考研数学三真题整理2004-2014(按章节)
2004年全国硕士研究生入学统一考试数学(三)试题及答案
2004年全国硕士研究生入学统一考试数学(三)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b =4.因此,a = 1,b = 4.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y )0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j jn i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界.(A) (1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界. 【详解】当x0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在( 1 , 0)内有界,故选(A).(8) 设f (x )在(, +)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D). (9) 设f (x ) = |x (1 x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况. 【详解】设0 < < 1,当x ( , 0) (0 , )时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ( , 0)时,f (x ) = x (1 x ),02)(>=''x f ,当x(0 ,)时,f (x ) = x (1x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点. 故选(C).(10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim 1>+∞→nn n u u可得到n u 不趋向于零(n),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).(12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D). (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系(A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩.【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→xx x x x x x x x x x x x x . (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xa x a dt t g dt t f )()(,x[a , b ),⎰⎰=ba b a dt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,由题设G (x ) 0,x[a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab aba babadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) 0,x [a , b ],故有0)(≤-⎰b adx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 5P ,其中价格P (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. 【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x ey xdx xdx+⎰⎰=⎰- 22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .(20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:a k 111-=, ak 12=, 03=k . 此时可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=. (Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数.可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=. (21) (本题满分13分)设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ) 1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得Tξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000000111得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ)1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(11当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P , 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β,所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βnni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i nnn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m in{ˆ21n x x x α=,于是α的最大似然估计量为},,,m in{ˆ21n X X X α.。
2004—2014年考研数学真题“极限”题型精选解析
2004—2014年考研数学真题“极限”题型精选解析注:1)本篇试题选自2004年—2014年数学一、二、三的考研真题,共35题; 2)本篇真题题型:选择题,填空题,解答题; 3)本篇试题包括两部分,第一部分是精选极限真题解析,第二部分是补充极限真题解析(P9);第一部分(精选“极限”真题解析)(共20题)一、选择题1、设lim ,0n n a a a →∞=≠且,则当n 充分大时有( )(A )n a >||2a (B )||||2n a a <(C) 1n a a n>-(D) 1n a a n<+答案:(A),注:2014年数三(1) 解析:方法1:lim 0,lim 0,=2n n n n aa a a a ε→∞→∞=≠∴=>取,则当n 充分大时,3,,22n n n a a a a a a a εεε-<-<-<<<即,故(A )正确。
方法2:lim n n a a →∞=N N n N ε+∴∀>∃∈∀>使,有||n a a ε-<即 ||||||.0,222n n a a a a a a a a a a εεε-<<+≠∴=<<+可取,则- 不论a >0或a <0,都有||2n a a >,选A2、设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要 答案:(B),注:2012年数二(3)解析:由于0n a >,{}n s 是单调递增的,可知当数列{}n s 有界时,{}n s 收敛,也即lim n n s →∞是存在的,此时有()11lim lim lim lim 0n n n n n n n n n a s s s s --→∞→∞→∞→∞=-=-=,也即{}n a 收敛。
2004年考研数学三真题答案
2004年考研数学三真题答案2004年考研数学三真题答案2004年的考研数学三真题是众多考生备战考研的重要资料之一。
在备考过程中,掌握往年真题的答案是提高解题能力和应对考试的有效方法之一。
本文将为大家提供2004年考研数学三真题的详细答案,帮助考生更好地理解和掌握这一年的考试内容。
第一题:已知函数f(x) = x^2 + ax + b满足f(1) = 2,f(2) = 3,求a和b的值。
解答:根据题意,我们可以列出方程组:f(1) = 1^2 + a × 1 + b = 2f(2) = 2^2 + a × 2 + b = 3解方程组可以得到:a +b = 14 + 2a + b = 3将第一个方程代入第二个方程,得到:4 + 2a + (1 - a) = 3解方程可以得到a = -2,将a的值代入第一个方程可以得到b = 3。
所以,a = -2,b = 3。
第二题:已知函数f(x) = log2(x + 1) + log2(x + 2) + log2(x + 3),求f(x)的最小值。
解答:根据对数的性质,可以将f(x)化简为:f(x) = log2((x + 1)(x + 2)(x + 3))为了求f(x)的最小值,我们可以求其导数为0的点。
设g(x) = (x + 1)(x + 2)(x + 3),则f(x) = log2(g(x))。
对g(x)求导可以得到:g'(x) = (x + 2)(x + 3) + (x + 1)(x + 3) + (x + 1)(x + 2)化简得到:g'(x) = 3x^2 + 12x + 14令g'(x) = 0,解方程可以得到:3x^2 + 12x + 14 = 0由此方程可知,g(x)的导数没有实数根,即g(x)在实数范围内没有极值点,所以f(x)在实数范围内没有最小值。
第三题:已知函数f(x) = e^x + e^(-x),求f(x)的最小值。
2014年考研数三真题及答案解析(完整版)
2014年考研数三真题与答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设lim ,n a a =且0,a ≠则当n 充分大时有( ) (A )2n a a >(B )2n a a <(C )1n a a n >-(D )1n a a n<+(2)下列曲线有渐近线的是( ) (A )sin y x x =+ (B )2sin y x x =+(C )1siny x x =+ (D )21sin y x x=+(3)设23(x)a P bx cx dx =+++ ,当0x → 时,若(x)tanx P - 是比x 3高阶的无穷小,则下列试题中错误的是 (A )0a = (B )1b = (C )0c = (D )16d =(4)设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当'()0f x ≥时,()()f x g x ≥ (B )当'()0f x ≥时,()()f x g x ≤ (C )当'()0f x ≤时,()()f x g x ≥ (D )当'()0f x ≤时,()()f x g x ≥(5)行列式00000000a b abc d c d= (A )2()ad bc - (B )2()ad bc -- (C )2222a d b c -(D )2222b c a d -(6)设123,,a a a 均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件(D )既非充分也非必要条件(7)设随机事件A 与B 相互独立,且P (B )=0.5,P(A-B)=0.3,求P (B-A )=( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4(8)设123,,X X X 为来自正态总体2(0,)N σ的简单随机样本,则统计量1232X X X -服从的分布为(A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设某商品的需求函数为402Q P =-(P 为商品价格),则该商品的边际收益为_________。
2004年考研数学三真题及解析
2004年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim=--→b x ae x xx ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2f u v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21nY Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ] (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3).(C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin1(lim 222xx xx -→.(16) (本题满分8分)求⎰⎰++Dd y yx σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xaxadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=ba badt t g dt t f )()(.证明:⎰⎰≤ba ba dx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR -=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x xxx的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, Tb αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111bb b bb b A . (Ⅰ) 求A 的特征值和特征向量; (Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y XZ +=的概率分布.(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim=--→b x ae x xx ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim=--→b x ae x xx ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e xx ,得a = 1. 极限化为51)(cos lim)(cos sin lim=-=-=--→→b b x xx b x ae x x xx ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A ,(1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f '-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u +,所以,)(1v g uf =∂∂,)()(22v g v g vu f '-=∂∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xex.【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫⎝⎛--=211121112A , 由初等变换得 ⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫⎝⎛---→000330211330330211A , 从而 2)(=A r , 即二次型的秩为2.【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++=2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1.【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于21λDX =, X 的分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=. 【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n XX X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案. 【详解】因为 2121])(11[1σX X n E n i i=--∑=, 2122])(11[2σY Y n E n j j=--∑=,故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ] 【分析】如f (x )在(a , b )内连续,且极限)(limx f ax +→与)(limx f bx -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim-=-→x f x ,42sin )(lim=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x ,所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(limx f ax +→与)(limx f bx -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 00u f xf xg u x x ∞→→→=== a (令x u 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性.【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性. (3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散.(4)是错误的,如令nv nu n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f ax ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r 根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查. (14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C).【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分) 求)cos sin1(lim 222xx xx -→.【分析】先通分化为“0”型极限,再利用等价无穷小与罗必达法则求解即可.【详解】xx xx x xx xx x 222220222sincos sinlim)cos sin1(lim -=-→→=346)4(21lim 64cos 1lim44sin 212lim2sin 41lim22230422==-=-=-→→→→xx xx xxx xxx x x x x .【评注】本题属于求未定式极限的基本题型,对于“00”型极限,应充分利用等价无穷小替换来简化计算.(16) (本题满分8分) 求⎰⎰++Dd y yx σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr rd .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x .【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xaxadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=ba badt t g dt t f )()(.证明:⎰⎰≤ba ba dx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=x a dtt F x G )()(,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==babab ababadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ≥ 0,x ∈ [a , b ],故有0)(≤-⎰ba dxx G ,即0)(≤⎰ba dx x xF .因此 ⎰⎰≤ba badx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR -=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dPdQ Q P E d =;由Q = PQ 及dPdQ Q P E d =可推导)1(d E Q dPdR -=.【详解】(I) PP dPdQ Q P E d -==20.(II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dPdQ PQ dPdR -=+=+=.又由120=-=PP E d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR ,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQ Q P dPdQ Q P E d -==.利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdR d )1(-=,p E dQdR d)11(-=,d E EpER -=1(收益对价格的弹性).(19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x xxx的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式. 【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864xxxx S ,易见 S (0) = 0,+⋅⋅+⋅+='642422)(753xxxx S)642422(642+⋅⋅+⋅+=xxxx)](2[2x S xx +=.因此S (x )是初值问题0)0(,23=+='y xxy y 的解.(II) 方程23xxy y +='的通解为]2[3C dx e x e y xdx xdx+⎰⎰=⎰-22212xCex+--=,由初始条件y(0) = 0,得C = 1.故12222-+-=xexy ,因此和函数12)(222-+-=xexx S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, Tb αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(ba ab a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111ba b a . (Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→101001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111),(ba b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→01101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:ak 111-=, ak 12=, 03=k .此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αa αa β+-=.(Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111),(ba b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→00111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为ak 111-=, c ak +=12, c k =3, 其中c 为任意常数.β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαaβ+++-=.【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111bb b bb b A . (Ⅰ) 求A 的特征值和特征向量; (Ⅱ) 求可逆矩阵P , 使得AP P1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ)1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b n bb b bn bbb b n A E λ)1()1()1(1→⎪⎪⎪⎪⎪⎭⎫⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---------0000111111111111n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000001111n nn n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---000110010101001解得T ξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 T k ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b bb b b bb b bA E λ2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111得基础解系为Tξ)0,,0,1,1(2 -=,Tξ)0,,1,0,1(3 -=,Tn ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,nλλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ)1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫⎝⎛---+=-b bb n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P=-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y XZ +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P ,则有 121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P ,( 或 32121611211}0,0{=---===Y X P ),即),(Y X 的概率分布为:Y X0 1 0 132 12161121(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E ,41)(2==A P EX,61)(2==B P EY,163)(22=-=EX EX DX ,165)(22=-=EY EYDY ,241)(),(=-=EXEY XY E Y X Cov , 所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY .方法二: X, Y 的概率分布分别为X 0 1 Y 0 1 P 4341 P 65 61则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ(Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P ,41}1,0{}0,1{}1{===+====Y X P Y X P Z P ,121}1,1{}2{=====Y X P Z P ,即Z 的概率分布为:Z 0 1 2 P32 41121【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数.【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx xβx dx βx xf EX β令X ββ=-1, 解得 1-=X X β,所以, 参数β的矩估计量为 1-=X X β.(Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βn ni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得∑=+-=ni i x ββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln)]([ln ,令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ix nβ1ln, 于是β的最大似然估计量为 ∑==ni ix nβ1lnˆ. ( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i n nn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为 },,,min{ˆ21n x x x α=, 于是α的最大似然估计量为},,,min{ˆ21n X X X α=.。
(精品)考研数学三真题及解析
2004年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2fu v ∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 .(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X Λ和 2,,21n Y Y Y Λ分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ] (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3).(C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的 平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x Λ的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111ΛM M M ΛΛb b b bb b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21Λ为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x x b x a e x x x x ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X Λ和 2,,21n Y Y Y Λ分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散. (4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查. (14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→xx x x x x x x x x x x x x .【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算. (16) (本题满分8分) 求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab ababa b a dx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ≥ 0,x ∈ [a , b ],故有0)(≤-⎰badx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdRd )1(-=,p E dQ dR d )11(-=, d E EpER-=1(收益对价格的弹性). (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x Λ的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) Λ+⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,Λ+⋅⋅+⋅+='642422)(753x x x x S)642422(642Λ+⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x e y xdx xdx +⎰⎰=⎰- 22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:ak 111-=, a k 12=, 03=k .此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=. (Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数. β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=. 【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111ΛM M M ΛΛb b b bb b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ) ο1当0≠b 时,111||---------=-λbbb λb b b λA E λΛM M M M ΛΛ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12Λ. 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b n b b b b n bb b bn A E λ)1()1()1(1ΛM M M ΛΛ→⎪⎪⎪⎪⎪⎭⎫⎝⎛---------)1(111)1(111)1(n n n ΛM M M ΛΛ →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------------0000111111111111ΛΛM M M M ΛΛn n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---------0000111111111111ΛΛM M MM ΛΛn n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111ΛΛM M M M ΛΛn n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001ΛΛM M M MΛΛ解得Tξ)1,,1,1,1(1Λ=,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1Λ= (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b b b b b b b b b A E λΛM M M ΛΛ2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111ΛM M M ΛΛ 得基础解系为T ξ)0,,0,1,1(2Λ-=,T ξ)0,,1,0,1(3Λ-=,T n ξ)1,,0,0,1(,-=ΛΛ.故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++Λ3322 (n k k k ,,,32Λ是不全为零的常数).ο2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-ΛM M M ΛΛ,特征值为11===n λλΛ,任意非零列向量均为特征向量.(Ⅱ) ο1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP Λ=,则⎪⎪⎪⎪⎪⎭⎫⎝⎛---+=-b b b n AP P 11)1(11Oο2 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:YX0 10 132121 61121(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:Z 0 1 2P3241 121 【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21Λ为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数,从而先由分布函数求导得密度函数.【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β, 所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21Λ, 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βnni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他ΛΛ当),,2,1(1n i x i Λ=>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21Λ, 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i nnn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他ΛΛ当),,2,1(n i αx i Λ=>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m in{ˆ21n x x x αΛ=, 于是α的最大似然估计量为},,,m in{ˆ21n X X X αΛ=.2005年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____. (5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1Λ中任取一个数,记为Y , 则}2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D⎰⎰+=221cos,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0Λ=>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ ](10)设x x x x f cos sin )(+=,下列命题中正确的是(A) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ ](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ](12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D) 3. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ](14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0x ex xx --+-→ (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222y g y x g x ∂∂-∂∂ (17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x). (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B C C AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T1--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z ( III ) }.2121{≤≤X Y P (23)(本题满分13分)设)2(,,,21>n X X X n Λ为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-=求:(I ) i Y 的方差n i DY i ,,2,1,Λ=; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2005年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = 2 . 【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 12sinlim 2+∞→x x x x =.212lim 2=+∞→x xx x (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.(3)设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(dzdy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可. 【详解】)1ln(y xe e xzy x y x +++=∂∂++,yx xe y z y x +++=∂∂+11, 于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a= 21. 【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a. 【详解】 由题设,有=1234123121112a a a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1Λ中任取一个数,记为Y , 则}2{=Y P =4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ (6)设二维随机变量(X,Y) 的概率分布为X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= 0.4 , b= 0.1 .【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ B ]【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】 12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为x=1,x=2,且a f a f -=-=4)2(,5)1(,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B). (8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ A ]【分析】 关键在于比较22y x +、22y x +与222)(y x +在区域}1),{(22≤+=y x y x D 上的大小.【详解】 在区域}1),{(22≤+=y x y x D 上,有1022≤+≤y x ,从而有2212y x +≥>π≥22y x +≥0)(222≥+y x由于cosx 在)2,0(π 上为单调减函数,于是22cos 0y x +≤)cos(22y x +≤≤222)cos(y x +因此<+⎰⎰σd y x D22cos <+⎰⎰σd y x D)cos(22σd y x D⎰⎰+222)cos(,故应选(A). (9)设,,2,1,0Λ=>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是 (A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ D ]【分析】 可通过反例用排除法找到正确答案.【详解】 取n a n 1=,则∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,但∑∞=-112n n a与∑∞=12n na均发散,排除(A),(B)选项,且)(1212∑∞=-+n n n a a发散,进一步排除(C), 故应选(D).事实上,级数)(1212∑∞=--n n n a a的部分和数列极限存在.(10)设x x x x f cos sin )(+=,下列命题中正确的是(B) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ B ]【分析】 先求出)(),(x f x f ''',再用取极值的充分条件判断即可.【详解】 x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又 x x x x f sin cos )(-='',且02)2(,01)0(<-=''>=''ππf f ,故f(0)是极小值,)2(πf 是极大值,应选(B).(11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界.(C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ C ] 【分析】 通过反例用排除法找到正确答案即可. 【详解】 设f(x)=x 1, 则f(x)及21)(xx f -='均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).(12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D) 3. [ A ]【分析】 题设与A 的伴随矩阵有关,一般联想到用行列展开定理和相应公式:.**E A A A AA ==.【详解】 由T A A =*及E A A A AA ==**,有3,2,1,,==j i A a ij ij ,其中ij A 为ij a 的代数余子式,且032=⇒=⇒=A A A E A AA T或1=A而03211131312121111≠=++=a A a A a A a A ,于是1=A ,且.3311=a 故正确选项为(A). (13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ D ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(D).(14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ C ]【分析】 总体方差未知,求期望的区间估计,用统计量:).1(~--n t ns x μ【详解】 由正态总体抽样分布的性质知,)1(~--n t ns x μ, 故μ的置信度为0.90的置信区间是))1(1),1(1(22-+--n t n x n t nx αα,即)).15(4120),15(4120(05.005.0t t +-故应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+ =2201lim x e x x x x -→+-+ =x e x x x 221lim 0-→-+=.2322lim0=+-→x x e (16)(本题满分8分)。
2014考研数学三真题及答案
2014年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设lim ,n a a =且0,a ≠则当n 充分大时有( )(A )2n a a >(B )2n a a <(C )1n a a n >-(D )1n a a n<+(2)下列曲线有渐近线的是( ) (A )sin y x x =+ (B )2sin y x x =+(C )1siny x x =+ (D )21sin y x x=+(3)设23(x)a P bx cx dx =+++ ,当0x → 时,若(x)tanx P - 是比x 3高阶的无穷小,则下列试题中错误的是 (A )0a = (B )1b = (C )0c = (D )16d =(4)设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当'()0f x ≥时,()()f x g x ≥ (B )当'()0f x ≥时,()()f x g x ≤ (C )当'()0f x ≤时,()()f x g x ≥(D )当'()0f x ≤时,()()f x g x ≥(5)行列式00000000a b abc d c d= (A )2()ad bc - (B )2()ad bc -- (C )2222a d b c - (D )2222b c a d -(6)设123,,a a a 均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件(D )既非充分也非必要条件(7)设随机事件A 与B 相互独立,且P (B )=0.5,P(A-B)=0.3,求P (B-A )=( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4(8)设123,,X X X 为来自正态总体2(0,)N σ服从的分布为(A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设某商品的需求函数为402Q P =-(P 为商品价格),则该商品的边际收益为_________。
2004考研数学三真题及答案解析_最新修正版
2004年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2fu v ∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 .(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ] (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3).(C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的 平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x x b x a e x x x x ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散. (4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查. (14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→xx x x x x x x x x x x x x .【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算. (16) (本题满分8分) 求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab ababa b a dx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ≥ 0,x ∈ [a , b ],故有0)(≤-⎰badx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdRd )1(-=,p E dQ dR d )11(-=, d E EpER-=1(收益对价格的弹性). (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x e y xdx xdx +⎰⎰=⎰- 22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:ak 111-=, a k 12=, 03=k .此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=. (Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数. β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=. 【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ)1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得Tξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ) 1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:YX0 10 132121 61121(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:Z 0 1 2P3241 121 【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数,从而先由分布函数求导得密度函数.【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β, 所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βnni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i nnn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m in{ˆ21n x x x α=, 于是α的最大似然估计量为},,,m in{ˆ21n X X X α=.。
2004考研数学三真题
2004考研数学三真题2004年考研数学三真题一、选择题1. 设函数$f(x)=\frac{3}{2}x^2+\ln(x+1)-6\cos x$。
下列说法中正确的是()。
A. 函数$f(x)$在$x=0$处取得极值。
B. 函数$f(x)$在$(0,+\infty)$上是增函数。
C. 函数$f(x)$在$x=\frac{\pi}{2}$处取得极小值。
D. 函数$f(x)$在$(-\infty,0)$上是减函数。
2. 设$\displaystyle{\lim_{x\to 0}\frac{e^x\sin x + a\sin^2x}{\tan2x}}=1$,则$a$的值为()。
A. $-4$B. $-\frac{1}{4}$C. $4$D. $\frac{1}{4}$3. 设函数$f(x)=\frac{1}{x}-\frac{1}{e^x-1}$,则$f(x)$的极限$\displaystyle{\lim_{x\to 0}f(x)}$的值为()。
A. $0$B. $1$C. $-1$D. 不存在4. 函数$f(x)$在$\mathbb{R}$上可导,且$f(0)=0$,$f'(0)=1$。
若$f(x)+f'(x)\geq 0$,则$x$的取值范围是()。
A. $x\in(-\infty,0]$B. $x\in[0,+\infty)$C. $x\in(-\infty,0)\cup[0,+\infty)$D. $x=0$5. 函数$f(x)=\left(1+\sqrt{1+\sin^2x}\right)^{\cot^2x}$的定义域为()。
A. $\{x\in\mathbb{R}:x\neq 2k\pi,k\in\mathbb{Z}\}$B. $\{x\in\mathbb{R}:-\frac{\pi}{2}<x<\frac{\pi}{2}\}$C. $\{x\in\mathbb{R}:x\neq 2k\pi+\frac{\pi}{2},k\in\mathbb{Z}\}$D. $\{x\in\mathbb{R}:x\neq k\pi,k\in\mathbb{Z}\}$二、填空题1. 已知函数$f(x)=|x-1|-3|x+2|-|x|\cos^2\left(\frac{\pi x}{2}\right)$,则$f(x)$的最小值是\blank{}。
考研数学三(微积分)历年真题试卷汇编14(题后含答案及解析)
考研数学三(微积分)历年真题试卷汇编14(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(1998年)设函数f(x)=讨论函数f(x)的间断点,其结论为( )A.不存在间断点。
B.存在间断点x=1。
C.存在间断点x=0。
D.存在间断点x=一1。
正确答案:B解析:现求f(x)的(分段)表达式:当|x|>1时,再讨论函数f(x)的性质:在x=一1处,知识模块:微积分2.(2004年)设f(x)在(一∞,+∞)内有定义,且=a,g(x)=则( )A.x=0必是g(x)的第一类间断点。
B.x=0必是g(x)的第二类间断点。
C.x=0必是g(x)的连续点。
D.g(x)在点x=0处的连续性与a的取值有关。
正确答案:D解析:因为又g(0)=0,故当a=0时,即g(x)在点x=0处连续;当a≠0时,即x=0是g(x)的第一类间断点。
因此,g(x)在点x=0处的连续性与a的取值有关,故选D。
知识模块:微积分3.(2008年)设函数f(x)在区间[一1,1]上连续,则x=0是函数g(x)=的( ) A.跳跃间断点。
B.可去间断点。
C.无穷间断点。
D.振荡间断点。
正确答案:B解析:由题意可知,所以x=0是函数g(x)的可去间断点。
知识模块:微积分4.(2009年)函数f(x)=的可去间断点的个数为( )A.1。
B.2。
C.3。
D.无穷多个。
正确答案:C解析:由于f(x)=则当x取任何整数时,f(x)均无意义。
故f(x)的间断点有无穷多个,但可去间断点为极限存在的点,故应是x—x3=0的解,x=0,±1。
故可去间断点为3个,即0,±1。
知识模块:微积分5.(2013年)函数f(x)=的可去间断点的个数为( )A.0。
B.1。
C.2。
D.3。
正确答案:C解析:根据已知所以x=0是可去间断点。
所以x=1是可去间断点。
所以x=一1是第二类间断点。
考研数三真题及解析
n 1 n 2 2、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有 一项符合题目要求,把所选项前的字母填在题后的括号内2004 年全国硕士研究生入学统 考试数学 、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上 ⑴若 lim 罗 x (cosx b) 5,则 a = x 0e a (2)函数 f(u,v)由关系式 f[xg(y),y] x g(y)确定,其中函数g(y)可微,且g(y) 0,则 ⑶设f (x) 2 xe x , 1 ,x ⑷二次型 f(X 1,X 2,X 3)(X 1X 2)2 (X 2 X 3)2 (X 3 X 1)2 的秩为 ⑸ 设随机变量X 服从参数为入的指数分布,则P{X . DX} ⑹ 设总体X 服从正态分布N(❻o 2),总体Y 服从正态分布N(陆/), X 1,X 2, X n 1和Y,Y 2, Y n 2分别是来自总体X 和丫的简单随机样本,则n 1 n 2(X ii 1X)(Y j j 1Y)⑺函数f(x) |x|sin(x 2)2在下列哪个区间内有界()x(x 1)(x 2)2(A) (?1 , 0). (B) (0,1). (C) (1 , 2). (D) (2,3).1(8) 设f (x)在(,)内有定义,且lim f(x) a , g(x) f(:),x 0,则()x0 ,x 0(A) x 0必是g(x)的第一类间断点.(B) x 0必是g(x)的第二类间断点.(C) x 0必是g(x)的连续点.(D) g(x)在点x 0处的连续性与a的取值有关.(9) 设f (x) x(1 x)|,则()(A) x 0是f (x)的极值点,但(0, 0)不是曲线y f (x)的拐点.(B) x 0不是f (x)的极值点,但(0, 0)是曲线y f (x)的拐点.(C) x 0是f(x)的极值点,且(0, 0)是曲线y f(x)的拐点.(D) x 0不是f(x)的极值点,(0,0)也不是曲线y f(x)的拐点.(10) 设有下列命题:①若(u2n 1 u2n)收敛,则u n收敛.n 1 n 1②若u n收敛,则u n 1000收敛•n 1 n 1③若lim 1,则u n发散•n u n n 1④若(u n v n)收敛,则u n, v n都收敛•n 1 n 1 n 1则以下命题中正确的是()(A)①②(B)②③(C)③④(D)①④(11) 设f(x)在[a,b]上连续,且f(a) 0, f (b) 0 ,贝U下列结论中错误的是()(A) 至少存在一点X o (a,b),使得f (x0) > f (a).(B) 至少存在一点x0(a,b),使得 f (x0) > f (b).(C) 至少存在一点x0(a,b),使得f (勺)0.(D) 至少存在一点x0(a,b),使得f (x0) = 0.(12) 设n阶矩阵A与B等价,则必有()(A)当| A| a(a 0)时,|B| a. (B) 当| A| a(a 0)时,|B| a.(C)当| A| 0 时,|B| 0. (D) 当| A| 0 时,|B| 0.(13) 设n阶矩阵A的伴随矩阵A* 0,若&飞,&, &是非齐次线性方程组Ax b的互不相等的解,则对应的齐次线性方程组Ax 0的基础解系()(A)不存在.(B)仅含一个非零解向量(C)含有两个线性无关的解向量•(D) 含有三个线性无关的解向量 (14)设随机变量X 服从正态分布N(0,1),对给定的a(0,1),数u °满足P{X u a }a若P{| X| X} a ,则X 等于()(A) u a . (B) u a . (C) U i a . (D) U l a . 1 -2 2 2 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤• (15)(本题满分8分) . 2 1 COS X\ 求 lim (一22 ).x 0 sin x x (16)(本题满分8分) 求(.x 2 y 2 y)d ,其中D 是由圆x 2 y 2 4和D (x 1)2 y 21所围成的平面区域(如图).(17)(本题满分8分)设f ( x) , g(x)在[a , b ]上连续,且满足xg(t)dt , x ? [ a , b), a f(t)dtb g(t)dt.ab证明:xf(x)dxa baxg(x)dx.(18)(本题满分9分)设某商品的需求函数为Q 100 5P,其中价格P (0,20) , Q为需求量.(I) 求需求量对价格的弹性E d ( E d > 0);(II) 推导dR Q(1 E d)(其中R为收益),并用弹性E d说明价格在何范围内变化时, dP降低价格反而使收益增加•(19) (本题满分9分)设级数的和函数为S(x).求:(I) S(x)所满足的一阶微分方程;(II)(20) (本题满分13分)设a (1,2,0)T, a (1, a 2, 3a)T,试讨论当a,b为何值时,(I) B不能由a, a, a线性表示;S(x)的表达式.a ( 1,b 2, a 2b)T,卩(1,3, 3)T,(II) 卩可由a, a, a唯一地线性表示,并求出表示式;(III) 卩可由a, a, a线性表示,但表示式不唯一,并求出表示式.(21) (本题满分13分)设n阶矩阵1b bb1bAb b1(I) 求A的特征值和特征向量;(n )求可逆矩阵P,使得P 1AP为对角矩阵•(22) (本题满分13分)设A,B为两个随机事件,且P(A)丄,P(B | A) - , P(A| B)-,令4 3 2求(I) 二维随机变量(X,Y)的概率分布;(II) X与Y的相关系数P XY;(III) Z X2Y2的概率分布.(23) (本题满分13分)设随机变量X的分布函数为其中参数a 0, B 1 .设X1,X2, ,X n为来自总体X的简单随机样本,(I) 当a 1时,求未知参数B的矩估计量;(II) 当a 1时,求未知参数B的最大似然估计量;把a = 1代入,再求b ,bcosx(5)(e x 1) sin x两端同时对x 0取极限,得(III)当B 2时,求未知参数a 的最大似然估计量•2004年全国硕士研究生入学统一考试数学三试题解析一、填空题⑴【答案】a 1,b 4【详解】本题属于已知极限求参数的反问题方法1:根据结论:叽辭A ,⑴若…,则f(x) 0 ;2)若f(X )。
2004年考研数学三真题
⎰1 -2 2004 年全国硕士研究生入学统一考试经济数学三试题详解及评析一、 填空题(1) 若 lim sin x(cos x - b ) = 5 ,则 a =,b = .x →0 e x - a【答】1, - 4【详解】因为 lim sin x x(cos x - b ) = 5 ,且 lim sin x ⋅ (cos x - b ) = 0 ,所以 x →0 e - ax →0lim(e x - a ) = 0 ,得 a = 1. 极限化为x →0lim sin x x(cos x - b ) = lim x (cos x - b ) = 1 - b = 5 , x →0 e - ax →0 x 得 b = -4.因此,a = 1,b = -4.(2) 设函数 f (u , v )由关系式 f [xg (y ) , y ] = x + g (y )确定,其中函数 g (y )可微,且 g (y ) ≠ 0, ∂2 f 则∂ u ∂ v= .g '(v )【答】- g 2 (v )【详解】令 u = xg (y ),v = y ,则 f (u , v ) =ug (v )+ g (v ) ,∂ f 1 ∂2 fg '(v ) 所以, ∂ u = g (v ) , ∂ u ∂ v = - g 2 (v ) .♣xe x 2 , - 1≤ x < 1♠ (3) 设 f (x ) = ♦ ♠- 1 ♥ 2 , x ≥ 122 , 则 2f (x -1)dx = . 2 【答】- 122 1 1【详解】令 x - 1 = t , ⎰1 f (x - 1)dx = ⎰- 1 f (t )dt = ⎰-1 f (x )dt2221x 211 1=⎰21 xe2dx + ⎰1 (-1)dx = 0 + (- 2) = - 2.1 12 0 11 1 32 (4) 二次型 f (x 1, x 2 , x3 ) = (x 1 + x 2 )2 + (x - x 3 )2 + (x + x )2的秩为 .【答】2【详解 1】因为 f (x 1, x 2, x 3) = (x 1+ x 2)2+ (x- x 3)2+ (x+ x )2= 2x 2 + 2x 2 + 2x 2 + 2x x+ 2x x - 2x x于是二次型的矩阵为122 A = 131 21 32 31 12 - 1 ,- 1 1 - 1 2 1 - 1 2 由初等变换得A → 0 3 - 3 → 0 3 - 3 ,- 3 0 0从而r ( A ) = 2 , 即二次型的秩为 2.【详解 2】因为 f (x 1, x 2 , x 3 ) = (x 1 + x 2 )2+ (x - x 3 )2+ (x + x )2= 2x 2 + 2x 2 + 2x 2 + 2x x + 2x x - 2x x1231 21 32 3= 2(x 1 + 1 x 2 2+ 1 x 2 3 )2 + 3 (x 2 2 - x 3 ) = 2 y 2 + 3y 2 ,12 21 1其中y 1 = x 1 + 2 x 2 + 2x 3 , y 2 = x 2 - x 3 .(5) 设随机变量 X 服从参数为 λ 的指数分布, 则 P {X > 1 DX } = .【答】e1【详解】 由于 DX =, X 的分布函数为λ2♣1 - e - λx , F (x ) = ♦x > 0, ♥ 0,故x ≤ 0. P {X > DX } = 1 - P {X ≤DX } = 1 - P {X ≤ 1} = 1 - F λ ( 1 ) λ = 1. e(6)设总体 X 服从正态分布 N ( µ , σ 2 ) , 总体Y 服从正态分布 N( µ , σ 2) ,X 1, X 2 ,… X n 和 Y 1,Y 2 ,…Y n 分别是来自总体 X 和Y 的简单随机样本, 则1 023 2 3 2 3 221 ϒ n 12 n 2 2 / '∑( X i - X ) +∑(Y j - Y ) ∞ E ' i =1 j =1 ∞ = .' n + n - 2∞【答】 σ2' 1 2'≤1n 12∞∞ƒn222 2【详解】 因为 E [ n 1 ∑( X i - X ) i =1 ] = σ , E [ n 2 ∑(Y j - Y ) j =1] = σ ,故应填 σ 2.二、选择题| x | sin(x - 2)(7)函数 f (x ) = x (x - 1)(x - 2)2在下列哪个区间内有界.(A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3).【 】【答】[ A ]【详解】当 x ≠ 0 , 1 , 2 时,f (x )连续,而lim x →-1+ f (x ) = - sin 3 18, lim x →0-f (x ) = - sin 2 ,4lim f (x ) = sin 2 ,lim f (x ) = ∞ , lim f (x ) = ∞ , x →0+4 x →1 x →2所以,函数 f (x )在(-1 , 0)内有界,故选(A). (8)设 f (x )在(-∞ , +∞)内有定义,且 lim x →∞f (x ) = a ,♠♣ 1g (x ) = ♦ f ( x ) , x ≠ 0 ,则♥♠ 0 , x = 0 (A) x = 0 必是 g (x )的第一类间断点. (B) x = 0 必是 g (x )的第二类间断点.(C ) x = 0 必是 g (x )的连续点.(D ) g (x )在点 x = 0 处的连续性与 a 的取值有关.【 】【答】 (D )1 1【详解】 因为 lim g (x ) = lim f ( ) = lim f (u ) = a (令u = ),又 g (0) = 0,所以,x →0 x →0 x u →∞x当 a = 0 时, lim g (x ) = g (0) ,即 g (x )在点 x = 0 处连续,当 a ≠ 0 时,x →0lim g (x ) ≠ g (0) ,即 x = 0 是 g (x )的第一类间断点,因此,g (x )在点 x = 0 处的连续性x →0 - 1 - 1与 a 的取值有关,故选(D). (9) 设 f (x ) = |x (1 - x )|,则(A) x = 0 是 f (x )的极值点,但(0 , 0)不是曲线 y = f (x )的拐点. (B) x = 0 不是 f (x )的极值点,但(0 , 0)是曲线 y = f (x )的拐点. (C) x = 0 是 f (x )的极值点,且(0 , 0)是曲线 y = f (x )的拐点. (D) x = 0 不是 f (x )的极值点,(0 , 0)也不是曲线 y = f (x )的拐点.【 】【答】C )【详解】设 0 < δ < 1,当 x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而 f (0) = 0,所以 x = 0 是 f (x )的极小值点.显然,x = 0 是 f (x )的不可导点. 当 x ∈ (-δ , 0)时,f (x ) = -x (1 - x ), f ' (x ) = 2 > 0 , 当 x ∈ (0 , δ)时,f (x ) = x (1 - x ), f ' (x ) = -2 < 0 ,所以(0 , 0)是曲线 y = f (x )的拐点. 故选(C).(10) 设有下列命题:∞∞ (1) 若∑(u 2n -1 + u 2n ) 收敛,则∑u n 收敛.n =1 ∞n =1∞ (2) 若∑u n 收敛,则∑u n +1000 收敛.n =1u n +1n =1∞(3) 若 limn →∞ u n∞> 1,则∑u n 发散.n =1∞ ∞ (4) 若∑(u n + v n ) 收敛,则∑u n , ∑v n 都收敛.n =1则以上命题中正确的是 n =1n =1(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4).【 】【答】 (D )∞∞ 【详解】 (1)是错误的,如令u n = (-1)n ,显然,∑u n 分散,而∑(u 2n -1 + u 2n ) 收敛.n =1n =1(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由 lim n →∞ un +1 u n ∞> 1可得到u n 不趋向于零(n → ∞),所以∑u n发散.n =11 1∞ ∞(4)是错误的,如令u n = n , v n = - n ,显然, ∑u n , ∑v n 都发散,而n =1 n =1∈ ∞∑(u n + v n ) 收敛. 故选(B). n =1(11) 设 f '(x ) 在[a , b]上连续,且 f '(a ) > 0,f '(b ) < 0 ,则下列结论中错误的是(A) 至少存在一点 x 0 ∈ (a ,b ) ,使得 f (x 0 ) > f (a ). (B) 至少存在一点 x 0 ∈ (a ,b ) ,使得 f (x 0 ) > f (b ). (C) 至少存在一点 x 0 ∈ (a ,b ) ,使得 f '(x 0 ) = 0 . (D) 至少存在一点 x 0 ∈ (a ,b ) ,使得 f (x 0 ) = 0.【答】(D)【详解】首先,由已知 f '(x ) 在[a , b]上连续,且 f '(a ) > 0,至少存在一点 x 0 ∈ (a ,b ) ,使得 f '(x 0 ) = 0 ;【 】f '(b ) < 0 ,则由介值定理,另外, f '(a ) =limx →a +f (x ) - f (a )x - a> 0 ,由极限的保号性,至少存在一点 x 0 (a ,b )使得f (x 0 ) - f (a ) > 0 ,即 f (x 0 ) > x 0 - af (a ) . 同理,至少存在一点 x 0 ∈ (a ,b )使得 f (x 0 ) > f (b ) . 所以,(A) (B) (C)都正确,故选(D).(12)设n 阶矩阵 A 与 B 等价, 则必有 (A) 当| A |= a (a ≠ 0) 时, | B |= a . (B) 当| A |= a (a ≠ 0) 时, | B |= -a .(C) 当| A |≠ 0 时, | B |= 0 .(D) 当| A |= 0 时, | B |= 0 .【答】 (D )【详解】因为当| A |= 0 时, 【 】r ( A ) < n , 又 A 与 B 等价, 故r (B ) < n , 即| B |= 0 , 故选(D).(13)设n 阶矩阵 A 的伴随矩阵 A *≠ 0, 若ξ1, ξ2 , ξ3 , ξ 4 是非齐次线性方程组 Ax = b 的 互不相等的解,则对应的齐次线性方程组 Ax = 0 的基础解系 (A) 不存在.(B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.【 】【答】 (B )【详解】 因为基础解系含向量的个数= n - r ( A ) , 而且x 2 + y 2 ♥♦1♣n , r ( A *) = ♠♠0, r ( A ) = n , r ( A ) = n - 1,r ( A ) < n - 1. 根据已知条件 A *≠ 0, 于是r ( A ) 等于n 或n - 1. 又 Ax = b 有互不相等的解,即解不惟一, 故r ( A ) = n -1 . 从而基础解系仅含一个解向量, 即选(B).(14)设随机变量 X 服从正态分布 N (0,1) , 对给定的α ∈ (0,1) , 数u α 满足 P {X若 P {| X |< x } = α , 则 x 等于> u α } = α ,(A) u α .(B) 2 u α .(C) 1- 2u 1-α .(D) 2u 1-α .【 】【答】 (C )【详解】 由 P {| X |< x } = α , 以及标准正态分布密度曲线的对称性可得P {X > x } =1 - α . 故正确答案为(C).2三、解答题(15) 求 lim ( x →01sin 2 xcos 2 x x2 ) .1cos 2 x x 2 - sin 2 x cos 2 x【详解】 lim ( x →0 sin 2 x -) = lim x 2 x →0x 2 s in 2 x x 2 - 1 sin 2 2x 2x - 1 sin 4x= lim 4 = lim 2 = lim 1- cos 4x .x →0x 41(4x )2x →04x 3x →06x 2= lim 2 = 4x →0 6x 2 3(16)(本题满分 8 分) 求⎰⎰(D平面区域(如图).+ y )d σ ,其中 D 是由圆 x 2 + y 2 = 4 和(x + 1)2 + y 2 = 1 所围成的【详解】令 D 1 = {(x , y ) | x 2 + y 2 ≤ 4}, D 2 = {(x , y ) | (x + 1)2 + y 2 ≤ 1} ,由对称性,⎰⎰ yd σ = 0 .D-b- ⎰ b⎰⎰ x 2 + y 2 d σ = ⎰⎰DD 1x 2 + y 2 d σ - ⎰⎰ D 2x 2 + y 2d σ2π2 23π-2cos θ 2 = ⎰0 d θ ⎰0 r dr - ⎰π2 d θ ⎰0r dr .2= 16π - 32 = 16 (3π - 2) 3 9 9所以, ⎰⎰( D+ y )d σ = 16(3π - 2). 9(17) (本题满分 8 分)设 f (x ) , g (x )在[a , b ]上连续,且满足x xbb⎰a f (t )dt ≥ ⎰a g (t )dt ,x ∈ [a , b ), ⎰a f (t )dt = ⎰a g (t )dt .bb证明:⎰a xf (x )dx ≤ ⎰a xg (x )dx .x【详解】令 F (x ) = f (x ) - g (x ), G (x ) =⎰a F (t )dt ,由题设 G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0, G '(x ) = F (x ) .从而⎰ b xF (x )dx = ⎰ b xdG (x ) = xG (x ) b- ⎰b(x )dx = -⎰(x )dx ,aaaaGaG由于 G (x ) ≥ 0,x ∈ [a , b ],故有G (x )dx ≤ 0 ,a b即⎰a xF (x )dx ≤ 0 .bb因此⎰a xf (x )dx ≤ ⎰a xg (x )dx .(18) (本题满分 9 分)设某商品的需求函数为 Q = 100 - 5P ,其中价格 P ∈ (0 , 20),Q 为需求量. (I ) 求需求量对价格的弹性 E d ( E d > 0);(I )推导 dR= Q (1 - E d ) (其中 R 为收益),并用弹性 E d 说明价格在何范围内变化时,dP降低价格反而使收益增加.【详解】(I) E d == P .20 - Px 2+ y 2P dQ Q dP< + + 3 e (II) 由 R = PQ ,得dR = Q + P dQ = Q (1 +P dQ ) = Q (1 - E d ) .dPdPPQ dP又由 E d =20 - P= 1 ,得 P = 10.dR 当 10 < P < 20 时, E d > 1,于是dP0 ,故当 10 < P < 20 时,降低价格反而使收益增加.(19) (本题满分 9 分) 设级数x 4 + 2 ⋅ 4 x 6 + 2 ⋅ 4 ⋅ 6 x 82 ⋅ 4 ⋅ 6 ⋅ 8… (-∞ < x < +∞)的和函数为 S (x ). 求: (I ) S (x )所满足的一阶微分方程; (I )S (x )的表达式.【详解】(I)S (x ) =x 4 + 2 ⋅ 4 x 6 + 2 ⋅ 4 ⋅ 6 x 82 ⋅ 4 ⋅ 6 ⋅ 8+ … ,易见 S (0) = 0,S '(x ) = x 3 +2x 5 + 2 ⋅ 4x 72 ⋅ 4 ⋅ 6 …= x ( x 2 + x 4+ 2 ⋅ 4 x 6 2 ⋅ 4 ⋅ 6 + …) = x [ x 2+ S (x )] .因此 S (x )是初值问题y ' = xy + x, y (0) = 0 的解.2(II) 方程 y '= xy + x 3的通解为2y = e⎰ xdx[⎰ 2x 3 -⎰ xdx2x 2dx + C ] = - x2- 1 + Ce 2 ,由初始条件 y(0) = 0,得 C = 1.2 2x 1 2 3' ∞1 ∞ 0 0 '故 y = - 2x 2 2x 2 + e 2 - 1,因此和函数S (x ) = - + e 2- 1.22(20)(本题满分 13 分) 设α = (1,2,0)T , α = (1, α + 2,-3α)T , α = (-1,-b - 2, α + 2b )T , β = (1,3,-3)T,试讨论当a , b 为何值时,(Ⅰ) β 不能由α1, α2 , α3 线性表示;(Ⅱ) β 可由α1, α2 , α3 唯一地线性表示, 并求出表示式;(Ⅲ) β 可由α1, α2 , α3 线性表示, 但表示式不唯一, 并求出表示式.【详解】 设有数k 1, k 2 , k 3 , 使得k 1α1 + k 2α2 + k 3α3 = β .(*)记 A = (α1, α2 , α3 ) . 对矩阵( A , β) 施以初等行变换, 有ϒ1 1 - 1 1 / ϒ1 1 - 1 1/ ( A , β) = '2 a + 2 - b - 2 3 ∞ → '0 a - b 1∞ .(Ⅰ) 当a = 0 时, 有' '≤0 - 3a a + 2b ∞ - 3∞ƒ ' '≤0 0 a - b ∞ 0∞ƒϒ1 1 - 1 ( A , β) → '0 0 - b '≤0 0 0 1 /1 ∞ . - 1∞ƒ可知r ( A ) ≠ r ( A , β) . 故方程组(*)无解, β 不能由α1, α2 , α3 线性表示. (Ⅱ) 当a ≠ 0 , 且a ≠ b 时, 有ϒ1 1- 1 1/ ϒ1 - 1 / a ' ∞ '1 ∞( A , β) → '0 a - b 1∞ → '0 1 0a ∞ '≤0 0 a -b 0∞ƒ ' ∞'0 0 1 0 ∞≤' ∞ƒ r ( A ) = r ( A , β) = 3 , 方程组(*)有唯一解:k = 1 - 1, 1ak = 1 , 2 ak 3 = 0 .此时 β 可由α1, α2 , α3 唯一地线性表示, 其表示式为x1 ∞ 11 # 0 0 '1 1β = (1 - a )α1 + aα2 .(Ⅲ) 当a = b ≠ 0 时, 对矩阵( A , β) 施以初等行变换, 有ϒ1 1- 1 1/ ϒ1 - 1 / a ' ∞ ' 1 ∞ ( A , β) → '0 a - b 1∞ → '0 1 - 1a ∞ , '≤0 0 a -b 0∞ƒ '∞ '0 0 0 0 ∞≤' ∞ƒr ( A ) = r ( A , β) = 2 , 方程组(*)有无穷多解, 其全部解为k 1 = 1 - a , k 2 = a+ c ,k 3 = c , 其中c 为任意常数.β 可由α1, α2 , α3 线性表示, 但表示式不唯一, 其表示式为 1 1β = (1 - a )α1 + ( a+ c )α2 + cα3 .(21) (本题满分 13 分) 设n 阶矩阵1 b… bA = bb 1 ... b . b (1)(Ⅰ) 求 A 的特征值和特征向量;(Ⅱ) 求可逆矩阵 P , 使得 P -1AP 为对角矩阵.【详解】 (Ⅰ) 1○当b ≠ 0 时,| λE - A |==[λ - 1 - (n - 1)b ][λ - (1 - b )]n -1,得 A 的特征值为 λ1 = 1 + (n - 1)b , λ2 = … = λn = 1 -b . 对 λ1 = 1 + (n - 1)b ,# # λ - 1 - b … - b - b λ - 1 … - b# # # # - b - b … λ - 1- 0 0 12 3 n1 2 n1 0 0 0 … 0 (n - 1)b - b … - b (n - 1) - 1 … - 1 - b(n - 1)b … - b- 1 (n - 1) … - 1 λ E - A = →1 # # # # # # - b- b … (n - 1)b - 1 - 1 …(n - 1) n - 1 - 1 … - 1 - 1 1 1 … 1 1 - n - 1 n - 1 … - 1 - - 1 n - 1 … - 1 - 1→ # # # # → # # # #- 1 - 1 … n - 1 - 1 - 1 - 1 … n -1- 1 0 1 1 … 0 n … 0 … 1 1 - n 0 - n 1 0 … 0 1 … 0 0 … 0 0 - 10 1 → # # # # → # # # #0 0 … n - n 0 0 … 1 - 1 0 0 …解得ξ1 = (1,1,1,…,1) ,所以 A 的属于 λ 的全部特征向量为 Tkξ = k (1,1,1,…,1)T ( k 为任意不为零的常数).对 λ2 = 1 - b ,-b -b-b … -b …-b -b11 (1)0 0 … 0 λ = E - A = →2 # # # # # # -b -b … -b0 0 0得基础解系为ξ = (1,-1,0,…,0)T , ξ = (1,0,-1,…,0)T ,…, ξ = (1,0,0,…,-1)T . 故 A 的属于 λ2 的全部特征向量为k 2ξ 2 + k 3ξ3 +… + k n ξn ( k 2 , k 3 ,…, k n 是不全为零的常数).2○ 当b = 0 时,| λE - A |== (λ - 1)n ,特征值为 λ1 = … = λn = 1 ,任意非零列向量均为特征向量.(Ⅱ) 1○当b ≠ 0 时, A 有n 个线性无关的特征向量,令 P = (ξ , ξ ,…, ξ ) ,则 10 00 λ - 1 0 ... 0 0 λ - 1 0# 0# 0 … # λ - 1= ♦1 + (n - 1)bP -1 AP =1 - b1 - b2○ 当b = 0 时, A = E ,对任意可逆矩阵 P , 均有 P -1 AP = E .(22) (本题满分 13 分)设 A , B 为两个随机事件,且 P ( A ) = 1, 4P (B | A ) = 1, 3P ( A | B ) = 1, 令2♣1, X ♦A 发生,Y = ♣1, B 发生, ♥0, A 不发生,求(Ⅰ) 二维随机变量( X ,Y ) 的概率分布;♥0, B 不发生.(Ⅱ) X 与Y 的相关系数 ρXY ;(Ⅲ) Z = X 2 + Y 2的概率分布.【详解】 (Ⅰ) 因为 P ( AB ) = P ( A )P (B | A ) = 1 121, 于 是 P (B ) =P ( AB ) P ( A | B ) = 1 , 6 则有 P {X = 1,Y = 1} = P ( AB ) = ,12P {X= 1,Y = 0} = P ( AB ) = P ( A ) - P ( AB ) = 1, 6 P {X= 0,Y = 1} = P ( AB ) = P (B ) - P ( AB ) = 1, 12P {X= 0,Y = 0} = P ( A ⋅ B ) = 1 - P ( A ⋃ B ) = 1 -[P ( A ) + P (B ) - P ( AB )] = 2, 3( 或 P {X= 0,Y = 0} = 1 - 1 12 - 1 - 1 = 2), 6 12 3即( X ,Y ) 的概率分布为:(Ⅱ) 方法一:YX 0 12 3 1 6 11 12 1 12%15 XP3 1 1因为EX = P ( A ) = 1, EY = P (B ) =4 1, E ( XY ) =1,6 12EX 2 = P ( A ) = 1, EY 2 = P (B ) = 1,4 DX = EX 2 - (EX )2 = 3 16 6, DY = EY 2 - (EY )2 = 5,161Cov ( X ,Y ) = E ( X Y ) - EXEY = ,24所以 X 与Y 的相关系数 】Cov ( X ,Y ) 1ρXY ==DX ⋅ DY= .15 15方法二:X, Y 的概率分布分别为Y 0 1则 EX= 1 , EY = 44 41, DX = 3 6 165 ,DY= 36 15 1 P6 61, E(XY)= , 12故 Cov ( X ,Y ) = E ( XY ) - EX ⋅ EY = ,从而 24ρ XY =Cov ( X ,Y ) = 15 .15(Ⅲ) Z 的可能取值为:0,1,2 .2P {Z = 0} = P {X = 0,Y = 0} = ,31P {Z = 1} = P {X = 1,Y = 0} + P {X 1= 0,Y = 1} = ,4P {Z = 2} = P {X 即Z 的概率分布为:= 1,Y = 1} = ,12(23) (本题满分 13 分)设随机变量 X 的分布函数为♣ α βF (x , α, β) = ♠1 - ,x > α, ♦ x ♥♠ 0, x ≤ α,Z 0 1 2P23 14 1 12DX ⋅ DYβ其中参数α > 0, β > 1. 设 X 1, X 2 ,…, X n 为来自总体 X 的简单随机样本,(Ⅰ) 当α = 1 时, 求未知参数 β 的矩估计量;(Ⅱ) 当α = 1 时, 求未知参数 β 的最大似然估计量;(Ⅲ) 当 β = 2 时, 求未知参数α 的最大似然估计量. 【详解】 当α = 1 时, X 的概率密度为♠♣ β , x > 1, f (x , β) = ♦ x β +1(Ⅰ) 由于♥♠ 0, x ≤ 1,+∞+∞β βEX = ⎰-∞ xf (x ; β)dx = ⎰1x ⋅ dx = x β +1 ,β - 1β 令 β - 1= X ,解得β = X ,X - 1所以, 参数 β 的矩估计量为β = X .X - 1(Ⅱ) 对于总体 X 的样本值 x 1, x 2 ,…, x n , 似然函数为♣ β n n ♠, x > 1(i = 1,2,…, n ),L ( β) = ∏ f (x i ; α) =♦(x 1x 2… x n ) β +1 i i =1♥♠0,其他.当 x i > 1(i = 1,2,…, n ) 时, L ( β) > 0 , 取对数得ln L ( β) = n ln β - ( β + 1)∑ln x i ,i =1对 β 求导数,得d [ln L ( β)] n n=- ∑ln x i ,i =1d [ln L ( β)] = n - ∑n ln x = 0 , 解 得 β = n ,dββii =1∑ln xii =1于是 β 的最大似然估计量为n n n dβ令nβˆ =n.∑ln xii =1( Ⅲ) 当 β = 2 时, X 的概率密度为♣♠2α 2f (x , β) = ♦ x 3 ,x > α,♥♠ 0, x ≤ α,对于总体 X 的样本值 x 1, x 2 ,…, x n , 似然函数为♣ 2n α 2n n♠ , x > α(i = 1,2,…, n ), L ( β) = ∏ f (x i ; α) = ♦(x 1x 2… x n ) i =1 ♥♠ 0, 其他.当 x i > α(i = 1,2,…, n ) 时, α 越大, L (α) 越大, 即α 的最大似然估计值为αˆ = min{x 1, x 2 ,…, x n },于是α 的最大似然估计量为αˆ = min{X 1, X 2 ,…, X n } .3i。
2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考
2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考2004年全国硕士研究生入学统一考试数学(三)试卷答案和评分参考一、填空题(本题共6小题,每小题4分,满分24分.把答案填写在题中横线上.)(1)若0sin lim(cos )5xx x x b e a→-=-,则a = 1 ,b = -4 .(2)函数(,)f u v 由关系式[(),]()f xg y y x g y =+确定,其中函数()g y 可微,且()0g y ≠,则2f u v=??2()[()]g v g v '-.(3)设21,2,()21,2,x xe x f x x ?-≤-≥?则212(1)f x dx -=?12-.(4)二次型222123122313(,,)()()()f x x x x x x x x x =++-++的秩为 2 . (5)设随机变量X 服从参数为λ的指数分布,则{P X >=1e.(6)设总体X 服从正态分布21(,)N μσ,总体Y 从正态分布2 2(,)N μσ,112,,,n X X X 和212,,,n Y Y Y 分别是来自总体X 和Y 的简单随机样本,则12221112()()2n n i j i j X X Y Y E n n ==??-+-??+-∑∑= 2σ . 二、选择题(本题共8小题,每小题4分,满分32分,在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后面的括号内.)(7)函数2sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间内有界.(A)(1,0)-. (B)(0,1). (C)(1,2). (D)(2,3). 【 A 】(8)设()f x 在(,)-∞+∞内有定义,且lim ()x f x a →+∞=,1(),0,()0,0,f xg x xx ?≠?=??=?则(A)0x =必是()g x 的第一类间断点. (B )0x =必是()g x 的第二类间断点. (C )0x =必是()g x 的连续点.(D )()g x 在点0x =处的连续性与a 的取值有关. 【 D 】(9)设()(1),f x x x =-则(A)0x =是()f x 的极值点,但(0,0)不是曲线()y f x =的拐点. (B)0x =不是()f x 的极值点,但(0,0)是曲线()y f x =的拐点. (C)0x =是()f x 的极值点,且(0,0)是曲线()y f x =的拐点.(D)0x =不是()f x 的极值点,(0,0)也不是曲线()y f x =的拐点. 【 C 】(10)设有以下命题:①若()2121n n n u u ∞-=+∑收敛,则1n n u ∞=∑收敛.②若1n n u ∞=∑收敛,则10001n n u ∞+=∑收敛.③若1lim1n n nu u +→+∞>收敛,则1n n u ∞=∑发散.④若()1n n n u v ∞=+∑收敛,则11,n n n n u v ∞∞==∑∑都收敛. 【 B 】(11)设()f x '在[,]a b 上连续,且()0,()0f a f b ''><,则下列结论中错误..的是 (A)至少存在一点0(,)x a b ∈,使得0()()f x f a >. (B)至少存在一点0(,)x a b ∈,使得0()()f x f b >. (C)至少存在一点0(,)x a b ∈,使得0()0f x '=.(D)至少存在一点0(,)x a b ∈,使得0()0f x = 【 D 】(12)设n 阶矩阵A 与B 等价,则必有(A)当(0)A a a =≠时,B a =.(B)当(0)A a a =≠时,B a =-. (C)当0A ≠时,0B =.(D)当0A =时,0B =. 【 D 】 (13)设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程0Ax =的基础解系(A)不存在. (B)仅含一个非零解向量.(C)含有两个线性无关的解向量. (D)含有三个线性无关的解向量. 【 B 】 (14)设随机变量X 服从正态分布(0,1)N ,对给定的(01)αα<<,数a u 满足{}a P X u α>=.若{}P X x α<=,则x 等于(A )2a u . (B )12-. (C )12a u -. (D )1a u - 【 C 】三、解答题(本题共9小题,满分94分,解答题应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求 22201cos lim sin x x x x →??-解 22201cos lim sin x x x x →??-22222sin cos limsin x x x xx x→-=22401sin 24limx x xx→-= ……2分01sin 44lim2x x xx→-= ……4分 201cos 4lim 6x x x→-= ……6分0sin 4lim 3x x x →= 4 3= ……8分 (16)(本题满分8分) 求)Dy d σ??,其中D 是由圆224x y +=和22 (1)1x y ++=所围成的平面区域(如图).解法1)))DD D y d y d y d σσσ=-大圆小圆……2分)D y d σ+??大圆D D yd σσ=+大大(根据对称性)2220d r dr πθ=+?=163π ……4分)D y d σ+??小圆D D yd σσ=+小小32cos 2220d r dr πθπθ-=+??329=,……7分所以)16(32)9Dy d σπ=-??……8分解法 2 由积分区域对称性和被积函数的奇偶性0Dyd σ=?? ……1分原式0Dσ=+??12D D σσ??=+上上2……2分22222002cos 22d r dr d r dr πππθθθ-??=+……5分4462()339ππ??=+- 16(32)9π=- ……8分[注]:1D σ??上定限1分,计算1分.D σ??上2定限1分,计算1分.(17)(本题满分8分)设(),()f x g x 在[,]a b 上连续,且满足()(),[,)x x a a f t dt g t dt x a b ≥∈??, ()(),b b a af t dtg t dt =证明:()().bb a axf x dx xg x dx ≤证令()()(),()(),x aF x f x g xG x F t dt =-=?由题设知()0,[,]G x x a b ≥∈()()0,()(),G a G b G x F x '=== ……2分从而()(),b b aaxF x dx xdG x =()(),b baaxG x G x dx =-(),baG x dx =-? ……4分由于()0,[,]G x x a b ≥∈,故有()0,ba G x dx -≤? ……6分即 ()0baxF x dx ≤?.因此 ()()bb aaxf x dx xg x dx ≤……8分(18)(本题满分9分)设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I )求需求量对价格的弹性(0);d d E E > (II )推导(1)d dR Q E dP=-(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.解 (I) 20d P P E Q Q P'==-. ……2分(II )由,R PQ =得dR Q P Q dP'=+(1)P Q Q Q'=+(1)d Q E =-. ……4分又由 120d P E P==-,得10P =. ……5分当1020P <<时,1d E >,于是0dR dP<. ……7分故当1020P <<时,降低价格反而使收益增加. ……9分(19)(本题满分9分)设级数468()242462468xxxx +++-∞<<+∞的和函数为()S x .求:(I )()S x 所满足的一阶微分方程;(II )()S x 的表达式. 解(I ) 468(),242462468xxxS x =+++易见(0)0.S = ……1分357()224246xxS x '=+++246224246x x xx ??=+++……2分 2().2x x S x ??=+……4分因此()S x 是初值问题3,(0)02xy xy y '=+=的解. ……4分(II )方程32xy xy '=+的通解为32xdx xdx x y e e dx c -=+222xxC e=--+, ……7分由初始条件(0)0y =,求的1C =. ……8分故22212xxy e=-+-,因此和函数222()12xxS x e=-+- ……9分(20)(本题满分13分)设123(1,2,0),(1,2,3),(1,2,2),(1,3,3)TTTTa ab a b αααβ==+-=---+=-. 试讨论当,a b 为何值时,(I )β不能够由123,,ααα线性表示;(II )β可由123,,ααα惟一线性表示,并求出表示式;(III )β可由123,,ααα惟一线性表示,但表示式不惟一,并求出表达式. 解设有数123,,k k k ,使得112233k k k αααβ++= (*)……1分记123(,,)A ααα=.对矩阵()A β施以初等行变换,有111122230323A a b aa b β?-?+-- ? ?-+-?()=010001a b ?→- ? ?-?……3分(I )当0a b =,为任意常数时,有111101000A a b a b β?-?→- ? ?-?()可知()()r A r A β≠,故方程组(*)无解,β不能由123,,ααα线性表示.……5分(II )当0,a ≠且a b ≠时,()()3r A r A β==,故方程组(*)有惟一解123111,,0k k k a a=-==,则β可由123,,ααα惟一地线性表示,其表示式为12111a aβαα?=-+ ……7分(III )当0a b =≠时,对A β()施以初等行变换,有110011011000a A a β??-→- ?(). ……9分可知()()2r A r A β==,故方程组(*)有无穷多解,其全部解为123111,,k k c k c a a ??=-=+=,其中c 为任意常数. β可由123,,ααα线性表示,但表示式不惟一,其表示式为……11分123111c c a a βααα?=-+++ ? ??. ……13分(21)(本题满分13分)设n 阶矩阵11b b A b b= ? ? ??(I )求A 的特征值和特征向量;(II )求可逆矩阵P ,使得1P AP -为对角矩阵. 解(I )1? 当0b ≠时,111bb b b E A bbλλλλ-------=---1[1(1)][(1)]n n b b λλ-=----- ……3分故A 的特征值为121(1),1.n n b b λλλ=+-===-对于11(1)n b λ=+-,设A 的属于特征值1λ的一个特征向量为1ξ,则1111[1(1)]1b b b bn b b bξξ?? ? ?=+- ? ? ??解得 1(1,1,,1)Tξ= ,所以全部特征向量为1(1,1,,1)Tk k ξ= (k 为任意非零常数)……5分对于21n b λλ===- ,解齐次线性方程组[(1)]0b E A x --=,由111000(1)000b b b b b b b E A b bb ----- ?--=→ ? ? ? ? ? ?---?,解得基础解系2(1,1,0,,0)Tξ=-3(1,0,1,,0)Tξ=-2(1,0,0,,1)Tξ=-故全部特征向量为2233n n k k k ξξξ+++ (2,,n k k 是不全为零的常数). ......7分2?当0b =时,特征11n λλ=== ,任意非零列向量均为特征向量. (9)分(II )1?当0b ≠时,A 有n 个线性无关的特征向量,令12(,,,)n P ξξξ= ,则{}11(1),1,,1.P AP diag n b b b -=+--- ……11分2?当0b =时,A E =,对任意可逆矩阵P ,均有1P AP E -= ……13分[注]: 1(1,1,,1)Tξ= 也可由求解齐次线性方程组1()0E A x λ-=得出.(22)(本题满分13分)设A B 、为两个随机事件,且111432PP P (A)=,(B A)=,(A B)=,令1,0,A X A ?=?发生,不发生; 1,0,B Y B ?=??,发生不发生. 求:(I )二维随机变量(,)X Y 的概率分布;(II )X 与Y 的相关系数X Y ρ;(III )22Z X Y =+的概率分布.解(I )()()()1,12P A B P A P B A ==()()()1,6P A B P B P B A == ……2分则{}(){}()()(){}()()(){}()11,1,1211,0,610,1,120,0P X Y P A B P X Y P A B P A P A B P X Y P AB P B P A B P X Y P A B========-=====-====()()()()211[]3P A B P A P B P AB =-=-+-= ,(或{}11120,01126123P X Y ===---=),……6分即 (,)X Y 的概率分布为(II )方法 1111(),(),(),4612EX P A EY P B E XY =====则1(,)()24C ov X Y E X Y E X E Y =-= 22222211(),4635(),(),1636E X P A E YP B D X E X E X D Y E Y E Y == ===-==-=(,)1XY C ov X Y ρ==……9分方法 2 ,X Y 的概率分布分别为X 01,Y 01.P3414P 5616则 111,,(),4612E X E Y E X Y ==而故 1(,)(),24C ov X Y E XY EX EY =-= 22222211,,4635(),(),1636E XE YD XE X E X D Y E Y E Y ===-==-=XY ρ==……9分(III )Z 的可能取值为012,,,{}{}{}{}{}200,0,3110,11,04P Z P X Y P Z P X Y P X Y =========+===,{}{}121,1,12P Z P X Y =====……13分即Z 的概率分布为Z 012.P2314112(23)(本题满分13分)设总体X 的分布函数为1,(;;)0,x F x x x βαααβα->? ?=≤?其中参数0,1,αβ>>设12,,,n X X X 为来自总体X 的简单随机样本.(I )当1α=时,求未知参数β的矩估计量;(II )当1α=时,求未知参数β的最大似然估计量;(III )当2β=时,求未知参数α的最大似然估计量. 解当1α=时,X 的概率密度为111,1,(;)0,1,x F x xx ββ+?->?=??≤?……1分(I )由于11(;),1EX xf x dx x dx xβββββ+∞+∞+-∞===-?……2分令1X ββ=-,解得1X X β=-,所以参数β的矩估计量为1X X β=- ……4分(II )对于总体X 的样本值12,,,n x x x ,似然函数为1121,1(1,2,,)()(;)()0,nni n i x i n L f x x x x βββα+=?>=?==??∏其他……6分当1(1,2,,)i x i n >= 时,()L β>0,取对数得1ln ()ln (1)ln ,ni i L n x βββ==-+∑两边对β求导,得1ln ()ln ,nii d L nx d βββ==-∑1ln ()0,ln nid xβββ===∑令,解得故β的最大似然估计量为1.ln nii nXβ==∑ ……9分(III )当2β=时,X 的概率密度为232,(;)0,x f x x x αααα>?=??≤?对于总体X 的样本值12,,,n x x x ,似然函数为31212,(1,2,,)()(;)()0,n nni n i x i n L f x x x x αααα=?>=?==??∏,……11分当(1,2,,)i x i n α>= 时,α越大,()L α越大,因而的最大似然估计值为{}12m in ,,,n x x x α= 则的最大似然估计量为{}12m in ,,,n X X X α= ……13分。
考研数学三真题及解析
2004年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim0=--→b x ae xx x ,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y )0,则2f u v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界.(A) ( 1 , 0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3). [ ](8) 设f (x )在( , +)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ](9) 设f (x ) = |x (1 x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点. (D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ](10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0. [ ] (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ](13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.[ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 221)22=+y 所围成的平面区域(如图).(17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xaxadt t g dt t f )()(,x[a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.(18) (本题满分9分)设某商品的需求函数为Q = 100 5P ,其中价格P (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0); (II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, T β)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. (23) (本题满分13分) 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量;(Ⅱ) 当1=α时, 求未知参数β的最大似然估计量;(Ⅲ) 当2β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题.【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x x b x a e x x x x ,得b =4.因此,a = 1,b = 4.【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) 0,则f (x ) 0;(2) 若f (x ) 0,且A 0,则g (x ) 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可.【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x . 【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=2322321)(23)2121(2x x x x x -+++= 2221232y y +=, 其中 ,21213211x x x y ++= 322x x y -=. 所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P e1.【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ 故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型. (6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) ( 1 , 0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f ax +→与)(lim x f bx -→存在,则函数f (x )在(a , b )内有界.【详解】当x 0 , 1 , 2时,f (x )连续,而183sin )(lim 1-=+-→x f x ,42sin )(lim 0-=-→x f x , 42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x ,所以,函数f (x )在( 1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a ,b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f ax +→与)(lim x f bx -→存在,则函数f (x )在开区间(a , b )内有界. (8) 设f (x )在(, +)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ]【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点. (D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.[ C ]【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况. 【详解】设0 < < 1,当x (, 0) (0 , )时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点.显然,x = 0是f (x )的不可导点. 当x (, 0)时,f (x ) = x (1x ),02)(>=''x f ,当x (0 , )时,f (x ) = x (1 x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点. 故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断.(10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性.【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n ),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0. [ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项.【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim )(>--='+→ax a f x f a f ax ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ]【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ]【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩.【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B). 【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.[ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查. 三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→.【分析】先通分化为“0”型极限,再利用等价无穷小与罗必达法则求解即可.【详解】xx x x x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→xx x x x x x x x x x x x x . 【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D , 由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ 所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xa x a dt t g dt t f )()(,x[a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.【分析】令F (x ) = f (x ) g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可.【详解】令F (x ) = f (x ) g (x ),⎰=xa dt t F x G )()(,由题设G (x ) 0,x [a , b ], G (a ) = G (b ) = 0,)()(x F x G ='.从而 ⎰⎰⎰⎰-=-==babab a babadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) 0,x [a , b ],故有0)(≤-⎰ba dx x G ,即 0)(≤⎰b adx x xF .因此 ⎰⎰≤bab adx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法.(18) (本题满分9分)设某商品的需求函数为Q = 100 5P ,其中价格P (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0); (II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR, 故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdRd )1(-=,p E dQ dR d )11(-=, d E EpER-=1(收益对价格的弹性). (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x ey xdx xdx+⎰⎰=⎰- 22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, T β)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA .可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r ,方程组(*)有唯一解: ak 111-=, ak 12=, 03=k . 此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αa αaβ+-=.(Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数.β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=.【评注】本题属于常规题型, 曾考过两次(1991, 2000). (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ) 1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得T ξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 T k ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ) 1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P , 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ),即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY , 163)(22=-=EX EX DX ,165)(22=-=EY EY DY , 241)(),(=-=EXEY XY E Y X Cov , 所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1 P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分) 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量;(Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β, 所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨=>==ni i βni n i x x x x αx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni i x ββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨=>==ni i ni n i αx x x x αx f βL 1321.,0),,,2,1(,)();()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m in{ˆ21n x x x α=, 于是α的最大似然估计量为},,,m in{ˆ21n X X X α=.2005年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____.(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 a 1 b已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ ](8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ](9)设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A) ∑∞=-112n n a 收敛,∑∞=12n n a 发散 . (B ) ∑∞=12n n a 收敛,∑∞=-112n n a 发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛.[ ](10)设x x x x f cos sin )(+=,下列命题中正确的是(A)f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ ](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ](12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A) 33. (B) 3. (C) 31. (D) 3.[ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ](14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为的置信区间是(A) )).16(4120),16(4120(05.005.0t t +- (B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0x e x xx --+-→ (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222y g y x g x ∂∂-∂∂ (17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分)求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x). (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B C C AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵.(I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A EP 1; (II )利用(I)的结果判断矩阵C A C B T 1--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z ( III ) }.2121{≤≤X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2005年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = 2 . 【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 12sinlim 2+∞→x x x x =.212lim 2=+∞→x xx x (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.(3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dzdy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可. 【详解】)1ln(y xe e xzy x y x +++=∂∂++,yx xe y z y x +++=∂∂+11, 于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a= 21 .【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a.【详解】 由题设,有=1234123121112a a a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ (6)设二维随机变量(X,Y) 的概率分布为 X Y 0 10 a 1 b已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .【分析】 首先所有概率求和为1,可得a+b=, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=又事件}0{=X 与}1{=+Y X 相互独立,于是有 }1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=, b=二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ B ]【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】 12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为x=1,x=2,且 a f a f -=-=4)2(,5)1(,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B).(8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ A ] 【分析】 关键在于比较22y x +、22y x +与222)(y x +在区域}1),{(22≤+=y x y x D 上的大小.【详解】 在区域}1),{(22≤+=y x y x D 上,有1022≤+≤y x ,从而有2212y x +≥>π≥22y x +≥0)(222≥+y x由于cosx 在)2,0(π上为单调减函数,于是22cos 0yx +≤)cos(22y x +≤≤222)cos(y x +因此 <+⎰⎰σd y x D22cos <+⎰⎰σd y x D)cos(22σd y x D⎰⎰+222)cos(,故应选(A). (9)设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A) ∑∞=-112n n a 收敛,∑∞=12n n a 发散 . (B ) ∑∞=12n n a 收敛,∑∞=-112n n a 发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛.[ D ]【分析】 可通过反例用排除法找到正确答案.【详解】 取n a n 1=,则∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,但∑∞=-112n n a 与∑∞=12n n a 均发散,排除(A),(B)选项,且)(1212∑∞=-+n n n a a 发散,进一步排除(C), 故应选(D). 事实上,级数)(1212∑∞=--n n n a a 的部分和数列极限存在.(10)设x x x x f cos sin )(+=,下列命题中正确的是(B)f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ B ]【分析】 先求出)(),(x f x f ''',再用取极值的充分条件判断即可.【详解】 x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又 x x x x f sin cos )(-='',且02)2(,01)0(<-=''>=''ππf f ,故f(0)是极小值,)2(πf 是极大值,应选(B).(11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ C ]【分析】 通过反例用排除法找到正确答案即可. 【详解】 设f(x)=x1, 则f(x)及21)(x x f -='均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).(12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A) 33. (B) 3. (C) 31. (D) 3.[ A ]【分析】 题设与A 的伴随矩阵有关,一般联想到用行列展开定理和相应公式:.**E A A A AA ==.【详解】 由T A A =*及E A A A AA ==**,有3,2,1,,==j i A a ij ij ,其中ij A 为ij a 的代数余子式,且032=⇒=⇒=A A AE A AA T 或1=A而03211131312121111≠=++=a A a A a A a A ,于是1=A ,且.3311=a 故正确选项为(A).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ D ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则 022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(D).(14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为的置信区间是(A) )).16(4120),16(4120(05.005.0t t +- (B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ C ] 【分析】 总体方差未知,求期望的区间估计,用统计量:).1(~--n t ns x μ【详解】 由正态总体抽样分布的性质知,)1(~--n t ns x μ, 故μ的置信度为的置信区间是))1(1),1(1(22-+--n t n x n t nx αα,即)).15(4120),15(4120(05.005.0t t +-故应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+ =2201lim x e x x x x -→+-+=xe x xx 221lim 0-→-+=.2322lim0=+-→x x e (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ 【分析】 先求出二阶偏导数,再代入相应表达式即可.【详解】 由已知条件可得)()(2y xf x y f xy x g '+'-=∂∂, )(1)()(242322y xf y y x f xy x y f x y x g ''+''+'=∂∂,。
2004年全国硕士研究生入学统一考试数学(三)试题及答案
2004年全国硕士研究生入学统一考试数学(三)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b =4.因此,a = 1,b = 4.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y )0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j jn i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界.(A) (1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界. 【详解】当x0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在( 1 , 0)内有界,故选(A).(8) 设f (x )在(, +)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D). (9) 设f (x ) = |x (1 x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况. 【详解】设0 < < 1,当x ( , 0) (0 , )时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ( , 0)时,f (x ) = x (1 x ),02)(>=''x f ,当x(0 ,)时,f (x ) = x (1x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点. 故选(C).(10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim 1>+∞→nn n u u可得到n u 不趋向于零(n),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).(12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D). (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系(A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩.【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→xx x x x x x x x x x x x x . (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xa x a dt t g dt t f )()(,x[a , b ),⎰⎰=ba b a dt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,由题设G (x ) 0,x[a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab aba babadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) 0,x [a , b ],故有0)(≤-⎰b adx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 5P ,其中价格P (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. 【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x ey xdx xdx+⎰⎰=⎰- 22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .(20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:a k 111-=, ak 12=, 03=k . 此时可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=. (Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数.可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=. (21) (本题满分13分)设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ) 1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得Tξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000000111得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ)1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(11当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P , 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β,所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βnni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i nnn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m in{ˆ21n x x x α=,于是α的最大似然估计量为},,,m in{ˆ21n X X X α.。
精编考研数三真题及解析
2004年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1)若0sin lim (cos )5x x xx b e a →-=-,则a =,b =. (2)函数(,)f u v 由关系式[(),]()f xg y y x g y =+确定,其中函数()g y 可微,且()0g y ≠,则2f u v∂=∂∂.(3)设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4)二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为. (5)设随机变量X 服从参数为λ的指数分布,则=>}{DX X P .(6)设总体X 服从正态分布),(21σμN ,总体Y 服从正态分布),(22σμN ,1,,21n X X X 和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本,则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑. 二、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界() (A)(?1,0). (B)(0,1). (C)(1,2).(D)(2,3).(8)设f (x )在(,)-∞+∞内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则()(A)0x =必是()g x 的第一类间断点. (B)0x =必是()g x 的第二类间断点.(C)0x =必是()g x 的连续点.(D)()g x 在点0x =处的连续性与a 的取值有关.(9)设()(1)f x x x =-,则()(A)0x =是()f x 的极值点,但(0,0)不是曲线()y f x =的拐点. (B)0x =不是()f x 的极值点,但(0,0)是曲线()y f x =的拐点. (C)0x =是()f x 的极值点,且(0,0)是曲线()y f x =的拐点. (D)0x =不是()f x 的极值点,(0,0)也不是曲线()y f x =的拐点. (10)设有下列命题:①若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.②若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.③若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散.④若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以下命题中正确的是()(A)①②(B)②③(C)③④(D)①④(11)设)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是() (A)至少存在一点0(,)x a b ∈,使得)(0x f >()f a . (B)至少存在一点),(0b a x ∈,使得)(0x f >()f b . (C)至少存在一点),(0b a x ∈,使得0)(0='x f .(D)至少存在一点),(0b a x ∈,使得)(0x f =0.(12)设n 阶矩阵A 与B 等价,则必有()(A)当)0(||≠=a a A 时,a B =||.(B)当)0(||≠=a a A 时,a B -=||. (C)当0||≠A 时,0||=B .(D)当0||=A 时,0||=B .(13)设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系() (A)不存在.(B)仅含一个非零解向量.(C)含有两个线性无关的解向量.(D)含有三个线性无关的解向量.(14)设随机变量X 服从正态分布)1,0(N ,对给定的)1,0(∈α,数αu 满足αu X P α=>}{,若αx X P =<}|{|,则x 等于() (A)2αu .(B)21αu-.(C)21αu -.(D)αu -1.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分8分)求)cos sin 1(lim 2220xxx x -→.(16)(本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图). (17)(本题满分8分)设f (x ),g (x )在[a ,b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ?[a ,b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(. (18)(本题满分9分) 设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I)求需求量对价格的弹性d E (d E >0);(II)推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加. (19)(本题满分9分) 设级数的和函数为()S x .求:(I)()S x 所满足的一阶微分方程;(II)()S x 的表达式.(20)(本题满分13分)设T α)0,2,1(1=,T ααα)3,2,1(2-+=,T b αb α)2,2,1(3+---=,T β)3,3,1(-=, 试讨论当b a ,为何值时,(I)β不能由321,,ααα线性表示;(II)β可由321,,ααα唯一地线性表示,并求出表示式;(III)β可由321,,ααα线性表示,但表示式不唯一,并求出表示式. (21)(本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A .(I)求A 的特征值和特征向量;(Ⅱ)求可逆矩阵P ,使得AP P 1-为对角矩阵. (22)(本题满分13分) 设A ,B 为两个随机事件,且41)(=A P ,31)|(=AB P ,21)|(=B A P ,令 求(I)二维随机变量),(Y X 的概率分布; (II)X 与Y 的相关系数XY ρ; (III)22Y X Z +=的概率分布. (23)(本题满分13分)设随机变量X 的分布函数为其中参数1,0>>βα.设n X X X ,,,21 为来自总体X 的简单随机样本,(I)当1=α时,求未知参数β的矩估计量; (II)当1=α时,求未知参数β的最大似然估计量; (III)当2=β时,求未知参数α的最大似然估计量. 2004年全国硕士研究生入学统一考试数学三试题解析一、填空题(1)【答案】1,4a b ==-【详解】本题属于已知极限求参数的反问题. 方法1:根据结论:)()(limx g x f =A ,(1)若()0g x →,则()0f x →;(2)若()0f x →,且0A ≠,则()0g x →因为5)(cos sin lim0=--→b x ae xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x (否则根据上述结论(2)给极限是0,而不是5),由0lim()lim lim 10x x x x x e a e a a →→→-=-=-=得a =1.极限化00sin lim(cos )lim (cos )151x x x x x x b x b b e x→→- -=-=-等价无穷小,得b =?4.因此,a =1,b =?4.方法2:由极限与无穷小的关系,有sin (cos )5x xx b e aα-=+-,其中0lim 0x α→=,解出上式两端求极限,000(5)(cos )sin (cos )sin limlim lim 10155x x x x x e x b x x b xa e ααα→→→+---==-=-=++ 把a =1代入,再求b ,(5)(1)cos sin x e b x xα+-=-,两端同时对0x →取极限,得因此,a =1,b =?4.(2)【答案】2()()g v g v '-【详解】应先写出f (u ,v )的表达式,再求偏导数令()u xg y =,v y =,从而:()()u ux g y g v ==,于是由[(),]()f xg y y x g y =+, 推知f (u ,v )=)()(v g v g u+, 所以)(1v g u f =∂∂,2fu v ∂∂∂1()f v u v g v ⎛⎫⎛⎫∂∂∂== ⎪ ⎪∂∂∂⎝⎭⎝⎭2()()g v g v '=- (3)【答案】12-【详解】方法1:作积分变换,令1x t -=,则11:2:122x t →⇒-→ 所以211122(1)()f x dx f t dt --=⎰⎰=1121122()(1)f t dt dt -+-⎰⎰22211112222111122221111(1)(1)2222xx xxe dx dx e dx e ---=+-=--=-⎰⎰⎰11022=-=.(也可直接推出212120x xe dx -=⎰,因为21212x xe dx -⎰积分区间对称,被积函数是关于x 是奇函数,则积分值为零) 方法2:先写出的(1)f x -表达式()()21111,122(1)11,12x x e x f x x -⎧--≤-<⎪⎪-=⎨⎪- -≥⎪⎩即:2(1)13(1),22(1)31,2x x e x f x x -⎧-≤<⎪⎪-=⎨⎪-≥⎪⎩所以2322(1)2131222(1)(1)(1)x f x dx x edx dx --=-+-⎰⎰⎰2233(1)2(1)2211221311(1)22222x x e d x e --⎛⎫=---=- ⎪⎝⎭⎰11441111()02222e e =--=-=-. (4)【答案】2.【详解】方法1:因为213232221321)()()(),,(x x x x x x x x x f ++-++=由二次型1211(,,,)nnn ij i j i j f x x x a x x ===∑∑中,ij ji a a =,所以二次型对应的矩阵的i j 行,列元素是i j x x 与乘积项系数的一半,其中.i j ≠于是题中二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得从而2)(=A r ,由二次型的矩阵的秩等于二次型的秩,知二次型的秩为2. 方法2:因为213232221321)()()(),,(x x x x x x x x x f ++-++=2322321)(23)2121(2x x x x x -+++=2221232y y +=, 其中,21213211x x x y ++=322x x y -=. 二次型的秩()r f =矩阵的秩()r A =正负惯性指数之和p q +,所以此二次型的秩为2.(5)【答案】e1【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=(6)【答案】2σ.【详解】根据公式()()()E X Y E X E Y +=+和样本方差是总体方差的无偏估计量, 又1,,21n X X X 和2,,21n Y Y Y 分别是来自总体简单随机样本,X 和Y 都服从正态分布即是12211[()]()1n i i E X X D X n σ=-==-∑,12211[()]()1n i i E Y Y D Y n σ=-==-∑. 所以有()1221[()]1n i i E X X n σ=-=-∑,()1221[()]1n i i E Y Y n σ=-=-∑对于题给式子将分子分离出来即可出现上式,也就不难求出结果.22212121[(1)(1)]2n n n n σσσ=-+-=+-,故应填2σ.二、选择题 (7)【答案】(A) 【详解】方法1:如果()f x 在(,)a b 内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数()f x 在(,)a b 内有界.当x ?0,1,2时()f x 连续,而2211sin(2)sin(12)sin 3lim ()lim (1)(2)(11)(12)18x x x x f x x x x ++→-→------===-------, 220sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x --→→----===-----,22sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x ++→→--===----, 22111sin(2)sin(12)lim ()limlim (1)(2)(1)(12)x x x x x f x x x x x →→→--===∞----,222222sin(2)sin(2)1lim ()limlim lim (1)(2)(2)2x x x x x x x f x x x x x x →→→→--====∞----, 所以,函数f (x )在(?1,0)内有界,故选(A).方法2:因为0lim ()x f x -→存在,根据函数极限的局部有界性,所以存在0δ>,在区间[,0)δ-上()f x 有界,又如果函数f (x )在闭区间[a ,b ]上连续,则f (x )在闭区间[a ,b ]上有界,根据题设()f x 在[1,]δ--上连续,故()f x 在区间上有界,所以()f x 在区间(1,0)-上有界,选(A). (8)【答案】(D)【详解】考查极限)(lim 0x g x →是否存在,如果存在,是否等于g (0),通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.因为0011lim ()lim ()lim ()x x u g x f u f u x x →→→∞= = =a ,又(0)0g =,所以,当0a =时,)0()(lim 0g x g x =→,即()g x 在点0x =处连续,当0a ≠时,)0()(lim 0g x g x ≠→,即0x =是()g x 的第一类间断点,因此,()g x 在点0x =处的连续性与a 的取值有关,故选(D). (9)【答案】C【详解】由于是选择题,可以用图形法解决,也可用分析法讨论.方法1:由于是选择题,可以用图形法解决,令()(1)x x x ϕ=-,则211()24x x ϕ⎛⎫=-- ⎪⎝⎭,是以直线12x =为对称轴,顶点坐标为11,24⎛⎫- ⎪⎝⎭,开口向上的一条抛物线,与x 轴相交的两点坐标为()()0,0,1,0,()()y f x x ϕ==的图形如图.点0x =是极小值点;又在点(0,0)左侧邻近曲线是凹的,右侧邻近曲线是凸的,所以点(0,0)是拐点,选C.方法2:写出()y f x =的分段表达式:()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,从而()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,()00lim ()lim 1210x x f x x ++→→'=-=>,所以01x <<时,()f x 单调增, ()00lim ()lim 1210x x f x x --→→'=-+=-<,所以10x -<≤时,()f x 单调减, 所以0x =为极小值点.当10x -<<时,()20f x ''=>,()f x 为凹函数;当10x >>时,()20f x ''=-<,()f x 为凸函数,于是(0,0)为拐点.(10)【答案】(B)【详解】可以通过举反例及级数的性质来说明4个命题的正确性. ①是错误的,如令nn u )1(-=,lim 0n n u →∞≠,所以∑∞=1n n u 发散,而()()2121()1111n n n uu ∞-=+=-++-++∑收敛.②是正确的,因为级数∑∞=+11000n n u 比级数∑∞=1n n u 少了前1000项,改变、增加或减少级数的有限项,不改变级数的敛散性,所以这两个级数同敛散.③是正确的,因为由1lim 1>+∞→n n n u u ,从而有1lim 1n n nu u +→∞>,于是正项级数1n n u ∞=∑在项数充分大之后,通项严格单调增加,故lim 0n n u →∞≠,从而lim 0n n u →∞≠,所以∑∞=1n n u 发散.④是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而11111()n n n u v n n n n ∞=⎛⎫⎛⎫+=-++-++⎪ ⎪⎝⎭⎝⎭∑收敛.故选(B).(11)【答案】(D)【详解】利用介值定理与极限的保号性可得到三个正确的选项,或应用举例法找出错误选项.方法1:举例说明(D)是错误的.例:2()4,11f x x x =--≤≤,11(1)220,(1)220x x f x f x =-=''-=-=>=-=-<.但在[1,1]-上()30f x ≥>. 方法2:证明(A)、(B)、(C)正确.由已知)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ,所以选项(C)正确;另外,由导数的定义0)()(lim)(>--='+→ax a f x f a f a x ,根据极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >,所以选项(A)正确.同理,()()()lim 0x bf b f x f b b x-→-'=<-,根据极限的保号性,至少存在一点),(0b a x ∈使得)()(0b f x f >.所以选项(B)正确,故选(D).(12)【答案】(D) 【详解】方法1:矩阵等价的充分必要条件:矩阵A 与B 等价⇔A ,B 是同型矩阵且有相同的秩,故由A 与B 等价,知A 与B 有相同的秩.因此,当0||=A 时,n A r <)(,则有n B r <)(,即0||=B ,故选(D).方法2:矩阵等价的充分必要条件:A 与B 等价⇔存在可逆,P Q ,使得PAQ B =.两边取行列式,由矩阵乘积的行列式等于行列式的积,得PAQ P A Q B ==.,P Q 可逆,由矩阵A 可逆的充分必要条件:0A ≠,故00P Q ≠≠,但不知具体数值.由P A Q B =,知0A ≠时,B 不能确定.但0A =有0B =.故应选(D). 方法3:由经过若干次初等变换变为矩阵的初等变换对矩阵的行列式的影响有:(1)A 中某两行(列)互换得B ,则B A =-. (2)A 中某行(列)乘(0)k k ≠得B ,则B k A =. (3)A 中某行倍加到另一行得B ,则B A =.又由A 与B 等价,由矩阵等价的定义:矩阵A 经有限次初等变换变成矩阵B ,则称A 与B 等价,知.B k A =±故当0A ≠时,0B k A =±≠,虽仍不等于0,但数值大、小、正负要改变,但0||=A ,则0B =,故有结论:初等变换后,矩阵的行列式的值要改变,但不改变行列式值的非零性,即若0||=A 0B ⇒=,若0A ≠0B ⇒≠.故应选(D). (13)【答案】(B)【详解】由定理:若12,x x 是Ax b =的解,则12x x -是对应齐次方程组0Ax =的解,及12ξξ≠,得120ξξ-≠是0Ax =的解.由齐次线性方程组有非零解的充要条件,知()r A n <.,0*≠A 由伴随矩阵的定义,知A 中至少有一个代数余子式0,ij A ≠即A 中有1n -子式不为零,由()A r =秩的充要条件是A 的非零子式的最高阶为r ,故()1,r A n ≥-再由上面的()r A n <,得()1r A n =-,故基础解系所含向量个数为(1)1n n --=,故选(B).(14)【答案】(C)【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>.或直接利用图形求解.方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是即有21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C). 方法2:图一图二如图一所示题设条件.图二显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C). 三、解答题(15)【详解】求“∞-∞”型极限的首要步骤是通分,或者同乘、除以某一式以化简.洛()0312sin 42lim 4x x x x→'⎛⎫- ⎪⎝⎭'201cos 4lim 6x x x →-=2202sin 2lim 6x x x →=sin 22x x 等2202(2)lim 6x x x →43=. (16)【详解】利用对称性与极坐标计算.方法1:令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,根据二重积分的极坐标变换:()()12{(,)|,}D x y r r r αθβθθ=≤≤≤≤,则:1D σ化为极坐标:221{(,)|4}{(,)|02,02}D x y x y x y r θπ=+≤=≤≤≤≤所以1D σ20d πθ=⎰⎰2220d r dr πθ=⎰⎰;2D σ化为极坐标:2223{(,)|(1)1}{(,)|,02cos }22D x y x y x y r ππθθ=++≤=≤≤≤≤-所以2D σ32cos 22d πθπθ-=⎰⎰32cos 222d r dr πθπθ-=⎰⎰所以⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ区域D 关于x 轴对称,Dyd σ⎰⎰中被积函数y 为y 的奇函数,根据区域对称性与被积函数的奇偶性:设(),f x y 在有界闭区域D 上连续,若D 关于x 轴对称,(),f x y 对y 为奇函数,则(),0Df x y d σ=⎰⎰,所以0=⎰⎰Dyd σ所以)Dy d σ⎰⎰DDyd σσ=+⎰⎰16(32)9π=-. 方法2:)Dy d σ⎰⎰DDyd σσ=+⎰⎰D 20σ=+⎰⎰上半321616sin sin 333πππθθ⎛⎫=+- ⎪⎝⎭16(32)9π=-. (17)【详解】令()F x f x g x =-()(),⎰=x adt t F x G )()(.因为已知⎰⎰≥xax adt t g dt t f )()(, 所以()()x aG x F t dt =⎰[]()()x xxaaaf tg t dt f t dt g t dt =-=-⎰⎰⎰()()0≥,[,]x a b ∈()G a ()a aF t dt =⎰0=,又⎰⎰=bab adt t g dt t f )()(,所以()()b aG b F t dt =⎰()()()()b b baaaf tg t dt f t dt g t dt =-=-⎰⎰⎰0=从而()b axF x dx ⎰()()G x F x ' =()b axdG x ⎰分部积分()()bba axG x G x dx -⎰()()0G a G b == ()b aG x dx -⎰,由于()0,[,]G x x a b ≥∈,故有0)(≤-⎰badx x G ,即()baxF x dx ⎰0≤也即是[]()()b ax f x g x dx -⎰()()b baaxf x dx xg x dx =-⎰⎰0≤因此⎰⎰≤bab adx x xg dx x xf )()(.(18)【详解】(I)由于需求量对价格的弹性d E >0,所以dPdQQ P E d =1005Q P =-()10051005P P P '--20P P -=-(0,20)P ∈ 20P P -;(II)由R PQ =,得要说明在什么范围内收益随价格降低反而增加,即收益为价格的减函数,0<dPdR,即证(1)01d d Q E E -<⇒>,换算成P 为120PP>-,解之得:10P >,又已知(0,20)P ∈,所以2010P >>,此时收益随价格降低反而增加.(19)【详解】对()S x 进行求导,可得到()S x 所满足的一阶微分方程,解方程可得()S x 的表达式.(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见(0)0S =, 因此()S x 满足下述一阶线性微分方程及相应的初始条件:()S x ')](2[2x S x x +=,(0)0S =.即3()()2x S x xS x '-=,(0)0S =(II)3()()2x S x xS x '-=为一阶线性非齐次微分方程,其对应的线性齐次微分方程为:()()0S x xS x '-=,分离变量:()()dS x xdx S x =,两边积分:21ln ()2x S x C =+,22122()x x C S x e Ce +== 用常数变易法来求非齐次方程的通解:令()22()x S x C x e = 于是:()()2222()x x S x xC x e C x e ''=+代入3()()2xS x xS x '-=:()()()22232222x x x x xC x e C x e xC x e'+-= 所以,()2322x x C x e dx c -=+⎰因为(0)0S =,所以()20220102S ce=--+=1c ⇒=,所以222()12x x S x e =--;或直接由通解公式,方程3()()2x S x xS x '-=的通解为由初始条件(0)0S =,得1C =.故222()12x x S x e =--.(20)【详解】β可否由321,,ααα线性表示的问题可以转化为线性方程组112233x x x αααβ++=是否有解的问题.因此,设可有数123,,,x x x 使得112233x x x αααβ++=.(*) 记),,(321αααA =.对矩阵),(βA 施以初等行变换,有⨯2行3+3行111101000a b a b -⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦. (I)当0=a 时,b 是任意数时,有1111(,)001000A b b β-⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦. 可知,),()(βA r A r ≠.由非齐次线性方程组有解的充要条件:系数矩阵的秩等于增广矩阵的秩,知方程组(*)无解,β不能由321,,ααα线性表示.(II)当0≠a ,且b a ≠时,由可知,3),()(==βA r A r ,由非齐次线性方程组有解得充要条件:系数矩阵的秩等于增广矩阵的秩,方程组(*)有解,由定理:设A 是m n ⨯矩阵,方程组Ax b =,则,(1)有唯一解()()r A r A n ⇔==;(2)有无穷多解()()r A r A n ⇔=<(3)无解:()1()r A r A ⇔+=可知方程组(*)有唯一解.由同解阶梯形方程求解,得: 111x a =-,21x a=,30x =.此时β可由321,,ααα唯一地线性表示,其表示式为211)11(αaαa β+-=.(III)当0≠a ,0≠=b a 时,对矩阵),(βA 施以初等行变换,由1111(,)010000A a a β-⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦111112011120000a a -⎡⎤⎢⎥⎢⎥÷--⎢⎥⎢⎥⎣⎦行行行1100110110000a a ⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 可知,2),()(==βA r A r ,由定理:设A 是m n ⨯矩阵,方程组Ax b =,则,(2)有无穷多解()()r A r A n ⇔=<,知方程组(*)有无穷多解,其全部解为111x a =-,21x c a=+,3x c =,其中c 为任意常数. β可由321,,ααα线性表示,但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=.(21)【分析】这是具体矩阵的特征值和特征向量的计算问题,可以直接用0||=-A E λ求特征值,和0)(=-x A E λ求特征向量或将A 分解令(1)A B b E =+-,其中[1]n n B b ⨯=,则()A f B =,f 是多项式,求B 的特征值、特征向量. 【详解】(I)方法1:10≠b 时,故,A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,因为矩阵的秩为1()(1)r E A n λ-=-,故方程组1()0E A x λ-=,基础解系的个数为1()n r E A λ--(1)1n n =--=,故有一个自由未知量.选1x 为自由未知量,取11x =,解得T ξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为T k ξk )1,,1,1,1(1 =(k 为任意不为零的常数).对b λλn -===12 ,1110001()000b ⎛⎫⎪ ⎪÷- ⎪⎪⎝⎭行,2,,.i n =矩阵的秩为()1,2,,.i r E A i n λ-==故方程组()0,2,,i E A x i n λ-==,基础解系的个数为()i n r E A λ--1n =-,2,,.i n =故有1n -个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0);(0,1,,0);(0,0,,1)---,得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.方法2:111b b b b A b b⎛⎫⎪⎪= ⎪⎪⎝⎭(1)(1)(1)b b b bb b b b b bb b +-⎛⎫⎪+- ⎪= ⎪ ⎪+-⎝⎭[]111,1,,1(1)1b b E ⎡⎤⎢⎥⎢⎥=+-⎢⎥⎢⎥⎣⎦(1)bB b E =+-,其中[],1,1,,1TT B ααα==若B 有特征值λ,特征向量ξ,则当f 是多项式时,()f B 有特征值()f λ,其特征向量仍是ξ.因()(),T T n ααααααα==故,n λ=是T αα的特征值,其对应特征向量为[]11,1,,1Tξα==.从而有(1)T A b b E αα=+-,有特征值111(1)nb b n b λ=+-=+-,其对应特征向量仍是[]11,1,,1Tξα==.又()T T T αααα=,T B αα=是实对称阵,由可知()1r B =,由实对称矩阵的特性:()r E A n k λ-=-,其中k 为特征值的重数,故0λ=是T B αα=的1n -重特征值,其对应的特征向量应满足(0)0T T E x x αααα-=-=,即只需满足120n x x x +++=,其基础解系的个数为1n -,故有1n -个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0);(0,1,,0);(0,0,,1)---.得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .从而知(1)T A b b E αα=+-有1n -重特征值(0)0(1)1f b b b λ==⨯+-=-.对应的特征向量仍是23,,,n ξξξ,其全部特征向量为n n ξk ξk ξk +++ 3322(n k k k ,,,32 是不全为零的常数).(Ⅱ) 1当0≠b 时,由A 与对角矩阵相似的充要条件:A 有n 个线性无关的特征向量,知,令),,,(21n ξξξP =,则2 当0=b 时,E A =,对任意可逆矩阵P ,均有E AP P =-1.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分第一章 函数、极限与连续一:选择、填空(2014)1.设0≠=∞→a ann lim ,则当n 充分大时,下列正确的有( )(A )2a a n > (B )2a a n <(C )n a a n 1-> (D)na a n 1+<(2014)2.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2 (C )xx y 1sin += (D )xx y 12sin+=(2014)3.设32dx cxbx a x P +++=)(,则当0→x 时,若x x P tan )(-是比3x 高阶的无穷小,则下列选项中错误的是( )(A )0=a (B )1=b (C )0=c (D )61=d(2013)当0→x 时,用)(x o 表示比x 的高阶无穷小,则下列式子中错误的是( )A 、)()(32x o x o x =⋅ B 、)()()(32x o x o x o =⋅ C 、)()()(222x o x o x o =+ D 、)()()(22x o x o x o =+(2013)设函数xx x x x f xln )1(1)(+-=的可去间断点个数为( )A.0B.1C.2D.3(2013)设曲线)(x f y =和x xy -=2在点(0,1)处有公共的切线,则)2(lim +∞→n n nf n =______.(2012)(1)曲线221x x y x +=-渐近线的条数为( )(A )0(B )1(C )2(D )3(2012)(9)1cos sin 4lim(tan )x xx x π-→(2011)(1) 已知当0x →时,函数()3sin sin 3f x x x =-与是kcx等价无穷小,则(A) 1,4k c == (B) 1,4k c ==- (C) 3,4k c == (D) 3,4k c ==-(2011)(9) 设0()lim (13)x tt f x x t →=+,则'()f x =______.(2010)(1) 若011lim ()1xx a exx→⎡⎤--=⎢⎥⎣⎦,则a 等于 (A )0 (B )1 (C )2 (D )3(2010)(4) 设10()lnf x x =,()g x x =,10()x h x e =,则当x 充分大时有()(A )()()()g x h x f x << (B )()()()h x g x f x << (C )()()()f x g x h x << (D )()()()g x f x h x <<(2009)(1)函数3()sin x x f x xπ-=的可去间断点的个数为(A)1. (B)2.(C)3.(D)无穷多个.(2009)(2)当0x →时,()sin f x x ax =-与2()ln(1)g x xbx =-是等价无穷小,则(A)1a =,16b =-. (B )1a =,16b =. (C)1a =-,16b =-. (D )1a =-,16b =.(2009)(9)cos 0x x →= .(2008)(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )(A )跳跃间断点. (B )可去间断点.(C )无穷间断点.(D )振荡间断点.(2008)(9)设函数21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(2007)(1) 当0x +→(A )1- (B )ln(1 (C 1 (D )1-(2007)(2) 设函数()f x 在0x =处连续,下列命题错误的是()(A )若0()limx f x x→存在,则(0)0f =(B )若0()()lim x f x f x x→+-存在,则(0)0f =(C )若0()lim x f x x→存在,则'(0)f 存在(D )若0()()lim x f x f x x→--存在,则'(0)f 存在(2007)(6) 曲线1ln(1),xy e x=++渐近线的条数为()(A )0 (B )1 (C )2 (D )3(2007)(11) 3231lim(sin cos )________2x x x x x x x →∞+++=+. (2006)(1) ()11lim ______.nn n n -→∞+⎛⎫= ⎪⎝⎭(2006)(2) 设函数()f x 在2x =的某邻域内可导,且()()e f xf x '=,()21f =,则()2____.f '''=(2006)(3) 设函数()f u 可微,且()102f '=,则()224z f xy =-在点(1,2)处的全微分()1,2d _____.z =(2005)(1) 极限22lim sin1x xx x →∞=+______.(2004)(1) 若()0sin lim cos 5x x x x b e a→-=-,则a =______,b =______.(2004)(7) 函数()()()()2sin 212x x f x x x x -=--在下列哪个区间内有界.(A )()1,0- (B )()0,1 (C )()1,2 (D )()2,3(2004)(8) 设()f x 在(),-∞+∞内有定义,且()lim x f x a →∞=,()1,0,0,0,f xg x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩则 (A )0x =必是()g x 的第一类间断点 (B )0x =必是()g x 的第二类间断点 (C )0x =必是()g x 的连续点 (D )()g x 在点0x =处的连续性与a 的值有关.二:解答题(2014)15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.(2013)(本题满分10分)当时,与为等价无穷小,求与的值。
0x →1c o sc o s 2c o s 3x x x -⋅⋅n a计算222cos 40lim x x x e e x -→-(2011)(15) (本题满分10分)求极限0x →.(2010)(15) (本题满分10分)求极限11ln lim (1)xxx x →+∞-(2008)(15) (本题满分10分)求极限201sin limln x x x x→.(2006)(15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求: (Ⅰ)()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→。
(2005)(15)(本题满分8分)求011lim 1x x x e x -→+⎛⎫- ⎪-⎝⎭.求22201cos lim sin x x x x →⎛⎫- ⎪⎝⎭.第二章 导数与微分(2014)4.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤(2012)(2)设函数2()(1)(2)x x nx f x e e e n =--…(-),其中n 为正整数,则(0)f '=()(A )1(1)(1)!n n --- (B )(1)(1)!nn --(C )1(1)!n n --(D )(1)!nn -(2012)(10)设函数ln 1(),(()),21,1x dy x f x y f f x dx x x =⎧≥⎪=⎨-<⎪⎩求___________.(2011)(2) 已知()f x 在0x =处可导,且(0)0f =,则2330()2()lim x x f x f x x→-= (A) '2(0)f - (B) '(0)f - (C) '(0)f (D) 0(2011)(11) 曲线tan()4yx y eπ++=在点(0,0)处的切线方程为______.(2010)(3) 设函数()f x ,()g x 具有二阶导数,且"()0g x <。
若0()=g x a是()g x 的极值,则[]()f g x 在0x 取极大值的一个充分条件是()(A )'()0f a < (B )'()0f a > (C )"()0f a < (D )"()0f a >(2010)(9) 设可导函数()y y x =由方程220sin x y xt e dt x t dt +-=⎰⎰确定,则x dydx==______.(2009)(4)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为(A)(B)(C)(D)(2007)(12) 设函数123y x =+,则()(0)_________n y =.(2007)(17)(本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性。
(2006)(2) 设函数()f x 在2x =的某邻域内可导,且()()e f xf x '=,()21f =,则()2____.f '''=(2006)(7) 设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则()(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< .(2006)(8) 设函数()f x 在0x =处连续,且()22lim1h f h h →=,则()(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D)()()010f f +'=且存在(2005)(7) 当a 取下列哪个值时,函数()322912f x x x x a =-+-恰有两个不同的零点.(A )2 (B )4 (C )6 (D )8(2005)(10) 设()sin cos f x x x x =+,下列命题中正确的是(A )()0f 是极大值,2f π⎛⎫⎪⎝⎭是极小值 (B )()0f 是极小值,2f π⎛⎫⎪⎝⎭是极大值 (C )()0f 是极大值,2f π⎛⎫⎪⎝⎭也是极大值 (D )()0f 是极小值,2f π⎛⎫⎪⎝⎭也是极小值(2005)(11) 以下四个命题中,正确的是(A )若()f x '在()0,1内连续,则()f x 在()0,1内有界 (B )若()f x 在()0,1内连续,则()f x 在()0,1内有界 (C )若()f x '在()0,1内有界,则()f x 在()0,1内有界 (D )若()f x 在()0,1内有界,则()f x '在()0,1内有界(2004)(9) 设()()1f x x x =-,则(A )0x =是()f x 的极值点,但()0,0不是曲线()y f x =的拐点(B )0x =不是()f x 的极值点,但()0,0是曲线()y f x =的拐点 (C )0x =是()f x 的极值点,且()0,0是曲线()y f x =的拐点 (D )0x =不是()f x 的极值点,()0,0也不是曲线()y f x =的拐点(2004)((11) 设()f x '在[],a b 上连续,且()()0,0f a f b ''><,则下列结论中错误的是(A )至少存在一点()0,x a b ∈,使得()()0f x f a > (B )至少存在一点()0,x a b ∈,使得()()0f x f b > (C )至少存在一点()0,x a b ∈,使得()00f x '= (D )至少存在一点()0,x a b ∈,使得()00f x =第三章 不定积分(2011)(17) (本题满分10分)求(2009)(16)(本题满分10 分)计算不定积分ln(1dx +⎰(0)x >.第四章 定积分一:填空、选择(2014)10.设D 是由曲线01=+xy 与直线0=+y x 及2=y 所围成的有界区域,则D 的面积为 .(2014)11.设412=⎰ax dx xe ,则=a .(2013)求dx x x⎰+∞+12)1(ln =______.(2012)(12)由曲线4y x =和直线y x =及4y x =在第一象限中所围图形的面积为_______.(2011)(4) 设40ln(sin )I x dx π=⎰,4ln(cot )J x dx π=⎰,40ln(cos )K x dx π=⎰ 则I ,J ,K 的大小关系是(A) I J K << (B) I K J << (C) J I K << (D) K J I <<(2011)(12)曲线y =2x =及x 轴所围成的平面图形绕x 轴旋转所成的旋转体的体积______.(2010)(10)设位于曲线)y e x =≤<+∞下方,x 轴上方的无界区域为G ,则G 绕x 轴旋转一周所得空间区域的体积是______.(2009)(3)使不等式1sin ln xtdt x t>⎰成立的x 的范围是(A)(0,1). (B)(1,)2π. (C)(,)2ππ.(D)(,)π+∞.(2008)(2)如图,曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分()at xf x dx⎰等于( )(A )曲边梯形ABOD 面积.(B ) 梯形ABOD 面积. (C )曲边三角形ACD 面积.(D )三角形ACD 面积.(2008)(10)设341()1x x f x x x ++=+,则2()______f x dx =⎰.(2007)(3) 如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设()(),xF x f t dt =⎰则下列结论正确的是()(A )3(3)(2)4F F =-- (B )5(3)(2)4F F = (C )3(3)(2)4F F -= (D )5(3)(2)4F F -=--(2004)(3) 设()211,,2211,,2x xe x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩ 则()2121f x dx -=⎰_____. 二:解答题(2013)(16)(本题满分10分)设是由曲线,直线及轴所围成的平面图形,分别是绕轴,轴旋转一周所得旋转体的体积,若,求的值。