零件制造的快速成型技术及其应用
快速成型技术的多领域应用与发展
快速成型技术的多领域应用与发展摘要:简要介绍了快速成型技术的基本原理、工艺方法和技术特点。
阐述了快速成型技术在工业造型、制造、模具、医学、航天等多领域的应用,探讨了快速成型技术今后的发展趋势。
关键词:快速成型技术原型快速制模应用快速成型技术RP(Rapid Protot-yping RP)是20世纪80年代末开始发展起来的一种基于逐层累加成型的新兴制作工艺,它是集多种先进科技于一体的能够迅速将设计思想转化为产品的现代先进制造技术。
它为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。
快速成型工艺是一个涉及CAD/CAM、逆向工程技术、分层制造技术、数据编程、材料编制、材料制备、工艺参数设置及后处理等环节的集成制造过程。
通俗地说,快速成型技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。
近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。
尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得RP技术得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。
快速成型制造工艺PR技术是将传统的“去除”加工方法(由毛坯切去多余材料形成产品)改变为“增加”加工方法(将材料逐层累积形成产品),采用离散分层/堆积的原理,由CAD模型直接驱动,快速制作原型或三维实体零件的一种全新的制造技术。
快速成型技术发展至今,以其技术的高集成性、高柔性、高速性而得到了迅速发展,目前,快速成型的工艺方法已有几十种之多,其中主要工艺有四种基本类型: 光固化成型法(Stereo lithography Apparatus, SLA)、叠层实体制造法(Laminated Object Manufacturing, LOM)、选择性激光烧结法(Selective Laser Sintering, SLS) 和熔融沉积制造法(Fused Deposition Manufacturing, FDM)。
2.第2章 快速成型技术及其在铸造中的应用解析
第2章快速成型技术及其在铸造中的应用2.1 引言快速成型(Rapid Prototyping-RP)技术是国际上新开发的一项高科技成果,简称快速成型技术。
它的核心技术是计算机技术和材料技术。
快速成型技术摒弃了传统的机械加工方法,根据CAD生成的零件几何信息,控制三维数控成型系统,通过激光束或其它方法将材料堆积而形成零件的。
用这种方法成型,无需进行费时、耗资的模具或专用工具的设计和机械加工,极大地提高了生产效率和制造柔性。
从制造原理上讲,快速成型(RP)技术一改“去除”为“堆积”的加工原理,给制造技术带来了革命性的飞跃式发展。
基于RP原理的快速制造技术经十几年的发展,在创新设计、反求工程、快速制模各方面都有了长足的进步。
RP技术的应用可大大加快产品开发速度,缩短制造周期,降低开发成本。
现代市场竞争的特点是多品种、小批量、短周期,要求企业对市场能快速响应并不断推出新产品占领市场,如新型电话机的市场寿命仅6个月,又如台湾和日本摩托车行业,每三个月就推出一种新型摩托车投入市场,摩托车几万辆就需改型。
二十世纪九十年代以来,在信息互联网支持下,由快速设计、反求工程、快速成形、快速制模等构成的快速制造技术取得很大进展。
快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的Alan J. Hebert(1978)、日本的小玉秀男(1980)、美国UVP公司的Charles W. Hull(1982)和日本的丸谷洋二(1983),在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。
Charles W. Hull 在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。
同年,Charles W. Hull和UVP的股东们一起建立了3D System公司。
快速成型技术
其在处理速度上都可以很好的满足需求,而且时间跨度不大,有利于实现产品开发的高速闭环反馈。 其二:集成化,快速成型技术使得设计环节和制造环节达到了很好的统一,我们知道在快速 成型的操作过程中,计算机中
的CAD模型数据会通过软件转化的方式,自动生成数控指令,依据数据的转化实现对于部件的合理加工。由此看来设计和 制造之间的鸿沟不再存在,达到了高度的集约化。 其三:适用性,快速成型技术,适翻分层技术制造工艺,将复杂的三维切成二维来处理,极大的简化了加工流程,在不存 在三维刀具的干涉的前提下,高效的处理好复杂的中空结构。无论是从理论上来讲,还是从实践上来讲,其技术的适用性 可以应对任何的复杂构件制造。 其四:可调整性,快速成型技术,即真正意义上的数字化系统,是制造业中的利器,我们操作员仅仅需要合理设置一下相 关的参数和属性, 就可以有针对性的处理好各种产品的样品制造和小批量生产;而且在此过程中,保证了成型过程的柔韧 性。 其五:自动化,快速成型技术,实现了完全的自动化成型,只要操作人员输入相关的参数,在不需要多少干涉的情况下,实 现整个过程的自动运行。
从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及,为新的制造技 术的产生奠定了技术物质基础。
《快速成型技术及应用》学习心得3篇
《快速成型技术及应用》学习心得 (2)《快速成型技术及应用》学习心得 (2)精选3篇(一)在学习《快速成型技术及应用》这门课程期间,我对快速成型技术的原理和应用有了深入的了解。
首先,我学习了快速成型技术的原理和基本工艺流程。
快速成型技术是一种通过逐层堆积材料来构建三维实体模型的制造方法。
这种方法可以实现复杂零件的快速制造,同时减少了制造过程中的浪费和成本。
其次,我了解到了常见的快速成型技术。
课程中介绍了多种快速成型技术,如光固化技术、喷墨技术、熔融沉积技术等。
每种技术都有其特点和适用范围,通过学习,我能够根据实际需求选择最合适的快速成型技术。
此外,我还了解到了快速成型技术的应用领域。
除了在工业制造领域广泛应用外,快速成型技术还在医疗领域、航空航天领域等有着重要的应用。
在课程中,我了解到了一些实际案例,如使用快速成型技术制造单一模型的重要性以及如何应用于现代生物医学等领域。
通过学习《快速成型技术及应用》,我不仅对快速成型技术有了更深刻的理解,还掌握了一些实际应用的技能。
这门课程为我今后在工程设计和制造领域的实践提供了很好的指导和帮助。
《快速成型技术及应用》学习心得 (2)精选3篇(二)《快速成型技术及应用》是一本介绍快速成型技术的教材,该书内容丰富,涵盖了快速成型技术的基本原理、方法和应用。
通过学习这本书,我对快速成型技术有了更加清晰的认识。
首先,书中对快速成型技术的原理做了详细的介绍,让我了解到了该技术的基本工作流程和实现原理。
其次,书中列举了各种快速成型技术的特点和适用范围,让我了解到了不同的快速成型技术在不同领域的应用情况。
最后,书中还介绍了快速成型技术在制造业、医疗、艺术设计等领域的具体应用案例,这让我更加明确了快速成型技术的实际意义和潜力。
通过学习这本教材,我不仅学到了关于快速成型技术的知识,也了解到了该技术在实际应用中的挑战和发展方向。
同时,通过学习书中的案例,我也对该技术如何在实际工作中发挥作用有了更深入的理解。
快速成型技术在产品设计中的应用
快速成型技术在产品设计中的应用
快速成型技术是一种将数字化三维模型转化为实际物体的技术,通过计算机辅助设计
软件和材料加工设备实现原型设计与制造的重要方法。
在产品设计领域中,快速成型技术
应用广泛,主要应用于产品原型制作、产品的外观检验和最终产品的制造等方面。
一、原型制作
快速成型技术可以大大加快产品原型的制作速度,并可以提供高精度、高质量的原型。
使用传统的手工制作方法,需要耗费大量的时间和人力,而且在精度和质量方面也无法与
快速成型技术相比。
快速成型技术可以将设计师的概念迅速转化为实际产品样品,从而使
设计师可以更快地评估和确认其设计方案的可行性,对于新产品的开发和改良具有重要的
作用。
二、外观检验
在产品设计阶段,快速成型技术可以通过制造实际样品,方便设计师对产品的外观、
尺寸、色彩等方面进行检验。
传统的检验方式需要手动制作模型进行比对,费时费力,且
难以做到精度的一致性。
快速成型技术可以在短时间内制作多个产品样品,提高检验的效
率和准确性。
三、最终产品制造
快速成型技术可以直接将设计师的三维模型转化为零件,并可以在短时间内生产出更
具精度和质量的产品。
在快速成型技术中,材料的用量较少,制造过程中浪费的材料也较少,大大降低了生产成本,并提高了生产效率和产品质量。
综上所述,快速成型技术在产品设计中的应用广泛,具有很大的优势。
它可以减少产
品制造时间,提高产品设计和制造的效率和准确性,从而为产品的研发和改进提供了有力
的技术手段。
随着新材料和新技术的不断发展,快速成型技术将会在产品设计中发挥更为
重要的作用。
快速成型技术在产品设计中的应用
快速成型技术在产品设计中的应用快速成型技术是一种通过计算机模型和相应的设备,以较短的时间、较低的成本、精度高的方式制造出零部件或者实体的技术。
随着科技的发展,快速成型技术被广泛应用于汽车、机械、航空、医疗等工业制造领域。
在产品设计方面,快速成型技术在以下几个方面有着非常重要的应用。
一、高效的产品设计通过快速成型技术,产品设计者可以快速制造出原型模型,以形象和实际的方式展现设计想法,直接验证设计方案,避免了设计方案的漏洞和误差,有效提高了产品设计的效率。
快速成型技术制造的原型,同时也可用来测试装配性、耐久性、图案设计等。
并且,快速成型技术可以缩短前期开发周期,避免出现市场、竞争跟不上的状况。
二、提高产品质量传统制造工艺,例如注射、铸造、电火花加工等,让产品设计者及生产工人需要反复修正产品才能满足质量要求。
而采用快速成型技术,可以通过模拟生产过程进行实验、变换不同的材料、气压、温度等条件来调整工艺参数,从而更好地掌握良好的产品质量。
三、精度高相对于手工或者传统制造方式,快速成型技术可以将诸多复杂的制造环节转化为计算机模型,避免人为因素带来的误差,并且精度高,制造出来的零部件或者模型与设计的模型几乎一致。
四、降低成本传统制造方式需要制造模具、精密加工等较高成本的要素,而快速成型技术所需的成本相对较低,制造的产品更快速、更精确、更专业,从而大幅降低了制造成本。
通过快速成型技术的应用,产品设计者可以以更快的速度制造出更高质量的零部件或者模型,实现了快速成型,以满足市场竞争和客户需求的要求。
同时,也通过降低企业成本,实现了效益的快速提升,提高了企业的竞争力。
综上所述,快速成型技术在产品设计方面具有非常重要的应用前景。
尽管不断地推进着新技术的应用和不断的改进制造过程是必要的,但必须考虑到目标市场,材料、成本效益和终端用户使用场景的实际要求,才能充分地实现快速成型技术在产品设计中的应用。
快速成型技术的应用及发展趋势
快速成型技术的应用及发展趋势熊文恪模具1111 2011118501266摘要:阐述了快速成型技术的基本概念,总结了快速成型技术的特点,并通过制作实例展现了快速成型技术在产品开发中的应用现状,最后展望了快速成型技术的未来发展趋势。
关键词:快速成型技术应用发展趋势当今时代,制造业市场需求不断向多样化、高质量、高性能、低成本、高科技的方向发展,一, 快速成型技术在成型过程中无需专用的夹具或工具,成型过程具有极高的柔性, 这是快速成型技术非常重要的一个技术特征。
1—5 自动化程度高。
快速成型是一种完全自动的成型过程, 只需要在成型之初由操作者输入一些基本的工艺参数,整个成型过程操作者无需或较少干预[ 4] 。
出现故障, 设备会自动停止, 发出警示并保留当前数据。
完成成型过程时, 机器会自动停止并显示相关结果。
2快速成型技术应用近年来, 快速成型技术在工业造型、制造、建筑、艺术、医学、航空、航天、考古和影视等领域得到迅速良好的应用。
主要包括以下几个方面:2—1 设计和功能验证。
通过快速成型技术可以快速制作产品的物理模型, 以验证设计人员的构思, 发现产品设计中存在的问题。
而使用传统的方法制作原型意味着从绘图到工装模具设计和制造, 一般至少历时数月, 经过多次返工和修改。
采用快速成型技术则可节省大量时间和费用。
同时, 使用快速成型技术制作的原型可直接进行装配检验、干涉检查和模拟产品真实工作情况的一些功能试验, 如运动分析、应力分析、流体和空气动力学分析等, 从而迅速完善产品的结构和性能、相应的工艺及所需工模具的设计。
2—2 非功能性样品制作。
在新产品正式投产之前或按照定单制造时,需要制作产品的展览样品或摄制产品样本照片,采用快速成型是理想的方法。
邵敏[ 5]在首饰设计方面提出首饰设计是立体的物质实体性设计,,逐层制造的优点,探索制造具有功能梯度、综合性能优良、特殊复杂结构的零件,也是一个新的方向发展。
3—2.概念创新与工艺改进。
快速成型(RP)的原理方法及应用
快速成型(RP)的原理方法及应用快速成型(RP)的原理方法及应用快速成型(RP)技术是一种集计算机、数控、激光和材料技术于一体的先进制造技术。
本文通过介绍快速成型系统的原理方法和特点,阐述其工艺特点及开发和应用,探讨快速成型技术在现代制造业中起到的重要作用和产生的巨大效益,分析快速成型技术的优点和缺点,并提出快速成型技术未来的发展方向和深远意义。
1前言当今时代,制造业市场需求不断向多样化、高质量、高性能、低成本、高科技的方向发展,一方面表现为消费者兴趣的短时效和消费者需求日益主体化、个性化和多元化;另一方面则是区域性、国际市场壁垒的淡化或打破,要求制造业的厂商必须着眼于全球市场的激烈竞争。
因此快速地将多样化、性能好的产品推向市场成为了制造业厂商把握市场先机的关键,由此导致了制造价值观从面向产品到面向顾客的重定位,制造战略重点从成本与质量到时间与响应的转移,也就是各国致力于CIMS(ComputerIntegratedManufactureSystem)、并行工程、敏捷制造等现代制造模式的研究与实践的原因。
快速成型(RapidPrototyping)技术正是在这种时代的需求下应运而生的。
它是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。
它集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
2快速成型的原理及特点快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按照一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。
再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。
实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底到顶完成零件的制作过程。
它是计算机辅助设计与制造技术、逆向工程技术、分层制造技术、材料去除成形、材料增加成形技术以及它们的集成的总称。
快速成型的原理及应用
题目:1、快速成型原理是什么?其技术有何特点?2、按制造工艺原理分,快速成型工艺主要分成哪几类?3、简述快速成型技术有哪些应用?4、典型的快速成型工艺有哪几种?试分析成型工艺的特点。
5、反求工程的基本含义是什么?应用在那几个方面?6、结合课程知识点,谈谈快速成型技术对新产品设计的作用。
1、快速成型原理是什么?其技术有何特点?快速成型原理RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。
当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。
不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。
这种工艺可以形象地叫做"增长法"或"加法"。
每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。
自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。
其成形原理分别介绍如下:(1)SLA快速成形系统的成形原理:成形材料:液态光敏树脂;制件性能:相当于工程塑料或蜡模;主要用途:高精度塑料件、铸造用蜡模、样件或模型。
零件制造的快速成型技术及其应用
Ab t a t RP Sam o n o s r a t r u h o d m n f c r g r c n l. t S s d o U sr c : M i me t u e k h o g fmo e ma u a t i e e t I i t y f C S b u n y u i t r ai n l . h o rb sc f 1 3 o e a i n l rn i l n h r c e it so M r n r d c d n e n t al T e f u a i o" . p r t a i c p e a d c a a trsi fRP wee i t u e . o y 1 1 o p c o
维普资讯
一
画
铸 工 造艺
零件制 造 的快速成 型技术及其应 用
周 振 堂 , 马廉 洁 ,
( . 白城师范学院,吉林 白城 1 70 : 2 1 30 0 .秦皇岛职业技术学院机 电系,; :秦皇 岛 0 60 ) - . HI 6 10
摘 要 :快 速 成型 制 造技 术 是 近年 来 制造 领 域 的 一 次 重 大突破 , 目前 已经 发展 为 国际上 研
有 无 均 由计 算机 控 制 ,光 点 打 到 的地 方 ,液 体 就
固化 。成 型 开 始 时 ,工 作 平 台在 液 面 下 一个 确 定 的深 度 , 聚 焦 后 的 光 斑 在 液 面 上 按 计 算 机 的指 令 逐 点扫 描 , 即 逐 点 固 化 。 当一 层 扫 描 完 成 后 ,未
K e o ds RPM ; Nsm a u a t rng Ad nc d m a f curn e h q e A p ia i yw r : Pa n f c u i ; va e nu a t i g t c ni u ; pl ton c
快速成型技术及应用
第一章 快速成型原理及方法概要
1.3 RPT的现状和发展方向
取得重大成果。如美国DTM公司利用SLS工艺成形金属 件。一般可通过两种途径:一是使用高功率二氧化碳激 光直接烧结金属粉,逐层堆积成致密度高的结构件;二 是使用中低功率二氧化碳激光烧结覆膜金属粉成形,然 后通过高温烧结和渗金属处理获得致密度高的结构件。 国内如中北大学已利用SLS工艺间接成形小型结构件并 获得阶段成果。西工大在高功率激光直接烧结金属粉的 研究已取得重大进展。 加强RPT的应用研究,最大程度地拓宽其应用领域 。我国更应重视将RPT与反求工程相结合设计开发新产 品,符合中国国情。
第一章 快速成型原理及方法概要
1.1成型方式分类
根据现代成形学的观点,从物质的组织方式分为以 下四类: (1)去除成形(Dislodge Forming).去除成型是利 用分离的方法,把一部分材料有序地从基体上分离出去 而成型的方法. (2)堆积成形(Stacking Forming).堆积成型是运 用合并与连接的方法,把材料(气.液.固相)有序 地合并堆积起来的成型方法.RP即属于堆积成型.堆 积成型是在计算机控制下完成的,其最大特点是不受 成型零件复杂程度的限制.从广义上讲,焊接也属堆 积成型范畴.
第一章 快速成型原理及方法概要
1.2快速成形的主要工艺方法
1.2.2分层实体制造(Laminated Object Manufacturing--LOM)
也称薄形材料选择性切割.它根据三维模型每一个截面的轮廓线.在计算 机的控制下,用CO2激光束对薄形材料(如底面涂胶的纸)进行切割,逐步 得到各层截面,并黏结在一起,形成三维产品,如图所示.这种方法适合 成形大.中型零件,翘曲变形小,成形时间较短,但尺寸精度不高,材料 浪费大,且清除废料困难.
sls工艺成型应用案例
sls工艺成型应用案例SLM工艺成型是指通过熔融金属粉末的选择性加热和熔融,逐层堆积形成三维实体物体的一种快速成型技术。
SLM工艺成型技术具有制造速度快、制造精度高、制造成本低等优点,在航空航天、汽车制造、医疗器械等领域有着广泛的应用。
以下是10个SLM工艺成型应用案例。
1. 航空航天领域:SLM工艺成型技术被广泛应用于航空航天领域的零部件制造。
例如,利用SLM工艺成型技术可以制造出具有复杂内部结构和轻量化设计的航空发动机零部件,提高了零部件的性能和耐久性。
2. 汽车制造领域:SLM工艺成型技术可以用于汽车制造领域的零部件制造。
例如,利用SLM工艺成型技术可以制造出具有复杂结构和高强度的汽车发动机零部件,提高了汽车的性能和燃油效率。
3. 医疗器械领域:SLM工艺成型技术可以用于医疗器械领域的零部件制造。
例如,利用SLM工艺成型技术可以制造出具有个性化设计和高精度的人工关节,提高了手术的成功率和患者的生活质量。
4. 电子设备领域:SLM工艺成型技术可以用于电子设备领域的零部件制造。
例如,利用SLM工艺成型技术可以制造出具有复杂结构和高导热性的散热器,提高了电子设备的散热效果和工作稳定性。
5. 工业制造领域:SLM工艺成型技术可以用于工业制造领域的零部件制造。
例如,利用SLM工艺成型技术可以制造出具有复杂结构和高耐磨性的模具,提高了工业制造的效率和品质。
6. 船舶制造领域:SLM工艺成型技术可以用于船舶制造领域的零部件制造。
例如,利用SLM工艺成型技术可以制造出具有复杂内部结构和高耐腐蚀性的船舶部件,提高了船舶的使用寿命和安全性。
7. 建筑领域:SLM工艺成型技术可以用于建筑领域的零部件制造。
例如,利用SLM工艺成型技术可以制造出具有复杂形状和高强度的建筑结构件,提高了建筑的结构稳定性和耐久性。
8. 能源领域:SLM工艺成型技术可以用于能源领域的零部件制造。
例如,利用SLM工艺成型技术可以制造出具有复杂内部结构和高热效率的燃料电池板,提高了能源的利用效率和环境友好性。
模具零件快速成型制造的实现与应用
Abs t r a c t: Th i s p a p e r i n t r o d u c e s t h e c h a r a c t e r i s t i c s o f c y c l e a n d c o s t r e q ui r e me n t s o f mo l d a n d i t s p a r t s i n t h e ma n u —
f a c t ur i n g p r o c e s s ,a n a l y z e s t h e i mp l e me n t a t i o n me t h o d a n d t h e s u p e r i o r i t y o f r a pi d p r o t o t y p i n g i n ma nu f a c t u r i n g
0 引 言
1 模 具及 其零 件 的制造 特点 采用 模具 生产 制件有 其他 加工 制造 方法 所不 能
快 速成 型技 术是 最近 二十 多年来 发展 起来 的一 种 新型 制造 技术 , 近年 在我 国得 到 了迅速 普及 , 主要 与逆 向工程 技术 相 结 合 应用 于新 产 品 开 发 方 面 , 在 医学 、 文化 艺术 、 航 空航天 等行 业也 有较好 应 用 。将 快 速成 型技 术用 于模 具零 件制 造领 域 , 能降低 成本 、 缩 短周 期 , 也有 广 泛 的应 用 前 景 。本 文 以充 电器 盒 为例 , 研究 了应 用快 速 成 型 技 术 进行 模 具 主 要 成 型
e x a mp l e, wh i c h ha s c e r t a i n r e f e r e n c e v a l u e i n ma n u f a c t u r i n g o t h e r mo l d p a r t s . Ke ywo r d s: mo l d; ma n u f a c t u r i n g; r a p i d pr o t o t y pi ng
快速成型工艺
快速成型工艺快速成型工艺是一种先进的制造技术,它可以快速地制造出各种复杂的零件和产品。
这种技术的出现,极大地提高了制造业的效率和质量,同时也为各行各业的发展带来了新的机遇。
快速成型工艺的基本原理是利用计算机辅助设计软件将三维模型转化为可供机器识别的数字化文件,然后通过快速成型机器将数字化文件转化为实体模型。
这种技术可以快速地制造出各种复杂的零件和产品,而且制造出来的产品精度高、质量好、成本低,可以满足各种不同的需求。
快速成型工艺的应用范围非常广泛,它可以应用于汽车、航空、医疗、电子、玩具等各个领域。
在汽车制造领域,快速成型工艺可以用于制造汽车零部件,如发动机、变速器、底盘等。
在航空领域,快速成型工艺可以用于制造飞机零部件,如机翼、机身、发动机等。
在医疗领域,快速成型工艺可以用于制造人体器官模型、义肢、牙齿矫正器等。
在电子领域,快速成型工艺可以用于制造手机外壳、电脑键盘、电视机壳体等。
在玩具领域,快速成型工艺可以用于制造各种玩具模型、动漫人物等。
快速成型工艺的优点主要有以下几点:1.快速成型工艺可以快速地制造出各种复杂的零件和产品,而且制造出来的产品精度高、质量好、成本低。
2.快速成型工艺可以大大缩短产品的研发周期,提高产品的研发效率。
3.快速成型工艺可以减少产品的设计和制造成本,提高企业的竞争力。
4.快速成型工艺可以满足客户的个性化需求,提高客户的满意度。
快速成型工艺的发展趋势是向着高精度、高效率、低成本、多材料、多功能、智能化的方向发展。
未来,快速成型工艺将会更加广泛地应用于各个领域,成为制造业的重要组成部分。
快速成型工艺是一种先进的制造技术,它可以快速地制造出各种复杂的零件和产品,提高制造业的效率和质量,为各行各业的发展带来新的机遇。
我们应该积极推广和应用这种技术,为社会的发展做出更大的贡献。
快速成型技术的应用与发展趋势
快速成型技术的应用及发展趋势摘要:;快速成型技术凭借其加工原理的独特性和相对传统加工时间的大大节省,在模具工业和修复医学方面得到了大力的推广和应用.同时也是一种结合计算机、数控、激光和材料技术于一体的先进制造技术,并提出快速成型技术未来的发展方向。
关键词:快速成型;快速模具;修复医学;成型方法;成型材料;引言快速成型(Rapid Prototyping,简称RP)是80年代末期开始商品化的一种高新制造技术,它是集CAD/CAM技术、激光加工技术、数控技术和新材料等技术领域的最新成果于一体的零件原型制造技术.快速成型不同于传统的用材料去除方式制造零件的方法,而是用材料一层一层积累的方式构造零件模型.它利用所要制造零件的三维CAD模型数据直接生成产品原型,并且可以方便地修改CAD模型后重新制造产品原型.由于该技术不像传统的零件制造方法需要制作木模、塑料模和陶瓷模等,可以把零件原型的制造时间减少为几天、几小时,大大缩短了产品开发周期,减少了开发成本.随着计算机技术的快速发展和三维CAD软件应用的不断推广,越来越多的产品基于三维CAD设计开发,使得快速成型技术的广泛应用成为可能.快速成形技术已广泛应用于宇航、航空、汽车、通讯、医疗、电子、家电、玩具、军事装备、工业造型(雕刻)、建筑模型、机械行业等领域[1]。
1.快速成型技术的应用1.1 工业产品开发及样件试制作为一种可视化的设计验证工具,RP具有独特的优势。
(1)在国外,快速原型即首版的制作,已成为供应商争取订单的有力工具。
美国Detroit的一家制造商,利用2台不同型号的快速成型机以及快速精铸技术,在接到№rd公司标书后的4个工作日内生产出了第一个功能样件,从而拿到了Ford公司年生产总值300万美元的发动机缸盖精铸件的合同。
(2)在RP系统中,一些使用特殊材料制作的原型(如光敏树脂等)可直接进行装配检验、模拟产品真实工作状况的部分功能试验。
Chrysler 直接利用RP技术制造的车体原型进行高速风洞流体动力学试验,节省成本达70%。
简述快速成型技术的应用领域。
简述快速成型技术的应用领域。
快速成型技术(Rapid Prototyping,简称RP)是一种通过将计算机模型直接转化为物理模型的制造技术。
它利用计算机辅助设计(CAD)软件将设计模型转化为三维数字模型,然后通过快速成型机器将数字模型转化为实体模型。
快速成型技术的应用领域非常广泛,下面将对其主要应用领域进行简要介绍。
1. 制造业:快速成型技术在制造业中的应用非常广泛。
它可以用于制造各种机械零件、模具、模型等。
通过快速成型技术,可以大大缩短产品开发周期,降低产品开发成本,提高产品质量。
此外,快速成型技术还可以用于制造复杂的结构件,如骨骼支架、人工关节等。
2. 医疗领域:快速成型技术在医疗领域的应用非常广泛。
它可以用于制造医疗器械、医疗模型、人体组织修复等。
通过快速成型技术,可以根据患者的具体情况,定制医疗器械和人工器官,提高手术的精确性和成功率。
同时,快速成型技术还可以用于制造人体模型,帮助医生进行手术模拟和培训。
3. 文化艺术:快速成型技术在文化艺术领域的应用也越来越广泛。
它可以用于制造各种艺术品、雕塑、建筑模型等。
通过快速成型技术,艺术家可以更加自由地发挥创造力,制作出更加精细、复杂的作品。
同时,快速成型技术还可以用于文物保护和修复,帮助保护和传承人类的文化遗产。
4. 教育领域:快速成型技术在教育领域的应用也日益增多。
它可以用于制作教学模型、实验装置等。
通过快速成型技术,教师可以更加生动地展示教学内容,提高学生的学习兴趣和参与度。
同时,快速成型技术还可以用于学生的创意设计和创新实践,培养学生的创造力和实践能力。
5. 建筑领域:快速成型技术在建筑领域的应用也越来越广泛。
它可以用于制造建筑模型、结构模型等。
通过快速成型技术,建筑师可以更加直观地展示设计方案,帮助客户更好地理解和接受设计。
同时,快速成型技术还可以用于制造建筑构件和装饰品,提高建筑施工效率和质量。
快速成型技术在制造业、医疗领域、文化艺术、教育领域和建筑领域等多个领域都有广泛的应用。
FDM快速成型技术及其应用
感谢观看
4、医疗行业:在医疗领域,FDM技术被用于制造人体植入物、医疗器械等。 由于其制造的材料安全、无毒,且精度高,使得FDM成为医疗行业的重要选择。
5、教育行业:在教育领域,FDM技术常被用于教学示范和实验中,通过打印 出三维模型来帮助学生更好地理解复杂的概念和结构。此外,学生也可以使用 FDM技术来制作自己的设计项目,提高实践能力和创新思维。
六、未来展望
随着科技的快速发展和社会的不断进步,我们期待快速成型技术能够在以下 几个方面有所突破:首先,设备的效率和稳定性还有待提高,以提高生产效率和 质量;其次,材料的种类和性能需要进一步拓展和优化,以满足不同应用场景的 需求;最后,我们期待这种技术能够更好地融入环保理念,以实现可持续的制造 和发展。
(4)材料广泛:光敏树脂种类繁多,可以满足各种不同类型制品的需求。
2、不足
然而,光固化快速成型技术也存在以下不足之处:
(1)成本较高:光固化快速成型技术的设备、材料和维护成本较高,限制 了其广泛应用。
(2)技术难度较大:光固化快速成型技术的技术门槛较高,需要专业人员 进行操作和维护。
(3)环境影响:光固化过程会产生有害的紫外光和挥发性有机化合物,对 环境和操作者的健康有一定影响。
8、环保行业:在环保领域,FDM技术提供了一种可持续的制造方法。通过使 用可降解或可回收的材料进行打印,可以减少废弃物的产生和对环境的影响。此 外,FDM技术还可以用于制造环保设备零件等。
9、科研领域:在科学研究领域,FDM技术常被用于制造实验模型和测试样品。 例如在材料科学中,研究人员可以使用FDM来制造不同材料的复合结构以研究其 物理和化学性能。此外在生物学领域,FDM技术也被用于制造生物组织的复杂结 构以研究其生长和发育的机制。
快速成型技术的特点和应用是什么
快速成型技术的特点和应用是什么快速成形制造技术是目前国际上成型工艺中备受关注的焦点。
铸造作为一项传统的工艺,制造成本低、工艺灵活性大,可以获得复杂形状和大型的铸件。
充分发挥两者的特点和优势,可以在新产品试制中取得客观的经济效益。
快速成形制造技术又称为快速原型制造技术(RapidPrototypingManufacturing,简称RPM),是一项高科技成果。
它包括SLS、SLA、SLM等成型方法,集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件,所以又称为材料添加制造法(MaterialAdditiveManufacturing或MaterialIncreaseManufacturing)。
由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下几乎能够生成任意复杂形状的零部件,极大地提高了生产效率和制造柔性。
与数控加工、铸造、金属冷喷涂、硅胶模等制造手段一起,快速自动成型已成为现代模型、模具和零件制造的强有力手段,是目前适合我国国情的实现金属零件的单件或小批量敏捷制造的有效方法,在航空航天、汽车摩托车、家电等领域得到了广泛应用。
快速成型技术能够快捷地提供精密铸造所需的蜡模或可消失熔模以及用于砂型铸造的木模或砂模,解决了传统铸造中蜡模或木模等制备周期长、投入大和难以制作曲面等复杂构件的难题。
而精密铸造技术(包括石膏型铸造)和砂型铸造技术,在我国是非常成熟的技术,这两种技术的有机结合,实现了生产的低成本和高效益,达到了快速制造的目的。
RPM技术的特点快速成型的过程是首先生成一个产品的三维CAD实体模型或曲面模型文件,将其转换成特定的文件格式,再用相应的软件从文件中“切”出设定厚度的一系列片层,或者直接从CAD文件切出一系列的片层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零件制造的快速成型技术及其应用
摘要:快速成型技术属于制造领域的发展产物,基于此,文章将快速成型技
术作为主要研究对象,以快速成型基本形式为基础,对技术原理和特点进行分析,探讨快速成型制造技术具体环节与全新工艺,阐述其在零件制造中的具体应用,
希望有所帮助。
关键词:零件制造;快速成型技术;应用
所谓快速成型制造技术,即以零件三维模型数据为依据,保证在短时间内精
准制造零件的一种技术,被广泛应用于现代制造领域中,且被称作制造领域的突
破性发展。
快速成型技术实现了多门学科与技术的融合,兼具数控技术、CAD技
术与激光加工等优势,且涉及机械电子工程与新材料科学等学科。
由此可见,深
入研究并分析零件制造的快速成型技术与应用十分有必要。
一、快速成型技术基本原理与特点阐释
基于CAD建模与光机电一体化技术的快速发展,快速成型技术工艺愈加成熟,常见的工艺方法包括喷粒法、层叠法、熔融沉积法与光固法、激光选区烧结法等等。
(一)熔融沉积造型
对CAD模型进行处理并分成若干极薄截面,并生成二维几何信息,进而对FDM喷嘴移动轨迹进行有效控制[1]。
通过对FDM加热头的使用对热熔性材料予以
加热处理,使其呈现出临界半流动状态。
基于计算机控制,可使喷嘴头按照CAD
所确定的运动轨迹将半流动材料挤出来,经沉积固化后即可形成零件薄层,在垂
直升降系统的作用下呈现新的形成层并固化。
在持续不间断堆积粘结的过程中,
即可由下而上形成零件三维实体。
(二)光固化立体造型
将业态的光固化树脂放于液槽内,经偏转镜的作用在液面实现激光束扫描,经计算机技术合理控制扫描轨迹与光线,在有光点的部位液体会固化。
自成型初期,工作平台会在液面明确具体深度,在液面光斑聚焦以后即可根据计算机提出的指令逐一进行扫描并固化。
在完成一层扫描后,没有被照射的部位始终是液态树脂。
随后,升降台会使平台降低一层的高度,在已经成型层面再次布满树脂,通过对刮平器的使用可对树脂液面大粘度的部分刮平处理,随后开展下一层扫描操作。
这样一来,即可使新固化层与前一层紧密粘贴,在多次重复后即可完成零件制造任务,最终获取三维实体的零件模型。
此方法是快速成型技术中最常使用的,同样技术方法也最成熟。
对光固化立体造型的使用能够保证零件成型的精准度更高。
在实践研究中,通过对截面扫描方法以及树脂成型性能的有效改良,实现了加工精度优化的目标,可精确到0.1毫米。
(三)层片叠加制造
此技术工艺主要是在热辊加热的基础上粘接单面涂有热熔胶的箔材,而激光器则能够根据CAD分层模型获取的数据信息,通过对激光束的使用切割箔材并形成零件内部与外部轮廓[2]。
随后,将新一层箔材叠加其上,经热压装置处理后即可粘合已经完成的切割层。
此时,激光束再次进行切割,经多次切割与粘合的逐层处理后,即可完成零件模型的制作目标。
(四)选择性激光烧结
能量源可选择使用二氧化碳激光器,在红外激光束的作用下在加工平面均匀烧结陶瓷、塑料、金属与蜡的粉末。
基于计算机的有效控制,激光束经扫描器后即可以特定速度与能量密度分层扫描二维数据信息。
在经过扫描后,粉末即可烧结成实体片层,而未被扫描部位始终是粉末状。
一般可结合物体截层的厚度对工作台进行升降处理,在粉末被铺平以后即可对下一层进行扫描。
在反复操作的基础上完成对所有层面的扫描作业,并将剩余粉末去掉,在烘干与打磨处理后即可获取零件。
二、快速成型技术体系环节分析
(一)三维CAD
通过对三维CAD软件的使用构建几何造型,能够获取零件三维CAD的数学模型,为快速成型技术的运用提供帮助,这也是零件制造的首要环节。
通常,三维造型方法包括表面造型与实体造型两种,将CAD软件的专用模块加入到系统内,即可离散处理三维造型结果,以形成面片模型文件。
(二)反求工程
在快速成型技术体系中,物理形态零件同样是其几何信息关键来源。
在几何实体中含括零件几何信息,但必须借助反求工程实现信息的数字化,进而开展后续处理。
在反求工程中可实现零件表面的数字化处理目标,对零件表面的三维数据进行提取。
通常,最常见的技术手段就是自动断层扫描仪器、三维坐标测量仪器、工业CT等等。
借助三维数字化设备的使用,即可并有效集合获取数据的散乱无序点与无序线,在三维重构的基础上构建三维CAD模型。
(三)数据转换
根据三维CAD造型亦或是反求工程所获取的数据应实现大量处理,进而对快速成型设备制造的零件进行控制。
而在数据处理的过程中,一般要对表面进行离散化处理,进而形成STL文件,经分层处理后可形成层片文件。
随后,以工艺要求为依据填充处理,即可检验、修正数据信息,最终向数控代码形式转换。
(四)原型制造
通过对快速成型设备的运用对原材料进行堆积,即可构建三维物理实体。
在快速原型制造过程中,工艺、材料与设备的关系密切。
其中,成型材料是发挥快速成型技术作用的重要因素,会对成型精准度、速度以及零件性能产生直接影响,也会对零件实际应用范围产生一定影响。
三、快速成型技术的具体应用
快速成型技术不仅可在产品功能测试与概念设计中运用,同样也能够在模具设计制造以及工件设计中运用,且在航空航天、电子、汽车、医疗、玩具、家电与电子等多个领域中同样有快速成型技术的应用。
(一)应用于产品设计的评估和功能检测
为保证产品设计质量的提升与试制周期缩短,通过对快速成型技术的运用,即可在短时间内将CAD模型亦或是二维平面图纸转变成实体模型。
以设计原型为依据开展设计评估与功能验证操作,即可在短时间内获得用户所反馈的信息[3]。
另外,快速成型技术的实际应用亦可使制造者更深入地了解产品,最终确定最合理的生产方法和工艺流程,对费用支出做出合理规划。
较之于传统模型制造,此技术的精确度更高且运行速度也更快,可借助CAD软件实时修改和再次验证,进而优化设计效果。
(二)应用于制造快速模具
通过对快速成型技术的应用形成实体模型,并将其当做模套或是模芯,在与电极研磨、粉末烧结或是精铸等相关技术联合应用的基础上,即可在短时间内制造所需功能模具,而实际的制造周期只是传统数控切削所用时间1/5。
而且,模具几何复杂性越强,此技术的应用效益就越明显。
(三)应用于医学仿生制造
在医学领域,有效融合CT技术和快速成型技术,能够对人体的骨骼结构亦或是器官形状等进行复制,并完成重要手术方案与整容方案的预演任务,同时还能对假肢进行合理设计与制造。
(四)应用于艺术品制造
大部分建筑装饰品与艺术品均以设计人员灵感为依据构思设计,通过对快速成型技术的运用能够将设计者的创作与生产制造相结合,进而为设计人员提供更为理想的设计环境,为艺术品成型提供必要前提条件。
结束语:
综上所述,快速成型制造技术的应用为设计和制造提供了创新发展
的前提条件。
该技术的成本不高且具有极强的修改性特征,工艺过程也相对特殊,可实现产品设计质量的提高目的,设计与制造周期也会随之缩短,为产品的市场
化发展奠定了坚实基础,同样在制造复杂形状零件方面的优势显著。
快速成型技
术这一现代化制造技术必然会在现代制造行业的发展中发挥其自身价值与作用。
参考文献:
[1] 张益博,李越超,董思化. 快速成型制造技术在现代机械制造业中的应用
研究[J]. 内燃机与配件,2019(8):106-107.
[2] 叶卫文. 快速成型技术在集成制造及数控机械制造中的应用探究[J].
南方农机,2019,50(22):173.
[3] 林野,钟轶,姬玲. 3D打印快速成型技术在线缆连接器注射成型中的应用[J]. 工程塑料应用,2022,50(4):52-57.。