(完整版)高中概率与统计复习知识点与题型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率与统计知识点与题型
3.1.1 — 1、基本概念:
(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;
(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;
(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数
nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A
为事件A 出现的概率:对于给定的随机事
件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A
,它具有
一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率
3.1.3 概率的基本性质
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;
(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;
(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事
件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性质:
1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);
3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B); 4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包
括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A
与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不
发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
3.2.1 —
1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。 (2)古典概型的解题步骤; ①求出总的基本事件数;
②求出事件A 所包含的基本事件数,然后利用公式P (A )=总的基本事件个数包含的基本事件数
A
3.3.1—
1、基本概念:
(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式:
P (A )=积)的区域长度(面积或体试验的全部结果所构成积)
的区域长度(面积或体构成事件A ;
(1) 几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能
性相等.
一、随机变量.
1. 随机试验的结构应该是不确定的.试验如果满足下述条件:
①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 设离散型随机变量ξ可能取的值为: ,,,,21i x x x
ξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列.
有性质① ,2,1,01=≥i p ; ②121=++++ i p p p .
注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.
3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的
概率是:k
n k k n q
p C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n·p),其中n ,p
为参数,并记p)n b(k;q
p C k n k k n ⋅=-. ⑵二项分布的判断与应用.
①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.
②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.
4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:
))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1
==-k p q k 于是得到随机变量ξ的概率分布列.
我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q
5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C
C C k)P(ξn
N
k n M
N k M -≤-≤≤≤⋅⋅=
=--.〔分子是从M 件次品中取k 件,从
N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C r
m
=,则k 的范围可以写为k=0,1,…,n.〕 ⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n≤a+b),则次品数ξ的分布列为n.,0,1,k C
C C k)P(ξn
b
a k
n b
k a =⋅=
=+-.
⑶超几何分布与二项分布的关系.
设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含
k n k k n b a C -个结果,故n ,0,1,2,k ,)b a a (1)b a a (C b)
(a b a C k)P(ηk n k k n n
k
n k k n =+-+=+==--,即η~)(b a a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数