地质灾害崩塌、滑坡、地面塌陷监测

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地质灾害崩塌、滑坡、地面塌陷监测

①绝对位移监测:是基本常规监测方法,用监测点的三维坐标,得出测点三维变形位移量、位移方位与位移速率。崩塌、滑坡的监测点分为地表和地下监测。

②相对位移监测:是了解灾害体变形部位点与点之间相对位移变化(张开、闭合、下沉、抬升、错动等)的一种常用的监测方法。主要用于裂缝、崩滑带、采空区顶底板等部位的监测。

③倾斜监测:是对地面及地下(钻孔)倾斜监测。监测地面或建筑物的倾斜方向和倾角变化及崩滑体内(钻孔)倾斜变形。

④声发射监测:检测岩体破裂时产生的声发射信号。采用声发射仪检测岩音频度[单位时间内的声射事件次数(次/分)]、大事件[单位时间内振幅较大的声发射事件次数(次/分)]、岩音能率[单位时间内声发射释放能量的相对累计值(能量单位/分)],用以判断岩体变形情况及稳定状况,并进行预测预报。

⑤应力监测:在地表或地下(钻孔、平斜硐内)埋设地应力计,测量灾害体内地应力的变化情况,分辨拉力区、压力区及压力变化,用以推断岩体变形。

⑥地下水监测:对测区内的地下水露头(人工的和天然的)进行系统的水位、水量、水温、水质等项目的长期监测(有条件可以设置孔隙水压监测)。用以掌握区内地下水变化规律,分析地下水与地表水及

大气降雨的关系,掌握地下水的动态特征,进行其与崩滑体变形的相关分析。当崩塌、滑坡变形破坏与地下水具有相关性时,特别是在雨季或地表水位抬升时,若崩滑体内有地下水时,应予以监测。

⑦地表水监测:监测崩滑体周围沟谷、溪、河的水位、流速、流量,分析其与地下水的联系和与降雨量的联系、分析地表水冲蚀与崩滑体变形的联系。

⑧气象监测:利用常规气象监测仪器如温度计、雨量计、蒸发仪等进行以降雨量为主的气象监测。由于降雨是影响崩塌、滑坡、泥石流的主要环境因素,故应进行降雨量监测,并收集气温、河流水位的数据。(2)泥石流监测

泥石流监测内容,分为形成条件(固体物质来源、气象、水文条件等)监测、运动特征(流动动态要素和输移冲淤等)监测、流体特征(物质组成及其物理化学性质等)监测。

泥石流固体物质来源是泥石流形成的基础,应在研究其地质环境和固体物质、性质、类型、规模的基础上,进行稳定状态监测;气象、水文条件监测主要为监测降雨量和降雨历时等,当上游有水库、渠道时,应评估其渗漏危险性;泥石流动态要素监测包括爆发时间、历时、过程、类型流态和流速、泥位、流面宽度、爬高、阵流次数、沟床纵横坡度变化、输移冲淤变化和堆积情况等,并取样分析,测定输砂率、输砂量或泥石流流量、总径流量、固体总径流量。

2、监测技术方法

监测技术方法应根据监测的需要进行选择,同时考虑经济、技术的可行性及各种监测方法的特点、应用范围和使用条件,结合当前国内外监测技术和方法的发展水平,同时兼顾测量的精度要求和监测工作效率。对于危害程度重大的崩滑体,为确保监测成果质量,应投入高、精、尖的监测方法(如全自动遥测等)和多种监测方法,以相互验证,补充、分析和评价。主要方法是:

①大地测量法

该方法主要有:两方向(或三方向)前方交会法、双边距离交会法(以上监测二维水平位移(X,Y))、视准线法、小角法、测距法(以上方法用于监测单方向水平位移)、几何水准测量法、精密三角高程测量法[观测垂直方向(Z向)位移]。一般常用高精度测角、测距的光学仪器和光电测量仪器。常用的有:WLLDT3经纬仪(测角中误差±1秒)、N3水准仪(0.2mm)、Mekometer ME3000光电测距仪[精度±(0.3mm+1ppm),测程3km]、NE5000光电测距仪[精度±(0.2mm+0.2ppm),测程5km]、全站仪[测角精度2秒,测距精度±(2mm+2ppm)]等。

大地测量法有以下特点:a、量程不受限制,能大范围全面控制崩滑体,构成监测网;b、技术成熟、精度高,成果资料可靠;c、受地形通视条件限制和气象条件(风、雨、雪、雾等)影响,外业工作量大、周期长。

大地测量法适用于所有崩滑体不同阶段的监测,是一切监测工作的基

础,工作一开始,应立即设站建标投入监测。其成果可直接用于变形分析、稳定性评价和崩滑预报。

②GPS(全球定位系统)测量法

GPS是利用美国卫星发送的导航定位信号进行空间交会测量,确定待测点的三维坐标的一种测量方法。近年来,我国开发和应用GPS定位技术的发展速度很快,在长江三峡工程坝区已建立了GPS监测网,并将GPS技术应用于新滩链子崖崩塌、滑坡的变形监测和铜川市川口滑坡治理效果的监测。实践证实,GPS定位精度可达毫米级,完全可用于崩塌、滑坡的位移监测。

将GPS应用于崩塌、滑坡监测有以下优点:a、观测点之间无需通视,选点方便;b、不受天气条件限制,可以进行全天候的观测;c、观测点的三维坐标可以同时测定;d、新一代GPS接收机具有体积小,耗电少,操作简便的特点。

③近景摄影测量法

把近景摄影仪安置在两个不同位置的固定测点上,同时对崩塌体的观测点摄影构成立体像片,利用立体坐标仪量测像片上各测点的三维坐标进行测量。

其特点及适用范围有:a、周期性重复摄影,外业工作简便,可同时测定许多测点的空间坐标;b、获得的像片是崩滑体变形的实况记录,并可以随时进行比较分析;c、近景(100米以内)摄影法绝对精度不及传统测量法;d、设站受地形条件限制,内业工作量大;d、适合

于对临空陡崖进行监测。

④合成孔径雷达干涉InSAR测量技术

合成孔径雷达干涉InSAR(Interferometry Synthetic Aperture Radar)测量技术是利用通过相邻航线上观测的同一地区的两幅(具一定基线——几米到几百米)SAR影像的相位差来获取地面数据,其主要特点是利用雷达数据中的相位信息。

合成孔径雷达干涉测量优点较多:具有全天候工作能力,发射的微波对地物有一定的穿透能力,能提供光学遥感所不能提供的信息,且是主动式工作方式。对于欧洲雷达卫星ERS-1/2和加拿大雷达卫星RADRSAT-1,采用干涉技术来产生DEM,监测地面位移变化,精度可以达到毫米量级。因此,该技术手段特别适于解决大面积的滑坡、崩塌、泥石流以及地裂缝、地面沉陷、塌陷等地质灾害的监测预报,是一项快速、经济的空间探测高新技术。对于桃源县地面塌陷地质灾害监测预警示范区就可采用此种监测方法,将各个地面塌陷点全部纳入监测之中。

⑤遥测台网监测技术

随着电子技术及计算机技术的发展,各种先进的自动遥控监测系统相继问世,为崩塌、滑坡的实时、自动、连续监测创造了有利条件。中国地震局地壳应力研究所自行研制的新型地质灾害无线遥测台网是在已有技术基础上,采用先进适用的传感器技术,与计算机信息处理技术和通讯技术整合形成的新一代RDA型地质灾害遥测系统。通过

相关文档
最新文档