:0.1/h %循环,从起点1到终点0.1/h,每循环一次,i增大1,以下循环是为我军导弹服务的t=t0+h/2;%龙格公式里,每一个步长,分为起点、中点、终点,比如,t0是起点,t 是中点、t1是终点t1=t0+h;d1=450/(1+((90*t0*sin(0.3*pi)-y0)/(30+90*t0*cos(0.3*pi)-x0))^2)^(1/2);%龙格公式里坐标点(t0,x0)的导数,也是该点斜率d11=450/(1+((90*t0*sin(0.3*pi)-y0)\(30+90*t0*cos(0.3*pi)-x0))^2)^(1/2);%龙格公式里坐标点(t0,y0)的导数,也是该点斜率x=x0+h/2*d1;%龙格公式第一步,计算x的y=y0+h/2*d11;;%龙格公式第一步,计算yd2=450/(1+((90*t*sin(0.3*pi)-y)/(30+90*t*cos(0.3*pi)-x))^2)^(1/2);%龙格公式里坐标点(t,x)的导数d22=450/(1+((90*t*sin(0.3*pi)-y)\(30+90*t*cos(0.3*pi)-x))^2)^(1/2);%龙格公式里坐标点(t,y)的导数xx=x0+h/2*d2;%龙格公式第二步,计算x的yy=y0+h/2*d22;%龙格公式第二步,计算y的d3=450/(1+((90*t*sin(0.3*pi)-yy)/(30+90*t*cos(0.3*pi)-xx))^2)^(1/2);%龙格公式里坐标点(t,xx)的导数d33=450/((1+(90*t*sin(0.3*pi)-yy)\(30+90*t*cos(0.3*pi)-xx))^2)^(1/2);%龙格公式里坐标点(t,y)的导数x1x1=x0+h*d3;;%龙格公式第三步,计算x的y1y1=y0+h*d33;;%龙格公式第三步,计算y的d4=450/(1+((90*t1*sin(0.3*pi)-y1y1)/(30+90*t0*cos(0.3*pi)-x1x1))^2)^(1/2);%龙格公式里坐标点(t,x1x1)的导数d44=450/(1+((90*t1*sin(0.3*pi)-y1y1)\(30+90*t1*cos(0.3*pi)-x1x1))^2)^(1/2);%龙格公式里坐标点(t,y1y1)的导数x1(i)=x0+h/6*(d1+2*d2+2*d3+d4);%龙格公式第四步,计算x的y1(i)=y0+h/6*(d11+2*d22+2*d33+d44);%龙格公式第四步,计算y的t0=t1;%现在一个步长的龙格公式已结束,该到要进入下一个步长。