统筹优化问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三讲统筹优化问题
刚刚过完母亲节,马上就要迎来6月中旬的父亲节了!小朋友们,在这两个特别的节日里你送给爸爸妈妈什么礼物了?呵呵,我们来看看小芳给妈妈送上的母亲节礼物吧!
母亲节那天小芳爸爸、妈妈都加班了,小芳想让爸爸、妈妈下班就能吃上晚饭,送上
一份特别的礼物.她准备做大米饭、炒鸡蛋和水果沙拉.她估计了一下时间,洗米要3分钟,
蒸大米饭20分钟,打鸡蛋要1分钟,洗炒锅勺要1分钟,炒菜要5分钟,做水果沙拉要
10分钟.你知道聪明的小芳是怎样最合理的安排时间的吗?至少需要多长时间能做好这顿
饭?父亲节的时候你能否也送上这样一份暖心的礼物?
答案提示:聪明的小朋友肯定不会一件一件接着做,那样会很浪费时间的!合理的安排:先洗米3分钟,蒸大米饭20分钟(在此同时我们还可以将:打鸡蛋要1分钟,洗炒锅勺要1分钟,炒菜要5分钟,做水果沙拉要10分钟,共17分钟进行完),所以至少需要23分钟可将这份礼物准备完毕.
当有许多事要做时,科学地安排好先后顺序,就能用较少的时间完成较多的事情.华罗庚教授在中学语文课本中,曾有一篇名为《统筹原理》的文章,详细介绍了统筹方法和指导意义.在实际生活中,我们科学的利用统筹安排的方法可以大大节省时间、人力、物力以及资源,提高做事的效率.
类型Ⅰ:统筹安排事情
【例1】(2000年小数报数学邀请赛)(难度系数:★★)烙饼需要烙它的正、反面,如果烙熟一块饼的正、反面,各用去3分钟,那么用一次可容下2块饼的锅来烙21块饼,至少需要多少分钟?
分析:【前铺】(奥数网备选题库)(难度系数:★★)用一只平底锅煎饼,每次能同时放两个饼.如果煎1个饼需要2分钟(假定正、反面各需1分钟),问煎1993个饼至少需要几分钟?问煎1994个饼至少需要几分钟?
分析:如果只煎1个饼,显然需要2分钟;如果煎2个饼,仍然需要2分钟;如果煎3个饼,初学者看来认为至少需要4分钟:因为先煎2个饼要2分钟;再单独煎第3个饼,又需要2分,所以一共需要4分钟.但是,这不是最佳方案.最优方法应该是:首先煎第1号、第2号饼的正面用1分钟;其次煎第1号饼的反面及第3号饼的正面又用1分钟;最后煎第2号、第3号饼的反面再用1分钟;这样总共只用3分钟就煎好了3个饼.
我们归纳出煎1、2、3个饼分别需要2、2、3分钟,我们可以继续往下分析,煎4个饼最少需要4分钟,煎5个饼需要3+2=5分钟,煎6个饼需要6÷2×2=6分钟,煎7个饼需要3+4÷2×2=7分钟,那么煎1993个饼至少需要1993分钟,煎1994个饼至少需要1994分钟.
原题解答; 先将两块饼同时放人锅内一起烙,3分钟后两块饼都熟了一面,这时取出一块,第二块翻个身,再放人第三块,又烙了3分钟,第二块已烙熟取出,第三块翻个身,再将第一块放入烙另一面,再烙3分钟,锅内的两块饼均已烙熟.这样烙3块饼,用去9分钟,烙后21-3=18块饼,至少用去18÷2×6=54(分钟),所以一共需要54+9=63分钟.如果烙22块饼,我们就无需考虑的那么复杂了,所用时间就是22÷2×
6=66分钟.
【例2】(06年国家公务员二类考卷)(难度系数:★★★)某商店汽水做促销活动,规定每5个空瓶能换1瓶汽水.小强家买了80瓶汽水,喝完后再按规定用空瓶去换汽水,那么他们家前后最多能喝到多少瓶汽水?
分析:【前铺】(此题主要是让学生有兴趣把这个答案试出来,并明白可以借瓶的概念.)(03年国家公务员考试)(难度系数:★★)小新和他的五个朋友去喝汽水,他们身上有12元,每瓶汽水3元,每三个空汽水瓶可以换一瓶汽水,请问怎样才能每人喝到一瓶汽水?
分析:12元可以买4瓶汽水,用其中3个空瓶换1瓶汽水,加上剩下的1个空瓶,再向卖汽水的借一个空瓶,用这3个空瓶再换一瓶.喝完后再把这个空瓶还了!4+1+1=6瓶.
原题解答:(法1)我们按照实际换汽水过程分析:
喝掉80瓶汽水,用80个空瓶换回16瓶汽水;
喝掉16瓶汽水,用16个空瓶换回3瓶汽水余1个空瓶;
喝掉3瓶汽水,连上次余下的1个空瓶还剩4个空瓶.此时,再借1个空瓶,与剩下的4个空瓶一起又可换回1瓶汽水,喝完后将空瓶还了.
所以,他们家前后最多能喝到汽水:80+16+3+1=100(瓶).
以上方法正确运用“5个空瓶可换1瓶汽水”这个条件,特别是最后一次换瓶的技巧,你不充分利用可就“吃亏了”!但如果一开始瓶数很多,那么这个换的过程就会很长.有没有简便的算法呢?
(法2)注意到“每5个空瓶可换一瓶汽水”(连汽水带瓶)这个条件,可知每4个空瓶就能换到一瓶汽水(不带瓶),那么喝剩的80个空瓶共能换到20瓶汽水,所以小强家前后共能喝到80+20=100(瓶)汽水.综合式是80+80÷(5-1)=100(瓶).
(法3)每4个空瓶就能换到1瓶汽水(不带瓶),即1个空瓶能换1
4
瓶汽水,那么买1瓶汽水实际能喝到
(1+ 1
4
)瓶汽水,因此他家前后共能喝到80×(1+
1
4
)=100瓶汽水.
【巩固】(07年希望六年级杯培训试题)(难度系数:★★★)学校师生1140人外出参观,计划每人发2瓶汽水,每瓶汽水售价2元,商店规定每6个空汽水瓶可以换1瓶汽水,带队老师合理筹划,回收空瓶换汽水,使每人按计划喝到汽水,节省多少元?
分析:每6个空瓶就能换到1瓶汽水,即每5个空瓶就能换到1瓶汽水(不带瓶),即1个空瓶能换1
5
瓶
汽水,那么买一瓶汽水实际能喝到(1+1
5
)瓶汽水,因此需要买1140×2÷(1+
1
5
)=1900(瓶)汽水. 节
约出来1140×2-1900=380(瓶)汽水的钱,也就是380×2=760(元).
【巩固】(全国小学奥林匹克)(难度系数:★★★)5个空瓶可以换1瓶汽水,某班同学喝了161瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买汽水多少瓶?
分析:
1
161(1)128.8
4
÷+=,所以需要129瓶.
【例3】(03年全国小学奥林匹克)(难度系数:★★★★)某校六年级的80名同学与2名老师共82人去公园春游,学校只准备了180瓶汽水.总务主任向老师交代,每人供应3瓶汽水(包括老师),不足部分
可到公园里购买,回校后报销.到了公园,商店贴有告示:每5个空瓶可换一瓶汽水.于是要求大家喝完汽水后空瓶由老师统一退瓶.那么用最佳的方法筹划,至少还要购买多少瓶汽水回学校报销?
分析:带来的180瓶汽水可以喝到:1
180(1)225
4
⨯+=(瓶),还需要由卖汽水产生的汽水有:82×3-225=21
(瓶),21瓶实际需要购买:
1
21(1)16.8
4
÷+=,所以还需要购买17瓶汽水回学校报销.
【例4】(奥数网习题库)(难度系数:★★★)有十个村庄,座落在从县城出发的一条公路上,现要安装水管,从县城供各村自来水.可以用粗、细两种水管,粗管每千米7000元,细管每千米2000元.粗管足够供应所有各村用水,细管只能供应一个村用
水,各村与县城间距离如右图所示(图中单位是千
米),现要求按最节约的方法铺设,总费用是多少?
分析:由于细管相对于粗管来讲,价钱要少一些,因此先假设都用细管.那么从县城到A1村要铺设10根细管,A1村到A2村要铺设9根细管,依次下去,我们用图表示铺细管的情况.
因为粗管每千米7000元,细管每千米2000元,所以4根细管的价钱将大于1根粗管的价钱.这样一来,凡是超过3根细管的路段,都应改铺粗管.
因此,从县城到A7村铺1根粗管,A7村到A8村铺3根细管,A8村到A9村铺2根细管,A9村到A10村铺1根细管.总费用为:7000×(30+5+2+4+2+3+2)+2000×(2×3+2×2+5×1)=366000(元).
类型Ⅱ:沙漠探险
【例5】(奥数网习题库)(难度系数:★★
★★)(1)有5位探险家计划横穿沙漠.他们
每人驾驶一辆吉普车,每辆车最多能携带可供
一辆车行驶315千米的汽油。
显然,5个人不
可能共同穿越500千米以上的沙漠。
于是,他
们计划在保证其余车安全返回出发点的前提
下,让一辆车穿越沙漠。
当然,实现这一计划需要几辆车相互借用汽油。
问:穿越沙漠的那辆车最多能穿越多宽的沙漠?
(2)如果允许将汽油留在途中供返回的汽车使用,上题其他条件都不变,那穿越沙漠的那辆车最多能穿越多宽的沙漠?
分析:(1)如右图所示,5辆车从A点一起出发,到B点时
第1辆车留下够自己返回A点的汽油,剩下的汽油全部转
给其余4辆车,注意,B点的最佳选择应满足刚好使这4辆
车全部加满汽油;剩下的4辆车继续前进,到C点时第2
辆车留下够自己返回A点的汽油,剩下的汽油全部转给其
余3辆车,使它们刚好加满汽油;剩下的3辆车继续前进……到E点时,第4辆车留下返回A点的汽油,剩下的汽油转给第5辆车.此时,第5辆车是加满汽油的,还能向前行驶315千米.
以这种方式,第5辆车能走多远呢?我们来算算.
5辆车到达B 点时,第1辆车要把另外4辆车消耗掉的汽油补上,加上自己往返AB 的汽油,所以应把行驶315千米的汽油分成6份,2份供自己往返AB ,4份给另外4辆车每辆加l 份,刚好使这4辆车都加满汽油.AB 长为:315÷6=52.5(千米);
4辆车从B 点继续前进,到达C 点时,4辆车共消耗掉4份(BC )汽油,再加上第2辆车从C 经B 返回A ,所以第2辆车是把汽油分成:5份BC+1份AB=315(千米),由上可知6份AB=315(千米),所以AB=BC ,也就是说第2辆车仍是把汽油分成6份,3份供自己从B 到C ,再从C 返回A ,3份给另外3辆车加满汽油,由此知BC 长也是52.5千米.
同理,CD=DE=52.5(千米).
所以第5辆车最远能行驶52.5×4+315=525(千米).
一般地,如果有n (n>1)辆相同的汽车,每辆车带的油都恰好够行驶s 千米的路程,其它条件不变,那
么第1辆车行驶
1s n +千米返回,在最后一辆车“冲刺”之前,最后一辆车已行驶了(n-1)个1
s n +千米,所以最后一辆车能行驶:(1)()1s n s n -⨯++千米 这个问题解决的很完美.但是,这是基于汽油只能由汽车携带,不能留在途中供返回的汽车使用这个前提.如果允许将汽油留在途中供返回的汽车使用,情况就大不相同了.
(2)如右图所示,5辆车从A 点一起出发,到B 点时,第l
辆车给其它车辆加满汽油,并且在B 处留下供3辆车从B 返回
A 的汽油,然后自己返回A.注意,此时后4辆车都已加满了汽
油,并且无“后顾之忧”,即有了从B 返回A 的汽油,所以后
面的问题相当于有4辆车,让一辆车走的尽量远,另3辆车返
回B.同理,
到C 点时变成3辆车的情况,到D 点时变成2辆车的情形,到E 点时变成1辆车的情形.
(9),9
,D DE E 753
53545631053155639753S AB S S S BC C S S S S S S =
===++++=++++=依照上题思路,将第一辆车的汽油分成份,注意这里第五辆车不会来,,至终点=,所以第辆车最远能行驶:(千米)
【例6】 (奥数网习题库)(难度系数:★★★★)甲乙两个人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可带一个人24天的食物和水,
(1)如不允许将部分食物放于途中,那么其中一个人最多可以深入沙漠多少千米?(要求最后两人都回到出发点)
(2)在上题中,如果将条件改为可以将部分食物存放于途中以备返回时取用,那么其中一个人最多可以深入沙漠多少千米?
分析:(1)(法一):利用上例思路解答,所以可以往前行走16天的路程.
(法二):可以设走了x 天后,乙把食物补给甲,此时乙还需预留x 天的食物,所以乙还能补给甲(24-2x )天的食物。
而甲此时也已消耗掉了x 天的食物,为了给甲补满,所以需要:24-2x =x,可得x =8,剩下的24天食物,B 只能再向前走8天,留下16天的食物供返回时用.故B 可以向沙漠深处走16天.
(2)360千米.
类型Ⅲ:排队问题
【例7】(07年希望杯六年级培训试题)(难度系数:★★★)理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10,12,15,20和24分钟.怎样安排他们的理发顺序,才能使这五人理发和等候所用时间的总和最少?最少要用多少时间?
分析:【前铺】(奥数网习题库)(难度系数:★★)5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟.如果只有一个水龙头,试问怎样适当安排他们的打水顺序,才能使每个人排队和打水时间的总和最小?并求出最小值.
分析:5个人排队一共有5×4×3×2×1=120种顺序,把所有情形的时间总和都计算出来,就太繁琐了.我们不妨先来看一个简单的例子:小新理发用10分钟,妈妈烫发用240分钟,只有一个理发师,那么怎样使两个人等待的时间总和最少?很容易我们就知道,要让用时较短的人先理发比较合理.同样对于本例题,把打水需1分钟的人排在第一位置所费总时间最省.其次,再将打水需2分钟的人调整到第二位置;将打水需3、4、5分钟的人逐次调整到第三、四、五位.所以将五人按照打水所需时间由少到多的顺序排队,所费时间最省.这样得出5人排队和打水时间总和的最小值是:1×5+2×4+3×3+4×2+5×1=35(分钟).教师在此刻多多举例联系,让学生在充分理解的基础上准确计算出时间总和的最小值.
原题解答:一人理发时,其他人需等待,为使总的等待时间尽量短,应让理发所需时间少的人先理.甲先给需10分钟的人理发,然后15分钟的,最后24分钟的;乙先给需12分钟的人理发,然后20分钟的.甲给需10分钟的人理发时,有2人等待,占用三人的时间和为(10×3)分;然后,甲给需 15分钟的人理发,有1人等待,占用两人的时间和为(15×2)分;最后,甲给需 24分钟的人理发,无人等待.甲理发的三个人,共用(10×3+15×2+24)分,乙理发的两个人,共用(12×2+20)分。
总的占用时间为(10×3+15×2+24)+(12×2+20)=128(分).
按照上面的安排,从第一人开始理发到五个人全部理完,用了10+15+24=49(分).如果题目中再要求从第一人开始理发到五人全部理完的时间最短,那么做个调整,甲依次给需10,12,20分钟的人理发,乙依次给需15,24分钟的人理发,总的占用时间仍是128分钟,而五人全部理完所用时间为 10+12+20=42(分).
【例8】(101培训试题)(难度系数:★★★★)车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为18,30,17,25,20分钟,每台车床停产一分钟造成经济损失5元.现有两名工作效率相同的修理工,
(1)怎样安排才能使得经济损失最少?
(2)怎样安排才能使从开始维修到维修结束历时最短?
分析:(1)一人修17、20、30,另一人修18、25 ;最少的经济损失为:5×(17×3+20×2+30+18×2+25)=910(元).
(2)因为(18+30+17+25+20)÷2=55(分),经过组合,一人修需18,17和20分钟的三台,另一人修需30和25分钟的两台,修复时间最短,为55分钟.
类型Ⅳ:场地设置问题
【例9】(06美国数学竞赛试题)(难度系数:★★★)在A国的遥远的东部地区,
与B接壤处有一个城镇,这个镇上的道路设计得如同方格栅栏一样,有点像美国
的曼哈顿.这种道路设计最初在古希腊使用.七个伙伴住在城镇七个不同的地方,
用圆圈表示.他们想一起聚会喝咖啡,为使七人行走的距离总和最小,他们应该在
城镇的何处见面?请用△在下图中标注出来.
分析:可先回顾一下附加2 .七个人到竖向最近的位置是七个人中间位置在第4竖街区,七个人到横向最近的位置是七个人中间位置在第5横街区,故他们应在第4竖与第5横街区交汇处见面.
【例10】(奥数网习题库)(难度系数:★★★★)某乡共有六块麦
地,每块麦地的产量如右图.试问麦场设在何处最好?(运输总量的千克
千米数越小越好.)
分析:可先回顾一下附加3、4相关知识.依据“小往大靠”,“支往干靠”.
我们不妨以F-E-C-D为干,,显然麦场设在C点.当然你以其他路经为干,
都会的到同样结果.譬如:若以F-E-C-A为干,那么依据“支往干靠”,D
就靠到C,B移到G,当作“干”上一成员.
附加题目
【附1】(01年小数报数学邀请赛) (难度系数:★★)青少年科技活动中心工地上,有一批废旧建筑材料和垃圾需要清理并运离现场,由两位货车司机小王和小李负责清理、运输.两人同时清理废旧建筑材料需2小时;两人同时清理垃圾需0.5小时;货车将垃圾运送郊区,往返需3小时,货车将废旧建筑材料运送收购站,往返需1小时.小王和小李完成这项清理、运输工作返回工地最少需几小时?请你设计出一个最佳方案(垃圾与建材均不超过1车,装车时间不计).
分析:两人先同时清理垃圾,用0.5小时;然后两人同时清理废旧建筑材料1小时;最后,一人运送垃圾用3小时,另一人继续清理建筑材料2小时,再用1小时运送废旧建筑材料.共用:0.5+1+3=4.5(小时).【附2】(奥数网习题库)(难度系数:★★★)有2005名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小?
分析:【前铺1】(首师附中培训测试题)(难度系数:★★)如右
图,在街道上有A、B、C、D、E五栋居民楼,现在设立一个邮筒,
为使五栋楼的居民到邮筒的距离之和最短,邮局应立于何处?
分析:条件中只有五个楼的名字和排列顺序,楼与楼的距离也不确定.那么我们先来分析一下A、E两个点,不论这个邮筒放在AE之间的那一点,A到邮筒的距离加上E到邮筒的距离就是AE的长度.也就是说邮筒放在哪儿不会影响这两个点到邮筒的距离之和.那么我们就使其他的3个点到邮筒的距离之和最短,再看为了使B、D两个到邮筒的距离之和小,应把邮筒放在BD之间.同理,只要是在BD之间,B、D到邮筒的距离之和也是不变的,等于BD.最后,只需要考虑C点到邮筒的距离最近就行了.那么当然也就是把邮筒放在C点了.这里就体现了一个“向中心靠拢的思想”.
【前铺2】(交大附中培训试题)(难度系数:★★)
如右图,道路上有8个幼儿园,现在要在道路上建造
一个送奶站,为使送奶站到8个幼儿园的距离和最短,
送奶站应建在哪个幼儿园?
分析:找最中间的那个幼儿园,可这时最中间的幼儿园有两个,这该怎么办呢?其实经过研究发现,建在这两个幼儿园都一样,路程和最短,所以可以建在D或E .如果我们只要求建在这条道路上的一点即可,那么DE之间及点D、E均可.
原题解答:向中心靠拢的思想,当有偶数(2n)个人时,集合地点应选在中间一段 AnAn+1之间的任何地点(包括An和An+1点);当有奇数(2n+1)个人时,集合地点应选在正中间岗位An+1点.本题有2005=2×1002+1(奇数)个人,因此集合地点应选在从某一端数起第1003个岗位处.
【附3】(04年我爱数学夏令营试题)(难度系数:★★)一条直街上有5栋楼,从左到右编号为1,2,3,4,5,相邻两楼的距离都是50米.第1号楼有1名职工在A厂上班,第2号楼有2名职工在A厂上班……,第5号楼有5名职工在A厂上班.A厂计划在直街上建一通勤车站接送这5栋楼的职工上下班,为使这些职工到通勤车站所走的路程之和最小,车站应建在距1号楼多少米处?
分析:如图所示,“小往大处靠”的原则来解决,故应建在4号楼
的位置,距1号楼150米处.
【前铺】(人大附中分班考试题)(难度系数:★★★)在一条公路上,每隔10千米有一座仓库(如右图),共有五座,图中数字表示各仓库库存货物的重量.现在要把所有的货
物集中存放在一个仓库里,如果每吨货物运输1千米需要运费0.9元,
那么集中到哪个仓库运费最少?
分析:这道题可以用“小往大处靠”的原则来解决.E点60吨,存的货物最多,那么先处理小势力,A往E 那个方向集中,集中到B,B变成40吨,判断仍是E的势力最大,所以继续向E方向集中,B点集中到C点,C点变成60吨.此时C点和E点都是60吨,那么C、E谁看成大势力都可以.例如把E点集中到D点,D点是70吨.所以C点也要集中到D点.确定了集中地点,运输费用也就容易求了.运费最少为:(10×30+30×20+20×10+60×10)×0.9=1530(元).
我们从中可以发现:对于集中货物的问题,集中到何处起决定作用的是货物的重量,而至于距离,仅仅只是为了计算.
【附4】右图是A,B,C,D,E五个村之间的道路示意图,○中数
字是各村要上学的学生人数,道路上的数表示两村之间的距离(单
位:千米)。
现在要在五村之中选一个村建立一所小学。
为使所有学
生到学校的总距离最短,试确定最合理的方案.
分析:“小往大处靠”的原则来解决,A点向C点集中,因为根据“小
往大处靠”的原则,虽然A点40人比C点20人多,但是人最多的点是E点,所以大方向是向E点的方向
靠拢。
那么B点当然也要向C点靠拢。
C点就有80人了.此时人数最多的点变成了C点了.D、E又变成小势力了,因此还是“小往大处靠”的原则,看大方向,E点要向D点靠拢.此时D点变成85人了。
那么D 点比此时C点的80人多了.C点又变成小势力了.所以最终要集中在D点.也就是学校要设在D点.
【附5】(奥数网习题库)(难度系数:★★)甲、乙、丙三名车工准备在同样效率的3个车床上加工七个零件,各零件加工所需要的时间分别为4,5,6,6,8,9,9分钟,三人同时开始工作.问:加工完七个零件最少需要多长时间?
分析:按照需要加工的时间,我们可以把七个零件大体分成3组,因为4+5+6+6+8+9+9=47.
那么可知不论怎么组合,都必然出现有一组的时间是17.例如:(4+5+6),(6+9),(8+9)
或(4+6+6),(5+9),(8+9)或(4+5+8),(6+9),(6+9).所以加工完最少需要17分钟.
练习十三
1.小强、小明、小红和小蓉4个小朋友效游回家时天色已晚,他们来到一条河的东岸,要通过一座小木桥到西岸,但是他们4个人只有一个手电筒,由于桥的承重量小,每次只能过2人,因此必须先由2个人拿着手电筒过桥,并由1个人再将手电筒送回,再由2个人拿着手电筒过桥……直到4人都通过小木桥.已知,小强单独过桥要1分钟;小明单独过桥要1.5分钟;小红单独过桥要2分钟;小蓉单独过桥要
2.5分钟.那么,4个人都通过小木桥,最少要多少分钟?
分析:要想用最少的时间,4人都通过小木桥,可采用让过桥最快的小强往返走,将手电筒送回,这样就能保证时间最短了.
第一步:小强与小明一起过桥,并由小强带手电筒返回,共用:1.5+1=2.5(分钟);
第二步:返回原地的小强与小红过桥后再返回,共用了2+1=3(分钟);
第三步:最后小强与小蓉一起过桥用了2.5分钟;
所以,4个人都通过小木桥,最少用2.5+3+2.5=8(分钟).
2.学校师生1113人外出参观,计划每人发2瓶汽水,商店规定每7个空汽水瓶可以换1瓶汽水,老师最少买多少瓶汽水,合理筹划,回收空瓶换汽水后,可以保证每人按计划喝到汽水?
分析:1908瓶.
3.有一个水塔要供应某条公路旁的A~F六个居民点用水(见
右图,单位:千米),要安装水管,有粗细两种水管,粗管足够
供应6个居民点用水,细管只能供应1个居民点用水,粗管每
千米要7000元,细管每千米要2000元,粗细管怎样互相搭配,
才能使费用最省?费用应是多少?
分析:从水塔到C点铺粗管,最后三个居民点铺细管,总费用为297000元。
提示:当长度相同时,四根细管的费用超过一根粗管,所以最后三个居民点用细管.
4.有一位探险家,计划用6天的时间徒步横穿沙漠,如果搬运工人和探险家每人最多只能携带1个人四天所需的食物和水,那么这个探险家至少要雇用多少名工人?
分析:利用公式:(1)()1s n s n -⨯++千米,其中s=4,(1)()1
s n s n -⨯++千米=6,解得n=3,所以要雇佣3-1=2(名)工人.当然这道题目我们可以通过试出答案,这里主要强调学生对规律总结的理解应用,但同时请注意条件的变化.
5.车间里有5台车床同时出现故障。
已知第一台至第五台修复的时间依次为15,8,29,7,10分钟,每台车床停产一分钟造成经济损失5元。
问:(1)如果只有一名修理工,那么怎样安排修理顺序才能使经济损失最少?(2)如果有两名修理工,那么修复时间最少需多少分钟?
分析:(1)780元;(2)36分。
提示:(1)按修复时间需7,8,10,15,29分的顺序修理;(2)一人修需7分和29分的,另一人修需8,10,15分的.
6.在一条公路上每隔100千米,有一个仓库(如图)共有5个仓库,一号仓库存有10吨货物,二号仓库有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。
现在想把所以的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0.5元运输费,那么最少要多少运费才行?
分析:做此类问题时我们都可以根据“小往大处靠”的原则进行判断,观察可知五号仓的最大,所以先把一号仓库的10吨货物往五号方向靠拢,先集中到二号仓库,那么现在二号仓库中就有30吨货物了.再根据“小往大处靠”的原则,那么这30吨货物应该集中到五号仓库中.
所以所需的费用是:10×0.5×100=500(元),30×0.5×300=4500(元),共需要:500+4500=5000(元)
7.有七个村庄A1,A2,…,A7分布在公路两侧(见右图),由一些小路
与公路相连,要在公路上设一个汽车站,要使汽车站到各村庄的距离和
最小,车站应设在哪里?
分析:本题可简化为“B ,C ,D ,E ,F 处分别站着1,1,2,2,1个人
(见右图),求一点,使所有人走到这一点的距离和最小”.显然D 、E
最大,靠拢完的结果变成了D=4,E=3,所以车站设在D 点.
统筹安排的妙处
田忌赛马
齐国的大将田忌,很喜欢赛马,有一回,他和齐威王约定,要进行一场比赛。
他们商量好,把各自的马分成上,中,下三等。
比赛的时候,要上马对上马,中马对中马,下马对下马。
由于齐威王每个等级的马都比田忌的马强得多,所以比赛了几次,田忌都失败了。
田忌觉得很扫兴,比赛还没有结束,就垂头丧气地离开赛马场,这时,田忌抬头一看,人群中有个人,原来是自己的好朋友孙膑。
孙膑招呼田忌过来,拍着他的肩膀说:“我刚才看了赛马,威王的马比你的马快不了多少呀。
”孙膑还没有说完,田忌瞪了他一眼:“想不到你也来挖苦我!”孙膑说:“我不是挖苦。