初二下几何证明题练习
(完整版)初中几何证明题五大经典(含答案)
经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴CD COHG GO =∴CDCO FG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN于E 、F .求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN=21AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴DFBGFD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP ∴AP=AQ 在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)证明:连接BD 交AC 于O 。
八年级数学下册期末几何题证明题专题
1.(10分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP 的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.2.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.3.(9分)如图,在梯形ABCD中,M、N分别为AD、BC的中点,E、F分别为BM、CM的中点.(1)求证:四边形MENF是平行四边形;(2)若四边形MENF的面积是梯形ABCD面积的,问AD、BC满足什么关系?4.如图,在四边形 ABCD 中,AD=12,DO=OB=5,AC=26,∠ADB=90°.(1)求证:四边形 ABCD 为平行四边形;(2)求四边形 ABCD 的面积.5、四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.6、如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.7、如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.8、如图,在菱形ABCD中,AB=2,∠DAB=60°。
点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD、AN。
(1)求证:四边形AMDN是平行四边形。
(2)当AM为何值时,四边形AMDN是矩形?请说明理由。
9.(6 分)如图,菱形ABCD 的对角线AC、BD 相交于点O,且DE∥AC,AE∥B D.求证:四边形AODE 是矩形.10(9 分)如图,在△ABC 中,D 是BC 边上的中点,E 是AD 边上的中点,过A 点作BC的平行线交CE 的延长线于点F,连结BF.(1)求证:四边形AFBD 是平行四边形.(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?请说明理由.10.(7 分)如图,在△ABC 中,AB=AC,AD 平分∠BAC 交BC 于点D,分别过点A、D作AE∥BC、DE∥AB,AE 与DE 相交于点E,连结CE.(1)求证:BD =CD.(2)求证:四边形ADCE 是矩形.11.(9 分)如图,E、F 分别是矩形ABCD 的边BC、AD 上的点,且BE =DF.(1)求证:四边形AECF 是平行四边形.(2)若四边形AECF 是菱形,且CE = 10,AB = 8,求线段BE 的长.12.(7 分)如图,在△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AB 于点E,交AC 于点F,连结DE、DF.(1)求证:∠ADE=∠DAF.(2)求证:四边形AEDF 是菱形.13.【感知】如图①,四边形ABCD、AEFG 都是正方形,可知BE =DG .【探究】当正方形AEFG 绕点A 旋转到图②的位置时,连结BE、DG.求证:BE =DG .【应用】当正方形AEFG 绕点A 旋转到图③的位置时,点F 在边AB 上,连结BE、D G.若DG =13 ,AF = 10 ,则AB 的长为.14. (10 分)如图,以△ABC 的三边为边分别作等边△ACD、△BCE、△ABF.(1)求证:四边形ADEF 是平行四边形(2)△ABC 满足什么条件时,四边形ADEF 是矩形?(3)△ABC 满足什么条件时,四边形ADEF 是菱形?20.如图,将▱ABCD 的边 DC 延长到点 E ,使 CE=DC ,连接 AE ,交 BC 于点 F . (1)求证:△ABF ≌△ECF ;(2)若∠AFC=2∠D ,连接 AC 、BE ,求证:四边形 ABEC 是矩形.18.(本题8分)如图,□ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE ∥AC ,且DE =21AC ,连接CE 、OE(1) 求证:四边形OCED 是平行四边形; (2) 若AD =DC =3,求OE 的长.21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB =3,BC =5,连接BD ,∠BAD 的平分线分别交BD 、BC 于点E 、F ,且AE ∥CD (1) 求AD 的长;(2) 若∠C =30°,求CD 的长.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.18. (本题满分12分)如图,DB∥AC,且DB=12AC,E是AC的中点。
整理初二证明题带答案20道
初二证明题带答案20道20 年月日A4打印/ 可编辑初二年级几何证明例题精讲【例1】.已知:如图6,△、△分别是以、为斜边的直角三角形,且,△是等边三角形.求证:△是等边三角形.证明:∵∠BCE=90°∠ACD=90° 在△ECB和△ACD中∠BCE=∠BCA+∠ACE BE=AD∠ACD=∠ACE+∠ECD ∠BCE=∠ACD∴∠ACB=∠ECD EC=CD∵△ECD为等边三角形∴△ECB≌△DCA( HL )∴∠ECD=60° CD=EC ∴BC=AC即ACB==60° ∵∠ACB=60°∴△是等边三角形【例2】、如图,已知BC > AB,AD=DC。
BD平分∠ABC。
求证:证明:在BC上截取BE=BA,连接DE, ∴∠A=∠BED AD= DE∵BD平分∠BAC ∵AD=DC∴∠ABD = ∠EBD ∴DE=DC在∠ABD和∠EBD中得∠DEC=∠CAB=EB ∵∠BED+∠DEC=180°∠ABD = ∠EBD ∴∠A+∠C=180°BD=BD△ABD ≌△EBD(SAS)1、线段的数量关系:通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。
①倍长中线【例. 3】如图,已知在∠中,,,平分,交于图6 E点.求证:证明:延长DC到E,使得CE=CD,联结AE ∵∠ADE=60° AD=AE∵∠C=90° ∴△ADE为等边三角形∴AC⊥CD ∴AD=DE∵CD=CE ∵DB=DA∴AD=AE∴BD=DE∵∠B=30°∠C=90° ∴BD=2DC∴∠BAC=60°∵AD平分∠BAC∴∠BAD=30°∴DB=DA ∠ADE=60°【例4.】如图,是的边上的点,且,,是的中线。
求证:。
证明:延长AE到点F,使得EF=AE 联结DF在∠ABE和∠FDE中∠∠ADC=∠ABD+∠BDABE =DE ∵∠ABE=∠FDE∠AEB=∠FED ∴∠ADC=∠ADB+∠FDEAE=FE 即∠ADC = ∠ADF∴△ABE ≌△FDE (SAS)在∠ADF和∠ADC中∴AB=FD ∠ABE=∠FDE AD=AD∵AB=DC ∠ADF = ∠ADC∴ FD = DC DF =DC∵∠ADC=∠ABD+∠BAD ∴△ ADF≌ ADC(SAS)∵∴AF=AC∴AC=2AE【变式练习】、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.证明:延长AE到点F,使得EF=AE 联结DF在∠ACE和∠FDE中∠∠ADB=∠ACD+∠CDACE =DE ∵∠ACE=∠FDE∠AEC=∠FED ∴∠ADB=∠ADC+∠FDEAE=FE 即∠ADB = ∠ADF∴△ACE ≌△FDE(SAS)在∠ADF和∠ADB中∴AC=FD ∠ACE=∠FDE AD=AD∵DB=AC ∠ADF = ∠ADB∴DB = DF D F =DB EFF∵∠ADB=∠ACD+∠CAD ∴△ ADF≌ ADB(SAS)∵ AC=DC ∴∠FAD=∠BAD∴∠CAD=∠CDA ∴AD平分∠DAE【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法,倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。
八年级数学下册期末几何题证明题专题
1.(10分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP 的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.2.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.3.(9分)如图,在梯形ABCD中,M、N分别为AD、BC的中点,E、F分别为BM、CM的中点.(1)求证:四边形MENF是平行四边形;(2)若四边形MENF的面积是梯形ABCD面积的,问AD、BC满足什么关系?4.如图,在四边形 ABCD 中,AD=12,DO=OB=5,AC=26,∠ADB=90°.(1)求证:四边形 ABCD 为平行四边形;(2)求四边形 ABCD 的面积.5、四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.6、如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.7、如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.8、如图,在菱形ABCD中,AB=2,∠DAB=60°。
点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD、AN。
(1)求证:四边形AMDN是平行四边形。
(2)当AM为何值时,四边形AMDN是矩形?请说明理由。
9.(6 分)如图,菱形ABCD 的对角线AC、BD 相交于点O,且DE∥AC,AE∥B D.求证:四边形AODE 是矩形.10(9 分)如图,在△ABC 中,D 是BC 边上的中点,E 是AD 边上的中点,过A 点作BC的平行线交CE 的延长线于点F,连结BF.(1)求证:四边形AFBD 是平行四边形.(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?请说明理由.10.(7 分)如图,在△ABC 中,AB=AC,AD 平分∠BAC 交BC 于点D,分别过点A、D作AE∥BC、DE∥AB,AE 与DE 相交于点E,连结CE.(1)求证:BD =CD.(2)求证:四边形ADCE 是矩形.11.(9 分)如图,E、F 分别是矩形ABCD 的边BC、AD 上的点,且BE =DF.(1)求证:四边形AECF 是平行四边形.(2)若四边形AECF 是菱形,且CE = 10,AB = 8,求线段BE 的长.12.(7 分)如图,在△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AB 于点E,交AC 于点F,连结DE、DF.(1)求证:∠ADE=∠DAF.(2)求证:四边形AEDF 是菱形.13.【感知】如图①,四边形ABCD、AEFG 都是正方形,可知BE =DG .【探究】当正方形AEFG 绕点A 旋转到图②的位置时,连结BE、DG.求证:BE =DG .【应用】当正方形AEFG 绕点A 旋转到图③的位置时,点F 在边AB 上,连结BE、D G.若DG =13 ,AF = 10 ,则AB 的长为.14. (10 分)如图,以△ABC 的三边为边分别作等边△ACD、△BCE、△ABF.(1)求证:四边形ADEF 是平行四边形(2)△ABC 满足什么条件时,四边形ADEF 是矩形?(3)△ABC 满足什么条件时,四边形ADEF 是菱形?20.如图,将▱ABCD 的边 DC 延长到点 E ,使 CE=DC ,连接 AE ,交 BC 于点 F . (1)求证:△ABF ≌△ECF ;(2)若∠AFC=2∠D ,连接 AC 、BE ,求证:四边形 ABEC 是矩形.18.(本题8分)如图,□ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE ∥AC ,且DE =21AC ,连接CE 、OE(1) 求证:四边形OCED 是平行四边形; (2) 若AD =DC =3,求OE 的长.21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB =3,BC =5,连接BD ,∠BAD 的平分线分别交BD 、BC 于点E 、F ,且AE ∥CD (1) 求AD 的长;(2) 若∠C =30°,求CD 的长.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.18. (本题满分12分)如图,DB∥AC,且DB=12AC,E是AC的中点。
八年级几何证明专题训练(50题)
八年级几何证明专题训练1. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.2. 如图,点E、A、B、F在同一条直线上,AD与BC交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠D3.如图,OP平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.4. 已知:如图,AB=AC,DB=DC,AD的延长线交BC于点E,求证:BE=EC。
5. 如图,在△ABC中,AB=AD=DC,∠BAD=28°,求∠B和∠C的度数。
7. 写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;•如果是假命题,请举反例说明.命题:有两边上的高相等的三角形是等腰三角形.8. 如图,在△ABC中,∠ACB=90º,D是AC上的一点,且AD=BC,DE AC于D,∠EAB=90º.求证:AB=AE.9. 如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,B,P,Q三点在一条直线上,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.10. 如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=13,AC=5,则△ACD的周长为多少?6. 如图,B、D、C、E在同一直线上,AB=AC,AD=AE,求证:BD=CE。
11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF.12. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D. (1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长; (2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长.13. 如图,已知 △ABC 、△ADE 均为等边三角形,点D 是BC 延长线上一点,连结CE ,求证:BD=CE14. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC •于点D ,求证:•BC =3AD .B AE DC15. 如图,四边形ABCD中,∠DAB=∠BCD=90°,M为BD中点,N为AC中点,求证:MN⊥AC.16、已知:如图所示,在△ABC中,∠ABC=45°,CD⊥AB于点D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=A C;(2)求证:DG=DF.17. 如图,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数.18. 如图所示,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD,CE相交于F.求证:AF平分∠BAC.19. 如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.20. 已知:如图,在△ABC中,AB=AC,点D在边BC上,DE⊥AB,DF⊥AC,且DE=DF,求证:△ABD≌△ACD21. 如图,一张直角三角形的纸片ABC,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且AC与AE重合,求CD的长.22. 已知:如图,在△ABC中,AB=AC,BD平分∠ABC,E是底边BC的延长线上的一点且CD=CE.(1)求证:△BDE是等腰三角形(2)若∠A=36°,求∠ADE的度数.23. 如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上且BE=BD,连结AE、DE、DC.(1)求证:AE=CD;(2)若∠CAE=30°,求∠BDC的度数.24. 如图,在ABC∆中,点D在AC边上,DB=BC,点E是CD的中点,点F是AB的中点,则可以得到结论:12EF AB=,请说明理由.EFDB CAAB CDE25. 已知:如图,在ABC ∆中,C ABC ∠=∠,点D 为边AC 上的一个动点,延长AB 至E ,使BE=CD ,连结DE ,交BC 于点P. (1)DP 与PE 相等吗?请说明理由.(2)若60C ∠=︒,AB=12,当DC=_________时,BEP ∆是等腰三角形.(不必说明理由)26. 如图,C 为线段BD 上一点(不与点B ,D 重合),在BD 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于一点F ,AD 与CE 交于点H ,BE 与AC 交于点G 。
初中八年级数学下册几何证明题练习
八年级数学下册几何证明题练习1.已知:△ABC 的两条高BD ,CE 交于点F ,点M ,N ,分别是AF ,BC 的中点,连接ED ,MN ; (1)证明:MN 垂直平分ED ; (2))若∠EBD=∠DCE=45°,判断以M ,E ,N ,D 为顶点的四边形的形状,并证明你的结论;2.四边形ABCD 是正方形,△BEF 是等腰直角三角形,∠BEF=90°,BE=EF ,连接DF ,G 为DF 的中点,连接EG ,CG ,EC ;(1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及GCEC的值; (2)将图1中的△BEF 绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF 绕点B 顺时针旋转α(0°<α<90°),若BE=1,AB=2,当E ,F ,D 三点共线时,求DF 的长;3.已知,正方形ABCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G ,连接EG 、CG .(1)如图1,若△BEF 的底边BF 在BC 上,猜想EG 和CG 的关系为-----------------------------------------------; (2)如图2,若△BEF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由; (3)如图3,若△BEF 的直角边BE 在∠DBC 内,则(1)中的结论是否还成立?说明理由.4.如图正方形ABCD ,点G 是BC 上的任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F ;(1)如图l ,写出线段AF 、BF 、EF 之间的数量关系:------------------------------;(不要求写证明过程)(2)如图2,若点G 是BC 的中点,求GFEF的比值; (3)如图3,若点O 是BD 的中点,连OE ,求EFOF的比值;5.在△ABC中,D为BC中点,BE、CF与射线AE分别相交于点E、F(射线AE不经过点D).(1)如图1,当BE∥CF时,连接ED并延长交CF于点H. 求证:四边形BECH是平行四边形;(2)如图2,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND.求证:∠EMD=∠FND.6.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC 为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).7.菱形ABCD中,点E、F分别在BC、CD边上,且∠EAF=∠B;⑴如果∠B=60°,求证:AE=AF;⑵如果∠B=α(0°<α<90°),(1)中的结论:AE=AF是否依然成立,请说明理由;⑶如果AB长为5,菱形ABCD面积为20,BE=a,求AF的长;(用含a的式子表示)F EDC B A8.在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A ⇒B ⇒C 向终点C 运动,连接DM 交AC 于点N . (1)如图1,当点M 在AB 边上时,连接BN : ①求证:△ABN ≌△ADN ; ②若∠ABC=60°,AM=4,求点M 到AD 的距离; (2)如图2,若∠ABC=90°,记点M 运动所经过的路程为x (6≤x≤12).试问:x 为何值时,△ADN 为等腰三角形.9. 如图,矩形ABCD 中,AB=4cm ,BC=8cm ,动点M 从点D 出发,按折线DCBAD 方向以2cm/s 的速度运动,动点N 从点D 出发,按折线DABCD 方向以1cm/s 的速度运动. (1)若动点M 、N 同时出发,经过几秒钟两点相遇?(2)若点E 在线段BC 上,且BE=2cm ,若动点M 、N 同时出发,相遇时停止运动,经过几秒钟,点A 、E 、M 、N 组成平行四边形?10. 如图,矩形ABCD 中,AB=6 ,∠ABD=30°,动点P 从点A 出发,以每秒1个单位长度的速度在射线AB 上运动,设点P 运动的时间是t 秒,以AP 为边作等边△APQ (使△APQ 和矩形ABCD 在射线AB 的同侧).(1)当t 为何值时,Q 点在线段BD 上?当t 为何值时,Q 点在线段DC 上?当t 为何值时,C 点在线段PQ 上?(2)设AB 的中点为N ,PQ 与线段BD 相交于点M ,是否存在△BMN 为等腰三角形?若存在,求出t 的值;若不存在,说明理由; ⑶(选做)设△APQ 与矩形ABCD 重叠部分的面积为s ,求s 与t 的函数关系式.。
初二数学几何证明题(5篇可选)
初二数学几何证明题(5篇可选)第一篇:初二数学几何证明题1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。
2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M 是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。
3.。
如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。
4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。
5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC 且与AB的延长线交与点E,求证四边形AECD是等腰梯形?6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。
1.求证四边形ABCD是菱形。
2.若∠AED=2∠EAD,求证四边形ABCD是正方形。
7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。
求证:EF=BE+DF第二篇:初二几何证明题1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论AEB第三篇:初二几何证明题初二几何证明题1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。
M为AB中点,联结ME,MD、ED求证:角EMD=2角DAC证明:∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D求证:∠AHE=∠BGE证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF ∵FM‖BG,∴∠MFE=∠BGF∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC证明:BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)==>BE=AB*BC/(BC+AC)同理:CD=AC*BC/(BC+AB)假设AB≠AC,不妨设AB>AC.....(*)AB>AC==>BC+ACAC*BC==>AB*AB/(BC+AC)>AC*BC/(BC+AB)==>BE>CDAB>AC==>∠ACB>∠ABC∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/2==>∠BEC>∠BDC过B作CE平行线,过C作AB平行线,交于F,连DF则BECF为平行四边形==>∠BFC=∠BEC>∠BDC (1)BF=CE=BD==>∠BDF=∠BFDCF=BE>CD==>∠CDF>∠CFD==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC (2)(1)(2)矛盾,从而假设(*)不成立所以AB=AC。
2024年数学八年级几何证明专项练习题1(含答案)
2024年数学八年级几何证明专项练习题1(含答案)试题部分一、选择题:1. 在三角形ABC中,若∠A = 90°,AB = 6cm,BC = 8cm,则AC 的长度为()。
A. 2cmB. 10cmC. 4cmD. 5cm2. 下列哪个条件不能判定两个三角形全等?()A. SASB. ASAC. AASD. AAA3. 在直角坐标系中,点A(2,3)关于原点对称的点是()。
A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列哪个比例式是正确的?()A. 若a∥b,则∠1 = ∠2B. 若a∥b,则∠1 + ∠2 = 180°C. 若a⊥b,则∠1 = 90°D. 若a⊥b,则∠1 + ∠2 = 180°5. 在等腰三角形ABC中,若AB = AC,∠B = 70°,则∠C的度数为()。
A. 70°B. 40°C. 55°D. 110°6. 下列哪个条件可以判定两个角相等?()A. 对顶角B. 邻补角C. 内错角D. 同位角7. 在平行四边形ABCD中,若AD = 8cm,AB = 6cm,则对角线AC 的长度()。
A. 10cmB. 14cmC. 12cmD. 15cm8. 下列哪个图形是轴对称图形?()A. 等腰三角形B. 等边三角形C. 矩形D. 梯形9. 在三角形ABC中,若a = 8cm,b = 10cm,c = 12cm,则三角形ABC是()。
A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定10. 下列哪个条件不能判定两个直线平行?()A. 内错角相等B. 同位角相等C. 同旁内角互补D. 两直线垂直二、判断题:1. 若两个三角形的两边和夹角分别相等,则这两个三角形全等。
()2. 在等腰三角形中,底角相等。
()3. 平行线的同位角相等,内错角相等。
()4. 若两个角的和为180°,则这两个角互为补角。
初二(下)几何证明题练习(一)
初二(下)几何证明题练习(一)第一篇:初二(下)几何证明题练习(一)初二(下)几何证明题练习(一)1.正方形ABCD中,∠EAF=45°(1)探究BP、PQ、DQ关系;(2)探究DE、BP、AB关系;(3)连接AC,探究AC、CM、CN的关系;(4)若EH∥BC,探究 EH、BF、DE的关系。
2.正方形ABCD,CF平分∠BCD外角,AE⊥EF。
(1)当点E在BC上,探究则AE与EF的数量关系。
(2)当点E在BC的延长线上时,(1)中的结论是否成立?说明理由;(3)若把“正方形ABCD”改为“梯形ABCD中,∠D=∠BCD=90°,AD=CF=1BC”,其它条件不变,探究AB,FC,EC间的数量关系。
3.正方形ABCD,∠FAE=90°,(1)若点E在线段BC上,探究CE,CF,AC间的数量关系。
(2)当点E在线段BC的延长线上,(1)中的结论是否成立?说明理由:4.直角梯形ABCD,AD=AB,∠A=∠D=90°,FG⊥BE,MN∥AD,(1)若点E在线段AD上,探究AE,MF,NG之间的数量关系(2)当点E在线段AD的延长线上,(1)中的结论是否成立?说明理由;DFB B第二篇:初二几何证明题1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论EB第三篇:几何证明题练习几何证明题练习1.如图1,Rt△ABC中AB = AC,点D、E是线段AC上两动点,且AD = EC,AM⊥BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F。
试判断△DEF的形状,并加以证明。
说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
初二下册几何证明练习题
初二下册几何证明练习题几何证明是初中数学中重要的一部分,通过练习证明题可以帮助学生更好地理解几何概念和性质。
本文将为初二下册的学生提供一些几何证明练习题,帮助他们提升证明能力。
一、线段垂直的证明1. 证明:如果两条线段互相垂直,则它们的斜率的乘积为-1。
解答:设线段AB的斜率为k1,线段CD的斜率为k2。
由于线段AB与线段CD互相垂直,所以它们的斜率的乘积为-1,即k1 * k2 = -1。
证明完毕。
二、三角形内角和为180度的证明2. 证明:三角形的内角和为180度。
解答:设三角形的三个内角分别为A、B、C。
我们可以通过将三角形分成两个小三角形来证明这个结论。
以三角形ABC的边AB为分割线,将三角形ABC分成两个小三角形ABD和ACD。
根据直线的性质可知,∠BAD + ∠DAC = 180度。
同时,由于∠BAD = ∠A,∠DAC = ∠C,所以∠A + ∠C = 180度。
再将三角形ABC的边BC为分割线,将三角形ABC分成两个小三角形BAC和BCD。
同理可得,∠B + ∠C = 180度。
由于∠A + ∠C = 180度,∠B + ∠C = 180度,所以∠A + ∠B + ∠C = 180度。
证明完毕。
三、垂直平分线的性质证明3. 证明:一个点到一条线段的垂直平分线的距离等于该点到线段两个端点的距离之差的一半。
解答:设点P在线段AB的垂直平分线上,点P到线段AB的距离为d,点P到A的距离为d1,点P到B的距离为d2。
我们可以通过计算证明d = (d1 - d2) / 2。
根据垂直平分线的性质可知,AP = BP,所以有d + d1 = d + d2。
两边同时减去d,得到d1 = d2。
再将d1 = d2代入d + d1 = d + d2中,得到d + d = 2d1。
两边同时除以2,即得到d = (d1 - d2) / 2。
证明完毕。
通过以上的几何证明练习题,希望可以帮助初二下册的学生巩固几何证明的知识,并提升他们的证明能力。
初二下的几何证明练习题
初二下的几何证明练习题几何证明是中学数学中的重要内容,对于初中学生来说,掌握几何证明的方法和技巧是提高数学水平的关键之一。
本文将为你提供一些初二下学期的几何证明练习题,并给出详细的解析步骤。
1. 问题:已知△ABC中,AB=AC,D是BC边的中点,E是AD的中点。
证明△ADE是等腰三角形。
解法:首先,连接AE、ED。
由题意可知,AE和ED都是线段AD 的中点连线,所以AE和ED的长度相等,即AE=ED(辅助线)。
又因为D是BC边的中点,所以BD=CD。
根据△ABC中AB=AC,以及BD=CD,可以得出△ABD≌△ACD(SAS准则)。
根据△ABD≌△ACD,可以通过对应顶点的对应边相等来得出AE=DE (CPCTC)。
综上所述,我们证明了△ADE是等腰三角形。
2. 问题:已知矩形ABCD,E是线段AD的中点,F是线段BC的中点。
证明线段EF平分线段AB。
解法:首先,连接EF,并延长EF交AB于点G。
根据矩形ABCD 的性质,可以知道AD∥BC。
又因为E是线段AD的中点,F是线段BC的中点,所以EF∥AD∥BC(定义)。
根据平行线性质,可以得出线段EF平分线段AB(平行线被截断成等长的线段)。
3. 问题:已知ABCD是菱形,且∠B=120°。
证明BD是三角形BCD的高线。
解法:首先,连接AC和DB。
由于ABCD是菱形,所以AC∥BD (性质)。
又因为∠B=120°,可以得知∠DBC=60°(菱形内角性质)。
综上,可以得出∠DBC=∠ACB=60°(菱形内角性质)。
再考虑三角形BCD,∠CBD=90°,∠DBC=60°,所以BD是三角形BCD的高线(三角形内角和定理)。
4. 问题:已知在△ABC中,AD是边BC上的高线,BE是边AC上的高线,CF是边AB上的高线。
证明三条高线的交点D、E、F共线。
解法:根据△ABC中,AD是边BC上的高线,可以得知∠BAC=∠CDB=90°。
八年级下册几何证明题精选
八年级下册几何证明题精选1、如图,矩形ABCD 中,AC 与BD 交于O 点,BE AC ⊥于BD CF E ⊥,于F ,求证:CF BE =2、 如图,在平行四边形ABCD 中,DN CL BL AN ,,,分别为D C B A ∠∠∠∠,,,的角平分线,试证明:四边形MNKL 是矩形3、 如图,矩形ABCD 的对角线相交于点O ,DE ∥CE AC ,∥CE DE DB ,,相交于E ,请判断四边形DOCE 的形状,并说明理由4、 如图,△ABC 中,B ACB ∠︒=∠,90的平分线交高CD 于点E ,交AC 于F ,G AB FG ,⊥为垂足,请证明:四边形CEGF 是菱形5、 如图,平行四边形ABCD 的对角线相交于点O ,EF 经过点O ,分别与边AB ,DC 相交于点F E ,,点N M ,分别是线段OC OA ,的中点,求证:四边形ENFM 是平行四边形6、 已知,如图,点M H F E ,,,分别是正方形ABCD 的四条边上的点,并且DM CH BF AE ===,求证:四边形EFHM 是正方形7、 如图,在梯形ABCD 中,N M ,分别为梯形两腰AB ,CD 的中点,ME ∥AN 交BC 于点E ,试证明:NE AM =8、 如图,在△ABC 中,AC AB =,CE BD ,分别为ACB ABC ∠∠,的平分线,求证:四边形EBCD 是等腰梯形9、 如图,在直角梯形纸片ABCD 中,AB ∥DC ,︒=∠90A ,CD 〉AD ,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E ,折痕为DF ,连结EF 并展开纸片。
(1)求证:四边形ADEF 是正方形;(2)取线段AF的中点G ,连结EG ,结果CD BG =,试说明四边形GBCE 是等腰梯形10、 如图,在平行四边形ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线交于点P (1)求证:△≅ABE △DFE ;(2)试连结AF BD ,,判断四边形ABDF 的形状,并证明你的结论11、 如图,在正方形ABCD 中,F E ,分别是BC AB ,边上的点,且BF AE =,请问(1)AF 与DE 相等吗?为什么?;(2)AF 与DE 是否垂直?说明你的理由12、 已知,如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连接AE ,CF ;(1)求证:CE AF =;(2)若EF AC =,试判断四边形AFCE 是什么样的四边形,并证明你的结论。
初二数学几何证明与推理练习题及答案20题
初二数学几何证明与推理练习题及答案20题1. 题目:已知ABCD是一个平行四边形,证明AC=BD。
证明:由平行四边形的定义,可知AB∥CD和AD∥BC。
在ABCD中,我们连接AC和BD,假设它们的交点为E。
因为AB∥CD,所以∠ABC+∠BCD=180°(内错角性质)。
又由于AD∥BC,所以∠BCD+∠CDE=180°(内错角性质)。
综上,∠ABC+∠CDE=180°,即△ABC与△CDE互补。
根据互补角的性质,△ABC与△CDE全等,因此AC=BD得证。
2. 题目:已知ABCD是一个矩形,证明BD是直径。
证明:由矩形的定义,可知AB∥CD和AD∥BC。
在矩形ABCD中,我们连接角BAD的角平分线BE和角BCD的角平分线CF,它们相交于点O。
因为角BAD和角BCD都是直角(矩形的性质),所以∠BAE=∠CFO=90°。
由于角平分线的性质,∠BAE=∠CAE,∠CFO=∠CDO。
因此,在△BAE和△CFO中,∠CAE=∠CDO,且∠BAE=∠CFO。
根据AA相似三角形的性质,△BAE与△CFO相似。
因此,AE/CF=BA/CO=1/2(相似三角形的对应边比例相等)。
由此可得,CO=2AE,即CO=2BO。
由于OC=OC(公共边),所以△BOC为等腰三角形,即BO=BC。
综上所述,BD=2BO=2BC,即BD是直径。
3. 题目:已知△ABC中,AB=AC,垂直平分线BM过点B交AC于点M,证明∠ABM=∠ACM。
证明:由题意可得AB=AC,BM⊥AC,且BM平分∠ABC。
连接AM和CM。
在△ABC中,由于AB=AC,所以∠ABC=∠ACB。
由垂直平分线的性质,BM平分了∠ABC,所以∠ABM=∠CBM。
同理,在△ACB中,由于AB=AC,所以∠ACB=∠ABC。
由垂直平分线的性质,BM平分了∠ACB,所以∠CBM=∠ACM。
综上所述,∠ABM=∠CBM=∠ACM得证。
初中经典几何证明练习题(含答案)
初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F . 求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG∴GN ∥AD ,GN=21AD∴∠DEN=∠GNM ∵AM=BM ,AG=CG∴GM ∥BC ,GM=21BC∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC∴∠BOM=21∠BOC=60°∴∠OBM=30°∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC∴DF BG FD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC 求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)证明:连接BD 交AC 于O 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二(下)几何证明题练习(一)
1.正方形ABCD 中,∠EAF=45°
(1)探究BP 、PQ 、DQ 关系;
(2)探究DE 、BP 、AB 关系;
(3)连接AC ,探究AC 、CM 、 CN 的关系;
(4)若EH∥BC ,探究 EH 、BF 、 DE 的关系。
2.正方形ABCD,CF平分∠BCD外角,AE⊥EF。
(1)当点E 在BC 上,探究则AE 与EF 的数量关系。
(2)当点E 在BC 的延长线上时,(1)中的结论是否成立说明理由;
(3)若把“正方形ABCD”改为“梯形ABCD 中,∠D=∠BCD=90°,AD=CF =
21
BC”,其它条件不变,探究AB ,FC ,EC 间的数量关系。
3.正方形ABCD,∠FAE=90°,
(1)若点E 在线段BC 上,探究CE,CF,AC间的数量关系。
(2)当点E 在线段BC 的延长线上,(1)中的结论是否成立说明理由:
4.直角梯形ABCD ,AD=AB ,∠A=∠D=90°,FG⊥BE,MN∥AD,
(1)若点E 在线段AD 上, 探究AE ,MF ,NG 之间的数量关系
(2)当点E在线段AD的延长线上,(1)中的结论是否成
D
立说明理由;
F
N
G
B。