表面活性剂的基本知识全新

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面活性剂的基本知识(2009/08/30 22:46)

表面活性剂的基本知识

12.9.1 表面活性剂的基本性质

表面活性剂分子结构的特点是具有不对称性,即由一亲水基和另一憎水基(或称亲油基)组成。例如棕榈酸钠(C15H31COONa)的结构可分为如图12-31所示的亲水基和憎水基部分:

图12-31 棕榈酸钠的两亲性结构

表面活性剂的用途十分广泛,以下仅就其基本性质、结构和主要应用方面作一简单介绍。

实验证实,在低浓度时,溶液的表面张力随着浓度增大近乎线性地下降,然而,在高浓时,则表现出不同寻常的物理性质。如图12-32所示,当达某一界限浓度时,某些物理性质如表面张力、比电导、摩尔电导、渗透压以及浊度等,都发生了突然的变化。其中,渗透压随浓度增大的幅度反常地变低,说明在溶液中有某种缔合现象发生;而溶液比电导仍然随浓度增大而增大,说明电离作用还在继续进行。麦克拜因认为这种象是"反常"的行为可用"胶束"(Micelles)的形成解释之。在水溶液中十二烷基硫酸钠电离成为十二烷基硫酸根阴离子和钠离子,前者既有吸附于表面上让其憎水基朝着空气而亲水基朝着水相的倾向,也存在着形成如图12-33所示的憎水基朝内而亲水基朝外的

"胶束"的倾向。当表面活性剂浓度低时,表面活性离子多数集结于表面上,少数溶于溶液中形成小型胶束。而达一定界限浓度时,表面活性离子无法再进入表面层,只能采取形成胶束的形式以使体系趋于稳定。(参考图12-34(动画观看))。胶束相当于一种"缔合分子",故"缔合现象"使渗透压随浓度变化规律发生明显的变化。然而尽管发生缔合现象,十二烷基硫酸钠电离成为十二烷基硫酸根离子和钠离子的过程仍在继续,故电导仍不断增大(图12-30)。

相当于图12-30所示各项物理性质产生突变的浓度,称为"临界胶束浓度"以"C.M.C"表示。临界胶束浓度在实验中往往表现为并非一敏锐的浓度值,而为一狭窄的浓度区域。298K 时十二烷基硫酸钠的C.M.C 值约为0.008mol·dm-3 。

根据条件不同,可形成各种不同形状的胶束,如图12-35所示。

图12-33 球状胶束

图12-34 胶束形成过程与表面活性剂浓度的关系

图12-35 各种胶束形状实例

临界胶束浓度(C.M.C)是一项重要的数据。溶质在此浓度区域开始大量生成胶束导致质点大小和数量的突变,从而引起其物理性质随之发生突变,形成共同的突变浓度区域。胶束形成以后,它的内核相当于碳氢油微滴,具有溶油的能力,使整个溶液表现出既溶水又溶油的特性。因此,表面活性剂的溶液,只有在其浓度稍高于临界胶束浓度时,才能充分发挥作用。

利用表面活性剂的一些物理性质如比电导、渗透压、粘度、密度、增溶性、光散射性质及颜色等在临界胶束浓度前后的显著差别,可测得其临界胶束浓度数值。一般情况下,表面活性剂的临界胶束浓度都很低,约为0.001~0.02mol·dm-3。

胶束增溶现象是表面活性剂的另一项重要性质。表面活性剂的存在使水溶性物质的溶解度超过同温下平衡值的表观溶解现象称为"增溶"。增溶作用在表面活性剂浓度超过 C.M.C 值时表现得更为显著。例如,苯在纯水中溶解度很小,但在10%的油酸钠水溶液中,每100ml 溶液可溶解10ml 苯。

增溶是不溶于水的物质溶入表面活性剂所形成的胶束中的一种

现象。实验证实,增溶后胶束变大(见图12-36)。胶束增溶现象有其自身的特点,它与溶解作用不同,溶解过程溶质以分子状态分散于溶剂中,而胶束增溶时,溶质则集结于胶束内。但与溶解作用相同,胶束增溶是个自发过程,所形成的是热力学稳定体系,增溶过程是可

逆的,这一点则与乳化作用有所区别,乳状液是一种热力学不稳定体系。

增溶作用的强弱与增溶剂和被增溶物的化学结构有关。表面活性剂碳氢链长度增加,对非极性分子的增溶量变大。而表面活性剂憎水链分支化则使体系增溶能力下降。从被增溶液物方面来看,同系化合物中分子量愈大增溶量愈小,当烷基链长度相同时,极性化合物比非极性化合物增溶量大;被增溶物具有不饱和结构成带有苯环使增溶量加大,但萘环却起相反的作用。

12.9.2 表面活性剂的分类

表面活性剂的分类方法很多,但较常用的是按离子的类型分类的方法。在此法中将在水溶液中能电离生成离子的称为"离子型表面活性剂",而不能电离的称为"非离子型表面活性剂"。离子型表面活性剂按亲水基所带电荷性质又可分为"阴离子表面活性剂"、"阳离子表面活性剂"和"两性表面活性剂"等三种类型,具体的分类、说明和实例见表12-3。

表12-3 表面活性剂按离子型分类

亲水基按化学种类分类列表如下:

表12-4 主要亲水基

常用憎水基物料也可分为烃类、碳化氟类以及有机硅类等大类如表12-5所示。

表12-5 憎水基物料

12.9.3 亲憎平衡值得(HLB值)

表面活性剂的种类繁多,对于一定的体系究竟应采用哪种表面活性剂较合适,效率最高目前对此类问题尚缺乏定量的理论指导。而目前较为一致的看法是,比较表面活性剂分子中的亲水基团的亲水性和亲油基团的亲油性是一项衡量效率的重要指标,而亲水基团的亲水性和亲油基团的亲油性可以有两种较为简单的表示方法:

表面活性剂的亲水性=亲水基的亲水性-憎水

(1)

基的憎水性

表面活性剂的亲水性=亲水基的亲水性/憎水基

(2)

的憎水性

前一种方法属差值法,而后一种方法属比值法。

戴维斯(Davis)和格里芬(Griffin)分别从差值法和比值法建立了用H.L.B值(Hydrophile-Lipophile Balance)即"亲憎平衡值"以表示表面活性剂的亲水性的方法。

戴维斯法的计算公式为:

(1

(H.L.B.)D=7+∑L+∑H

2-86) 其中下标D 代表戴氏方法,而L、H 则分别为表12-6中所列各原子基团的(憎水基及亲水基)H.L.B 值。例如十六烷醇C16H33OH 分子中有一个亲水基OH 和十六个憎水基(甲基CH3-和亚甲基-CH2-)故查表可得其H.L.B 值为:(H.L.B.)D=7+16(-0.475)+1.9=1.3

表12-6 一些基团的H.L.B 值(戴维斯法)

相关文档
最新文档