随机过程第三章
随机过程第三章 泊松过程

义 3.2 可知
PN (2) N (1) 5 5 e101 (101)n
n0
n!
PN (3) N (2) 0 e101 (101)0 e10
0!
例 3.2(事故发生次数及保险公司接到的索赔数)若以 N (t) 表示某公路交叉口、矿山、
,利用数学归纳法证明。假设当 (n 1) 时成立,因
此
d dt
(et Pn (t))
et
et
t n1 (n 1)!
t n1 (n 1)!
解得
et Pn (t)
(t)n n!
C
又 Pn (0) PN(0) n 0 代入进一步解得
Pn (t)
et
(t)n n!
因此,结论得证,即定义 3.3 蕴含定义 3.2。 (2)再证定义 3.2 蕴含定义 3.3。欲证此结论,只需验证定义 3.3 中的条件(3)(4)
题。 注:定理 3.2 的命题易于理解。泊松过程的平稳独立增量性质等价于表示在概率意义上
过程在任何时刻都重新开始,即从任何时刻起过程独立于先前已发生的一切(由独立增量); 且与原过程具有完全一样的分布(由平稳增量)。换言之,泊松过程是无记忆的,因此间隔 序列服从指数分布。
另一感兴趣的量是Tn ,第 n 次事件发生的时间,也称为第 n 次事件的等待时间。 定理 3.3 Tn , n 1, 2,服从参数为 n 和 的 分布,即其概率密度为
工厂等场所在 (0,t]时间内发生事故的次数,则泊松过程就是N(t),t 0 的一种很好近似。
另外,保险公司接到赔偿请求的次数(设一次事故就导致一次索赔)等都可以应用泊松过程 的模型。以保险为例,设保险公司每次的赔付都是 1,每月平均接到 4 次索赔请求,则一年中 它们要付出的金额平均为多少?
随机过程第三章

随机过程的概率密度函数
概率密度函数
对于连续随机过程,其概率密度函数描述了随机过程在各个时间点或位置上的取值的可能性密度。
联合概率密度函数
对于多个连续随机过程的组合,其联合概率密度函数描述了这些随机过程在各个时间点或位置上的取 值的联合可能性密度。
03
随机过程的数字特征
均值函数
总结词
描述随机过程中心趋势的数字特征
泊松过程
定义
泊松过程是一种随机过程,其中事件的 发生是相互独立的,且以恒定的平均速
率在时间上均匀地发生。
应用
在物理学、工程学、生物学等领域都 有应用,如放射性衰变、电话呼叫等。
性质
泊松过程具有无记忆性,即两次事件 发生的时间间隔与它们是否同时发生 无关。
扩展
泊松过程可以推广为更复杂的过程, 如非齐次泊松过程和条件泊松过程。
随机过程第三章
目录
• 随机过程的基本概念 • 随机过程的概率分布 • 随机过程的数字特征 • 随机过程的平稳性和遍历性 • 马尔科夫链和泊松过程 • 随机过程的应用
01
随机过程的基本概念
随机过程的定义
01
随机过程:一个随机过程是一个定义在概率空间上的
参数集的集合,这个集合的元素是随机变量。
02
马尔科夫链和泊松过程的比较
关联性
马尔科夫链和泊松过程都是随机过程,但它们的 性质和应用场景有所不同。
时间连续性
马尔科夫链可以适用于连续时间,而泊松过程通 常适用于离散时间。
ABCD
状态转移
马尔科夫链关注的是状态之间的转移,而泊松过 程关注的是事件的发生。
应用领域
马尔科夫链在社会科学和生物科学中应用广泛, 而泊松过程在物理学和工程学中更为常见。
第三章通信原理 随机过程

体 x1t, x2 ,t,就,是xn 一t个
随机过程,记作 。
t
因此从这个角度得到随机过程的这种定义: 随机过程是所有样本函数的集合。
角度2:现在,我们在某一特定时刻如 时t1刻观察
各台接收机的噪声,可以发现在同一时刻,每个接 收机的输出噪声值是不同的,它在随机变化。
(1)随机过程的协方差函数:B(t1,t2) 描述了随机过程§(t)在任意两个时刻t1和t2,相对
均值的起伏量之间的相关程度。
B(t1, t2 ) E (t1) a(t1) (t2 ) a(t2 )
B(t1, t2 ) x1 a(t1 ) x2 a(t2 ) f2( x1, x2;t1, t2 )dx1dx2
f1x,t
F1x, t
x
F1x, t
x
f1 y, tdy
F1和x, t f即1x是, t 的函数,x 又是时间 的函数。t很显然,
一维分布函数及一维概率密度函数仅仅表示了随机过程 在任一瞬间的统计特性,它对随机过程的描述很不充分, 通常需要在足够多的时间上考察随机过程的多维分布。
测试结果表明,得到的 n张记录图形并不因为有 相同的条件而输出相同 的波形。恰恰相反,即 使n足够大,也找不到两 个完全相同的波形。这 就是说,通信机输出的 噪声电压随时间的变化 是不可预知的,因而它 是一个随机过程。
N部通信机的噪声输出记录
测试结果的每一个记录, 都是一个确定的时间函
数 ,xi 称t 之为样本函数
式中 是一个离散随机变量,且
P
、0
1 2
P 2, 试12求 和E 1。 R 0,1
通信原理课件第3章 随机过程

(2)自相关函数只与时间间隔有关。
14
第3章 随机过程
数字特征:
E (t) x1 f1 (x1 )dx1 a R(t1,t2 ) E[ (t1) (t1 )]
x1x2 f2 (x1, x2 ; )dx1dx2 R( )
可见,(1)其均值与t 无关,为常数a ;
随机过程 (t)的二维概率密度函数:
f2 (x1,
x2 ; t1, t2
)
2F2 (x1, x2;t1,t2 x1 x2
)
若上式中的偏导存在的话。
随机过程 (t) 的n维分布函数:
Fn (x1, x2 , , xn ;t1, t2 , tn )
P (t1 ) x1, (t2 ) x2 , , (tn ) xn
f1 (x1,t1 ) f1 (x1 )
而二维分布函数只与时间间隔 = t2 – t1有关:
f2 (x1, x2 ;t1,t2 ) f2 (x1, x2 ; )
数字特征:
E (t) x1 f1 (x1 )dx1 a R(t1,t2 ) E[ (t1) (t1 )]
x1x2 f2 (x1, x2 ; )dx1dx2 R( )
换句话说,随机过程在任意时刻的值是一个随机变量。 因此,我们又可以把随机过程看作是在时间进程中处于不同
时刻的随机变量的集合。 这个角度更适合对随机过程理论进行精确的数学描述。
5
第3章 随机过程
3.1.1随机过程的分布函数
设 (t)表示一个随机过程,则它在任意时刻t1的值 (t1)
是一个随机变量,其统计特性可以用分布函数或概率密 度函数来描述。
【解】(1)先求(t)的统计平均值:
第3章 随机过程

A2 cos c 2 比较统计平均与时间平均,有
a a, R( ) R ( )
14
因此,随机相位余弦波是各态历经的。
3.2.3 平稳过程的自相关函数
实平稳过程的自相关函数: R( ) E[ (t ) (t )] 性质:
R(0) E[ 2 (t )]
f 2 ( x1 , x2 ; t1 , t 2 ) f 2 ( x1 , x2 ; )
广义平稳
均值与时间 t 无关: 相关函数仅与 τ有关:
a(t ) a R(t1 , t1 ) R( )
注意:
必 广义平稳 狭义平稳 未必
3.2.2 各态历经性(遍历性)
通信原理
第3章 随机过程
本章内容:
随机过程的基本概念
第3章 随机过程
平稳、高斯、窄带过程的统计特性 正弦波加窄带高斯过程的统§3.1 随机过程的基本概念
随机过程是一类随时间作随机变化的 过程,它不能用确切的时间函数描述。
① 所有样本函数 ② 随机变量
12
例题:
自相关函数:
E[ A cos( c t1 ) A cos( c t 2 )] A2 E{cos c ( t 2 t1 ) cos[ c ( t 2 t1 ) 2 ]} 2 A2 A 2 2 1 cos c ( t 2 t1 ) cos[ ( t t ) 2 ] d c 2 1 0 2 2 2 2 A cos c ( t 2 t1 ) 0 2
erfc( x) 2 erfc( x)
B(t1 , t2 ) R(t1 , t2 ) a(t1 ) a(t 2 )
随机过程第3章

第三章 随机过程一. 随机过程的基本概念 1.1 随机过程的定义设(Ω,F ,P )为给定的概率空间,T 为一指标集,对于任意t T ∈,都存在定义在(),,P ΩF 上,取值于E 的随机变量()(),X t ωω∈Ω与它相对应,则称依赖于t 的一族随机变量(){},:X t t T ω∈为随机过程,简记(){}t X ω,{}t X 或(){}X t注:随机过程(){}:,t X t T ωω∈Ω∈是时间参数t 和样本点ω的二元函数,对于给定的时间0t ,是0(,)X t ω是概率空间(),,P ΩF 上的随机变量;对于给定样本点0ω∈Ω,0(,)X t ω是定义在T 上的实函数,此时称它为随机过程对应于0ω的一个样本函数,也成为样本轨道或实现。
E 称为随机过程的相空间,也成为状态空间,通常用“t X x =”表示t X 处于状态x1.2随机过程t X 按照时间和状态是连续还是离散可以分为四类:连续型随机过程、离散型随机过程、连续型随机序列、离散型随机序列1.3 有穷维分布函数设随机过程{}t X ,在任意n 个时刻1,,n t t 的取值1,,n t t X X 构成n 维随机向量()1,,nt t X X ,其n 维联合分布函数为:()()11,,11,,,,nnt t n t t n F x x P X x X x =≤≤其n 维联合密度函数记为()1,,1,,nt t n f x x 。
我们称(){}1,,11,,:1,,,nt t n n F x x n t t T ≥∈ 为随机过程{}t X 的有穷维分布函数。
二.随机过程的数字特征 2.1 数学期望对于任何一个时间t T ∈,随机过程{}t X 的数学期望定义为()()tX t t E X xdF x μ+∞-∞==⎰()t E X 是时间t 的函数2.2 方差与矩随机过程{}t X 的二阶中心矩22()[(())],tX t t t Var X E X E X t T σ==-∈称为随机过程{}t X 的方差随机过程{}t X 的二阶原点矩定义为22()()tt E X x dF x +∞-∞=⎰注:2()X t σ是时间t 的函数,它描述了随机过程()X t 的诸样本对于其数学期望t μ的偏移程度2.3 协方差函数和自相关函数随机过程{}t X 对于任意12,t t T ∈,其协方差函数定义为12112212(,)(,)[(())(())]X t t t t t t c t t Cov X X E X E X X E X ==--当12t t t ==时,协方差函数就是方差随机过程{}t X 的自相关函数(相关函数)定义为121212(,)(),t t R t t E X X t t T =∈当12t t t ==时,自相关函数就是二阶原点矩。
随机过程新版

2 0
sin(0t
)
1
2
d
0
自有关函数为
R t1, t2 E[ (t1) (t2 )] E[sin0t1 sin0t2 ]
令t1=t,t2=t+τ则
Rt,t E[sin0t sin0t 0 ]
2 0
sin0t
sin0t
0
1
2
d
1 2
cos 0
第3章 随机过程
可见,自有关函数与时间t无关,仅与τ有关。
第3章 随机过程
第3章 随机过程
随机过程 平稳随机过程 高斯随机过程 平稳随机过程经过线性系统 窄带随机过程 高斯白噪声和带限白噪声
第3章 随机过程
§3.1 随机过程旳基本概念
• 随机信号
信号旳某个或某几种参数不能预知或不能完全被预知, 这种具有随机性旳信号称为随机信号。
• 随机噪声
不能预测旳噪声统称为随机噪声。 从统计学旳观点看,随机信号和噪声统称为随机过程。
第3章 随机过程
原则正态分布 a=0,σ=1 其分布函数为φ(x)
f (x)
1
2
exp
x2 2
正态分布函数:
x
F(x)
1
2
exp[
(x a)2
2 2
]dx
(
x
Байду номын сангаас
a)
误差函数:
erf (x) 2 x ez2 dz
0
互补误差函数:erfc(x)=1-erf(x)=
2 ez2 dz
x
当x≤a时,erfc(x)=2-2φ( 2 x)
1
(2 )n / 21 2 n
B 1/2
随机过程第三章

2
定义3.2: 称计数过程{X(t),t≥0}为具有参数λ >0的泊松过程,若它满足下列条件: 1. X(0)=0; 2. X(t)是独立增量过程; 3. 在任一长度为t的区间中,事件A发生的次数服从参数λ>0的泊松分 布,即对任意s,t≥0,有 n t ( t )
P{ X (t s ) X ( s ) n} e n! , n 0,1,
16
复合泊松过程
定义: 设{N(t),t≥0}是强度为λ 的泊松过程,{Yk,k=1,2,…}是一列独立同分布 随机变量,且与{N(t),t≥0}独立,令
N (t )
X (t )
Y ,
k k 1
t0
则称{X(t),t≥0}为复合泊松过程。 N(t) Yk X(t) 在时间段(0,t]内来到商店的顾客数 第k个顾客在商店所花的钱数 该商店在(0,t]时间段内的营业额
P{ X (t h) X (t ) 1} h o(h) P{ X (t h) X (t ) 2} o(h)
例如: •电话交换机在一段时间内接到的呼叫次数; •火车站某段时间内购买车票的旅客数; •机器在一段时间内发生故障的次数;
4
定理 3.1: 定义3.2和定义3.3是等价的。 证明
13
非齐次泊松过程
允许时刻t的来到强度是t的函数 定义: 称计数过程{X(t),t≥0}为具有跳跃强度函数λ (t)的非齐次泊松过程,若 它满足下列条件: 1. X(0)=0; 2. X(t)是独立增量过程; 3. P{ X (t h) X (t ) 1} (t )h o(h)
P{W1 s | X (t ) 1 ? }
分布函数
0, s FW1| X (t ) 1 (s) , t 1,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 物理可实现的系统 稳定系统条件: h(t ) dt 因果系统条件: t 0, h(t ) 0
5
3.2 随机信号通过连续时间系统的分析
在给定系统的条件下,输出信号的某个统计特性 只取决于输入信号的相应的统计特性。 根据输入随机信号的均值、相关函数和功率谱密 度,再加上已知线性系统单位冲激响应或传递函 数,就可以求出输出随机信号相应的均值、相关 函数和功率谱密度 分析方法:时域分析法 ;频域分析法。
24
3.3 希尔伯特变换和解析过程
一、希尔伯特变换
25
希尔伯特变换相当于一个正交滤波器
1 ˆ (t ) x(t ) * x t
H ( )
+j 0 -j
j 0 H ( ) j 0
26
h(t ) 1/ t
| H ( ) |
2 ( ) 2
14
结论1:若输入是 X(t) 宽平稳的,则系统输出Y(t) 也是宽平稳的,且输入与输出联合宽平稳。
若输入X(t)为宽平稳随机过程,则有: mX (t ) mX 常数 RX (t1 , t2 ) RX ( ) =t 2 t1
RX (0) E[ X 2 (t )]
mY mX h( )d
6
3.2.1 时域分析法 1、输出表达式(零状态响应,因果系统) 2、输出的均值 3、系统输入与输出之间的互相关函数 4、系统输出的自相关函数 5、系统输出的高阶距
7
3.2.1 时域分析法 1、输出表达式(零状态响应,因果系统) 2、输出的均值 3、系统输入与输出之间的互相关函数 4、系统输出的自相关函数 一个确定性函数 5、系统输出的高阶距
y(t t0 ) L[ x(t t0 )]
4
连续时不变线性系统分析方法 1.时域分析
y (t ) x(t )h( )d x( )h(t )d x(t ) h(t )
2.频域分析
Y() H ()X()
Y (s) H (s) X (s), s j
0
h(u)h(v) RX ( u v)dudv RX ( ) h( ) h( ) RY ( )
15
E[Y (t )] E[Y (t )]
2 2
0
0
h(u )h(v) RX (u v) dudv
0
0
h(u) h(v) RX (u v) dudv
= 2Ra (0) 2Ra ( )
42
c 的变化的均方值远小于 a(t ) 的均方值。
0 c
此式说明:若
1
,在t到 t 的时间内,a(t )
2 2 Tc 因为 c 0 ,即 T0 ,令 T0
T0
1
2 X 由切比雪夫不等式: P{ x E (x) } 2 令 x a(t T0 ) a(t ) ,注意 E(x) E[a(t T0 )] E[a(t )] 0
0
8
3.2.1 时域分析法 1、输出表达式(零状态响应,因果系统) 2、输出的均值 3、系统输入与输出之间的互相关函数 4、系统输出的自相关函数 5、系统输出的高阶距
mY (t ) E[Y (t )] E[ h( ) X (t )d ]
h( ) E[X(t )]d
RYX ( ) 0 h(u )R X( u )du
11
RXY ( ) 0 h(u)R X( u)du
RX ( ) h( )
RX ( ) h( )
3.2.1 时域分析法 1、输出表达式(零状态响应,因果系统) 2、输出的均值 3、系统输入与输出之间的互相关函数 4、系统输出的自相关函数 5、系统输出的高阶距 已知系统输入随机信号的自相关函数,可以求出系统输 出端的自相关函数 RY (t1 , t2 ) E[Y(t1 )Y(t2 )] RX (t1 , t2 ) h(t1 ) h(t2 )
输入为随机信号X(t)的某个实验结果的一个样本函数,则输出为:
y(t ) h( ) x(t )d
0
对于随机信号X(t)任意一个样本函数均成立。那么对于所有的试验 结果,系统输出为一族样本函数,这族样本函数构成随机过程
Y(t ) h( ) X (t )d h(t ) X (t )
1 X(t )Y (t ) lim T 2T
1 lim T 2T
T
T
X(t )Y(t )dt
0
[
T
T
h(u )X(t u )X(t ) du ]dt
1 T [ lim X (t u )X(t )dt ]h(u )du 0 T 2T T RX ( u )h(u)du RXY ( )
3.2.2 频域分析法 1、输出的均值 2、系统输出的功率谱密度 3、系统输入与输出间互谱密度
SXY () SX () H ()
SYX () SX () H ()
SY () SXY () H () SYX () H ()
SY (s) SXY (s) H (s) SYX (s) H (s)
1 T Y(t )Y (t ) lim Y (t )Y (t )dt T 2T T 1 T [ lim X (t u ) X (t v)dt ]h(u )h(v)dudv 0 0 T 2T T
0
0
RX ( u v)h(u)h(v)dudv RY ( )
E[Y(t1 )Y (t2 ) Y (tn )] E[ X (t1) X (t2 ) X (tn )] h(t1) h(t2 ) h(tn )
13
3.2.1 时域分析法 系统输出的平稳性和遍历性 结论1:若输入X(t)是 宽平稳的,则系统输出 Y(t)也是宽平稳的,且输入与输出联合宽平稳。 结论2:若输入X(t)是严平稳的,则输出Y(t)也 是严平稳的。 结论3:若输入 X(t)是宽遍历性的,则输出Y(t) 也是宽遍历性的,且X(t)、Y(t)联合遍历 。
0
RX (0)
0
h(u) h(v) dudv
0
RX (0) h(v) dv h(u) du
0
0
h(t ) dt
E[Y 2 (t )]
16
结论2:若输入X(t)是严平稳的,则输出Y(t)也是严 平稳的。
17
结论3:若输入X(t)是宽遍历性的,则输出Y(t) 也是宽遍历性的,且X(t) 和Y(t) 联合遍历
0
Sa
2 0
0
0
Sa ()
习题
3.7 窄带随机过程包络和相位的特性 1、窄带随机过程包络与相位的慢变化特性
证明:
因为 a(t ) b(t ) 是低频限带随机过程,
即它们的功率谱只在 0 c 区间内非0,且
c 0 则
E{[a(t ) a(t )]2} E[a2 (t ) a2 (t ) 2a(t )a(t )]
0
19
习题
3.2.2 频域分析法 1、输出的均值 2、系统输出的功率谱密度 3、系统输入与输出间互谱密度
21
3.2.2 频域分析法 1、输出的均值 2、系统输出的功率谱密度 3、系统输入与输出间互谱密度
mY mX h( )d mX H ()
0
0
mX H (0)
22
1 T Y(t ) lim Y (t )dt T 2T T 1 T lim [ h(u ) X (t u )du ]dt T 2T T 0
0
mX h(u)du mY
0
18
1 [ lim T 2T
T
T
X(t u )dt ]h(u )du
2
线性系统:具有叠加性和比例性的系统
x(t )
L[]
y(t ) L[ x(t )]
L[ax1 (t ) bx2 (t )] aL[ x1 (t )] bL[ x2 (t )]
举例:
d L[] [] dt L[] []2 L[] []du
t
线性时不变系统:系统响应不依赖于时间起点的 选择,即如果输入信号提前或延时一段时间,则 输出信号也同样提前或延时一段相同的时间,而 输出信号的波形保持不变。
RXY (t1 , t2 ) RX (t1, t2 )* h(t2 )
RYX (t1 , t2 ) RX (t1 , t2 )* h(t1 )
10
3.2.1 时域分析法 1、输出表达式(零状态响应,因果系统) 2、输出的均值 3、系统输入与输出之间的互相关函数 4、系统输出的自相关函数 5、系统输出的高阶距 若输入为平稳随机过程
0
0
h( )mX (t )平稳随机过程,则
mY mX h( )d
0
9
3.2.1 时域分析法 1、输出表达式(零状态响应,因果系统) 2、输出的均值 3、系统输入与输出之间的互相关函数 4、系统输出的自相关函数 5、系统输出的高阶距 由于系统的输出是系统输入的作用结果,因此,系统 输入输出之间是相关的,系统输入输出相关函数为
RY (t1 , t2 ) h(t1 ) RXY (t1, t2 ) h(t2 ) RYX (t1, t2 )
RY ( ) RX ( ) h( ) h( ) RXY ( ) h( ) RYX ( ) h( )